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In recent years, significant progress has been made in utilizing the divergence of spectrum
response rate at the exceptional point (EP) for sensing in classical systems, while the use and
characterization of quantum EPs for sensing have been largely unexplored. For a quantum EP
sensor, an important issue is the relation between the order of the quantum EP and the scaling of
quantum Fisher information (QFI), an essential quantity for characterizing quantum sensors. Here
we investigate multi-mode quadratic bosonic systems, which exhibit higher-order EP dynamics, but
possess Hermitian Hamiltonians without Langevin noise, thus can be utilized for quantum sensing.
We derive an exact analytic formula for the QFI, from which we establish a scaling relation between
the QFI and the order of the EP. We apply the formula to study a three-mode EP sensor and a
multi-mode bosonic Kitaev chain and show that the EP physics can significantly enhance the sensing
sensitivity. Our work establishes the connection between two important fields: non-Hermitian EP
dynamics and quantum sensing, and may find important applications in quantum information and
quantum non-Hermitian physics.

Introduction.— Exceptional points (EPs), the degen-
erate points of non-Hermitian systems where two or more
eigenstates coalesce [1–4], have recently emerged as a
novel platform for achieving high precision sensing of
physical parameters [5–21]. In a classical system, the high
sensitivity stems from the scaling of the eigenspectrum
∼ ω1/2 of a typical second-order (i.e., two-fold degener-
acy) EP, leading to a divergent spectrum response rate
d (∆ω) /dϵ ∝ ϵ−1/2 under a perturbation ϵ of a physical
parameter deviated from the EP [5, 8]. For a higher
(M ≥ 3) order EP with ∆ω ∼ ϵdω (dω ≥ 1/M), the di-
vergence can be more substantial ∼ ϵ1/M−1 to achieve
higher sensitivity [9, 12, 15].

While the EP-based sensing is well studied in classical
open systems like gain/loss nanophotonics, its generaliza-
tion to a quantum system poses a fundamental challenge
[16–18, 22–27]. In an open quantum system, the intrinsic
Langevin noises may break the underlying symmetry (e.g.,
parity-time) that protects the EP, rendering the concep-
tual difficulty for even defining EP-based quantum sensor
[27]. Recently, it was shown in a two-mode bosonic para-
metric amplification process, an EP could emerge from the
dynamical evolution matrix of the Hermitian quadratic
bosonic Hamiltonian, thus avoids Langevin noise [20, 21].
Around the EP, the quantum dynamics are very sensitive
to the small perturbation of the parameter, therefore can
be utilized as a quantum EP sensor [21].

The emergence of the quantum EP in the two-mode
bosonic Hamiltonian and its application in quantum sens-
ing naturally raise questions about the general EP physics
and the characterization of EP-based quantum sensors in
multi-mode quadratic bosonic Hamiltonians, which have
been experimentally engineered in nonlinear optical me-

dia [28, 29], multi-frequency superconducting parametric
cavities [30, 31], and optomechanical systems [32–34] in
recent years. In quantum sensing, quantum Fisher in-
formation (QFI) is one main characteristic quantity that
provides a low bound for sensing precision through quan-
tum Cramér-Rao bound [35, 36]. QFI is very different
from the divergence of the spectrum response rate that
characterizes classical EP-based sensors. It is unclear how
the scaling of the quantum EP spectrum is connected
with the behavior of the QFI and whether there exists
certain universal scaling of the QFI at/around the EP.

To address these questions, we study the QFI in
a generic multi-mode bosonic quadratic Hamiltonian,
which is Hermitian but its Heisenberg equation of motion
(HEOM) is governed by a non-Hermitian dynamical ma-
trix [37–39], yielding the EP physics. Our main results
are:

i) We derive an analytic formula of the QFI that is
generally hard to calculate even numerically for multi-
mode quadratic Hamiltonians due to the exponentially
large Hilbert space of particle numbers. Current methods
for the estimate of QFI relies on approximate the input-
out theory in quantum optics [19, 40], instead of the direct
evaluation over the quantum wavefunction. We further
explore of the applications of the analytic formula in a
three-mode quantum sensor as well as the multi-mode
bosonic Kitaev chain.

ii) Utilizing the analytic formula, we find a universal
scaling of the QFI F (t) ∼ tdF with dF ≤ 4M − 2 at an
M -th order EP for a large time t, which establishes the
connection between the QFI and the order of the EP. From
the analytic formula and scaling relation, we show: 1) EP
can significantly enhance the sensitivity: the achievable
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FIG. 1. (a) Schematic diagram of different terms in the generic
Hamiltonian (1). (b) and (c) illustrate the three mode model
and bosonic Kitaev chain, respectively.

t4M−2 scaling showcases the QFI can grow much faster
over time than non-EP sensors with typically ∼ t2 scaling;
2) Different from the divergence of the spectrum response
rate, there is no divergence of the QFI at EP due to the
continuity of the QFI formula, therefore the large EP
sensitivity enhancement can be achieved for parameters
close to the EP.
iii) In an N -mode bosonic Kitaev chain, near the EP

the QFI per particle at a fixed time has an exponential
scaling F (t) ∼ β2N−2 (β > 1 depends on parameters
of the Kitaev chain), which indicates the sensitivity of
quantum EP sensor can increase exponentially with the
system size, paving the way for designing novel quantum
EP sensors through size/mode engineering.

Analytic formula for QFI: Consider a generic N -mode
Hermitian bosonic quadratic Hamiltonian (i.e., Bogoli-
ubov Hamiltonian),

Ĥ =

N∑
j,k=1

(hj,kâ
†
j âk +

∆j,k

2
â†j â

†
k +

∆∗
j,k

2
âj âk), (1)

where âk is the bosonic annihilation operator, hj,k = h∗k,j ,

∆j,k = ∆k,j due to the Hermiticity of Ĥ and bosonic
commutation relation. A schematic diagram of different
terms in the Hamiltonian is shown in Fig. 1(a). The
Heisenberg equation of motion (HEOM) is i d

dt V̂ (t) =

HDV̂ (t), where V̂ (t) =
[
A, A† ]T

, A = (â1, ..., âN ), T
is the transpose operator,

HD =

(
h ∆

−∆∗ −h∗
)

(2)

is the dynamical matrix, h and ∆ are N×N matrices. HD

satisfies the symmetries τxHDτx = −H∗
D, τzHDτz = H†

D

and τyHDτy = −HT
D [41–45], where τx, τy, and τz are

Pauli matrices. According to HEOM, we have V̂ (t) =
e−iHDtV̂ (0) = S(t)V̂ (0).
In terms of the real and imaginary parts of h and ∆,

the dynamical matrix can be written as

HD = τ0 ⊗ ihI + τz ⊗ hR + τx ⊗ i∆I + iτy ⊗∆R, (3)

where hTI = −hI , hTR = hR, ∆
T
I = ∆I , ∆

T
R = ∆R are

all real matrices. HD generally does not possess EPs
(e.g., ∆ = 0 and HD is Hermitian), and the EPs may
exist when both h and ∆ are nonzero. In the presence of
certain symmetry of HD, the 2N × 2N dynamical matrix
can be block diagonalized into two N ×N matrices. For
instance, when hR = ∆R = 0 (e.g., the three-mode and
Kitaev chain shown below), HD satisfies a symmetry
[HD, τx] = 0, allowing the block diagonalization of HD.
In each block, the EP is determined by the corresponding
block matrix, but the maximum order of EPs M ≤ N .
We consider a N -mode coherent initial state given

by |ψ0⟩ = |α1, ..., αN ⟩ = D̂1(α1)...D̂N (αN )|0⟩ with

D̂j(αj) = eαj â
†
j−α∗

j âj . The quantum state at time t be-

comes |ψt⟩ = e−iĤt|ψ0⟩. With a tedious calculation, we
find the QFI Fη = 4[⟨∂ηψt|∂ηψt⟩ − |⟨ψt|∂ηψt⟩|2] for a
sensing parameter η is [46]

