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Standard approaches to controlling dynamical systems involve biologically implausible steps such
as backpropagation of errors or intermediate model-based system representations. Recent advances
in machine learning have shown that “imperfect” feedback of errors during training can yield test
performance that is similar to using full backpropagated errors, provided that the two error signals
are at least somewhat aligned. Inspired by such methods, we introduce an iterative, spatiotem-
porally local protocol to learn driving forces and control non-equilibrium dynamical systems using
imperfect feedback signals. We present numerical experiments and theoretical justification for sev-
eral examples. For systems in conservative force fields that are driven by external time-dependent
protocols, our update rules resemble a dynamical version of contrastive divergence. We appeal to
linear response theory to establish that our imperfect update rules are locally convergent for these
conservative systems. For systems evolving under non-conservative dynamics, we derive a new the-
oretical result that makes possible the control of non-equilibrium steady-state probabilities through
simple local update rules. Finally, we show that similar local update rules can also solve dynamical
control problems for non-conservative systems, and we illustrate this in the non-trivial example of
active nematics. Our updates allow learning spatiotemporal activity fields that pull topological
defects along desired trajectories in the active nematic fluid. These imperfect feedback methods are
information efficient and in principle biologically plausible, and they can help extend recent methods
of decentralized training for physical materials into dynamical settings.

I. INTRODUCTION

Modern machine learning techniques have enabled un-
precedented advancements in pattern recognition, deci-
sion making, generative data synthesis, and numerous
other tasks [1]. Efficiently training models with a large
number of parameters has been key for this progress, and
the predominant training method involves recursively
computing gradients of a global error function through
automatic differentiation algorithms like backpropaga-
tion. There is a conceptual tension, however, between
this successful procedure for training artificial neural net-
works and our current knowledge of how synaptic weights
in the brain are updated [2]. Automatic differentiation
of a global cost function requires knowing weights which
are arbitrarily far downstream of a given unit. This rep-
resents a top-down approach to training which is not bi-
ologically plausible given the local connectivity and plas-
ticity mechanisms of actual neurons.

This tension has motivated research into alternative
training algorithms which avoid exact computation of a
global cost function’s derivatives [2, 3]. In the context of
a feedforward neural network architecture, recent work
has shown that severe approximations to the “correct”
gradient signal, even including a fixed random backward
weight layer, can successfully be used during training
if combined with accurate forward passes through the
model [4]. This principle of using imperfect, but eas-
ily accessible, error gradients has recently been leveraged
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to train real physical systems to act as machine learn-
ing models by using approximate differentiable simula-
tions of the forward path to compute the error gradi-
ent [5]. More broadly, the feedforward architecture can
be replaced with distributed systems, such as heteroge-
neously parameterized networks of springs or resistors
[6–8]. These systems evolve under physical dynamics
to minimize some variational quantity, such as the to-
tal elastic energy or steady-state power dissipation [9].
The steady-states of these physical systems can be inter-
preted as outputs which represent computations done on
a set of input variables of the system, and this computa-
tion can be trained by iteratively nudging the parameters
to lower the variational quantity for the desired output
in response to a given input.

Although recent works have studied how local update
rules based on variational quantities can compute func-
tions on static sets of data in non-equilibrium settings
[10, 11], they have not explored how these local update
rules can be used to control non-equilibrium dynamics
(Figure 1A). One can draw a parallel between backprop-
agation for training machine learning models, which re-
quires a global cost function and non-local propagation
of information, and optimal control [12], which similarly
uses numerical descent of a global cost function and re-
quires complete model specification to work (Figure 1B).
Much recent progress has been made in formulating and
solving optimal control strategies for non-equilibrium dy-
namics, often with the aim of minimizing the heat dis-
sipated by the trajectory [13–22]. Additionally, related
works have successfully leveraged reinforcement learning
(RL) to find control policies that guide active matter
systems into desired dynamical states [23, 24]. These
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FIG. 1. Using imperfect gradients to solve inverse problems of non-equilibrium control. A) A classic learning problem is to fit
the parameters of a model distribution (purple-blue) to that of a target (black). This can be solved by flowing the parameters
down the gradient of the Kullback-Leibler divergence between the two distributions. B) In a dynamical setting, the objective
is to fit a non-equilibrium trajectory of distributions to a given target trajectory. This is commonly achieved using a non-local
cost function J of the entire trajectory. C) Illustration of the approximate update rule ∆app acting as a descent direction with
respect to the “correct” gradient ∆neq. The black arrow has a negative dot product with ∆neq and hence does not act as a
descent direction. D) Same as the dynamical learning task in panel A, but illustrating that following the approximate gradient
∆app yields a different route to convergence. E) Four case studies examined in this paper.

approaches to non-equilibrium control yield highly opti-
mized policies, but as a downside they involve biologi-
cally implausible steps such as perfect model specifica-
tion, backpropagation of errors, non-local update rules
based on global cost functions, or a long-term memory of
previous control attempts. We thus ask whether ideas for
training machine learning systems using local, approxi-
mate update rules can be brought to bear on the prob-
lem of guiding non-equilibrium trajectories. An answer
to this question can have biological implications, help-
ing bridge the gap between our current understanding of
active matter systems and the types of regulatory feed-
back network that living organisms use to regulate these
systems and carry out physiological functions [25]. Addi-
tionally, it can help to generalize recent ideas for training
physical materials with decentralized learning and sim-
ple, local update rules into non-equilibrium, time-varying
settings [3, 11, 26].

Here, we introduce a set of spatiotemporally local
learning rules to guide non-equilibrium systems along
desired dynamical trajectories. We make minimal use
of the knowledge of the system’s dynamics and parame-
ters, instead relying on local comparisons of some (pre-
sumed accessible) observable for the system, such as its
free energy density or probability density. Our local up-
date rules can be loosely viewed as flowing down an ap-

proximation to the gradient of an optimal control cost
function and hence we dub these updates “imperfect,” in
analogy to the above mentioned imperfect error signals
that can be used in place of backpropagation to train
machine learning models (Figure 1C and D). We con-
sider both non-autonomous conservative systems (which
obey detailed balance but have parameters varied at fi-
nite speed) and non-conservative systems (which break
detailed balance), and we use numerical experiments to
illustrate the local update rules in several examples of in-
creasing complexity. These include a particle trapped in
a moving confining potential, a Helfrich membrane with
a time-varying spontaneous curvature field, a driven first-
order chemical reaction network, and, finally, an active
nematic fluid (Figure 1E). In the last system, we demon-
strate that a surprisingly simple update rule based on
differences in free energy density can successfully train a
spatiotemporal activity protocol to pull nematic defects
along a desired trajectory [27]. Taken together, the re-
sults in this paper suggest ways for using local learning
rules in a broad class of non-equilibrium physical systems
and machine learning models.
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FIG. 2. Learning to control Markovian chain dynamics. A) Illustration of the system in Section II of this paper. Gray columns
indicate vectors with labels given above, and lines connecting columns indicate matrices with labels given below. Error signals
are provided according to the drawn arrows. B) Depiction of the sequence of transition matrices {W(t)}Nt−1

t=0 , learned using
distorted (with Bd) and undistorted error signals, and staring from the same initial sequence. Colors range from violet to
red for increasing values of Wij . Inspection reveals that two learned sequences are not identical even though they start from
the same initial sequence. C) Depiction of the trajectory of probability vectors {pn(t)}Nt

t=0 obtained along the distorted and
undistorted learning trajectories, for the same trial as in panel B. Inspection reveals that the two learning processes produce
final trajectories that are nearly identical to each other and match the target. D) Plot of the convergence, defined as Ln

T /L0
T ,

as learning progresses using different error signals. The legend indicates which distortion matrices are used for each protocol,
with I indicating undistorted errors. E) Schematic illustration of the different learning trajectories which arrive at the same
point of convergence.

II. A PRIMER: LEARNING TO CONTROL
NON-EQUILIBRIUM MARKOV CHAIN
DYNAMICS WITH LOCAL, DISTORTED

FEEDBACK

Many open-loop control techniques rely on cost func-
tions which integrate over the duration of a dynamical
trajectory and are hence global in nature [12]. We wish
to explore alternative approaches in which temporally
local, imperfect feedback is used instead. As a motivat-
ing example, we first consider a Markov chain specified
by a discrete sequence {W(t)}Nt−1

t=0 of stochastic transi-
tion matrices which transform an initial probability vec-
tor p(0) into a final vector p(Nt) (Figure 2A). We show
that it is possible to learn a Markov chain which produces
a given trajectory using temporally local error signals,
and we then show that one can go further and systemat-
ically distort these local error signals without preventing
convergence of the learning algorithm. This problem is
inspired by Ref. 4, where imperfect feedback of errors was
used to avoid backpropagation when learning the param-
eters of a shallow neural network model (see SI Section
IA).

We aim to learn a trajectory {p∗(t)}Nt
t=0 through prob-

ability space, assuming that p∗(0) is given. We wish
to avoid biologically implausible backpropagation of er-

rors through time, so that during the nth learning it-
eration at time t we do not use any knowledge of the
errors en(t′) = p∗(t′) − pn(t′) for t′ > t + 1. This
causes our learning dynamics to be temporally local, such
that each matrix Wn(t − 1) greedily aims to connect
pn(t − 1) to p∗(t) without consideration of downstream
(t′ > t) losses. We show in SI Section IB that even though
Wn(t) flows down the gradient of these local loss func-
tions Ln(t) = 1

2 (e
n(t))⊺en(t), rather than the global loss

function Ln
T =

∑
t Ln(t), convergence is still guaranteed

over the entire trajectory. Intuitively, this happens as the
matrix Wn(0) first learns to connect the given p∗(0) to
p∗(1), after whichWn(1) has the right starting point and
can learn to connect p∗(1) to p∗(2), and so on. Figures
3C and F of the next section illustrates how in practice
convergence happens faster than this “worst-case” sce-
nario, such that later times in the trajectory have useful
learning updates even before earlier times have fully con-
verged.

We next consider the effect of systematically distort-
ing these local loss gradients ∇W(t−1)Ln(t) using a set

of fixed random matrices Be(t) and Bd(t). We study
two ways of doing this: one in which our error vec-
tors are distorted as en(t) → Be(t)en(t), and one in
which our knowledge about the dynamics is distorted
as ∇W(t−1)p

n(t) → Bd(∇W(t−1)p
n(t)). In SI Sections
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IC-E we show analytically and numerically that these
distortions to the gradient do not prevent convergence
provided that Be(t) has positive eigenvalues and Bd(t) is
positive definite. These analytical constraints illustrate,
for these Markov chain dynamics, the kinds of conditions
under which local learning can work in more general dy-
namical settings, even in the presence of systematic er-
rors. We further find that these two modes of distorting
the gradient have qualitatively different effects on the
convergence rate: Be(t) affects convergence according
to its minimum eigenvalue, which controls the slowest
relaxation mode, whereas Bd(t) affects convergence of
all modes uniformly according to its Rayleigh quotient
with pn(t− 1). Figures 2B-E illustrate the fact that the
distorted and undistorted learning dynamics both con-
verge to the same solution, but along different paths and
with a different final set of degenerate transition matrices
{W(t)}Nt−1

t=0 which both effectively produce the same tra-

jectory {pN (t)}Nt
t=0 which matches the target {p∗(t)}Nt

t=0

(see also Figure 1C). This is similar to how the distorted
feedback matrices in Ref. 4 yield different neural network
parameters which nevertheless achieve validation results
comparable to those obtained from parameters trained
without distortion, using full backpropagation.

The Markov chains considered here can encompass
many systems of interest and motivate how a to learn
dynamics with local, error-prone rules. However, Markov
chains are a fairly abstract representation of physical dy-
namics. We next consider how these principles of imper-
fect and local feedback can be used to guide dynamical
trajectories using more concrete physical models. We
first consider in Section III a class of non-equilibrium dy-
namics in which a conservative system is driven out of
equilibrium due to non-autonomous variation of Hamil-
tonian parameters λ(r, t). After that, in Section IV we
consider systems driven by non-conservative forces that
are parameterized by an activity protocol α(r, t). In both
classes of non-equilibrium systems we take the same con-
crete learning problem, in which the goal is to reconstruct
a target trajectory of the system q∗(r, t) by iteratively
running a forward pass through the physical dynamics
to generate trial trajectories qn(r, t) and then updating
the driving protocol λn(r, t) (or αn(r, t)) using an im-
perfect, spatiotemporally local update rule.

III. LEARNING TO CONTROL
CONSERVATIVE, NON-AUTONOMOUS

SYSTEMS

Learning desired dynamics in time-varying environ-
ments is a problem that is encountered in many biologi-
cal and synthetic contexts [25]. For conservative systems
(which obey detailed balance), the problem can be generi-
cally posed as follows. We consider a system described by
a HamiltonianH(q;λ(t)), where q are the system degrees
of freedom and λ(t) is a set of non-autonomously con-
trolled parameters. These could represent, for instance,

parameters describing a fitness landscape in an immune
or evolutionary context [15, 28, 29], parameters describ-
ing molecular interactions in a colloidal self-assembly
context [23, 30], or the location and stiffness of an optical
trap manipulating a small particle [19, 20]. At equilib-
rium with fixed λ, the probability of the system obeys
the Boltzmann distribution peqλ (q) = Z(λ)−1e−βH(q;λ)

where Z(λ) is the partition function and β = 1/kBT .
Viewing λ as learnable parameters, we wish to solve the
inverse problem of reconstructing a target probability tra-
jectory. We assume this trajectory p∗(q, t) = pλ∗(t)(q)
has been generated by evolving stochastic dynamics of
the form

∂tp(q, t) = µ∂q · (∂qH(q;λ(t))p(q, t)) +D∂2qp(q, t) (1)

under the protocol λ∗(t). In these dynamics the mobility
µ is related to the diffusion D and inverse thermal energy
β by the Einstein relation µ = βD. We aim to construct a
temporally local rule to iterate our guess for the protocol
λ(t).

A natural cost function to consider is the
Kullback-Leibler (KL) divergence D[pλ∗(t)||pλn(t)] ≡∫
dqpλ∗(t) ln pλ∗(t)/pλn(t) between the target trajectory

pλ∗(t) and the trajectory under the nth learning iteration
pλn(t). The difficulty in computing the gradient of
this cost function with respect to the parameters λ is
due to the fact that when the system is not at equi-
librium with the parameters λ(t), then pλ(t) deviates
from the Boltzmann distribution and the gradient
may not have a tractable form. Formally writing the
non-equilibrium distribution in a Boltzmann-like form

pλn(t) ∝ e−βH̃(q;λn(t)), the local gradient of the KL
divergence can be expressed as

∆neq ≡
∂D[pλ∗(t)||pλn(t)]

∂λ

=

〈
β
∂H̃(q;λn(t))

∂λ

〉
pλ∗(t)

−

〈
β
H̃(q;λn(t))

∂λ

〉
pλn(t)

(2)

where H̃(q;λn(t)) is the generally unknown exponen-
tial weight of pλn(t). We use the shorthand notation
∂λH(q;λn(t)) ≡ ∂λH(q;λ)|λ=λn(t). As elaborated in
SI Section IIA, if the protocols are quasi-static then this
difficulty of determining H̃ disappears, and the gradient
simplifies to

∆eq ≡
∂D[peqλ∗(t)||p

eq
λn(t)]

∂λ

=

〈
β
∂H(q;λn(t))

∂λ

〉
peq
λ∗(t)

−
〈
β
H(q;λn(t))

∂λ

〉
peq
λn(t)

(3)

where H̃ has been replaced with the known Hamiltonian
H. The quasi-static assumption thus allows breaking the
dynamical problem into a set of independent problems to
which one can apply standard contrastive learning tech-
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niques based on equilibrated distributions, allowing use
of H in the gradient. In SI Section IIB, we illustrate
this further using the KL divergence evaluated over path
probabilities as an alternative cost function.

If the parameters are changed at finite speed (i.e., not
quasi-statically) then a lag develops between the non-
equilibrium distribution pλ(t)(q) and the instantaneous
equilibrium distribution peqλ(t)(q) [31]. Despite this lag, as

an approximation to Equation 59 we can replace averages
over the quasi-static distributions with averages over the
actual non-equilibrium distributions:

∆app ≡
〈
β
∂H(q;λn(t))

∂λ

〉
pλ∗(t)

−
〈
β
∂H(q;λn(t))

∂λ

〉
pλn(t)

.

(4)
This update can also be obtained from Equation 2 by
replacing the unknown weight H̃(q;λ) with the Hamil-
tonian H(q;λ). One can view Equation 4 as repre-
senting the difference between the thermodynamic force
−∂H/∂λ expected from the target trajectory and that
experienced during the nth trial. This difference is used
to inform the update to λn(t), causing the work incre-

ment (∂H/∂λ) · λ̇n(t)dt done during the nth trial to ap-
proach that done at the same time during the target tra-
jectory. Although ∆app is imperfect, it has the correct
fixed point at pλ∗(t) = pλn(t). If ∆

app additionally has a
positive overlap with ∆neq, then it will act as a descent
direction [32] with respect to ∆neq and will converge to
the shared fixed point (Figure 1C). In SI Section IIC we
consider a system that is close to equilibrium, so that it
can be treated in the framework of linear response the-
ory, to show that flows down ∆app indeed converge to
λ∗(t) = λn(t) within a neighborhood of the fixed point.

We emphasize that the gradient ∆app is temporally
local, in that no information of the future (t′ > t) effects
of changing λ(t) are needed to use the update rule

λn+1(t)← λn(t)− η∆app, (5)

where η is a scalar learning rate. We next demonstrate
the feasibility of using this update rule for a simple phys-
ical system.

A. Case study: Bead in a time-dependent potential

Here we use Equation 5 to learn a protocol for pulling
a bead with a movable harmonic trap at position λ(t)
with stiffness k (Figure 3A). We non-dimensionalize the
Fokker-Planck dynamics using the thermal length scale
l = (βk)−1/2 and the relaxation time τ = 1/kµ, redefin-
ing pl → p, q/l → q, λ/l → λ, and t/τ → t. This 1D
system is a simple illustrative example of a broader class
of systems whose degrees of freedom q are subject to
linear forces K(q − a). Analytical expressions for these
linear systems are possible because if the system starts
in equilibrium then, due to the linearity of the driving
force, the non-equilibrium distribution remains Gaussian

for all time, having a mean and covariance matrix which
lag behind their quasi-static counterparts. In SI Section
IID we consider this class of systems in detail and eval-
uate the various updates ∆eq, ∆neq, and ∆app explicitly
in terms of these lagged quantities.

We generate a target trajectory in the 1D bead system
by moving the trap position λ∗(t) as a function of time,
and we study several variations of this process (Figure
3B). An example trap trajectory is shown as the black
line in Figure 3C, and the purple and green lines represent
iterations of the learning process in which the trial trap
position λn(t) is updated locally in time according to
Equation 5.

The relaxation time τ controls the degree to which
the non-equilibrium distribution pλ(t)(q) lags behind the
quasi-static distribution peqλ(t)(q). Because we are not

changing the stiffness parameter k, the updates ∆neq and
∆app are in fact equal for this linear system (see SI Sec-
tion IID). However, convergence slows as τ increases even
using the correct update ∆neq, because the typical up-
date step for λn(t) is smaller when the system is lagging
(Figure 3D). Hence for a fixed η, the more the dynamics
are out of equilibrium, the slower the convergence.

The thermal length scale l controls the breadth of
the probability distributions, and we now argue the ef-
fect of this parameter on the learning dynamics is some-
thing what we can trivially compensate for and thus ne-
glect. Dimensional analysis suggests that the learning
rate η should be divided by l2 in the non-dimensionalized
scheme for updating the trap position λ(t). In Figure
3E we illustrate that as l decreases and η correspond-
ingly increases, then the measured convergence rate in-
deed grows. This growth of the non-dimensional η with
decreasing l can be understood from the fact that the KL
divergence cost function grows to infinity when compar-
ing two distributions which pass into Dirac delta distri-
butions (as β → ∞) centered on different means. Thus,
for lower temperatures our non-dimensional learning step
sizes down the gradient of this cost function will be larger
because the cost function itself is larger. If, however, we
we do not scale η by l2 and we normalize the KL di-
vergence by its value in the first trial to measure con-
vergence, then the dependence of convergence rate on l
drops out entirely (inset of Figure 3E). As a result, it
is reasonable to neglect the dependence of the learning
dynamics on temperature and consider zero-temperature
dynamics in which we do not scale η by l2.

Finally, we ask whether the approximate update rule
Equation 5 works for a more complex non-linear ex-
ample, when ∆neq ̸= ∆app. In place of a pure har-
monic potential we use a Morse potential H(q;λ, k) =

(1−e−
√

k/2(q−λ))2+ 1
2kw(q−λ)

2. We add to this Hamilto-
nian a harmonic potential with a weak spring constant kw
so that the probability density remains compactly sup-
ported. In Figure 3F we show that the learning process
in this case also converges, albeit at a slower rate than
for the harmonic trap.
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FIG. 3. Imperfect learning for a bead in a time-dependent potential. A) Schematic illustration of the bead-trap system. B)
Schematic plots of sequential probability distributions (solid lines) describing the bead location as the trap potentials (dashed
lines) are moved to the right at finite speed, creating a lag between the bead and the trap. Variations of this process are
illustrated as described in the main text. C) The learned trap position as function of time and learning iteration, with learning
rate η = 0.005 and thermal relaxation time τ = 0.2. Color ranges from purple to green as every 25th learning iteration
is shown. The black line indicates the target trajectory. D) Convergence for the nth iteration, defined as the relative KL
divergence

∫
dtD[p∗(t)||pn(t)]/

∫
dtD[p∗(t)||p0(t)] is shown as τ is varied from 0.05 (blue) to 1.25 (cyan) in steps of 0.05. The

pink dashed line displays the quasi-static limit obtained from learning the parameters of a single equilibrium distribution,
rather than of a non-equilibrium trajectory (cf. Figure 1A). The inset shows the exponential convergence rate for each value of
τ and the quasi-static limit. E) Convergence as the learning rate is scaled as η/l2 for thermal length scales l ranging from 0.8
(blue) to 1.6 (cyan) in steps of 0.1. The inset displays the same, for the case when the learning rate is not scaled by l2. The
nine curves corresponding to different values of l are all overlapping. F) Same as panel C but using the Morse potential and
with η = 0.01.

B. Case study: Helfrich membrane with
spontaneous curvature

We next consider a system whose configuration is de-
scribed by a spatially extended field q(r, t), i.e., a func-
tion of time t and of a 1D spatial coordinate r ∈ [0, L].
As a concrete example, we study a membrane system
whose height q(r, t) evolves to relax a Helfrich Hamilto-
nian (Figure 4A). In the Monge gauge and for small q,
the leading order contribution to the energy is H[q(r)] =∫ L

0
drh(q(r);λ(r)) where [33, 34]

h(q(r);λ(r)) =

(
σ

2
+
κλ(r)2

4

)
(∂rq)

2
+
κ

2

(
∂2rq − λ(r)

)2
.

(6)
Here, σ is a surface tension, κ is a bending rigidity, and
λ(r, t) is a spontaneous curvature field which sets the lo-
cal rest value of ∂2rq. Because of the previously discussed

trivial dependence on temperature (Figure 3E), we ne-
glect noise here in the overdamped dynamics ∂tq(r, t) =
−µδH/δq.
We take the spontaneous curvature field λ(r, t) to be

externally controllable, for example due to a spatiotem-
poral protocol of curvature-inducing proteins that bind
to a lipid membrane [35]. Varying λ(r, t) at finite speed
drives the membrane out of its initially equilibrated flat
configuration q(r, 0) = 0 and generates a non-equilibrium
height field trajectory q(r, t).

As in the previous example, we specify a target pro-
tocol λ∗(r, t) and generate its corresponding height field
trajectory q∗(r, t) (Figure 4B and C). We then iteratively
learn the target protocol starting from an initial guess,
λ0(r, t) = 0, by incrementing λn(r, t) using spatiotempo-
rally local updates which are approximations to an inac-
cessible non-equilibrium gradient. Due to the continuous
space dimension of this problem, we use the functional
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FIG. 4. Imperfect learning for a Helfrich membrane driven by a field of spontaneous curvature. A) Schematic illustration of the
Helfrich membrane system. B) Plots of the target spontaneous curvature protocol λ∗(r, t) at various times t. The inset displays
λ(100, t) as a function of t, corresponding to the dots in the main plot. C) Plots of the height field trajectory q∗(r, t) resulting
from λ∗(r, t) in panel B. D) Plots of the height field q∗(r, 2.5) as the learning iterations increase (from purple to green). The
inset shows the convergence (defined as

∫
drdt|q∗(r, t)− qn(r, t)|/

∫
drdt|q∗(r, t)− q0(r, t)|) as a function of iteration. We used

η = 0.25, β = 1, µ = 1, and κ = σ = 10 (in simulation units) for these results.

gradients δH/δλ in Equation 5.

In Figure 4D we illustrate convergence of the imperfect,
spatiotemporally local learning rule. To understand how
a spatially continuous domain does not prevent learning
using local learning rules, we can view the amplitudes
λm(t) of the mth spatial Fourier mode of λ(r, t) as sepa-
rate learning degrees of freedom (see SI Section IIE). In
the limit of small q(r, t) and λ(r, t), the height field dy-
namics can be linearized so that the corresponding evolu-
tion equations for the amplitudes qm(t) decouple. These
amplitude evolution dynamics can then be mapped onto
a discrete system of linear forces, for which we previously
demonstrated that convergence is possible. These consid-
erations imply that learning membrane dynamics would
be possible over a 2D spatial domain as well.

We have shown it is possible to learn non-autonomous
protocols of Hamiltonian parameters driving conservative
physical systems by using spatiotemporally local com-
parisons to a target trajectory. While local rules work
trivially in quasi-static conditions, our results demon-
strate that local approximations also work in non-quasi-
static conditions because they have positive overlap with
a “correct” non-local update rule (Figure 1C). We have
demonstrated that this principle holds across conditions
of relaxation time and temperature, for non-linear po-
tentials, and for spatially continuous degrees of freedom.
Having illustrated that imperfect local learning rules can
work to control the dynamics of non-autonomous conser-
vative systems, we next consider a more challenging class
of systems involving non-conservative forces.

IV. LEARNING TO CONTROL
NON-CONSERVATIVE SYSTEMS

A new difficulty for learning to control non-
conservative systems is that even at long times the sys-
tem is not guaranteed to equilibrate with respect to the

current parameters of its Hamiltonian and will instead
occupy a non-equilibrium steady-state. This steady-
state distribution will be characterized by an exponen-
tial weight Φ which is generally unknown, and as a result
trying to minimize the KL divergence cost function will
involve intractable gradients of Φ (see SI Section IIIA).
However, progress can be made by considering alterna-
tive cost functions which lead to approximate gradients
that involve accessible quantities. We first demonstrate
this for the problem of updating a single edge parame-
ter in a chemical reaction network to achieve a desired
steady-state node probability. We then consider a com-
plex paradigmatic active matter system, active nematics,
and illustrate how an imperfect learning rule there can
be used to guide topological defects along desired trajec-
tories.

A. Case study: Dissipative discrete state Markov
processes

Here we consider a biophysically relevant problem in
which the consumption rate of chemical energy along an
edge of a reaction network needs to be learned to achieve
a desired steady-state concentration of some species. For
instance, the ambient concentration of GTP during the
Rho activation cycle [36] can be “learned” in this frame-
work to achieve a target concentration of the activated
(GTP-bound) Rho state, which in turn affects down-
stream signaling (Figure 5A). The general problem can
be formulated using a continuous-time rate matrix W to
encode the kinetic rates connecting species which inter-
convert according to (pseudo)-first order reactions (Fig-
ure 5B). We follow Ref. 37 and parameterize the proba-
bility rate from state j to i asWij = eEj+Bij+αij/2 where
Bij = Bji is a symmetric contribution and αij = −αji an
anti-symmetric contribution which breaks detailed bal-
ance and generates steady-state fluxes. We assume that
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FIG. 5. Imperfect learning for a chemical reaction network’s steady-state. A) Illustration of the Rho activation network, which
is driven by hydrolysis of GTP into GDP and is mediated by the exchange factor GEF and the activating protein GAP. B)
Schematic illustration of a general discrete state Markov process. As αij increases, the red edge rate grows exponentially and
the blue edge rate decreases exponentially. B) Plots of the derivatives ∂πk/∂αij for each of the nodes in the graph in panel A,
using randomly drawn values for the parameters Ei, Bij , and αij . C) Plots of the convergence, defined as (π∗

k−πn
k )

2/(π∗
k−π0

k)
2,

for separate, independent learning processes using each node in the graph as a target, with the same coloring as the other panels.

we have access only to αij for a given edge i ↔ j in the
network, and we consider how to move the steady-state
probability πk at node k to a target value π∗

k.

As elaborated in SI Section IIIA, this problem is non-
trivial for non-equilibrium Markov state networks given
the algebraically complicated dependence of steady-state
distributions on the transition rates. We consider the
simple quadratic cost function 1

2 (πk − π
∗
k)

2, whose gra-
dient with respect to αij is (∂πk/∂αij)(πk − π∗

k). This
expression is difficult to handle because computing the
prefactor ∂πk/∂αij requires detailed knowledge of the
network topology and parameters. However, since we
are adjusting a scalar quantity, then we would be justi-
fied in neglecting this prefactor entirely if we always at
least knew its sign. Measuring the sign of the derivative
once can feasibly be accomplished in practice, but then
to continue providing updates in the correct direction we
would need to be sure that the sign does not flip as αij

changes during the learning dynamics. In fact, we illus-
trate numerically in Figure 5B that for a fixed i, j, and
k, the derivative ∂πk/∂αij does not change sign as αij

is varied from −∞ to ∞. We mathematically prove this
surprising result in SI Section IIIB, using the matrix-tree
representation of πk and a technique called “tree surgery”
which was recently introduced in Refs. 37, 38. As a result
of the monotonicity of πk(αij), an imperfect gradient can
be used to update αij according to

αn+1
ij ← αn

ij ± η(πn
k − π∗

k), (7)

where we have used the ± symbol to indicate that the
appropriate sign of this update must first be determined
but is then guaranteed not to change during learning.
We show in SI Section IIIB that the sign of ∂πk/∂αij is
positive for k = i and negative for k = j, but analytically
predicting the sign in general is difficult and left for fu-
ture work. In Figure 5C we demonstrate that learning is
possible using Equation 7 for each node in the network,
albeit at different rates for each node. This update rule
requires no knowledge of the network structure and only

involves measuring the current steady-state node occu-
pation of the node of interest, which is in principle a bi-
ologically plausible learning mechanism. In the example
of Rho signaling, this implies that global consideration of
the network state is not necessary, and the GTP concen-
tration can be adjusted by making local measurements
of only the activated state concentration. Although this
may be expected given that the Rho network topology
is a single cycle, our result implies that this type of lo-
cal learning scheme is possible for arbitrarily complicated
(psuedo)-first order reaction networks.