Fη = 4B†B + 2Tr[C†
2C2], (4)

where B = C1α+C2α
∗, α = [α1, ..., αN ]T and C1 and

C2 are N ×N matrices given by(
C1 C2

C∗
2 C∗

1

)
=

∫ t

y=0

dy[S(y)]†Σz∂ηHDS(y), (5)

where Σz = τz⊗I, S(y) = e−iyHD , I is the N×N identity
matrix.
Eqs. (4) and (5) also apply to time-dependent sys-

tems with S(y) = T [exp(−i
∫ y

x=0
dxHD(x))] for time-

dependent dynamical matrix HD(t), where T is the time
ordering operator. The QFI formula for other initial
states beyond coherent states is given in the supplemen-
tary materials [46].
The scaling of the QFI with time can be derived from

Eq. (4). At an M -th order EP, when the imaginary parts
of the eigenvalues of HD are equal to zero (i.e., stable
region), there always exists at least one matrix element
in S(y) = e−iyHD , whose leading order is proportional
to yM−1 [2]. According to Eq. (5), the leading matrix
elements of C1 and C2 are proportional to t2M−1 except
for accidental parameter regions where the coefficient
cancellation leads to lower order of t dependence. Hence
Fη(t) ∼ tdF with dF ≤ 4M − 2, and the maximum dF =
4M − 2 can be achieved for general parameter regions.
In contrast, for a Hermitian Hamiltonian, Sy is purely a
phase and Cj ∼ t, thus the QFI is ∼ t2.

The above results can be better illustrated with a simple
single mode (N = 1) Hamiltonian

Ĥ1 = δâ†â+ i
κ

2
(â†2 − â2), (6)

where the dynamical matrix HD1 = δτz + iκτx. κ
is the single mode squeezing parameter, and δ is the
phase mismatch. HD1 obeys the anti-PT symmetry
{HD1,PT } = 0 with P = τx and T = K, and possesses
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a second order (M = 2) EP at δ = κ. The energy

spectrum response ∆ω± = ± (δϵ)
1/2

for a perturbation
ϵ = δ − κ from the EP for the parameter κ. At the

EP, the time evolution matrix S(t) =

(
1− itδ tδ
tδ 1 + itδ

)
with the leading order ∼ tM−1 = t. For the sensing
parameter κ, ∂κHD1 = iτx, Σz = τz, and the resulting
C1 = −4δ2t3/3 and C2 = −2iδ2t3/3 + δ2t2 + it, with the
leading order ∼ t2M−1 = t3. Therefore the QFI scales as
Fκ = 4|C1α+C2α

∗|2+2|C2|2 ∼ t6 with dF = 4M−2 = 6
as predicted by the scaling law. Hereafter, we apply the
analytic formula and the scaling law to two complex multi-
mode examples: a three mode sensor and a multi-mode
Kitaev chain.

Three mode quantum EP sensor.— Three coupled
optical cavities with gain/neutral/loss pattern exhibit a
third order EP with enhanced sensitivity, as demonstrated
in recent experiments [9]. Here we consider a similar three
mode Hamiltonian

Ĥ3 = iδâ†1â2 + iδâ†2â3 +
iκ1
2
â21 +

iκ3
2
â†23 + h.c., (7)

where the gain/loss pattern is replaced by the single
mode squeezing in modes 1 and 3, as illustrated in
Fig. 1(b). The dynamical matrix can be written as
HD3 = τ0 ⊗ K1 + τx ⊗ K2 with K1 = −δ(λ2 + λ7),
K2 = diag[−iκ1, 0, iκ3], and λ2 and λ7 being Gell-Mann
matrices [47]. As discussed previously, the τx symmetry
allows the diagonalization of HD3 into two irreducible
blocks HD3± = K1 ±K2. HD3± can be regarded as the
quantum generalization of the gain/neutral/loss cavity
model [9].

Each block exhibits a third-order (M = 3) EP at√
2δ = κ1 = κ3 with three degenerate eigenvalues ω±

k = 0

for k = 1, 2, 3. Consider a perturbation of κ1 =
√
2δ + ϵ

(ϵ << δ) from the EP for mode 1, the spectrum response
∆ω±

k = ω±
k (ϵ)− ω±

k (0) = ie±iπk/3δ2/3ϵ1/3 at the leading
order, showing a ϵ1/3 scaling behavior (i.e., the exponent
dω = 1/3) [46], similar as that for classical coupled cav-
ities [9]. In Fig. 2(a), we plot the numerical results for
the maximum spectrum response ∆ωκ1 = max±,k|∆ω±

k |
with respect to ϵ (red triangles) and the linear fitting
ln(∆ωκ1

) = 0.33 ln(ϵ) + 0.01 (black solid line), showing
excellent agreement with the analytic result.

For quantum sensing of the parameter κ1, we find
Fκ1 ∝ t10 when t→ +∞ from Eq. (4) [46] for a coherent
initial state. In Fig. 2(b), we show the numerical result
of ln(Fκ1

) as a function of ln(t), and its linear fitting
ln(Fκ1

) = 10 ln(t) − 3.22, showing the numerical result
agrees well with our analytical prediction [46]. dF =
4M − 2 = 10 reaches the maximum exponent of the
scaling. Far from the EP with κ1 = κ3 = 0, Fκ1 ∝ t2

when t→ +∞ [46], similar as that for a Hermitian sensor.
The t2 to t10 scaling change of the QFI demonstrates the
EP-enhanced sensitivity.

FIG. 2. Maximum spectrum response and QFI for the three
mode model. Parameters δ = 1 and κ1 = κ3 =

√
2 for

the EP. (a) Plot of maximum spectrum responses versus the
perturbation ϵ. (b) Plot of QFI versus time t. In (a) and (b),
the red triangles and blue dots are numerical results without
and with constraint κ1 = κ3 = η, respectively. The solid lines
are fitting functions.

Different perturbations for the same EP may induce dif-
ferent spectrum responses, leading to different scalings of
the QFI. In the three mode Hamiltonian (7), a constraint
κ1 = κ3 = η with a perturbation η =

√
2δ + ϵ for both

modes 1 and 3 around the third order EP η =
√
2δ leads

to the double degenerate spectrum response ∆ω±
1 = 0,

∆ω±
2 = i

√
2
√
2δϵ, and ∆ω±

3 = −i
√

2
√
2δϵ. They have

the ϵ1/2 scaling, agreeing with the numerical result and
its fitting line ln(∆ωη) = 0.5 ln(ϵ) + 0.51 in Fig. 2(a),
where ∆ωη = max±,k|∆ω±

k | for the perturbation in η.
The QFI Fη ∝ t6 when t → +∞ [46], which also shows
excellent agreement with the numerical result and its
linear fitting ln(Fη) = 6 ln(t) − 0.82 in Fig. 2(b). Here
dF = 6 < 4M − 2 and dω = 1/2 > 1/M .

Bosonic Kitaev chain— We extend the analysis from
three modes to N modes and consider the bosonic Kitaev
chain with the Hamiltonian [19, 38, 48]

ĤBKC =

N−1∑
j=1

(
iJâ†j âj+1 + iΩâ†j â

†
j+1 + h.c.