B. Case study: Nematic defects in activity tweezer

Finally, we consider active nematics, composed of lo-
cally extensile or contractile force dipoles that obey a
liquid-crystal hydrodynamic theory [39, 40]. Active ne-
matic dynamics describe several systems of biological
interest including solutions of short biopolymers mixed
with molecular motors [41, 42], bacterial colonies [43, 44],
and the epidermal layer of cells in developing organisms
[45, 46].
Active nematics can be modeled using an order param-

eter field Q(r, t) (a symmetric and traceless tensor cap-
turing the degree of apolar alignment of force dipoles)
and a flow field v(r, t). The evolution of Q(r, t) involves
non-linear coupling to the flow field as well as a relax-
ational term arising from the Landau de-Gennes free en-
ergy function F =

∫
drf(r) (see SI Section IVA) for de-

tails. The flow field v is driven by two stress tensors,
an Ericksen stress which the nematic field sets up in re-
sponse to deviations from its free energy minimum, and
an active stress σa = αQ which is a non-conservative
term resulting from the activity of, for example, molecu-
lar motors walking on pairs of filaments.
As a concrete learning problem in this system, we con-

sider the task of manipulating the motion of defects in
the nematic field (Figure 6A). Defects in active nemat-
ics are singular points in the Q(r, t) field around which
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FIG. 6. Imperfect learning for active nematic defect dynamics. A) Schematic illustration of the active nematic system. B)
Snapshots of the activity profile used to pull the −1/2 defect (white dot and lines) along a partial circular trajectory. The thick
black dot and lines represent the +1/2 defect. The thin black lines represent the nematic field Q(r, t) and color represents
α∗(r, t). C) Snapshots of the free energy density f(r, t) accompanying the nematic fields in panel B. The free energy is scaled
by 103. D) Snapshots of the trained activity protocol αN (r, t), showing that the trained defect trajectory (solid white lines)
reproduces the target trajectory (dashed white line). The color scheme is the same as panel B. E) Schematic illustration of
the free energy profiles under displacement of the −1/2 defect by a vector d. The gray lines indicate the defect orientation,
relative to which the angle ψ with respect to which d is defined. F) Plots of the simulated training performance, defined as
1 − |r∗−(T ) − rN− (T )|/|r∗−(T ) − r0−(T )|, as the angle ψ is varied. The predicted overlap ∼ cos(3ψ) is plotted on the same axis.
For this comparison, short target trajectories were obtained by translating the initial nematic field Q∗(r, t) = Q(r− vtd, 0) at
a speed v = 0.01 to allow perfect control of the pulling direction d. Simulation parameters for these results are provided in SI
Section IVA.

the alignment direction rotates by a half-integer multi-
ple of 2π radians [47]. Figure 6A illustrated two types
of defects, +1/2 and −1/2, which form a topologically
neutral pair. In confined or periodic systems, defects are
topologically protected unless they annihilate with a de-
fect of opposite charge. Positioning these defects within
the fluid is thought to be biologically important, as it
has been demonstrated that defects in the epidermal ne-
matic field of developing Hydra correspond to morpholog-
ical organizing centers such as the location of the future
mouth [45, 46]. Recent work illustrated that the motion
of these defects can be manipulated using tightly local-
ized gradients in the activity field α(r, t) (called “activity
tweezers”) [27], similarly to how localized stresses can be
created using optical tweezers to manipulate defects in
colloidal crystals [48]. The necessary spatial gradients in
α(r, t) can be realized in vivo through, e.g., spatial regu-
lation of motor activating proteins [41]. Additionally, it
has recently become experimentally possible to exert spa-
tial control over active nematics in vitro by using light-

activated motors or cell signaling channels [49–52]. Our
method of using imperfect gradients to develop dynami-
cal control over complex non-equilibrium systems can in
principle be useful in these experimental contexts.

Using a numerical integrator of the active nematic
equations of motion (whose implementation is described
in Refs. 53–55), we generate target −1/2 defect trajecto-
ries using the activity tweezers, i.e., an activity protocol
α∗(r, t), similar to those described in Ref. 27 (Figure 6B).
Defects in the nematic field are generically characterized
by persistent peaks in the free energy density f(r) (Fig-
ure 6C). As a result, it is reasonable to imagine that
f(r) can be used as a proxy for defect position and con-
sider a quadratic cost function 1

2 (f
n(r, t)−f∗(r, t))2. The

gradient of this cost function with respect to the learn-
able activity field α(r, t) involves the difficult prefactor
∂fn(r, t)/∂α(r, t). Similarly to the manipulations in the
previous sections (Equation 7), we first assume that this
prefactor can be ignored, and we consider spatiotempo-
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rally local learning rule

αn+1(r, t)← αn+1(r, t)− η(f∗(r, t)− fn(r, t)). (8)

Surprisingly, this simple update rule successfully allows
reconstructing the target defect trajectory (Figure 6D).
Successful implementation of this rule requires practi-
cal stabilization measures which we discuss in SI Section
IVB. We note that the learned activity protocol differs
markedly from the tweezer protocol which was used to
create the target trajectory. This hints at the possibility
that, while our update rule deterministically produces
the same activity protocol for a given condition, there
may be a degeneracy of usable activity protocols which
can be accessed by alternative update rules. The up-
date rule in Equation 8 produces regions of both nega-
tive (extensile) and positive (contractile) activity which
is not thought to biologically realistic because an active
nematic is typically either purely extensile or purely con-
tractile, and we aim to refine this in the future. Here
we just highlight the fact that a simple free energy com-
parison f∗(r, t) − fn(r, t) serves as a sufficient feedback
signal to learn an activity protocol α(r, t) in a system
with non-trivial physics.

We emphasize that Equation 8 can be viewed as act-
ing like an approximate gradient of a global cost func-
tion which is made difficult due to the presence of non-
conservative forces, non-autonomous control parameters,
and complicated non-linear hydrodynamic equations of
motion. Recent studies used top-down, global techniques
such as optimal control and computation of exact co-
herent structures [56, 57] to solve similar active nematic
control problems, but they require complete knowledge
of the system’s dynamics and parameters. To gain intu-
ition for why our simple local update rule works, in SI
Section IVC we adapt recent analytical theory from Ref.
27 describing the effective velocity of a −1/2 defect under
an activity field α(r, t). The velocity depends on second
order spatial derivatives in α(r, t) via v− = aΣ : ∇∇α,
where a is a constant prefactor and Σ is a certain rank-
three tensor which has the appropriate symmetries to
describe the orientation of the −1/2 defect (being invari-
ant under a rotation by 2π/3 radians). We treat pulling
the defect as a displacement of the original free energy
profile f(r) by a small vector d, producing a new free
energy profile f(r − d) (Figure 6E). We then evaluate
the Hessian of the activity ∇∇α produced by iterating
Equation 8 under these free energy profiles, find the ve-
locity v− which this activity field imparts to the defect,
and finally evaluate the dot product between this velocity
and the translation direction d. We find that this over-
lap depends as cos(3ψ) on the angle ψ between the de-
fect orientation and d. To test this approximate theory,
we performed learning trials with various initial angles
ψ and measured the training performance at each angle.
Figure 6F indicates good agreement with theory. This
result explains why the approximate update rule Equa-
tion 8 works, and it implies that convergence depends

on the orientation of the defect. This also suggests that
scalar fields besides the free energy f(r), which might
better capture details of the defect orientation, would
likely serve as better sources of feedback, but we leave
this to future work.

V. DISCUSSION

We have demonstrated in several physical systems the
idea that full top-down control is not necessary to guide
complex non-equilibrium dynamics. Rather, simple, ap-
proximate (and in some cases thermodynamically moti-
vated) update rules which make only spatiotemporally
local comparisons can be used instead. As illustrated in
Figure 1C, an update rule that at least somewhat aligns
with a “correct” gradient can act as a descent direction
and allow flowing down the loss landscape. Here, we
construct imperfect update rules out of easily measured
observables, such as forces averaged over the trial and tar-
get distributions (Equation 4), local occupation probabil-
ities (Equation 7), or free energy densities (Equation 8).
Ensuring convergence in each case requires some system-
specific considerations, but we expect that the broader
idea of using easily accessible information to guide com-
plex dynamics in place of top-down control is general.
The results in this paper extend the notion of imper-

fect gradient descent as a successful optimization strat-
egy to the domain of dynamical control based on local
error signals. Another class of techniques in which ap-
proximated, temporally local feedback signals are used
to inform updates to a control policy is temporal differ-
ence RL [58, 59]. Our method bears certain conceptual
similarities with this class of techniques, but with the
key difference that our method does not learn a value
function. The value function in RL encodes expected re-
wards, and it is commonly estimated using temporally
local, approximate error signals obtained through explo-
ration of the environment. To optimize its expected re-
ward, the agent then updates its policy (i.e., its choice
of actions) by performing gradient ascent on its estimate
of the value function. In a standard RL algorithm, neu-
ral networks for both a critic (which learns the value
function from experience) and an actor (which optimizes
policy based on the critic) need to be trained and stored
in memory. By contrast, our method bypasses the need
to learn a value function by directly prescribing a simple,
physically-motivated approximation to a value function
gradient, which we call ∆app. Thus, we leverage phys-
ical insight to provide a critic, allowing us circumvent
algorithmic machinery which is typically needed in RL
to provide meaningful updates to the agent’s policy. We
elaborate on this comparison to RL in SI Section V.
We expect that these methods can be of interest in

several domains of research. Relaxing the constraint
of having equilibrated distributions could feasibly al-
low accelerating methods in generative machine learn-
ing. For example, similar arguments were previously used
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to justify methods like CD-n [60]. Additionally, biologi-
cal information-processing systems like the immune sys-
tem operate in dynamic, non-equilibrium environments
[28, 29], where the principles explored in this paper might
apply. Finally, a current challenge in biology is to iden-
tify principles which living organisms might utilize to dy-
namically control their active mechanochemical machin-
ery and carry out biologically useful tasks [25]. We imag-
ine that imperfect gradients can serve as such a principle,
particularly as demonstrated in the task of active nematic
defect control. While we considered a specific inverse
problem setting, we expect that one can generalize this
principle to help study other biologically relevant tasks of
non-equilibrium control, such as maintaining homeosta-
sis or searching for optimal trajectories. Additionally, re-
cent advances in training physical materials using simple,
local update rules [3, 11, 26] can feasibly be generalized
using these results to work in dynamical, non-equilibrium
settings.
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Supplementary Information

I. FEEDBACK ALIGNMENT FOR TRANSITION MATRICES

In Ref. 4 it is shown that a neural network can be trained without the use of exact backpropagation, in the
sense that a transposed weight matrix (W1)⊺ (which would be required for exactly backpropagating errors to an
upstream weight matrix W0) can be replaced with an random matrix B of full rank, and this substitution will not
prevent convergence of the learning dynamics. This surprising result is due to the fact that learning dynamics for
W1 cause it to eventually align with B⊺, such that B can pass relevant error information to W0. In Ref. 4, this
is illustrated numerically using shallow neural networks (with non-linear activation functions) and mathematically
proven for shallow linear networks. We first summarize their mathematical analysis, after which we generalize the
feedback alignment idea to learn sequences of transition matrices from trajectories.

A. Summary of analysis in Ref. 4

The authors of Ref. 4 consider the linear system

yi = W 1
ijhj (9)

hj = W 0
jkxk (10)

where x is the input data, h is a hidden layer, and y is the final output (see Figure 2A of the main text). Summation
of repeated indices is implied throughout. The correct output is labeled y∗, and the error is defined as

ei = y∗i − yi =
(
Tik −W 1

ijW
0
jk

)
xk ≡ Eikxk, (11)

where Tik is the correct mapping from xk into y∗i . From ei the quadratic loss L = 1
2ekek is computed. To minimize

this loss via gradient descent, one updates W 0
ij and W 1

ij using the derivatives

∆W 0
ij ∼ −

∂L
∂W 0

ij

= − ∂L
∂ek

∂ek
∂W 0

ij

= ekW
1
kixj (12)

and

∆W 1
ij ∼ −

∂L
∂W 1

ij

= − ∂L
∂ek

∂ek
∂W 1

ij

= eiW
0
jmxm. (13)

To compute the product ekW
1
ki, i.e. (W

1)⊺ ·e, in the derivative with respect to W0, one needs access to the transpose
of W1. To avoid this transposition operation, the authors of Ref. 4 replace (W1)⊺ by a random matrix of full rank,
B, so that

∆W 0
ij ∼ Bikekxj . (14)

To understand how this substitution affects the learning process, the authors of Ref. 4 write the continuous gradient
descent dynamics of W0 and W1:

Ẇ 0
ij = ηBikEkmXmj (15)

and

Ẇ 1
ij = ηEikXkmW

0
jm (16)
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where Xij ≡ xixj and the dots denote a derivative with respect to the learning iteration, and η is a learning rate. For
an ensemble of scaled inputs xi which are drawn from N (0, 1), the matrices Xij = δij in expectation, so that

Ẇ 0
ij = ηBikEkj (17)

and

Ẇ 1
ij = ηEikW

0
jk. (18)

Next, we imagine freezing W1 and consider the evolution of W0. The matrix Ekj = Tkj −W 1
kmW

0
mj is linear in W 0

mj ,

and one can show that the most probable evolution of W0 is to grow in magnitude under these dynamics. Hence,

d

dt
W 0

ijW
0
ij = 2ηW 0

ijBikEkj > 0, (19)

which implies that W 0
ij comes to align with BikEkj . Next, we freeze W0 and evolve W1, and consider the quantity

d

dt
BikW

1
ki = ηBikEkjW

0
ij . (20)

Equation 19 implies that d
dt (BikW

1
ki) > 0, which means that B comes to align with (W1)⊺ as was to be shown.

B. Extension to chains of transition matrices

We now build on this analysis and consider how to leverage feedback alignment to imperfectly learn a chain
{W(t)}Nt−1

t=0 of Nt transition matrices, which act on probability vectors p(t) as

pi(t) =Wij(t− 1)pj(t− 1). (21)

As a probability vector over aM dimensional space, p(t) obeys
∑M

i=1 pi(t) = 1, and due to conservation of probability
we must have ∑

i

Wij = 1 ∀j, (22)

i.e., the columns of the transition matrices sum to unity. Furthermore, the entries Wij must be non-negative in
order to physically represent the transition probability from state j to state i. See Figure 2B of the main text for an
illustration of the transition matrix chain.

We pose the problem of learning a target trajectory in probability space {p∗(t)}Nt
t=0 through temporally local

comparisons to trial trajectories {pn(t)}Nt
t=0, and we take the first vector p(0) as given and fixed. We define the error

of the nth trial at each time t during the trajectory as

eni (t) = p∗i (t)− pni (t) = En
ik(t)pk(0) (23)

where

En(t) =

t′−1∏
t′=0

W∗(t′)−
t′−1∏
t′=0

Wn(t′) ≡ V∗(t− 1)−Vn(t− 1). (24)

The matrix products here are understood to be ordered as W∗(t′ − 1)W∗(t′ − 2) . . .W∗(0).

We define a total loss function as

Ln
T =

Nt∑
t=1

Ln(t) =
1

2

Nt∑
t=1

enk (t)e
n
k (t), (25)

which sums over local loss functions Ln(t) defined at each time t. To find transition matrices which minimize this
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loss, we consider gradients

∂Ln
T

∂Wn
ij(t− 1)

=

Nt∑
t′=1

∂Ln(t′)

∂Wn
ij(t− 1)

=

Nt∑
t′=t

∂Ln(t′)

∂Wn
ij(t− 1)

(26)

where the final equality is due to causality. For t′ > t, we evaluate

∂Ln(t′)

∂Wn
ij(t− 1)

= −enk (t′)
∂pnk (t

′)

∂Wn
ij(t− 1)

= −enk (t′)
∂V n

km(t′ − 1)

∂Wn
ij(t− 1)

pm(0)

= −enk (t′)V n
ki(t

′ − 1 : t)V n
jm(t− 2)pm(0) (27)

where

Vn(t′ − 1 : t) ≡
t′−1∏
t′′=t

Wn(t′′). (28)

Now, any updates to Wn
ij must preserve its column sum so it remains a stochastic matrix. A sum over i in Equation

27 is not guaranteed to be zero because the row sum for a product of transition matrices is arbitrary. Additionally,
the dot product enk (t

′)V n
ki(t

′ − 1 : t), i.e. (Vn(t′ − 1 : t))⊺ · en(t′), involves a transposition operation. The term
V n
ki(t

′ − 1 : t) represents backpropagation of the error signal from future times t′ > t to time t, and is hence non-local

in time. For these reasons we are motivated to neglect all derivatives ∂Ln(t′)
∂Wn

ij(t−1) for times t′ > t and adjust Wn
ij(t− 1)

only according to the local gradient at t′ = t (cf. Equation 13 above),

∂Ln(t)

∂Wn
ij(t− 1)

= −enk (t)δikV n
jm(t− 2)pm(0). (29)

To use this expression when t = 1 we set V n
jm(−1) = δjm. We note that summing Equation 29 over i yields zero,

because
∑

k e
n
k (t) = 0, so this moving along gradient does not affect the column sum of Wn

ij(t− 1).

We now consider how the error en(t) evolves under the learning dynamics

Ẇn
ij(t− 1) = −η ∂Ln(t)

∂Wn
ij(t− 1)

= ηeni (t)V
n
jm(t− 2)pm(0) (30)

where the dot denotes a derivative with respect to the training iteration n, not with respect to the trajectory time
index t. We have that

ėni (t) = Ėikpk(0)

= −V̇ n
ik(t− 1)pk(0)

= −
(
Ẇn

im(t− 1)Vmk(t− 2) +Wn
im(t− 1)Ẇn

ml(t− 2)V n
lk(t− 3) + . . .

)
pk(0). (31)

To simplify this expression, let us first consider t = 1:

ėni (1) = −Ẇn
ik(0)pk(0)

= −ηeni (1)pk(0)pk(0). (32)

Because the scalar quantity a1 ≡ pk(0)pk(0) is positive, this differential equation clearly represents an exponential
decay of en(1) to zero as n→∞ at a rate ηa1. Next we consider t = 2:

ėni (2) = −
(
Ẇn

im(1)Wn
mk(0) +Wn

im(1)Ẇn
mk(0)

)
pk(0)

= −ηeni (2)Wn
ml(0)pl(0)W

n
mkpk(0) +Wn

im(1)ėnm(1). (33)

We have already shown that after iteration ∼ 1/ηa1 the factor ėnm(1) will be negligible and Wn(0)→W∞(0), so we
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can write

ėni (2) ≈ −ηeni (2)W∞
ml(0)pl(0)W

∞
mkpk(0) ≡ −ηa2eni (2). (34)

The quantity a2 =W∞
ml(0)pl(0)W

∞
mkpk(0) is positive because it is of the form p⊺A⊺Ap and the matrix A⊺A is positive

definite. Thus, the error ėni (2) will also decay exponentially to zero as n→∞. Extrapolating this pattern to arbitrary
t, we can therefore neglect all but the leading term in Equation 31 and write

ėni (t) = Ẇn
im(t− 1)V∞

mk(t− 2)pk(0)

= −ηeni (t)V∞
jm(t− 2)pm(0)V∞

mk(t− 2)pk(0) = −ηateni (t). (35)

This convergence process can be viewed as “zippering,” where early times t in the trajectory converge first, after
which later times converge as well.

C. Learning chains of transition matrices with imperfect gradients

In the previous subsection, it was assumed that the learning dynamics exactly follow the gradients ∂Ln(t)
∂Wn

ij(t−1) .

Somewhat surprisingly, this was shown to be possible even when only considering temporally local loss functions
(avoiding backpropagation in time). We now go a step further and consider the conditions under which convergence
would still be possible if we systematically distort our local feedback signal. Starting from Equation 29, we identify
at least two possible ways to introduce a distortion. One is that we distort the error vector:

enk (t)→ Be
kl(t)e

n
l . (36)

The other is that we distort our “dynamical knowledge”:

∂V n
km(t)

∂Wn
ij(t− 1)

= δikV
n
jm(t− 2)→ δikB

d
jp(t)V

n
pm(t− 2). (37)

Introducing these random matrices Be and Bd, the distorted learning dynamics become (cf. Equation 30)

Ẇn
ij(t− 1) = ηBe

il(t)e
n
l (t)B

d
jk(t)V

n
km(t− 2)pm(0). (38)

We require that
∑

iB
e
ilel = 0 if it is not to affect the column sum of Wn

ij(t − 1). Considering as before the training
dynamics of the first error en(1), we have

ėni (1) = −Ẇn
ik(0)pk(0)

= −ηBe
il(1)e

n
l (1)B

d
km(t)pm(0)pk(0). (39)

If Bd(1) is positive definite, then the product ad1 ≡ Bd
km(t)pm(0)pk(0) is guaranteed to be positive, so we can write

ėni (1) = −ηad1Be
il(1)e

n
l (1) (40)

with ηa1 > 0. This differential equation will decay to zero if Be(1) has positive eigenvalues (a slightly weaker condition
than it being positive definite). For t = 2 we have (assuming e(1) has appreciably decreased)

ėni (2) ≈ −ηBe
il(2)e

n
l (2)B

d
mp(2)W

∞
pl (0)pl(0)W

∞
mkpk(0) (41)

If Bd(2) is positive definite, then it can be split as Bd(2) =
(
B̄d(2)

)⊺
B̄d(2) for some B̄d(2), so that the product

ad2 = Bd
mp(2)W

∞
pl (0)pl(0)W

∞
mkpk(0) is of the form p⊺A⊺Ap and is hence positive. Thus

ėni (2) = −ηad2Be
il(2)e

n
l (1) (42)

will is guaranteed to converge if Be(2) has positive eigenvalues. Continuing this pattern, for arbitrary t we have

ėni (t) = −ηBe
il(t)e

n
l (t)B

d
mp(2)V

∞
pl (t− 2)pl(0)V

∞
mk(t− 2)pk(0) = −ηadtBe

il(t)e
n
l (1)e

n
i (t) (43)
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which will also converge if Bd(t) is positive definite and Be(t) has positive eigenvalues.

An alternative illustration of the convergence of these distorted gradients can be given by considering their overlap
with the correct gradients. For time t, we evaluate(

∂Ln(t)

∂Wn
ij(t− 1)

)
correct

(
∂Ln(t)

∂Wn
ij(t− 1)

)
distorted

= eni (t)V
n
jm(t− 2)pm(0)Be

il(t)e
n
l (t)B

d
jp(2)V

n
pl(t− 2)pl(0)

= (eni (t)B
e
il(t)e

n
l (t))

(
V n
jm(t− 2)pm(0)Bd

jp(2)V
n
pl(t− 2)pl(0)

)
. (44)

This expression is the product of two terms, each of the form p⊺A⊺Ap provided that Be(t) and Bd(t) are both
positive definite. Under these conditions, this overlap is positive and thus the distorted gradient can serve as a
descent direction of Ln(t) [32]. We note that this argument places the more stringent condition on Be(t) that it be
positive definite rather than have positive eigenvalues.

The simultaneous conditions on Be that it have positive eigenvalues and satisfy
∑

iB
e
ilel = 0 are not contradictory.

For example, such a matrix can be constructed as

Be = I+ C̃ (45)

where I is the identity matrix, C is positive definite, and the tilde operation maps a matrix as

C̃ij = Cij −
1

M

M∑
k=1

Ckj (46)

so that its column sums are zero.

D. Effect of imperfect gradients on convergence

The matrices Be(t) and Bd(t) affect the rate of convergence of the error in two qualitatively different ways. For
simplicity, we focus on the effect on the first error en(1) due to Be(1) and Bd(1). The undistorted dynamics of en(1)
are given in Equation 32, which represents exponential convergence of each component eni (1) to zero at rate ηa1. The
distorted dynamics are given in Equation 39, which introduce two new features.

First, the scalar quantity ad1 differs from a1 by the Rayleigh quotient

ad1
a1

=
p⊺(0)Bd(1)p(0)

p⊺(0)p(0)
=

∑M
i=1(y

d
i (1))

2λdi (1)∑M
i=1(y

d
i (1))

2
(47)

where λdi are the eigenvalues of Bd(1) and ydi (1) are the components of p(0) in the eigenbasis of Bd(1). Clearly
the Rayleigh quotient quantity will depend on the the projection of initial point p(0) onto the eigenmodes of Bd(1).
Assuming random data, we can take these projections to be equal on average, so that ydi (1) = yd(1) for each i. The
quotient then simplifies to

ad1
a1

=
1

M

M∑
i=1

λdi (1) (48)

which is the average eigenvalue of Bd(1). This implies that including a distortion matrix Bd(1) can in fact accelerate
convergence by effectively causing the learning dynamics to take bigger step sizes per iteration, even if the step is not
directed exactly down the gradient. If we normalize Bd(1)→ Bd(1)/λdmax(1) so that its maximum eigenvalue λdmax is
one, then the effect of including Bd(1) will be to strictly slow down convergence because ad1/a1 ≤ 1. We emphasize
that ad1/a1 affects the convergence rate of each component of eni (1) by the same amount.

By contrast, the effect second effect on the converge rate, caused by Be(1), will be different for each component of
eni (1). Setting a

d
1 = a1 here, we compare

ėni (1) = −ηa1eni (1) (49)
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and

ėni (1) = −ηa1Bike
n
k (1). (50)

Under Equation 49 each component of en(1) will decay at the same rate, ηa1. Under Equation 50, the component of
en(1) along the ith eigenvector of Be(1) will decay at a rate ηa1λ

e
i , where λ

e
i associated eigenvalue. At long training

times, decay of en(1) will be dominated by the smallest eigenvalue λemin. To summarize, the effect of Bd(1) is to
alter the convergence rate of each component eni (1) by the same factor, equal (under the assumption of random data)
to the average eigenvalue of Bd(1). On the other hand, the effect of Be(1) is to alter the convergence rate of each
component eni (1) differently according to the projection of en(1) on to the eigenbasis of Be(1), and this effect will
eventually be dominated by the smallest eigenvalue of Be(1). This qualitative argument extends straightforwardly to
arbitrary times t.

E. Numerical results

Here we numerically test the training protocols described above. A remaining issue to address first is that, while
the gradients we have introduced will ensure that the column sums of the transition matrices do not differ from one
during training, they do not prevent their values from going negative. At least two possibilities exist for handling
this. One is to include inequality constraints as Lagrange multipliers in an augmented cost function [32]. The other is
to take small steps along the gradient of the unconstrained cost function and then project back onto the manifold of
allowed transition matrices. The space of matrices whose entries are in the interval [0, 1] and whose columns sum to
one is a simplex, and algorithms exist to project data onto simplices [61]. For simplicity, we use here a crude two-step
projection

Wij → W clip
ij ≡ max (Wij , 0) (clip to positive values) (51)

W clip
ij →

W clip
ij∑M

k=1W
clip
kj

(renormalize the column sum to one). (52)

We find in practice that this suffices to ensure that Wij remains a legal transition matrix.
We generate target trajectories by creating Nt + 1 vectors p∗(t). We create p∗(t) by drawing a random number

uniformly from [0, 1] for each component p∗i (t), and then dividing each component by
∑M

i=1 p
∗
i (t) so that p∗(t) is a

probability vector. We similarly create initial guesses for the Nt transition matrices W0(t) by drawing each element
uniformly from [0, 1] and then applying Equation 52 to make the column sums equal to one.
To create the Nt matrices Bd(t), we first create B̄d(t) by drawing elements uniformly from [0, 1], and we then

set Bd(t) = B̄d(t)⊺B̄d(t) to ensure that it is positive definite. We finally normalize Bd(t) ← Bd(t)/λdmax(t) so that
its maximum eigenvalue is equal to one. To create the Nt matrices Be(t), we first create C̄(t) by drawing elements
uniformly from [0, 1], and we then set C(t) = C̄(t)⊺C̄(t). We then apply Equations 45 and 46 to form Be(t). Finally
we set Be(t)← Be(t)/λdmax(t) so that its maximum eigenvalue is equal to one.
We first set Nt = 10, η = 0.025, andM = 5 and run 10 trials of training using different random initial conditions for

each trial. We try four protocols: using just Be(t), using just Bd(t), using both, and using neither. For each protocol
we use the same initial guesses W0(t). The results are shown in SI Figure 7A. The fastest convergence is achieved
when no distortion is introduced, but all four protocols show convergence toward zero error. Increasing the space
dimensionality to M = 20, we find that distortion using Bd(t) performs much better than using Be(t) (SI Figure 7B).
This can be explained due to our previous argument that convergence with Be(t) depends on its slowest eigenvalue,
whereas convergence with Bd(t) depends on its average eigenvalue. For random matrices of increasing dimensionality
M , the minimal eigenvalue falls more sharply with M than its average eigenvalue does, as can be seen numerically
(SI Figure 7C).

We find that for later iterations the convergence deviates from pure exponential decay (Figure 7D), which can be
due both to set of different relaxation timescales ηat for each t and due to the operation of projecting back onto the
simplex of legal transition matrices. We further find that, even as both protocols using Bd and no distortion reach
low values of the loss function, they do not learn exactly the same transition matrices (SI Figures 7E and F). There
is a manifold of degenerate transition matrices, each of which map p∗(t) into p∗(t + 1), and the learning dynamics
induced by distortion reach a different final matrix than in the un-distorted dynamics.
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FIG. 7. Numerical results for training transition matrices. A) Convergence of the four protocols with M = 5. Convergence is
defined as Ln

T /L0
T (cf. Equation 25). Solid lines represent the mean over 10 trials and the filled curves represent the standard

deviation. B) Convergence of the four protocols with M = 20. C) Samples of the minimum eigenvalue λe
min of Be and average

eigenvalue λe
av of Bd as a function of M . The dashed line indicates a scaling of M−1. D) Convergence plots of a single

trial with M = 10 for 10, 000 training steps. E) Overlaps for t = 1 . . . 10 shown as different colors, with overlap defined as

Wn,I
ij (t)Wn,d

ij (t)/Wn,I
ij (t)Wn,I

ij (t) for transition matrices under protocols using no distortion (I), and Bd (d). F) Plots of the

final transition matrices WN,I(1), WN,d(1), WN,I(2), WN,d(2). Colors range from violet to red for increasing values of Wij .