)
. (8)

The dynamical matrix for the HEOM HDK = τ0 ⊗ L1 +
τx ⊗ L2, where L1 and L2 are N × N matrices with
(L1)j,j+1 = −(L1)j+1,j = iJ and (L2)j,j+1 = (L2)j+1,j =
iΩ (all other elements are 0). The model is schematically
illustrated in Fig. 1(c). Under unitary transformation
(τx, τy, τz) → (τz, τy,−τx), HDK can be block diagonal-
ized as τ0 ⊗ L1 + τz ⊗ L2 with HDK+ = L1 + L2 and
HDK− = L1 − L2 being two irreducible blocks that rep-
resent Hatano-Nelson model [49]. At J = Ω, both blocks
HDK± reduce to the N -dimensional Jordan normal forms
with zero eigenvalues in the diagonal, yielding two degen-
erate N -th order (i.e., M = N) EPs.
A perturbation from the EP ϵ = J− Ω leads to the

change of the 2N eigenvalues

∆ωk = 2
√

(2J − ϵ)ϵ cos(
kπ

N + 1
) (9)

for k = 1, ..., N , which are double degenerate for two
blocks. Clearly, ∆ωk = 0 for k = (N + 1)/2 with an odd
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FIG. 3. Maximum spectrumn response and QFI of bosonic
Kitaev chain at J = Ω = 1. (a) Schematic diagram of the
exponents dF (blue) and dω (red) versus θ. (b) Maximum
spectrum response versus ln(η). The red triangles (blue dots)
are numerical results of ln(∆ωη) for N = 20 (10). (c) The red
triangles (blue dots) are numerical results of QFI versus ln(t)
for θ = 3π/4 (θ = 2.99π/4). η = 0 and N = 6. (d) QFI versus
ln(t). The red triangles (blue dots) are numerical results of
ln(Fη) for N = 20 (10). The solid lines in (b-d) are fitting
functions.

N , while all other spectrum responses ∆ωk ∝ ϵ1/2 do not
reach the maximum scaling ϵ1/N . The QFI FΩ ∝ t4j+2

for both N = 2j and 2j + 1, indicating each non-zero
√
ϵ

spectrum may contribute t2 scaling of QFI. The scaling
factor dF = 4j + 2 < dmax

F = 4M − 2.
In order to reach the maximum spectrum response

exponent dω = 1/N , we consider a local perturbation

Ĥη = iη
[
sin(θ)â†N â1 + cos(θ)â†N â

†
1

]
+ h.c. (10)

that couples modes 1 and N . Ĥη adds (L1)N,1 =
−(L1)1,N = iη sin(θ) and (L2)N,1 = (L2)1,N = iη cos(θ)
in the dynamical matrix. We find the maximum spectrum
response ∆ωη = maxk(|∆ωk|) ∝ η1/N (i.e., dω = 1/N)
for θ ̸= 3π

4 and 7π
4 , while ∆ωη = 0 (i.e., dω = 0) for

θ = 3π
4 or 7π

4 [46]. From Eq. (4), we find Fη ∝ t4N−2

(i.e., dF = 4N − 2) for θ ̸= 3π
4 and 7π

4 , and Fη ∝ t2 (i.e.,
dF = 2) for θ = 3π

4 or 7π
4 [46] when t → ∞. In Fig.

3(a), we illustrate dF and dω as a function of θ at the EP
J = Ω = 1 and η = 0.
The analytical results are confirmed by the numeri-

cal calculations. In Fig. 3(b), we plot the numerical
maximum spectrum response with respect to the per-
turbation η around the EP J = Ω = 1 for the sys-
tem size N = 20 and 10), together with their fittings
ln(∆ωη) = 0.05 ln(η)+0.69 and ln(∆ωη) = 0.1 ln(η)+0.69.
They agree well with the analytical expressions for the
response exponent 1/N shown in Fig. 3(a). In Fig. 3(c),
we plot ln(Fη) versus ln(t) for N = 6 at the EP with η = 0
for slightly different θ = 3π/4 and θ = 2.99π/4. The fit-

FIG. 4. The parameters are J = 1, Ω = 0.9, and η = 0. (a)
QFI ln(Fη) versus ln(t) for N = 4, 9, 14, 19. (b) Fixed time
logarithm QFI ln[Fη(t0 = 1000)] versus size N . The blue dots
are numerical results and the solid line is the fitting function.

ting functions are found to be ln(∆ωη) = 2.02 ln(t)− 0.74
and ln(∆ωη) = 21.92 ln(t) − 20.14, respectively. The
result confirms the t2 scaling of the QFI at the acci-
dental degenerate point θ = 3π/4. In Fig. 3(d), we plot
ln(Fη) versus ln(t) at the EP for two different system sizes
N = 20 and 10, with their linear fitting functions ln(Fη) =
77.93 ln(t)− 111.49 and ln(Fη) = 37.97 ln(t)− 31.89. We
see they satisfy dF = 4N − 2, reaching the maximum
scaling exponent for the QFI.

Far from the EP with J ̸= 0 and η = Ω = 0, we find
Fη ∝ t2 when t→ +∞ from Eq. (4). Therefore our ana-
lytical and numerical results demonstrate the enhanced
quantum sensitivity at the EP (from t2 to t4N−2). The
Kitaev chain model also indicates that the maximum scal-
ing t4M−2 can be reached for an M -th order EP when the
dynamical matrix can transform to the Jordan normal
form.

At an N -th order EP and with a fixed large time t = t0,
Fη is proportional to t4N−2

0 at the leading order, indicating
the sensitivity may be exponentially enhanced by the
system size. However, such t0 may approach infinity
exactly at the EP. Since the QFI is a continuous function
of time and other parameters, the enhanced sensitivity
at the EP may pass to the nearby interval around the
EP, where t0 is finite. We consider the parameters near

the EP with η = 0, β =
√

J+Ω
J−Ω ≫ 1 and a fixed but

finite large time t0. We can diagonalize the dynamical
matrix HDK with a unitary matrix and find that Fη(t =
t0) is proportional to β4N−4 at the leading order, i.e.,
ln(Fη(t = t0)) is approximately proportional to 4N ln(β).

In Fig. 4(a), we plot the numerical calculation of ln(Fη)
as a function of ln(t) for N = 4, 9, 14, 19, with parameters
J = 1, Ω = 0.9, θ = π/4, and η = 0. We see the
growth of QFI with time becomes polynomial after certain
time, indicating the saturation of the initial exponential
growth due to the finite size of the system. In fact,
in a periodic Kitaev chain, the parameter J = 1 and
Ω = 0.9 yields imaginary eigenspectrum, leading to the
exponential growth of the QFI with time. However, the
finite size spectrum is still real, leading to the saturation
of QFI after the boundary effect kicks in. In Fig. 4(b),
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we show the numerical calculation of ln(Fη) with respect
to N at a fixed time t0 = 1000, with the fitting equation
ln[Fη(t = 1000)] = 5.69N+6.17. The numerical coefficient
5.69 is consistent with theoretical coefficient 4 ln(β) ≈
5.89.

Finally, the leading term of total particle number
Q = ⟨ψt|

∑N
j=1 â

†
j âj |ψt⟩ scales as Q ∼ β2N−2, therefore

the QFI at the fixed time reaches the Heisenberg limit
with Fη ∼ Q2, indicating the QFI per particle is exponen-
tially enhanced. Such exponentially enhanced sensitivity
may originate from the non-Hermitian skin effect (NHSE).
In the bosonic Kitaev chain, there is an NHSE for HDK

without the perturbation η, leading to the accumula-
tion of the wavefunction at the boundary. However, the
boundary coupling from the perturbation η leads to the
disappearance of the NHSE, which causes a dramatic
change of the wavefunction and energy spectrum, yielding
the exponential enhancement of the QFI per particle [11].
This reveals that previous conclusion that NHSE cannot
be used to enhance per-particle sensitivity [19] based on
the input-out theory may be model dependent.

Conclusion and discussion.— In this Letter, we derive
the exact QFI formula for a generic quadratic Bosonic
Hamiltonian. Utilizing the exact formula, we establish
the connection between the QFI scaling exponent and the
order of EP of the dynamical matrix. Our analytic meth-
ods can also be applied to other important models, e.g.,
quadratic bosonic Hamiltonian with topological bands
[11, 39], for studying quantum squeezing, entanglement
and sensing of topological multi-mode chains. While our
work on the QFI establishes the lower bound for the ul-
timate precision for quantum EP sensors, the optimal
strategies for achieving such bound are unknown and
demand developing well-designed measurement schemes
[50]. Our result bridges the fields of quantum sensing
and non-Hermitian EP physics and may be useful for the
design of new EP-based quantum sensors.
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Lü, C.-W. Li, L. Yang, F. Nori, and Y.-x. Liu, Metrology
with PT -Symmetric Cavities: Enhanced Sensitivity near
the PT -Phase Transition, Phys. Rev. Lett. 117, 110802
(2016).
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where hj,k = h∗k,j , ∆j,k = ∆k,j , and âk is the bosonic annihilation operator satisfying the bosonic commutation

relations [aj , ak] = 0 and
[
a†j , ak

]
= δjk. The Hamiltonian is Hermitian and reduces to the well-known tight-binding

model when ∆ = 0. The Heisenberg equation of motion (HEOM) is

dâj(t)

dt
= i[Ĥ, âj(t)] = i

∑
k

[−hj,kâk(t)−∆j,kâ
†
k(t)], (S2)

which can be rewritten as

i
d

dt
V̂ (t) = HDV̂ (t). (S3)

with

HD =

(
h ∆

−∆∗ −h∗
)
, (S4)

V̂ (t) = [â1(t), â2(t), ..., âN (t), â†1(t), â
†
2(t), ..., â

†
N (t)]T , (S5)

h and ∆ being N × N matrices. HD is the dynamical matrix, instead of the Hamiltonian matrix. HD satisfies
τxHDτx = −H∗

D, τzHDτz = H†
D and τyHDτy = −HT

D , where τx, τy, and τz are Pauli matrices.

According to HEOM, we have

V̂ (t) = e−iHDtV̂ (0) = S(t)V̂ (0), (S6)

where

S(t) = e−iHDt. (S7)

Thus the time evolution of the field operators becomes

âj(t) =

N∑
k=1

(
Pj,k(t)âk(0) +Qj,k(t)â

†
k(0)

)
, (S8)

where Pj,k(t) = Sj,k(t), Qj,k(t) = Sj,(k+N)(t), and j = 1, 2, ..., N . For convenience, we use âk and â†k to represent âk(0)

and â†k(0), respectively.

In this section, we consider a coherent initial state

|ψ0⟩ = |α1, α2, ..., αN ⟩ = D̂1(α1)D̂2(α2)...D̂N (αN )|0⟩,

where

D̂j(αj) = eαj â
†
j−α∗

j âj .

The QFI is defined as

Fη (t) = 4[⟨∂ηψt||∂ηψt⟩ − |⟨ψt||∂ηψt⟩|2],

which requires the evaluation of the quantum state at time t

|ψt⟩ = e−iĤt|ψ0⟩.

Inset the coherent initial state in, we have

|∂ηψt⟩ = ∂ηe
−iĤtD̂1(α1)D̂2(α2)...D̂N (αN )|0⟩.
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The derivative with the sensing parameter η is only applied to the term e−iĤt with

∂ηe
−iĤt

=

∫ 1

x=0

dx · e−iĤt(1−x)∂η(−iĤt)e−iĤtx

=− it

∫ 1

x=0

dx · e−iĤt(1−x)∂η

[
N∑

m,n=1

(hm,nâ
†
mân +

∆m,n

2
â†mâ

†
n +

∆∗
m,n

2
âmân)

]
e−iĤtx

=

N∑
m,n=1

−ite−iĤt

∫ 1

x=0

dx · eiĤtx

(
∂ηhm,nâ

†
mân +

∂η∆m,n

2
â†mâ

†
n +

∂η∆
∗
m,n

2
âmân

)
e−iĤtx

=

N∑
m,n=1

−ite−iĤt

∫ 1

x=0

dx ·
[
∂ηhm,nâ

†
m(xt)ân(xt) +

∂η∆m,n

2
â†m(xt)â†n(xt) +

∂η∆
∗
m,n

2
âm(xt)ân(xt)

]

=

N∑
m,n=1

−ie−iĤt

∫ t

y=0

dy ·
[
∂ηhm,nâ

†
m(y)ân(y) +

∂η∆m,n

2
â†m(y)â†n(y) +

∂η∆
∗
m,n

2
âm(y)ân(y)

]
,

(S9)

where y = xt.
Substitute Eq. (S8) into Eq. (S9) (for convenience, we use Pj,k and Qj,k to represent Pj,k(y) and Qj,k(y), respectively),

we have

∂ηe
−iĤt

=

N∑
m,n,j,k=1

−ie−iĤt

∫ t

y=0

dy ·
[
∂ηhm,n

(
P ∗
m,j â

†
j +Q∗

m,j âj

)(
Pn,kâk +Qn,kâ

†
k

)
+

∂η∆m,n

2

(
P ∗
m,j â

†
j +Q∗

m,j âj

)(
P ∗
n,kâ

†
k +Q∗

n,kâk

)
+
∂η∆

∗
m,n

2

(
Pm,j âj +Qm,j â

†
j

)(
Pn,kâk +Qn,kâ

†
k

)]
=

N∑
m,n,j,k=1

−ie−iĤt

∫ t

y=0

dy ·
[(
∂ηhm,nP

∗
m,jPn,k +

∂η∆m,n

2
P ∗
m,jQ

∗
n,k +

∂η∆
∗
m,n

2
Qm,jPn,k

)
â†j âk +

(
∂ηhm,nP

∗
m,jQn,k

+
∂η∆m,n

2
P ∗
m,jP

∗
n,k +

∂η∆
∗
m,n

2
Qm,jQn,k

)
â†j â

†
k +

(
∂ηhm,nQ

∗
m,jPn,k +

∂η∆m,n

2
Q∗

m,jQ
∗
n,k +

∂η∆
∗
m,n

2
Pm,jPn,k

)
âj âk

+

(
∂ηhm,nQ

∗
m,jQn,k +

∂η∆m,n

2
Q∗

m,jP
∗
n,k +

∂η∆
∗
m,n

2
Pm,jQn,k

)
âj â

†
k

]

(S10)

=

N∑
m,n,j,k=1

−ie−iĤt

∫ t

y=0

dy ·
[(
∂ηhm,n(P

∗
m,jPn,k +Q∗

m,kQn,j) +
∂η∆m,n

2
(P ∗

m,jQ
∗
n,k +Q∗

m,kP
∗
n,j)+

∂η∆
∗
m,n

2
(Qm,jPn,k + Pm,kQn,j)

)
â†j âk +

(
∂ηhm,nP

∗
m,jQn,k +

∂η∆m,n

2
P ∗
m,jP

∗
n,k +

∂η∆
∗
m,n

2
Qm,jQn,k

)
â†j â

†
k+(

∂ηhm,nQ
∗
m,jPn,k +

∂η∆m,n

2
Q∗

m,jQ
∗
n,k +

∂η∆
∗
m,n

2
Pm,jPn,k

)
âj âk+(

∂ηhm,nQ
∗
m,jQn,k +

∂η∆m,n

2
Q∗

m,jP
∗
n,k +

∂η∆
∗
m,n

2
Pm,jQn,k

)
δj,k

]

=− i

2
e−iĤt

C0 +
∑
k,j

(
2C1,k,j â

†
kâj + C2,k,j â

†
kâ

†
j + C3,k,j âkâj

)
=e−iĤtÔ.