II. IMPERFECT LEARNING OF CONSERVATIVE, NON-AUTONOMOUS DYNAMICS

A. Lagged KL divergences

A standard approach for training generative machine learning models is to minimize the KL divergence between
a parameterized trial distribution and a target distribution. Denoting the target distribution p∗(q) and the trial
distribution pλ(q), which depends on some parameters λ, one aims to minimize

D[p∗||pλ] ≡
∫
dqp∗(q) ln

p∗(q)

pλ(q)
. (53)

If pλ(q) is an equilibrium canonical distribution with respect to a Hamiltonian H(q;λ) with β = 1/kBT , we can write

pλ(q) = Z(λ)−1e−βH(q;λ) (54)

where Z(λ) is the partition function. After a few lines of algebra one can express the gradient of the KL divergence
with respect to λ as

∂D[p∗||pλ]
∂λ

=

〈
β
∂H(q;λ)

∂λ

〉
p∗
−
〈
β
∂H(q;λ)

∂λ

〉
pλ

. (55)
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This expression uses the result ∂Z(λ)−1

∂λ = Z(λ)−1
〈
β ∂H(q;λ)

∂λ

〉
pλ

but makes no assumption on the form of p∗. Hence,

an update rule for the nth update of λn is

λn+1 ← λn − η

(〈
β
∂H(q;λn)

∂λ

〉
p∗
−
〈
β
∂H(q;λn)

∂λ

〉
pλn

)
(56)

where η is a scalar learning rate, and the notation H(q;λn)
∂λ indicates the gradient H(q;λ)

∂λ evaluated at λ = λn and
averaged over the distribution p∗(q). Update rules of this kind are often used to train machine learning models such
as restricted Boltzmann machines, where a practical issue is that of sufficiently sampling over the distributions p∗

and pλn . Techniques such as CD-n have been proposed to efficiently perform this sampling [60]; we do not concern
ourselves with these issues here and assume that necessary averages over these distributions are accessible.

We consider how to learn a target trajectory p∗(q, t), rather than a single static distribution p∗(q). Let us first
assume that the target trajectory results from a driving protocol λ∗(t) which is quasi-static, so that

p∗(q, t) = peqλ∗(t)(q) = Z(λ∗(t))−1e−βH(q;λ∗(t)). (57)

Considering quasi-static trial protocols λi(t), then one could use standard contrastive learning to learn this trajectory
by applying updates to λi(t) of the form

λn+1(t)← λn(t)− η∆eq (58)

where

∆eq =
∂Deq

∂λ
≡
∂D[peqλ∗(t)||p

eq
λn(t)]

∂λ

=

〈
β
∂H(q;λn(t))

∂λ

〉
peq
λ∗(t)

−
〈
β
H(q;λn(t))

∂λ

〉
peq
λn(t)

. (59)

For these updates, we sample the gradients ∂λH(q;λ) of the Hamiltonian function in each distribution. The as-
sumption of quasi-staticity allows one to break the dynamical problem into a set of independent problems to which
standard contrastive learning based on equilibrium distributions can be applied. In SI Section II B, we illustrate this
further using as an alternative starting cost function the KL divergence evaluated over path probabilities.

If the driving protocol λ∗(t) is not quasi-static then in principle we should not consider quasi-static trial protocols.
Away from equilibrium one can still formally write pλ(q) as

pλ(q) = Z̃(λ)−1e−βH̃(q;λ) (60)

where

Z̃(λ) =

∫
dq−βH̃(q;λ). (61)

The function exponential weight H̃ is no longer the Hamiltonian function when the system is out of equilibrium. If
we knew H̃, then to minimize Equation 55 we could sample the gradients ∂λH̃(q;λ) in updates of the form

∆neq =
∂Dneq

∂λ
≡
∂D[pλ∗(t)||pλn(t)]

∂λ

=

〈
β
∂H̃(q;λn(t))

∂λ

〉
pλ∗(t)

−

〈
β
∂H̃(q;λn(t))

∂λ

〉
pλn(t)

. (62)

However, H̃ and its gradients are not known in general for non-equilibrium processes, so this update cannot feasibly
be implemented. Instead, we consider the approximation to this update in which H̃ is replaced by the Hamiltonian
H:

∆app ≡
〈
β
∂H(q;λn(t))

∂λ

〉
pλ∗(t)

−
〈
β
∂H(q;λn(t))

∂λ

〉
pλn(t)

, (63)
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In contrast to ∆eq the samples are taken with respect to the non-equilibrium distributions pλ∗(t) and pλn(t) rather

than their quasi-static counterparts, and in contrast to ∆app the samples are of gradients of H rather than H̃.

To motivate why this approximate learning rule might work, we consider the view of non-autonomous dynamics
described in Ref. 31 as comprising an inevitable lag which develops between a non-equilibrium distribution and its
quasi-static counterpart (in which the λ(t) is moved along the same geometrical path at an infinitely slow rate).
Schematically, this is depicted as the pair of black lines in SI Figure 8. The KL divergence D∗

lag ≡ D[p∗(t)||p∗,eq(t)] is
in fact bounded by amount of work dissipated up to time t. Similarly, there is a non-zero lag-related KL divergence
Dn

lag ≡ D[pn(t)||pn,eq(t)] which applies for the nth iteration of our trial process. To close the distance between pn(t)

and p∗(t), we would ideally minimize Dneq, which differs from Deq due to the two lag-related divergences D∗
lag and

Dn
lag. Dneq and its gradient ∆neq are unfortunately not known, but flow down the ∆neq will have the same fixed

point as flow down ∆eq or ∆app. This shared fixed point will occur at λn(t′) = λ∗(t′) for t′ ≤ t. Among these three
gradients, only ∆app can be computed in general as it involves samples over the accessible distributions p∗(t) and
pn(t), (rather than their unknown quasi-static counterparts) and involves the known model Hamiltonian H, rather

than the unknown exponential weight H̃. Even though the vector ∆app will systematically differ from ∆neq, as long
as there is a positive projection between the two then ∆app will remain a descent direction and will converge to the
correct minimum (see Figure 1C of the main text).

FIG. 8. D) Schematic illustration of learning a non-equilibrium probability trajectory p∗t which lags behind a quasi-static
version p∗,eqt . Similarly the trial trajectory pnt lags behind a quasi-static version pn,eq

t . KL divergences can be defined between
various pairs of these distributions as dicussed in the main text.

B. Path integral formulation

An alternative approach is to consider minimizing over the whole trajectory λ(t) using a path-integral formulation
of the KL divergence

Dpath

[
P∗[q(t)]||Pλn(t)[q(t)]

]
≡
∫
D[q(t)]P∗[q(t)] ln

P∗[q(t)]

Pλn(t)[q(t)]
. (64)

We can formally write the path probabilities under a protocol λ(t) as

Pλ(t)[q(t)] = Z[λ(t)]−1e−βA[q(t);λ(t)] (65)

for some action integral A[q(t);λ(t)] and normalization

Z[λ(t)] =
∫
D[q(t)]e−βA[q(t);λ(t)]. (66)
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The functional derivative of Dpath

[
P∗[q(t)]||Pλn(t)[q(t)]

]
with respect to λ(t) is (cf. Equation 55)

δDpath

δλ(t)
=

〈
β
δA
δλ(t)

〉
P∗
−
〈
β
δA
δλ(t)

〉
Pλn(t)

(67)

where the averages are functional integrals using the path probabilities.

In principle, if one knows the action describing the system’s evolution and can evaluate samples over path distri-
butions, then Equation 67 can be used to perform gradient descent in path space to optimize λ(t). Typical actions,
such as the Onsager-Machlup action, involve time derivatives of q, which will cause Equation 67 to depend on these
quantities as well [62]. This approach is thus qualitatively different from optimizing at each time point independently

using the non-equilibrium distribution potential H̃ which depends only on q, not its time derivatives. However, we
now show that for quasi-static protocols, Equation 67 implies the same increment as Equation 59.

For a quasi-static case, the path probability can be written as

P[q(t)] = lim
Nt→∞

p(q0)p(q1|q0) · · · p(qN |qN−1)

= p(q0)p(q1) · · · p(qN ) (68)

where we have discretized the trajectory of length T into Nt intervals. The second line follows because for quasi-static
systems the system lacks memory and the conditional probabilities simplify. Each distribution p(qi) is given by the
Boltzmann distribution under the current value of the work parameter, so that

P[q(t)] = lim
Nt→∞

(
Nt∏
n=0

Z(λn)

)−1

exp

(
−β

Nt∑
n=0

H(qn;λn)

)

=Zeq[λ(t)]−1 exp

(
−β 1

T

∫ T

0

H(q(t);λ(t))dt

)
, (69)

where

Zeq[λ(t)] =

∫
D[q(t)] exp

(
−β 1

T

∫ T

0

H(q(t);λ(t))dt

)
. (70)

This result implies that for a quasi-static process, A[q(t);λ(t)] =
∫ T

0
H(q(t);λ(t))dt. Evaluating Equation 67 then

gives

δDpath

δλ(t)
=

〈
β
H(q(t);λ(t))

∂λ

〉
P∗
−
〈
β
H(q(t);λ(t))

∂λ

〉
Pn

λ(t)

. (71)

This resulting derivative is local in time and can be equivalently expressed as in Equation 59. This result makes
precise the statement that quasi-staticity breaks up the global trajectory-level problem into a manifold of independent
temporally local problems.

C. Systems under linear response

For systems under weak driving we can use adiabatic perturbation to find expressions for the how the approximate
gradient ∆app differs from correct gradients ∆neq and ∆eq. The non-equilibrium distribution in this regime can be
written as

pλ(t)(q) = peqλ(t)(q) + ϵp1λ(t)(q) (72)

where the superscript 1 indicates the first order correction to the quasi-static time-dependent distribution peqλ(t). This

correction can be expressed in terms of the inverse of the dynamical evolution operator and the time derivative of the
protocol λ(t), but we will not use this expression here [63, 64]. Due to normalization of peqλ(t) and pλ(t), the integral

over q of p1λ(t) is zero.
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We first rewrite Equation 72 as

pλ(t)(q) = peqλ(t)(q)

(
1 + ϵ

p1λ(t)(q)

peqλ(t)(q)

)
= Z(λ(t))−1e−βH(q;λ(t))+m(q;λ(t))

≡ Z(λ(t))−1e−βH̃(q;λ(t)) (73)

where

m(q;λ(t)) ≡ ln

(
1 + ϵ

p1λ(t)(q)

peqλ(t)(q)

)
. (74)

To confirm that Z(λ(t)) is the proper normalization factor for both the exponential weights −βH(q;λ(t)) and

−βH̃(q;λ(t)), we evaluate the integral∫
dqe−βH̃(q;λ(t)) =

∫
dq

(
1 +

p1λ(t)(q)

peqλ(t)(q)

)
e−βH(q;λ(t))

= Z(λ(t)) + Z(λ(t))

∫
dqp1λ(t)(q)

= Z(λ(t)). (75)

Thus, Equation 73 is the correct non-equilibrium distribution in the form of Equation 60 above.

We next evaluate the gradients ∆eq, ∆app, and ∆neq. We have

∆eq ≡
〈
β
∂H(q;λn(t))

∂λ

〉
peq
λ∗(t)

−
〈
β
∂H(q;λn(t))

∂λ

〉
peq
λn(t)

(76)

which corresponds to the limit ϵ→ 0. The gradient ∆app is

∆app ≡
〈
β
∂H(q;λn(t))

∂λ

〉
pλ∗(t)

−
〈
β
∂H(q;λn(t))

∂λ

〉
pλn(t)

= ∆eq + ϵ

(〈
β
∂H(q;λn(t))

∂λ

〉
p1
λ∗(t)

−
〈
β
∂H(q;λn(t))

∂λ

〉
p1
λn(t)

)
. (77)

If we set p1λ∗(t) = p1λn(t) then the correction to ∆app = ∆eq vanishes. We thus see that the difference between ∆app

and ∆eq depends on the degree to which “non-equilibrium components” of the distributions pλ∗(t) and pλn(t) differ.

To evaluate ∆neq, we first need to find (expanding the logarithm for small ϵ)〈
∂m(q;λ)

∂λ

〉
pλ(t)

= ϵ

〈
∂

∂λ

p1λ(q)

peqλ (q)

〉
pλ(t)

+O(ϵ2). (78)

The order ϵ term can be expressed as (remembering that integrals over p1λ(q) are zero)

ϵ

∫
dq

(
∂

∂λ

p1λ(q)

peqλ (q)

)(
peqλ (q) + ϵp1λ(q)

)
= ϵ

∫
dq

(
∂

∂λ

p1λ(q)

peqλ (q)

)
peqλ (q) +O(ϵ2)

= ϵ

〈
∂

∂λ

p1λ(q)

peqλ (q)

〉
peq
λ(t)

+O(ϵ2). (79)
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We can alternatively write the order ϵ term as

ϵ

〈
∂

∂λ

p1λ(q)

peqλ (q)

〉
peq
λ(t)

= −ϵ
∫
dqp1λ(q)

∂ ln peqλ (q)

∂λ

= ϵ

∫
dqp1λ(q)β

∂H(q;λ)

∂λ

= ϵ

〈
β
∂H(q;λ)

∂λ

〉
p1
λ

. (80)

With this, we can write

∆neq ≡

〈
β
∂H̃(q;λn(t))

∂λ

〉
pλ∗(t)

−

〈
β
∂H̃(q;λn(t))

∂λ

〉
pλn(t)

≡
〈
β
∂H(q;λn(t))

∂λ

〉
pλ∗(t)

−
〈
β
∂H(q;λn(t))

∂λ

〉
pλn(t)

−

(〈
∂m(q;λn(t))

∂λ

〉
pλ∗(t)

−
〈
β
∂m(q;λn(t))

∂λ

〉
pλn(t)

)

= ∆app − ϵ

〈 ∂

∂λ

p1λn(t)

peqλn(t)

〉
peq
λ∗(t)

−
〈
β
∂H(q;λn(t))

∂λ

〉
p1
λn(t)

+O(ϵ2).

We note that the the term
〈

∂m(q;λn(t))
∂λ

〉
pλ∗(t)

does not simplify like
〈

m(q;λn(t))
∂λ

〉
pλn(t)

does, because the average is

taken over pλ∗(t) while the integrand is evaluated for pλn(t), which prevents passing from Equation 79 to 80. We can
rewrite the term〈
∂

∂λ

p1λn(t)

peqλn(t)

〉
peq
λ∗(t)

=

∫
dq
peqλ∗(t)(q)

peqλn(t)(q)

∂

∂λ
p1λn(t)(q)+

∫
dq

(
peqλ∗(t)(q)

peqλn(t)(q)

)
p1λn(t)(q)

(
∂

∂λ
ln (Z(λn(t))) + β

∂

∂λ
H(q;λn(t))

)
.

(81)
If we set peqλ∗(t) = peqλn(t), Equation 81 simplifies as〈

∂

∂λ

p1λn(t)

peqλn(t)

〉
peq
λ∗(t)

=
∂

∂λ

∫
dqp1λn(t)(q) +

(
∂

∂λ
ln (Z(λn(t)))

)∫
dqp1λn(t)(q) +

∫
dqp1λn(t)(q)β

∂

∂λ
H(q;λn(t))

=

〈
β
∂H(q;λn(t))

∂λ

〉
p1
λn(t)

(82)

which cancels the term −
〈
β ∂H(q;λn(t))

∂λ

〉
p1
λn(t)

in the order ϵ correction of ∆app to ∆neq in Equation 81. We thus see

that the difference between ∆app and ∆neq depends on the degree to which the “equilibrium components” peqλ∗(t) and

peqλn(t) differ from each other.

To go further and demonstrate convergence of the approximate update ∆app, we first recall a result from Refs. 65
and 66 that for a system under linear response

⟨Xα(λ(t))⟩pλ(t)
− ⟨Xα(λ(t))⟩peq

λ(t)
≈ ζαγ(λ(t))

dλγ(t)

dt
(83)

where

Xα(λ(t)) ≡ −
∂H(q;λ(t))

∂λα
(84)

is the thermodynamic force conjugate to the parameter component λα, and we use the shorthand notation
dλγ(t)

dt =
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dλγ

dt |λγ=λγ(t). The time integrated matrix

ζαγ(λ) = β

∫ ∞

0

dt′′ ⟨∆Xα(λ, t
′ = 0)∆Xγ(λ, t

′ = t′′)⟩peq
λ

(85)

measures the covariance between the stochastic quantities ∆Xα(λ, t
′ = 0), the fluctuations in Xα under parameter

values λ measured at time t′ = 0, and ∆Xγ(λ, t
′ = t′′). The matrix ζαγ(λ) is also the Kirkwood expression of the

friction tensor [67]. Writing the difference between the gradients ∆app and ∆eq as

∆app −∆eq = −β
((
⟨X(λn(t))⟩pλ∗(t)

− ⟨X(λn(t))⟩peq
λ∗(t)

)
−
(
⟨X(λn(t))⟩pλn(t)

− ⟨X(λn(t))⟩peq
λn(t)

))
, (86)

the final term can be written as

⟨X(λn(t))⟩pλn(t)
− ⟨X(λn(t))⟩peq

λn(t)
= ξαγ(λ

n(t))
dλn(t)

dt
. (87)

In the vicinity of convergence, when λn(t) nears λ∗(t), we can write

∂H(q;λn(t))

∂λα
=
∂H(q;λ∗(t))

∂λα
+
(
λnγ (t)− λ∗γ(t)

) ∂2H(q;λ∗(t))

∂λγ∂λα

≡ ∂H(q;λ∗(t))

∂λα
+ δλγ(t)∆γαH(q;λ∗(t)). (88)

With this we can write the first term on on the right of Equation 86 as

⟨Xα(λ
n(t))⟩pλ∗(t)

− ⟨Xα(λ
n(t))⟩peq

λ∗(t)
= ⟨Xα(λ

∗(t))⟩pλ∗(t)
− ⟨Xα(λ

∗(t))⟩peq
λ∗(t)

−δλγ(t)
(
⟨∆γαH(q;λ∗(t))⟩pλ∗(t)

− ⟨∆γαH(q;λ∗(t))⟩peq
λ∗(t)

)
= ξαγ(λ

∗(t))
dλ∗γ
dt

−δλγ(t)
(
⟨∆γαH(q;λ∗(t))⟩pλ∗(t)

− ⟨∆γαH(q;λ∗(t))⟩peq
λ∗(t)

)
. (89)

We also have that

∆eq
α = −β

(
⟨Xα(λ

n(t))⟩peq
λ∗(t)

− ⟨Xα(λ
n(t))⟩peq

λn(t)

)
= −β

(
⟨Xα(λ

∗(t))⟩peq
λ∗(t)

− ⟨Xα(λ
n(t))⟩peq

λn(t)
− δλγ(t) ⟨∆γαH(q;λ∗(t))⟩peq

λ∗(t)

)
. (90)

The terms ⟨Xα(λ(t))⟩peq
λ(t)

can be expressed in terms of the free energy F (λ) = −β−1 lnZ(λ) as

⟨Xα(λ(t))⟩peq
λ(t)

= −∂F (λ(t))
∂λα

, (91)

so that

∆eq
α = −β

(
∂F (λn(t))

∂λα
− ∂F (λ∗(t))

∂λα
− δλγ(t) ⟨∆γαH(q;λ∗(t))⟩peq

λ∗(t)

)
. (92)

The free energy F (λn(t)) can be expanded as

F (λn(t)) = F (λ∗(t)) + δλγ(t)
∂F (λ∗(t))

∂λγ
(93)

so that

∂F (λn(t))

∂λα
− ∂F (λ∗(t))

∂λα
= δλγ(t)

∂2F (λ∗(t))

∂λγ∂λα
≡ δλγ(t)∆γαF (λ

∗(t)). (94)
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Putting everything together, we can rewrite Equation 86 as

∆app
α = β

(
− δλγ(t)∆γαF (λ

∗(t)) + δλγ(t) ⟨∆γαH(q;λ∗(t))⟩peq
λ∗(t)

−ξαγ(λ∗(t))
dλ∗γ
dt

+ δλγ(t)
(
⟨∆γαH(q;λ∗(t))⟩pλ∗(t)

− ⟨∆γαH(q;λ∗(t))⟩peq
λ∗(t)

)
+ ξαγ(λ

n(t))
dλn(t)

dt

)
= β

(
ξαγ(λ

n(t))
dλn(t)

dt
− ξαγ(λ∗(t))

dλ∗γ
dt

+ δλγ(t) ⟨∆γαH(q;λ∗(t))⟩pλ∗(t)
− δλγ(t)∆γαF (λ

∗(t))

)
. (95)

Introducing δξαγ(t) = ξαγ(λ
n(t))− ξαγ(λ∗(t)), we rewrite this as

∆app
α = β

(
ξnαγ

dδλγ(t)

dt
+ δξαγ

dλ∗γ
dt

+ δλγ(t)
(
⟨∆γαH(q;λ∗(t))⟩pλ∗(t)

−∆γαF (λ
∗(t))

))
. (96)

We can further simplify the last term of this expression by first writing

∆γαF (λ
∗(t)) =

∂

∂λγ

∫
dqpeqλ∗(t)

∂H(q;λ∗(t))

∂λα
=

∫
dq

∂

∂λγ
peqλ∗(t)

∂H(q;λ∗(t))

∂λα
+ ⟨∆γαH(q;λ∗(t))⟩peq

λ∗(t)
. (97)

Straightforward evaluation gives

∂

∂λγ
peqλ∗(t) = peqλ∗(t)

〈β ∂H(q;λ∗(t))

∂λγ

〉
peq
λ∗(t)

− β ∂H(q;λ∗(t))

∂λγ

 (98)

so that∫
dq

∂

∂λγ
peqλ∗(t)

∂H(q;λ∗(t))

∂λα
= −β

〈∂H(q;λ∗(t))

∂λγ

∂H(q;λ∗(t))

∂λα

〉
peq
λ∗(t)

−
〈
∂H(q;λ∗(t))

∂λγ

〉
peq
λ∗(t)

〈
∂H(q;λ∗(t))

∂λα

〉
peq
λ∗(t)


≡ −Covpeq

λ∗(t)

(
∂H(q;λ∗(t))

∂λγ

∂H(q;λ∗(t))

∂λα

)
(99)

Additionally using

⟨∆γαH(q;λ∗(t))⟩pλ∗(t)
= ⟨∆γαH(q;λ∗(t))⟩peq

λ∗(t)
+ ϵ ⟨∆γαH(q;λ∗(t))⟩p1

λ∗(t)
(100)

we can rewrite Equation 96

∆app
α = β

(
ξnαγ

dδλγ(t)

dt
+ δξαγ

dλ∗γ
dt

+ δλγ(t)

(
Covpeq

λ∗(t)

(
∂H(q;λ∗(t))

∂λγ

∂H(q;λ∗(t))

∂λα

)
+ ϵ ⟨∆γαH(q;λ∗(t))⟩p1

λ∗(t)

))
.

(101)

Considering that the quantities
dλ∗

γ

dt and ϵ are small due to the assumption of linear response, and that δλγ(t) and
δξαγ are small due to the vicinity of convergence, only the term proportional to the covariance matrix survives to first
order in Equation 101. Hence, we have

∆app
α ≈ βgαγ

(
λnγ (t)− λ∗γ(t)

)
(102)

where

gαγ ≡ Covpeq
λ∗(t)

(
∂H(q;λ∗(t))

∂λα
,
∂H(q;λ∗(t))

∂λγ

)
(103)

is shown in Ref. 68 to define a thermodynamic metric tensor which is equal to the Fisher information matrix. Impor-
tantly, this tensor is a covariance matrix and hence positive semi-definite. Flowing down ∆app will therefore locally
attract λnα(t) toward the fixed point λ∗α(t), as desired.
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D. Systems with linear forces

Here we treat a class of non-autonomous systems in which linear forces act on the system degrees of freedom. The
overdamped stochastic dynamics for a vector q can be written as

∂tqi = −µKij (qj − aj) + ξi (104)

where µ is a mobility, Kij(λK(t)) = Kji(λK(t)) is a symmetric coupling matrix parameterized by the protocol λK(t),
ai(λa(t)) is a rest value parameterized by the protocol λa(t), and ηi is an isotropic white noise obeying

⟨ξi(t)ξj(t′)⟩ = 2µβ−1δijδ(t− t′). (105)

The corresponding Fokker-Planck equation is

∂tp(q) = µKij∂i ((qj − aj)p(q)) +D∂i∂ip(q) (106)

where D = µβ−1. For a given value of the protocols λ ≡ (λK , λa), corresponding to Kij and ai, there is an
equilibrium probability distribution over q given by the multidimensional Gaussian

peqλ (q) =

(
βdet (K)

(2π)n

) 1
2

e−
1
2β(qi−ai)Kij(qj−aj)

≡ Z(λ)−1e−βH(q;λ). (107)

If the system starts in equilibrium with respect to the initial values of the protocol λ(0) and is then driven out
of equilibrium by executing the protocol at finite speed, the distribution will remain of a Gaussian form due to the
linear nature of the forces [69, 70]. The non-equilibrium distribution pλ∗ can thus be written

pλ∗(q) =

(
βdet(K̃)

(2π)n

) 1
2

e−
1
2β(qi−ãi)K̃ij(qj−ãj)

≡ Z̃(λ∗)−1e−βH̃(q;λ∗) (108)

where K̃ij = Kij(λ
∗
K) + δKij and ãi = ai(λ

∗
a) + δai are a “lagged” coupling matrix and mean vector. The non-

equilibrium exponential weight H̃(q;λ) can be written as

H̃(q;λ) = H(q;λ) + δH(X;λ) (109)

where

H(q;λ) =
1

2
((qi − ai)Kij(qj − aj)) (110)

is the Hamiltonian and

δH(X;λ) =
1

2
((qi − ai − δai)δKij(qj − aj − δaj)− (qi − ai)Kijδaj − δaiKij(qj − aj) + δaiKijδaj) (111)

is a lagged quantity.

We are interested in the gradients ∂λH(q,λ) and ∂λH̃(q,λ) which enter in to ∆eq, ∆app and ∆neq. For an element
λα ∈ λa, we have

∂H

∂λα
=

∂ai
∂λα

∂H

∂ai
= − ∂ai

∂λα
(Kij(qj − aj)) (112)

and

∂H̃

∂λα
=

∂ai
∂λα

∂H̃

∂ai
=

∂ai
∂λα

(
∂H

∂ai
+ δ

∂H

∂ai

)
(113)
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where

δ
∂H

∂ai
≡ −δKij(qj − aj − δaj) +Kijδaj . (114)

Similarly, for λα ∈ λK we have

∂H

∂λα
=
∂Kij

∂λα

∂H

∂Kij
=
∂Kij

∂λα

(
1

2
(qi − ai)(qj − aj)

)
(115)

and

∂H̃

∂λα
=
∂Kij

∂λα

∂H̃

∂Kij
=
∂Kij

∂λα

(
∂H

∂Kij
+ δ

∂H

∂Kij

)
(116)

where

δ
∂H

∂Kij
≡ −1

2
((qi − ai)δaj + δai(qj − aj)− δaiδaj) . (117)

We next use these expressions to evaluate the gradients ∆eq, ∆neq, and ∆app. For λα ∈ λa have

∆eq =

〈
β
∂H(q;λn(t))

∂λα

〉
peq
λ∗(t)

−
〈
β
∂H(q;λn(t))

∂λα

〉
peq
λn(t)

= −β ∂a
n,t
i

∂λα
Kn,t

ij

((
⟨qj⟩peq

λ∗(t)
− an,tj

)
−
(
⟨qj⟩peq

λn(t)
− an,tj

))
= −β ∂a

n,t
i

∂λα
Kn,t

ij

(
a∗,tj − a

n,t
j

)
(118)

where we have introduced the shorthand notation Kn,t
ij ≡ Kij(λ

n
K(t)), an,ti ≡ ai(λ

n
a(t)), and

∂an,t
i

∂λα
= ∂λα

ai|ai=an,t
i

.