(S11)
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Here

C0 =

N∑
m,n,j=1

2

∫ t

y=0

dy

(
∂ηhm,nQ

∗
m,jQn,j +

∂η∆m,n

2
Q∗

m,jP
∗
n,j +

∂η∆
∗
m,n

2
Pm,jQn,j

)

C1,j,k =

N∑
m,n=1

∫ t

y=0

dy

[
∂ηhm,n(P

∗
m,jPn,k +Q∗

m,kQn,j) +
∂η∆m,n

2
(P ∗

m,jQ
∗
n,k +Q∗

m,kP
∗
n,j)+

∂η∆
∗
m,n

2
(Qm,jPn,k + Pm,kQn,j)

]
C2,j,k =

N∑
m,n=1

∫ t

y=0

dy

[
∂ηhm,n

(
P ∗
m,jQn,k + P ∗

m,kQn,j

)
+
∂η∆m,n

2

(
P ∗
m,jP

∗
n,k + P ∗

m,kP
∗
n,j

)
+

∂η∆
∗
m,n

2
(Qm,jQn,k +Qm,kQn,j)

]
C3,j,k =

N∑
m,n=1

∫ t

y=0

dy

[
∂ηhm,n

(
Q∗

m,jPn,k +Q∗
m,kPn,j

)
+
∂η∆m,n

2

(
Q∗

m,jQ
∗
n,k +Q∗

m,kQ
∗
n,j

)
+

∂η∆
∗
m,n

2
(Pm,jPn,k + Pm,kPn,j)

]

Ô =− i

2

C0 +
∑
k,j

(
2C1,k,j â

†
kâj + C2,k,j â

†
kâ

†
j + C3,k,j âkâj

) .

(S12)

Cz (z = 1, 2, 3), P , and Q are N ×N matrices and [Cz]j1,j2 = Cz,j1,j2 . In the matrix form, we can rewrite the above
equations as

(
C1 C2

C∗
2 C∗

1

)
=

∫ t

y=0

dy[S(y)]†Σz∂ηHDS(y), (S13)

where Σz = σz ⊗ I, S(y) = e−iyHD , σz is a Pauli matrix, and I is the N ×N identity matrix.

The QFI becomes

Fη = 4[⟨ψ0|Ô†Ô|ψ0⟩ − |⟨ψ0|Ô|ψ0⟩|2]. (S14)

Notice that we have

D̂−1(αj)âjD̂(αj) = e−αj â
†
j+α∗

j âj âje
αj â

†
j−α∗

j âj = âj + αj ,

âj |ψ0⟩ =âjD̂1(α1)D̂2(α2)...D̂j(αj)...D̂N (αN )|0⟩
=D̂j(αj)D̂j(−αj)âjD̂1(α1)D̂2(α2)...D̂j(αj)...D̂N (αN )|0⟩
=αj |ψ0⟩,

(S15)

and

⟨ψ0|â†j = α∗
j ⟨ψ0|. (S16)

Take Eq. (S12) into Eq. (S14), and we expand the first term of Eq. (S14) as a summation of normal ordered terms
(NOTs). According to Eqs. (S15) and (S16), the normal ordered quadratic terms (NOQTs) of the first and second
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terms of Eq. (S14) cancel with each other. We have

⟨ψ0|Ô†Ô|ψ0⟩

=
1

4
⟨ψ0|

C0 +

N∑
j1,j2=1

(2C∗
1,j2,j1 â

†
j1
âj2 + C∗

2,j1,j2 âj1 âj2 + C∗
3,j1,j2 â

†
j1
â†j2)

×

C0 +

N∑
k1,k2=1

(2C1,k1,k2
â†k1

âk2
+ C2,k1,k2

â†k1
â†k2

+ C3,k1,k2
âk1

âk2
)

 |ψ0⟩

=
1

4
⟨ψ0|

N∑
j1,j2,k1,k2=1

(
4C∗

1,j2,j1C1,k1,k2
â†j1 âj2 â

†
k1
âk2

+ 2C∗
1,j2,j1C2,k1,k2

â†j1 âj2 â
†
k1
â†k2

+

2C∗
2,j1,j2C1,k1,k2 âj1 âj2 â

†
k1
âk2 + C∗

2,j1,j2C2,k1,k2 âj1 âj2 â
†
k1
â†k2

+NOQTs
)
|ψ0⟩,

(S17)

â†j1 âj2 â
†
k1
âk2

= â†j1 â
†
k1
âj2 âk2

+ δk1,j2 â
†
j1
âk2

, (S18)

â†j1 âj2 â
†
k1
â†k2

= â†j1 â
†
k1
âj2 â

†
k2

+ δj2,k1 â
†
j1
â†k2

= â†j1 â
†
k1
â†k2

âj2 + δj2,k2 â
†
j1
â†k1

+ δj2,k1 â
†
j1
â†k2

, (S19)

âj1 âj2 â
†
k1
âk2

= âj1 â
†
k1
âj2 âk2

+ δk1,j2 âj1 âk2
= â†k1

âj1 âj2 âk2
+ δj1,k1

âj2 âk2
+ δk1,j2 âj1 âk2

, (S20)

and

âj1 âj2 â
†
k1
â†k2

=âj1 â
†
k1
âj2 â

†
k2

+ δj2,k1
âj1 â

†
k2

=â†k1
âj1 âj2 â

†
k2

+ δj1,k1
âj2 â

†
k2

+ δj2,k1
âj1 â

†
k2

=â†k1
âj1 â

†
k2
âj2 + δk2,j2 â

†
k1
âj1 + δj1,k1 âj2 â

†
k2

+ δj2,k1 âj1 â
†
k2

=â†k1
â†k2

âj1 âj2 + δj1,k2 â
†
k1
âj2 + δk2,j2 â

†
k1
âj1 + δj1,k1 âj2 â

†
k2

+ δj2,k1 âj1 â
†
k2

=â†k1
â†k2

âj1 âj2 + δj1,k2 â
†
k1
âj2 + δk2,j2 â

†
k1
âj1 + δj1,k1 â

†
k2
âj2 + δj2,k1 â

†
k2
âj1 + δj1,k1δj2,k2 + δj2,k1δj1,k2 .

(S21)

Take Eqs. (S12) and (S17)-(S21) into Eq. (S14), we can get that

Fη =4[⟨ψ0|Ô†Ô|ψ0⟩ − |⟨ψ0|Ô|ψ0⟩|2]

=4

1

4
⟨ψ0|

N∑
j1,j2,k1,k2=1

(
4C∗

1,j2,j1C1,k1,k2
δk1,j2 â

†
j1
âk2

+ 2C∗
1,j2,j1C2,k1,k2

(δj2,k2
â†j1 â

†
k1

+ δj2,k1
â†j1 â

†
k2
)+

2C∗
2,j1,j2C1,k1,k2

(δj1,k1
âj2 âk2

+ δk1,j2 âj1 âk2
) + C∗

2,j1,j2C2,k1,k2
(δj1,k2

â†k1
âj2 + δk2,j2 â

†
k1
âj1 + δj1,k1

â†k2
âj2+

δj2,k1
â†k2

âj1 + δj1,k1
δj2,k2

+ δj2,k1
δj1,k2

) +NOQT
)
|ψ0⟩ − |⟨ψ0|Ô|ψ0⟩|2

}
=

N∑
j1,j2,k1,k2=1

[
4C∗

1,j2,j1C1,k1,k2
δk1,j2α

∗
j1αk2

+ 2C∗
1,j2,j1C2,k1,k2

(δj2,k2
α∗
j1α

∗
k1

+ δj2,k1
α∗
j1α

∗
k2
)+

2C∗
2,j1,j2C1,k1,k2

(δj1,k1
αj2αk2

+ δk1,j2αj1αk2
) + C∗

2,j1,j2C2,k1,k2
(δj1,k2

α∗
k1
αj2 + δk2,j2α

∗
k1
αj1 + δj1,k1

α∗
k2
αj2+

δj2,k1
α∗
k2
αj1 + δj1,k1

δj2,k2
+ δj2,k1

δj1,k2
)
]

=
∑

j1,j2,k1

(
4C∗

1,j2,j1C1,j2,k1α
∗
j1αk1 + 2C∗

1,j2,j1C2,k1,j2α
∗
j1α

∗
k1

+ 2C∗
1,j2,j1C2,j2,k1

α∗
j1α

∗
k1
+

2C∗
2,j1,j2C1,j1,k1αj2αk1 + 2C∗

2,j1,j2C1,j2,k1αj1αk1 + C∗
2,j1,j2C2,k1,j1α

∗
k1
αj2 + C∗

2,j1,j2C2,k1,j2α
∗
k1
αj1+

C∗
2,j1,j2C2,j1,k1α

∗
k1
αj2 + C∗

2,j1,j2C2,j2,k1α
∗
k1
αj1

)
+

∑
j1,j2

(
C∗

2,j1,j2C2,j1,j2 + C∗
2,j1,j2C2,j2,j1

)
.

(S22)



11

Notice that Cz,j1,j2 = Cz,j2,j1 for any z = 2, 3 and j1, j2 = 1, 2, ..., N according to Eq. (S12), then we have

Fη =

 ∑
j1,j2,k1

(
4C∗

1,j2,j1C1,j2,k1α
∗
j1αk1 + 4C∗

1,j2,j1C2,k1,j2α
∗
j1α

∗
k1

+ 4C∗
2,j1,j2C1,j1,k1αj2αk1+

2C∗
2,j1,j2C2,k1,j1α

∗
k1
αj2 + 2C∗

2,j1,j2C2,j1,k1α
∗
k1
αj2

)
+

∑
j1,j2

2C∗
2,j1,j2C2,j1,j2


=

∑
j1,j2

[∑
k1

(
4C∗

1,j2,j1C1,j2,k1
α∗
j1αk1

+ 8Re[C∗
1,j2,j1C2,k1,j2α

∗
j1α

∗
k1
] + 4C∗

2,j1,j2C2,j1,k1
α∗
k1
αj2

)
+ 2|C2,j1,j2 |2

]
.

(S23)

In term of matrices, we get

Fη =4α†C†
1C1α+ 8Re[α†C2C

∗
1α

∗] + 4αTC†
2C2α

∗ + 2Tr[C†
2C2]

=4B†B + 2Tr[C†
2C2].

(S24)

where B = C1α+C2α
∗ and α = [α1, α2, ..., αN ]T and T is transpose operator. C1 and C2 are N ×N matrices given

in Eq. (S13).

B. QFI for general initial state and time-dependent Hamiltonian

Here we consider a general initial state |ψ0⟩ =
∑l

j=1 fj |ψj⟩, where
∑l

j=1 |fj |2 = 1, |ψj⟩ = |αj
1, α

j
2, ..., α

j
N ⟩, αj =

[αj
1, α

j
2, ..., α

j
N ]T, and αj ̸= αk for j ̸= k. The time-dependent Hamiltonian

Ĥ(t) =

N∑
j,k=1

(hj,k(t)â
†
j âk +

∆j,k(t)

2
â†j â

†
k +

∆∗
j,k(t)

2
âj âk). (S25)

The QFI is

Fη =4[⟨ψ0|Ô†Ô|ψ0⟩ − |⟨ψ0|Ô|ψ0⟩|2]

=4[(

l∑
j=1

f∗j ⟨ψj |)Ô†Ô(

l∑
j=1

fk|ψk⟩)− |(
l∑

j=1

f∗j ⟨ψj |)Ô(

l∑
j=1

fk|ψk⟩)|2]

=4[

l∑
j,k=1

f∗j fk⟨ψj |Ô†Ô|ψk⟩ − (

l∑
j,k=1

f∗j fk⟨ψj |Ô|ψk⟩)(
l∑

m,n=1

f∗mfn⟨ψm|Ô†|ψn⟩)]

=4[

l∑
j,k=1

f∗j fk⟨ψj |Ô†Ô|ψk⟩ −
l∑

j,k,m,n=1

f∗j fkf
∗
mfn⟨ψj |Ô|ψk⟩⟨ψm|Ô†|ψn⟩]

(S26)

⟨ψj |Ô|ψk⟩

=⟨ψj |

C0 +

N∑
k1,k2=1

(2C1,k1,k2
â†k1

âk2
+ C2,k1,k2

â†k1
â†k2

+ C3,k1,k2
âk1

âk2
)

 |ψk⟩

=exp

(
−|αj |2 + |αk|2

2
+αj∗ ·αk

)C0 +

N∑
k1,k2=1

(2C1,k1,k2
αj†
k1
αk
k2

+ C2,k1,k2
αj†
k1
αj†
k2

+ C3,k1,k2
αk
k1
αk
k2
)


=exp

(
−|αj |2 + |αk|2

2
+αj∗ ·αk

)[
C0 + 2αj†C1α

k +αj†C2α
j∗ +αkTC∗

2α
k
]
,
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where we use C∗
2 = C3.

⟨ψm|Ô†|ψn⟩
=⟨ψn|Ô|ψm⟩†

=exp

(
−|αm|2 + |αn|2

2
+αn ·αm∗

)
(C0 + 2αn†C1α

m +αn†C2α
n∗ +αmTC3α

m)†

=exp

(
−|αm|2 + |αn|2

2
+αn ·αm∗

)[
C0 + 2αm†C1α

n +αnTC∗
2α

n +αm†C2α
m∗]

(S27)

⟨ψj |Ô†Ô|ψk⟩

=
1

4
⟨ψj |

C0 +

N∑
j1,j2=1

(2C∗
1,j2,j1 â

†
j1
âj2 + C∗

2,j1,j2 âj1 âj2 + C∗
3,j1,j2 â

†
j1
â†j2)

×

C0 +

N∑
k1,k2=1

(2C1,k1,k2
â†k1

âk2
+ C2,k1,k2

â†k1
â†k2

+ C3,k1,k2
âk1

âk2
)

 |ψk⟩

=
1

4
⟨ψj |

N∑
j1,j2,k1,k2=1

(
4C∗

1,j2,j1C1,k1,k2
â†j1 âj2 â

†
k1
âk2

+ 2C∗
1,j2,j1C2,k1,k2

â†j1 âj2 â
†
k1
â†k2

+

2C∗
2,j1,j2C1,k1,k2 âj1 âj2 â

†
k1
âk2 + C∗

2,j1,j2C2,k1,k2 âj1 âj2 â
†
k1
â†k2

+NOQTs
)
|ψk⟩.