We have also used the fact that ⟨qi⟩peq
λ∗(t)

= a∗,ti and ⟨qi⟩peq
λn(t)

= an,ti . We next have

∆app =

〈
β
∂H(q;λn(t))

∂λα

〉
pλ∗(t)

−
〈
β
∂H(q;λn(t))

∂λα

〉
pλn(t)

= −β ∂a
n,t
i

∂λα
Kn,t

ij

((
⟨qj⟩pλ∗(t)

− an,tj

)
−
(
⟨qj⟩pλn(t)

− an,tj

))
= −β ∂a

n,t
i

∂λα
Kn,t

ij

((
a∗,tj + δa∗,tj − a

n,t
j

)
−
(
an,tj + δan,tj − a

n,t
j

))
= ∆eq − β ∂a

n,t
i

∂λα
Kn,t

ij

(
δa∗,tj − δa

n,t
j

)
. (119)

Here, we used the fact that ⟨qi⟩pλ∗(t)
= a∗,ti + δa∗,ti and ⟨qi⟩pλn(t)

= an,ti + δan,ti . Finally we have

∆neq =

〈
β
∂H̃(q;λn(t))

∂λα

〉
pλ∗(t)

−

〈
β
∂H̃(q;λn(t))

∂λα

〉
pλn(t)

= ∆app − β ∂ai
∂λα

(
δKn,t

ij

((
⟨qj⟩pλ∗(t)

− an,tj − δa
n,t
j

)
−
(
⟨qj⟩pλn(t)

− an,tj − δa
n,t
j

))
+Kn,t

ij

(
δan,tj − δa

n,t
j

))
= ∆app − β ∂ai

∂λα

(
δKn,t

ij

(
a∗,tj + δa∗,tj − a

n,t
j − δa

n,t
j

))
. (120)

We see that if there is no lag in the effective coupling matrix δKn,t, then ∆neq = ∆app for λα ∈ λa.
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For λα ∈ λK , we have

∆eq = β
1

2

∂Kn,t
ij

∂λα

(〈
(qi − an,ti )(qj − an,tj )

〉
peq
λ∗(t)

−
〈
(qi − an,ti )(qj − an,tj )

〉
peq
λn(t)

)
= β

1

2

∂Kn,t
ij

∂λα

((
⟨qiqj⟩peq

λ∗(t)
− an,ti ⟨qj⟩peq

λ∗(t)
− an,tj ⟨qi⟩peq

λ∗(t)
+ an,ti an,tj

)
−
(
⟨qiqj⟩peq

λn(t)
− an,ti ⟨qj⟩peq

λn(t)
− an,tj ⟨qi⟩peq

λn(t)
+ an,ti an,tj

))
= β

1

2

∂Kn,t
ij

∂λα

(
⟨qiqj⟩peq

λ∗(t)
− ⟨qiqj⟩peq

λn(t)
− (an,ti a∗,tj + an,tj a∗,ti ) + 2an,ti an,tj

)
. (121)

An alternative expression for this gradient can be found using definition of the correlation matrix C

Cij ≡ ⟨(qi − ai)(qj − aj)⟩ = β−1(K−1)ij (122)

for a multidimensional Gaussian parameterized by mean a and stiffness K. One can rewrite this as

⟨(qi − bi)(qj − bj)⟩ = Cij + (bi − ai)(bj − aj) (123)

for arbitrary bi and bj . With this can express ∆eq as

∆eq = β
1

2

∂Kn,t
ij

∂λα

(
C∗,t

ij − C
n,t
ij + (an,ti − a

∗,t
i )(an,tj − a

∗,t
j )
)
. (124)

We next have

∆app = β
1

2

∂Kn,t
ij

∂λα

(〈
(qi − an,ti )(qj − an,tj )

〉
pλ∗(t)

−
〈
(qi − an,ti )(qj − an,tj )

〉
pλn(t)

)
= β

1

2

∂Kn,t
ij

∂λα

(
C̃∗,t

ij + (an,ti − a
∗,t
i − δa

∗,t
i )(an,tj − a

∗,t
j − δa

∗,t
j )− C̃n,t

ij − δa
n,t
i δan,tj

)
= ∆eq + β

1

2

∂Kn,t
ij

∂λα

(
δC∗,t

ij − δC
n,t
ij − (an,ti − a

∗,t
i )δa∗,tj − δa

∗,t
i (an,tj − a

∗,t
j )
)

(125)

where we have introduced C̃ij ≡ β−1(K̃−1)ij = Cij + δCij , with δCij being the lag induced in the correlation matrix
C. We note that the relation between δKij and δCij can be obtained using the Woodbury matrix identity (assuming
that all matrices are invertible as necessary)

(K+ δK)
−1

= K−1 −K−1
(
K−1 + (δK)−1

)−1
K−1

= βC− β2C
(
βC+ (δK)−1

)−1
C

≡ β(C+ δC). (126)

Assuming that the lag δK is small compared to K, we can expand
(
βC+ (δK)−1

)−1 ≈ δK and obtain

δC = −βC(δK)C. (127)

Finally, we have

∆neq = ∆app − β 1
2

∂Kn,t
ij

∂λα

(〈
(qi − an,ti )δan,tj + δan,ti (qj − an,tj )− δan,ti δan,tj

〉
pλ∗(t)

−
〈
(qi − an,ti )δan,tj + δan,ti (qj − an,tj )− δan,ti δan,tj

〉
pλn(t)

)
= ∆app − β 1

2

∂Kn,t
ij

∂λα

(
(a∗,ti − a

n,t
i )δan,tj + δan,ti (a∗,tj − a

n,t
j ) + δa∗,ti δan,tj + δan,ti δa∗,tj − 2δan,ti δan,tj

)
. (128)
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We see that if there is no lag in the effective mean δan,t, then ∆neq = ∆app for λα ∈ λK .

E. Fourier analysis of Helfrich membrane dynamics

As described in the main text, the overdamped relaxational dynamics of the height field q(r, t) of a Helfrich
membrane are

∂tq(r, t) = −µ
δH[q(r, t]

δq(r, t)
= µ

((
σ +

κλ2

2

)
∂2rq + ∂rq∂rλ− κ

(
∂4rq − ∂2rλ

))
. (129)

We expand q(r, t) in Fourier modes as

q(r, t) =

∞∑
m=−∞

qm(t)eimkr (130)

where k = 2π/L. Similarly, the protocol λ(r, t) is expanded as

λ(r, t) =
∞∑

m=−∞
λm(t)eimkr. (131)

For small values of λ(r, t) and q(r, t), we neglect the nonlinear terms in Equation 129 and write the equation of motion
for the amplitude of the mth mode as

∂tqm(t) = −µm2k2
(
(σ +m2k2κ)qm(t) + κλm(t)

)
= −µKm(qm(t)− am(t)) (132)

where

Km ≡ m2k2(σ +m2k2κ) (133)

and

am(t) ≡ − κ

σ +m2k2κ
λm(t). (134)

Comparing Equations 104 and 132 see that the mth modes acts like a particle in a harmonic trap whose position
am(t) but not stiffness Km is altered as a function of time. The coupling matrix Kij in this case is diagonalized due
to the neglected non-linear terms in the membrane dynamics, and we have also neglected the noise; these extensions
to the theory of trainable membranes could be treated in future work.

III. STEADY STATES OF CHEMICAL REACTION NETWORKS

A. Cost function for learning steady-states

Here we study linear chemical reaction networks driven by out-of-equilibrium chemical potentials that drive non-
conservative reaction fluxes. Such a system is described by Ns species which interact (through first-order or pseudo-
first-order kinetics) through a Ns ×Ns transition rate matrix W. The probability of observing species i at time t is
denoted pi(t), and the vector of these probabilities evolves according to the master equation

∂tp(t) = Wp(t). (135)

At long times these dynamics will settle into a steady-state distribution π for which Wπ = 0. We note that, in
contrast to the W matrices in SI Section I, the W matrices in this section are continuous-time rate matrices (with
column sums of zero), not discrete-time transition matrices (with column sums of one).

Viewing the rate matrix W as the weighted adjacency matrix of a graph connecting Ns nodes, the matrix tree
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theorem gives an exact expression πi in terms of the spanning trees of the graph rooted at node i:

πi =

∑
T∈T w(Ti)∑

i

∑
T∈T w(Ti)

(136)

where

w(Ti) =
∏

{jk}∈Ti

Wjk (137)

is the product of all transition rates Wjk leading from k to j in the directed spanning tree Ti. The spanning tree T
belongs to the set of all such trees T in the transition graph, and Ti represents the unique directed version of the tree
T in which each edge is directed so as to point toward node i.

Equation 136 can be expressed in the Boltzmann-like form

πi = Z−1eΦi (138)

where

Φi = ln
∑
T∈T

w(Ti) (139)

is the “non-equilibrium potential” and

Z =

N∑
i=1

eΦi (140)

is the “partition function.”

We can formally compute the gradient of the KL divergence between a trial distribution πn and a target steady-state
distribution π∗:

∂D[π∗||πn]

∂Wij
= −

〈
∂Φ

∂Wij

〉
π∗

+

〈
∂Φ

∂Wij

〉
πn

(141)

where 〈
∂Φ

∂Wij

〉
π∗
≡
∑
k

π∗
k

∂Φk

∂Wij
. (142)

The gradient ∂Φk

∂Wij
can be written as

∂Φk

∂Wij
=

(∑
T∈T

w(Tk)

)−1 ∑
T∈T

∂w(Tk)

∂Wij
. (143)

Although in principle this expression can be computed given knowledge of W, the gradient ∂Φk

∂Wij
is non-local (in

k) and more difficult to handle than the corresponding term which appears when minimizing the KL divergence for
Hamiltonian systems, ∂H

∂λ . We thus consider an alternative problem, and instead of the KL divergence D[π∗||πn] we
aim to minimize the quadratic cost function

C(π∗
k, π

n
k ) =

1

2
(π∗

k − πn
k )

2
. (144)

In the next section we show that approximate gradients of this cost function can be expressed in a simple local form.
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B. Fixed sign derivatives

The transition rates Wij in chemical kinetics are exponential functions of the energy barrier heights and one cannot
generally directly vary them. A convenient way to parameterize Wij is as [37]

Wij = eEj−Bij+Fij(αij)/2, (145)

where Bij = Bji and Fij = −Fji. The parameters Fij(αij) represent non-conservative driving which violates detailed
balance. We set Fij(αij) = αij for simplicity. Assuming that we have access to the parameter αij across edge i↔ j,
we are interested in the gradient

∂C(π∗
k, π

n
k )

∂αij
= − ∂π

n
k

∂αij
(π∗

k − πn
k ) . (146)

We next show that the prefactor
∂πn

k

∂αij
is a non-local function, requiring knowledge of parameters at all nodes in the

network. However, we further show that updates based on Equation 146 can be considerably simplified into a local
rule due to this prefactor having a fixed sign across the range of αij .

Varying αij affects both Wij and Wji, so that (dropping the superscript n)

∂πk
∂αij

=
∂Wij

∂αij

∂πk
∂Wij

+
∂Wji

∂αij

∂πk
∂Wji

=
1

2

(
Wij

∂πk
∂Wij

−Wji
∂πk
∂Wji

)
(147)

since
∂Wij

∂αij
= 1

2Wij and
∂Wji

∂αij
= − 1

2Wji. We can pull out the dependence of πk on the rates Wij and Wji as follows:

πk =
akWij + bkWji + ck
āWij + b̄Wji + c̄

(148)

where

ak =

(ij)∑
T

w−(Tk) ≥ 0 (149)

is the sum over all directed spanning trees rooted at node k which contain the directed edge j → i. The quantity w−(Tk)
is the product of all rates in this tree excluding Wij , which has been factored out (denoted by the − superscript).
Similarly, we have

bk =

(ji)∑
T

w−(Tk) ≥ 0 (150)

for the spanning trees which include i → j. Note that the directed spanning trees which include i → j necessarily
exclude j → i, so the sums in a and b are over separate terms. Finally, the sum over spanning trees in which neither
i→ j nor j → i appear is

ck =

(−)∑
T

w(Tk) ≥ 0 (151)

where the path weights w(Tk) have no terms factored out. The coefficients in the denominator of Equation 148 include
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sums over all nodes k′:

ā =
∑
k′

ak′ > ak (152)

b̄ =
∑
k′

bk′ > bk (153)

c̄ =
∑
k′

ck′ > c. (154)

From the form in Equation 148, we can write Equation 147 as the non-local function

∂πk
∂αij

=
x1Wij + x2Wji + 2x3WijWji

2
(
āWij + b̄Wji + c̄

)2 (155)

where

x1 =ak c̄− ckā (156)

x2 =ck b̄− bk c̄ (157)

x3 =ak b̄− bkā. (158)

Clearly the sign of Equation 155 is determined by the numerator, which in turn depends on the factors x1, x2, and
x3. We will show that these factors are either all non-negative or all non-positive, implying that the the sign of the
numerator is fixed for any values of Wij and Wji (which as rate matrix elements must be non-negative). Dividing
each of these factors by āb̄c̄, we see that this can happen if either

ak
ā
≤ ck

c̄
≤ bk

b̄
→ x1, x2, x3 < 0 (159)

or

ak
ā
≥ ck

c̄
≥ bk

b̄
→ x1, x2, x3 > 0. (160)

In SI Figure 9A we show numerically that one of these two orderings always holds by plotting a histogram of the
quantity ωk ≡ (ak/ā− ck/c̄)(ck/c̄− bk/b̄), which will be positive if either of the two orderings holds.

FIG. 9. A) Histogram of ωk for each node k of 50 randomly generated graphs with 8 nodes and 11 edges. D) Numerical

verification of the theoretical result bk
ck

=
bj
cj

− bjci
aicj

ak
ck

, which is implied by Equation 163, for the a node in the graph in SI

Figure 5 of the main text. C) Illustration in a four state graph of the correspondence between terms on both sides of Equation
164. Two schematic equations, on the left and right side are depicted. On the left, it is shown how a term from the sum bjck
can be mapped into a term from bkcj , while on the right it is shown how a term from the sum aick can be mapped into a term
from akci.

To prove these inequalities, we first note that (recall that these quantities are related to edge Wij)

ai = bj . (161)
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The term ai represents the sum of all directed trees which flow into node i and which involve the edge j → i. These
trees thus include the flows into node j. Similarly, bj represents all directed trees which flow into node j and involve
the edge i → j. The weights Wij and Wji are excluded from ai and bj , respectively, and thus these terms represent
the weights for the same collection of flows into nodes i and j. We also have that

aj = bi = 0 (162)

since no directed spanning trees rooted at node j can contain the edge j → i, and no directed spanning trees rooted
at node i can contain the edge i→ j.

Next, we prove the following formula which is our key result (numerically verified in SI Figure 9B):

aick = bjck = ciak + cjbk, (163)

where the first equality is due to Equation 161. Inserting the definitions of these quantities, Equation 163 reads

ij∑
T

(−)∑
T ′

w−(Ti)w(T
′
k) =

ji∑
T

(−)∑
T ′

w−(Tj)w(T
′
k)

=

ij∑
S

(−)∑
S′

w−(Sk)w(S
′
i) +

ji∑
U

(−)∑
U ′

w−(Uk)w(U
′
j). (164)

Let N[ij] denote the number of undirected spanning trees containing the edge i ↔ j and N− denote the number of

undirected spanning trees without the undirected edge i↔ j. Further let Nk
ij denote the number of directed spanning

trees rooted at node k which contain the directed edge j → i, and similarly for Nk
ji. We have Nk

ij + Nk
ji = N[ij]

for any k. The double sum on the left hand side of Equation 164 has N[ij]N− terms, while the first double sum

on the right hand side has Nk
ijN− and the second has Nk

jiN−. Hence, there are the same number of terms on both
sides the equation. If we can find a one-to-one correspondence between the terms on each side of this equation, the
equality would be proved. Fortunately, just such a correspondence was illustrated in Ref. 37 using a procedure called
“tree surgery.” This procedure algorithmically takes as input a pair of directed spanning trees Tm, which is rooted
at node m and contains either the edge i ← j or j ← i, and T ′

n, which is rooted at node n does not contain either

edge. The procedure converts this pair into a new pair T̃n and T̃ ′
m, where T̃n contains edge i ← j or j ← i, and T̃ ′

m

does not. It was further shown that the weight products w(Tm)w(T ′
n) and w(T̃n)w(T̃

′
m) will be equal if, during the

conversion procedure, the edge i← j or j ← i is not flipped. Using this procedure, it is possible to convert each of the
N[ij]N− terms on the left hand side of Equation 164 into either a term of the form w−(Sk)w(S

′
i), or one of the form

w−(Uk)w(U
′
j). This is illustrated in SI Figure 9C. In our case, one can ignore the effect of flipping the distinguished

edge i↔ j because doing so would simply convert a tree Ti rooted at i into a tree Tj rooted at j, or vice versa. The
weights of interest w−(Ti) = w−(Tj) for two such trees must be the same because the term Wij in w(Ti) and Wji in
w(Tj), which would change during the edge flip, have been factored out in w−(Ti) and w

−(Tj). As a result, flipping
the edge i ← j does not affect the equality of edge weights between the left and right hand sides of Equation 164.
We can therefore establish the desired one-to-one correspondence between the terms on both sides of Equation 164,
implying equality.

The linear relation between ak, bk and ck in Equation 163 implies two interesting properties of the derivative ∂πk

∂αij
.