(S28)

For Rj,k = 4(⟨ψj |Ô†Ô|ψk⟩ − ⟨ψj |Ô†|ψk⟩⟨ψj |Ô|ψk⟩/⟨ψj |ψk⟩), the NOQT of the first term cancels with that of the
second term. We have

Rj,k =4[⟨ψj |Ô†Ô|ψk⟩ − ⟨ψj |Ô†|ψk⟩⟨ψj |Ô|ψk⟩/⟨ψj |ψk⟩]

=4

1

4
⟨ψj |

N∑
j1,j2,k1,k2=1

(
4C∗

1,j2,j1C1,k1,k2
δk1,j2 â

†
j1
âk2

+ 2C∗
1,j2,j1C2,k1,k2

(δj2,k2
â†j1 â

†
k1

+ δj2,k1
â†j1 â

†
k2
)+

2C∗
2,j1,j2C1,k1,k2

(δj1,k1
âj2 âk2

+ δk1,j2 âj1 âk2
) + C∗

2,j1,j2C2,k1,k2
(δj1,k2

â†k1
âj2 + δk2,j2 â

†
k1
âj1 + δj1,k1

â†k2
âj2+

δj2,k1
â†k2

âkj1 + δj1,k1
δj2,k2

+ δj2,k1
δj1,k2

) +NOQT
)
|ψk⟩ − ⟨ψj |Ô†|ψk⟩⟨ψj |Ô|ψk/⟨ψj |ψk⟩⟩)

}
=

N∑
j1,j2,k1,k2=1

⟨ψj |ψk⟩
[
4C∗

1,j2,j1C1,k1,k2
δk1,j2α

j∗
j1
αk
k2

+ 2C∗
1,j2,j1C2,k1,k2

(δj2,k2
αj∗
j1
αj∗
k1

+ δj2,k1
αj∗
j1
αj∗
k2
)+

2C∗
2,j1,j2C1,k1,k2(δj1,k1α

k
j2α

k
k2

+ δk1,j2α
k
j1α

k
k2
) + C∗

2,j1,j2C2,k1,k2(δj1,k2α
j∗
k1
αk
j2 + δk2,j2α

j∗
k1
αk
j1 + δj1,k1α

j∗
k2
αk
j2+

δj2,k1α
j∗
k2
αk
j1 + δj1,k1δj2,k2 + δj2,k1δj1,k2)

]
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=
∑

j1,j2,k1

⟨ψj |ψk⟩
(
4C∗

1,j2,j1C1,j2,k1
αj∗
j1
αk
k1

+ 2C∗
1,j2,j1C2,k1,j2α

j∗
j1
αj∗
k1

+ 2C∗
1,j2,j1C2,j2,k1

αj∗
j1
αj∗
k1
+

2C∗
2,j1,j2C1,j1,k1

αk
j2α

k
k1

+ 2C∗
2,j1,j2C1,j2,k1

αk
j1α

k
k1

+ C∗
2,j1,j2C2,k1,j1α

j∗
k1
αk
j2 + C∗

2,j1,j2C2,k1,j2α
j∗
k1
αk
j1+

C∗
2,j1,j2C2,j1,k1

αj∗
k1
αk
j2 + C∗

2,j1,j2C2,j2,k1
αj∗
k1
αk
j1

)
+

∑
j1,j2

⟨ψj |ψk⟩
(
C∗

2,j1,j2C2,j1,j2 + C∗
2,j1,j2C2,j2,j1

)

=⟨ψj |ψk⟩

 ∑
j1,j2,k1

(
4C∗

1,j2,j1C1,j2,k1α
j∗
j1
αk
k1

+ 4C∗
1,j2,j1C2,k1,j2α

j∗
j1
αj∗
k1

+ 4C∗
2,j1,j2C1,j1,k1α

k
j2α

k
k1
+

2C∗
2,j1,j2C2,k1,j1α

j∗
k1
αk
j2 + 2C∗

2,j1,j2C2,j1,k1α
j∗
k1
αk
j2

)
+

∑
j1,j2

2C∗
2,j1,j2C2,j1,j2


=

∑
j1,j2

⟨ψj |ψk⟩

[∑
k1

4
(
C∗

1,j2,j1C1,j2,k1
αj∗
j1
αk
k1

+ C∗
1,j2,j1C2,k1,j2α

j∗
j1
αj∗
k1

+ C∗
2,j1,j2C1,j1,k1

αk
j2α

k
k1
+

Cj∗
2,j1,j2

C2,j1,k1
αj∗
k1
αk
j2

)
+ 2|C2,j1,j2 |2

]
=⟨ψj |ψk⟩

[
4(αj†C†

1C1α
k +αj†C2C

∗
1α

j∗ +αkTC∗
2C1α

k +αkTC†
2C2α

j∗) + 2Tr[C†
2C2]

]
.

(S29)

Fη =4[

l∑
j,k=1

f∗j fk⟨ψj |Ô†Ô|ψk⟩ −
l∑

j,k,m,n=1

f∗j fkf
∗
mfn⟨ψj |Ô|ψk⟩⟨ψm|Ô†|ψn⟩]

=

l∑
j,k=1

f∗j fk(Rj,k + 4⟨ψj |Ô†|ψk⟩⟨ψj |Ô|ψk⟩/⟨ψj |ψk⟩)−
l∑

j,k,m,n=1

4f∗j fkf
∗
mfn⟨ψj |Ô|ψk⟩⟨ψm|Ô†|ψn⟩,

(S30)

where ⟨ψj |Ô|ψk⟩, ⟨ψm|Ô†|ψn⟩, Rj,k are given by Eqs. (S27), (S28), and (S29). ⟨ψj |ψk⟩ =

exp
(
− |αj |2+|αk|2

2 +αj∗ ·αk
)
.

Fη =

l∑
j,k=1

f∗j fk⟨ψj |ψk⟩
{
(
[
4(αj†C†

1C1α
k +αj†C2C

∗
1α

j∗ +αkTC∗
2C1α

k +αkTC†
2C2α

j∗) + 2Tr[C†
2C2]

]
+

4
(
C0 + 2αj†C1α

k +αj†C2α
j∗ +αkTC∗

2α
k
) (
C0 + 2αj†C1α

k +αkTC∗
2α

k +αj†C2α
j∗)}−

l∑
j,k,m,n=1

4f∗j fkf
∗
mfn⟨ψj |ψk⟩⟨ψm|ψn⟩

(
C0 + 2αj†C1α

k +αj†C2α
j∗ +αkTC∗

2α
k
)
×

(
C0 + 2αm†C1α

n +αnTC∗
2α

n +αm†C2α
m∗)

(S31)

Finally, consider an integral initial state |ψ0⟩ =
∫∞
−∞ dxfx|ψx⟩, where

∫∞
−∞ dx|fx|2 = 1, |ψx⟩ = |αx

1 , α
x
2 , ..., α

x
N ⟩,

αx = [αx
1 , α

x
2 , ..., α

x
N ]T, and αx ̸= αz for x ̸= z. The QFI is

Fη =

∫ ∞

−∞

∫ ∞

−∞
dxdzf∗xfz⟨ψx|ψz⟩

{[
4(αx†C†

1C1α
z +αx†C2C

∗
1α

x∗ +αzTC∗
2C1α

z +αzTC†
2C2α

x∗)+

2Tr[C†
2C2]

]
+ 4

(
C0 + 2αx†C1α

z +αx†C2α
x∗ +αzTC∗

2α
z
) (
C0 + 2αx†C1α

z +αzTC∗
2α

z +αx†C2α
x∗)}−∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dxdzdyds4f∗xfzf

∗
y fs⟨ψx|ψz⟩⟨ψy|ψs⟩

(
C0 + 2αx†C1α

z +αx†C2α
x∗ +αzTC∗

2α
z
)
×(

C0 + 2αy†C1α
s +αsTC∗

2α
s +αy†C2α

y∗) .
(S32)
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SII. QFI AND EXCEPTIONAL POINT SENSITIVITY OF A SINGLE MODE SENSOR

Consider a single mode Hamiltonian

Ĥ1 = δâ†â+ i
κ

2
(â†2 − â2), (S33)

with the HEOM

dâ

dt
= i[Ĥ1, â] = −iδa+ κa†. (S34)

In the matrix form, we have

i
d

dt
V̂ = HD1V̂ , (S35)

where V̂ =
(
â, â†

)T
, and HD1 = δτz + iκτx is the dynamical matrix. The EP is at |κ| = |δ|.