First, one of the two orderings in Equations 160 or 159 holds. To see this, we consider

ck
c̄

=
ciak + cjbk
ciā+ cj b̄

. (165)

Let us first assume that ck/c̄ ≤ bk/b̄, which means

ciak + cjbk ≤
bk
b̄
(ciā+ cj b̄), (166)

or

bk ≥
ak b̄

ā
. (167)
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This means that

ck
c̄
≥
ciak + cj

ak b̄
ā

ciā+ cj b̄

=
ak
ā

ci + cj
b̄
ā

ci + cj
b̄
ā

=
ak
ā

(168)

which is the ordering in Equation 159. If, instead, ck/c̄ ≤ ak/ā, then similar reasoning implies that ck/c̄ ≥ bk/b̄ which
is the ordering in Equation 160. We note that a recent set of results for gradients of πk in Ref. 71, obtained using
linear algebraic manipulations on the rate matrix W, also imply the fixed sign derivative result obtained here and
can hence be viewed as a complementary derivation. One can show that Equation 163 further implies that ∂πk

∂Bij
will

have a fixed sign across the range of Bij , which is not implied by Ref. 71.

Equation 163 yields another interesting property of ∂πk

∂αij
, which is that the extrema of this derivative occur at

precisely the same value of αij for each node k. Omitting the formulas here, this can be shown by computing the

second derivative ∂2πk

∂α2
ij

and substituting the linear relations ck = (cj/ai)ak + (cj/ai)bk and c̄ = (cj/ai)ā + (cj/ai)b̄.

One then finds that the zeros of this expression depend on Wij , Wji, (ci/ai), (cj/ai), ā, and b̄, but not on ak or

bk. Hence, the solution of ∂2πk

∂α2
ij

= 0 is independent of k, meaning that every node k in the network has the greatest

sensitivity (in the effect of varying αij on πk) at the same value of αij . Because each derivative ∂πk

∂αij
is of the same

functional form for each k and they have extrema at the same location, these curves must be non-intersecting.
Additionally, one can ask the effect of perturbing the edge by directly varying Wij , rather than the anti-symmetric

contribution αij . From Equation 148 we compute (cf. Equation 155)

∂πk
∂Wij

=
x1 + x3Wji(

āWij + b̄Wji + c̄
)2 (169)

Because Wji ≥ 0, the sign of this derivative is determined by x1 and x3 and is hence fixed across the range of Wij

because x1 and x3 are either both positive or both negative. Similar arguments apply to the derivative ∂πk

∂Wji
.

C. Finding the derivative signs when k = i, j

We have shown that the sign of the derivative ∂πk

∂αij
is fixed for a given choice of i, j, and k, but in general it is

not clear how to find what the fixed sign is. However, for the special case when k = i or k = j (so that the node of
interest is part of the controlled edge j ↔ i), it is possible determine the sign.
If k = i, then the ordering in Equation 160 must hold. To show this, we first remember that bi = 0 and that

ai/ā and ci/c̄ must be non-negative, and hence greater than or equal to bi/b̄. We also have (cf. Equation 165, no
summation of repeated indices implied)

ci
c̄
=
ciai + cjbi
ciā+ cj b̄

=
ciai

ciā+ cj b̄
≤ ai

ā
, (170)

which satisfies the ordering in Equation 160. Hence, ∂πk

∂αij
> 0 if k = i. Similar arguments hold to show that ∂πk

∂αij
< 0

if k = j. Intuitively this agrees with the idea that increasing the flux directly into node i (out of node j) should
increase (decrease) its steady-state probability.

IV. ACTIVE NEMATIC DEFECT CONTROL

A. Equations of motion

Nematic systems are described by a symmetric and traceless tensor

Q = q(n̂n̂− 1

d
I) (171)
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where n̂ is a unit director, q quantifies the polarization of the nematic, d is the system dimensionality, and I is the
identity tensor. This order parameter Q couples to a flow field v and relaxes along the gradient of a free energy
function. We study a simplified version of these physics, taking the overdamped limit and the limit of high substrate
friction [47]. We have the equations of motion

∂tQij =Sij(v) + ΓHHij (172)

vi =γ
−1
v ∂k

(
σa
ik(Q) + σE

ik(Q)
)
. (173)

Here, Hij is the symmetric traceless part of − δF
δQij

with F the free energy, Sij is a flow-coupling term, and γv is a

friction coefficient. In these overdamped dynamics, v is given instantaneously in terms of Q so that Equation 172 is
closed in Q. The active and Ericksen stress tensors are [50]

σa
ij =− αQij (174)

σE
ij =fδij − λHik

(
Qkj +

1

3
δkj

)
− λ

(
Qik +

1

3
δik

)
Hkj

+ 2λ

(
Qij +

1

3
δij

)
HklQkl − ∂jQkl

δF

δ∂iQkl

+QikHkj −HikQkj . (175)

The Landau-de Gennes free energy is

F =

∫
drf(r) (176)

where

f =
A0

2

(
1− U

3

)
Tr
(
Q2
)
− A0U

3
Tr
(
Q3
)

+
A0U

4
Tr
(
Q2
)2

+
L

2
(∂kQlm)

2
. (177)

Finally, the flow coupling term is

Sij(v) =− vk∂kQij +ΦikQ
+
kj +Q+

ikΦkj − 2λQ+
ij (Qkl∂kvl) ,

where

Q+
ij = Qij +

1

3
δij , (178)

Ψij =
1

2
(∂ivj + ∂jvi) , (179)

Ωij =
1

2
(∂ivj − ∂jvi) , (180)

and

Φij = ξΨij − Ωij . (181)

In these equations, ξ, A0, U , ΓH , γv are parameters whose meaning is described in Ref. 50. We set ξ = 0.7, A0 = 0.1,
U = 3.5, ΓH = 1.5, and γv = 10 (all in simulation units).
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B. Stabilization

Although the update in Equation 8 of the main text provides sufficient information to reconstruct a target defect
trajectory, it can also lead to unwanted behavior if not stabilized. In particular, large activity and nematic gradients
can cause nucleation of new defects, which we treat as a terminal condition in which the learning dynamics have
failed. To prevent this, we stabilize the learning dynamics in three ways:

• We encourage updates to α(r, t) only in the near vicinity of the defect through an eligibility trace-like field [58]
z(r, t), which evolves during learning as

zn+1(r, t)← λzz
n+1(r, t) + fn(r, t)/f̄ (182)

where λz ≤ 1 is a decay factor and f̄ = 0.01 is scale factor for the free energy density. This eligibility trace
multiplies the term (f∗(r, t)−fn(r, t)) in Equation 8 of the main text. Because defects correspond to persistent
peaks in f(r, t), the eligibility z will continually be supported near defects and will otherwise decay to zero at
a rate ∼ 1/λz. We set λz = 0.75 for the results in the main text.

• We only allow learning when the trial defect position is within a certain spatial window of the target defect
position. In principle the “zippering” mechanism discussed in SI Section I guarantees convergence for the whole
trajectory, because eventually the first part of the trajectory will be learned, after which the second part has the
correct starting configuration and can in turn converge, and so on. However, during early learning iterations the
activity updates for later parts of the trajectory (when the defect is not close to its target) can lead to unstable
spots which can nucleate new defects. On the other hand, when the learning has successfully brought the defect
position close to its target, the activity fields can still evolve in general because the two free energy profiles do
not match exactly. This effect can also destabilize learning. We thus turn off learning when the defect position
is too far (> 5 lattice units) or too close (<

√
2 lattice units) to the target defect position.

• We clamp the local absolute value of activity at |α(r, t)|max = 12, and we turn off learning when the total
absolute activity in the system has passed

∫
dr|α(r, t)| = 150.

It remains to explore whether all of these stabilization methods are strictly necessary or whether they could be further
refined; we simply found that this combination seems to work well for our test cases.

C. Explanation of the update rule

Here we draw on recent theoretical work [27] to justify the efficacy of Equation 8 in the main text. The authors of
Ref. 27 have shown that the approximate velocity of −1/2 defect due to a spatially inhomogenous activity field is

v−i = aΘijk∂j∂kα. (183)

Here,

Θijk = t̂it̂j t̂k −
1

4

(
δij t̂k + δkj t̂i + δik t̂j

)
(184)

is a rank-three tensor describing the orientation of a defect which has one of its three legs directed along
t̂ = (cos(θ), sin(θ)). The orientation tensor is invariant under θ ← θ + m2π/3 for any integer m, and it is equal
to zero under contraction of any two of its indices. Denoting gij = ∂i∂jα, we can express Equation 183 as

v− = M · c (185)

where

M =
1

4

(
gxx − gyy gxy + gyx
−(gxy + gyx) gxx − gyy

)
(186)

and c = (cos(3θ), sin(3θ)).

Referring to Figure 6E of the main text, if we slightly displace a defect, whose free energy profile is f(r), along a
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vector d, it will have an approximate free energy profile

f∗(r) = f(r− d) ≈ f(r)− di∂if(r) +
1

2
didj∂i∂jf(r). (187)

Considering an activity update

α(r, t)← α(r, t)− η(f∗(r, t)− f(r, t)) (188)

we can write for the first iteration (following the initial guess α(r, t) = 0)

α(r, t) = η

(
di∂if(r)−

1

2
didj∂i∂jf(r)

)
. (189)

Evaluating gij , we have (setting η = 1 for simplicity)

gij = dk∂i∂j∂kf(r)−
1

2
dkdl∂l∂k∂i∂jf(r). (190)

We will evaluate this expression at the location of the defect r = 0 where the free energy profile is maximal and
assume that the free energy profile is approximately isotropic [72]. The third order derivatives of f(r) consequently
vanish, so that

gij(0) = −
1

2
dkdl∂l∂k∂i∂jf(0). (191)

The only terms which can contribute to this sum are those having even numbers of derivatives with respect to x and
y (i.e. ∂3x∂yf(0) = 0 but ∂2x∂

2
yf(0) ̸= 0). For an isotropic function f(r) = f(r) one can show that ∂4xf(0) = ∂4yf(0) =

3∂2x∂
2
yf(0). Denoting ∂2x∂

2
yf(0) ≡ f ′′ > 0 and d = d(cos(ϕ), sin(ϕ)), we evaluate Equation 185

v− =
1

4
d2f ′′

(
− cos(2ϕ− 3θ)
sin(2ϕ− 3θ)

)
. (192)

Finally, we are interested in the overlap of this defect velocity with the displacement vector d. We thus compute

d · v− = −1

4
d3f ′′ cos(3ψ). (193)

where ψ = ϕ−θ is the relative angle between the defect orientation and d. As f ′′ is negative, we have that the overlap
is proportional to cos(3ψ).

V. CONNECTION TO IDEAS IN REINFORCEMENT LEARNING

Reinforcement learning (RL) refers to a class of methods in which an agent learns through trial and error how
to exert actions on its environment in order to maximize a user-defined reward [58]. Here, we briefly outline the
conceptual similarities and differences between techniques which are utilized in standard RL algorithms and those
discussed in this paper.

A. States, actions, rewards, and value functions

The standard setting of RL comprises a set of states, a learner which can exert actions on the system, a dynamical
rule for the system which maps a state and an action into a new state (either deterministically or stochastically),
and a reward function. The reward is determined by the user and in principle is completely arbitrary, although in
practice a judicious specification of the reward structure is crucial to a successful RL implementation. Rewards are
often chosen to satisfy some criterion of the system, such as to balance a pole against gravity in the famous cart-pole
task.

In this paper we consider deterministic dynamics, either operating on probability distributions or on individual
average configurations of the system. Actions correspond to time-dependent control fields which drive the system
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through non-equilibrium trajectories. In the language of RL, our “reward functions” pose an open-loop, inverse
problem in which we want to minimize the difference between the current system trajectory and a given target
trajectory. We use both KL divergences and quadratic cost functions in this paper to quantify this difference.

B. Learning the value function

The agent chooses an action according to its current policy, which can be either a stochastic or deterministic function
of the current state. RL algorithms optimize the expected reward during training by incrementally improving the
policy using new experiences. A standard algorithm for updating a deterministic policy was introduced in Ref. 59.
Specifically, for a policy µθ(s), which is a function that maps a state s into an action a and has learnable parameters
θ, updates happen according to

θn+1 ← θn + η∇θQ(st, at)|θ=θn . (194)

Here, the current state is st and the agent has taken action at. The function Q(s, a) is called the value function, which
reflects the agent’s current estimate of the cumulative reward that it will receive if it takes action a while in state s.
It depends implicitly on the parameters θ via the action selection a = µθ(s), and as a result the gradient ∇θQ(st, at)
can be expanded using the chain rule.
Equation 194 is a simple learning rule which increments θ so that it will increase expected reward (as estimated

through its learned value function). Clearly, the success of RL will depend on how well Q(s, a) can be learned by
the agent. A common approach is to represent Q(s, a) by a parameterized function Qw(s, a) and to increment its
parameters w, in addition to θ, according to a separate update rule. A standard rule for w is the semi-gradient
temporal difference (TD) scheme [58, 59]

wn+1 ← wn + ηw (rt + γQw(st+1, at+1)−Qw(st, at))∇wQ
w(st, at)|w=wn (195)

where γ is a discount factor, ηw is a learning rate, and rt is the reward received at time t. The TD approximation in
this update rule results from truncating the Bellman equation one timestep into the future (see SI Section VC), and
the approximation leading to semi-gradient methods results from neglecting the dependence of Qw(st+1, at+1) on the
current value of w. Using this update rule works well in practice, but a practical downside is that it requires separate
storage for the parameters w.
In this context, our methods can be loosely viewed as bypassing the need to separately learn the value function

Q(s, a), by replacing ∇θQ(st, at) in Equation 194 with a prescribed, physically approximated error signal ∼ ∆app. In
Equation 195, approximations are used to update the current estimate of the value function, whereas in our approach
approximations are used in writing down the gradient of the value function directly. We do assume knowledge of the
target trajectory in writing down ∆app, but this information is used in Equation 195 to determine the rewards rt.

C. Exploiting temporal locality

Both our learning rules and those based on the TD method are temporally local, in that they consider at most a few
timesteps and not the entire system trajectory. As mentioned above, updates to the parameters w of a learned value
function Qw(s, a) exploit temporal locality through the TD error δt = rt + γQw(st+1, at+1) −Qw(st, at), which will
be small if Qw(st, at) ≈ rt + γQw(st+1, at+1). This condition is a statement of the Bellman equation, which roughly
says that the cumulative expected reward starting at time t is equal to the reward accrued at t plus the discounted
cumulative expected reward starting at time t+ 1. Thus, a converged estimate for the value function will satisfy the
Bellman equation and lead to small TD errors.
The justification of temporally local update rules in our method is reminiscent of but slightly different from the

Bellman equation. In our inverse problem setup, a perfect gradient would include the effect of updating actions at
time t − 1 on the loss both at time t and at all future times t′ ≥ t (cf. Equation 26 above). We avoid the latter
contribution because it is non-local and involves backpropagation of errors through time. This is justified because
of the zippering mechanism of convergence, outlined in SI Section I. One can view this mechanism as endowing the
inverse problem with so-called “optimal substructure,” in which a complex optimality problem (learning the whole
trajectory) can be decomposed into a set of optimality sub-problems (learning individual time points or successive
differences). By a similar token, the Bellman equation gives optimal substructure to the problem of maximizing the
cumulative expected reward, which justifies the TD method of RL. Whereas in TD the optimal substructure allows
updating the estimate of the value function using temporally local information, for us the optimal substructure allows
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following a physically prescribed value function gradient in a temporally local manner.
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