V̂ (t) = e−iHD1tV̂ (0) = SV̂ (0) with

S = e−iHD1t =

(
P (t) Q(t)
Q(t) P ∗(t)

)
, (S36)

where P (t) and Q(t) are given by Table (S1).

TABLE S1. The values of P (t) and Q(t).

P (t) Q(t)

|κ| > |δ| cosh(λ0t)− iδ
λ0

sinh(λ0t)
κ
λ0

sinh(λ0t)

|κ| < |δ| cos(λ0t)− iδ
λ0

sin(λ0t)
κ
λ0

sin(λ0t)

|κ| = |δ| 1− itδ tδ

For an initial state |ψ0⟩ = |α⟩ = eαâ
†−α∗â|0⟩, |ψt⟩ = e−iĤ1t|ψ0⟩, we have

Fκ = 4[⟨∂κψt||∂κψt⟩ − |⟨ψt||∂κψt⟩|2]
= 4|C1α+ C2α

∗|2 + 2|C2|2,
(S37)

where

C1 =i

∫ t

y=0

dy (P ∗Q∗ − PQ)

C2 =i

∫ t

y=0

dy
(
P ∗2 −Q2

)
.

(S38)

Take Table (S1) into Eq. (S38), we get the values of C1 and C2 in Table (S2).

TABLE S2. The values of C1 and C2.

C1 C2

|κ| > |δ| − δκt
λ2
0

[
sinh(2λ0t)

2λ0t
− 1

]
2δ2t−iδ

2λ2
0

− κ2

2λ3
0
sinh(2λ0t) +

iδ
2λ2

0
cosh(2λ0t)

|κ| < |δ| − δκt
λ2
0

[
1− sin(2λ0t)

2λ0t

]
iδ−2κ2t

2λ2
0

+ δ2

2λ3
0
sin(2λ0t)− iδ

2λ2
0
cos(2λ0t)

|κ| = |δ| − 2δ2t3

3
it− 2it3δ2

3
+ δ2t2

According to Eq. (S37) and Table (S2), the QFI is finite (without divergence) and continuous at or around the
exceptional point (EP). Figure S1 shows QFI versus λ0. We see QFI reaches it’s maximum at EP, and decreases to
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FIG. S1. QFI as a function of λ0 for different λ0 ranges. The parameters are δ = 1 and t = π. Top inset is a quadratic function
and bottom inset is a linear function.

zero when λ0 increases to 1. Fκ ∝ t6 when t → +∞ at the EP. Fκ ∝ t2 when t → +∞ for |δ| > |κ|. |δ| < |κ| is an
unstable region. The t2 → t6 time scaling demonstrates that EP does enhance the sensitivity, but it is still finite.
At EP |κ| = |δ|, The eigenvalues of HD1 are

ω±(0) = 0. (S39)

Adding a perturbation to κ, i.e., κ = δ − ϵ (ϵ≪ δ), the eigenvalues of HD1 become ω±(ϵ). The eigenvalue responses
are ∆ω± = ω±(ϵ)− ω±(0). The leading orders of ∆ω± are

∆ω+ = (2κϵ)1/2, ∆ω− = −(2κϵ)1/2, (S40)

which show a ϵ1/2 scaling. The ϵ1/2 scaling of spectrum response of the dynamical matrix corresponds to the t6 scaling
of QFI. It satisfies dF = 4M − 2 and dω = 1/M , where M is the order of EP, dF is the scaling exponent of the QFI
(i.e., F ∝ tdF for t→ ∞) and dω is the scaling exponent of the maximum spectrum response of the dynamical matrix
[i.e., ∆ω = max±(|∆ω±|) ∝ ϵdω for ϵ→ 0]. dF reaches the maximum response exponent predicted by the scaling law.

SIII. QFI AND EXCEPTIONAL POINT SENSITIVITY OF A THREE MODE SENSOR

A. Without constraint

Consider a three mode Hamiltonian

Ĥ3 = iδ(â†1â2 − â†2â1 + â†2â3 − â†3â2) +
iκ1
2

(â21 − â†21 ) +
iκ3
2

(â†23 − â23). (S41)

The HEOM is

i
d

dt
V̂3 = HD3V̂3, (S42)

where V̂3 =
(
â1, â2, â3, â

†
1, â

†
2, â

†
3

)T

. HD3 = τ0 ⊗K1 + τx ⊗K2 is the dynamical matrix, where

K1 = i

 0 δ 0
−δ 0 δ
0 −δ 0

 ,K2 = i

 −κ1 0 0
0 0 0
0 0 κ3

 . (S43)

V̂3(t) = e−iHD3tV̂3(0) = SV̂3(0), where S = τ0 ⊗ P (t) + τx ⊗Q(t).
Under a unitary transformation (τx, τy, τz) → (τz, τy,−τx), HD3 can be block diagonalized as τ0 ⊗K1 + τz ⊗K2,

with HD3+ = K1 + K2 and HD3− = K1 − K2 being two irreducible blocks of HD3. HD3+ can be regarded as
the quantum generalization of the gain/neutral/loss cavity mode [9]. HD3± satisfies the parity time symmetry
(PT HD3±T −1P−1 = HD3±) given by

P =

 0 0 1
0 1 0
1 0 0

 (S44)
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and T = K is complex conjugate operator.
HD3 possesses two degenerate third-order EP at

√
2δ = κ1 = κ3, with the eigenvalues

ω±
j (0) = 0, where j = 1, 2, 3. (S45)

Adding a perturbation to κ1, i.e., κ1 =
√
2δ+ϵ and κ3 =

√
2δ (ϵ≪ δ), the spectrum responses are ∆ω±

j = ω±
j (ϵ)−ω±

j (0).

Using Newton-Puiseux series expansion, the leading orders of ∆ω±
j are

∆ω±
j = ieiπj/3δ2/3ϵ1/3, (S46)

which have a ϵ1/3 scaling.

Consider the initial state |ψ0⟩ = |α1, α2, α3⟩ = D1(α1)D2(α2)D3(α3)|0⟩ and |ψt⟩ = e−iĤ3t|ψ0⟩. At the EP

P (t) =

 δ2t2

2 + 1 δt δ2t2

2
δ(−t) 1− δ2t2 δt
δ2t2

2 δ(−t) δ2t2

2 + 1

 , Q(t) =


−
√
2δt − δ2t2√

2
0

δ2t2√
2

0 δ2t2√
2

0 − δ2t2√
2

√
2δt

 . (S47)

Take Eqs. (S47) and (S12) into Eq. (S24), we find Fκ1 ∝ t10 when t→ +∞ at the third-order EP. The ϵ1/3 scaling of
the spectrum response of the dynamical matrix corresponds to t10 scaling of the QFI. They also satisfy dF = 4/dω − 2.

Far from the EP at κ1 = κ3 = 0, we have

P (t) =


cos2

(
δt√
2

)
sin(

√
2δt)√
2

sin2
(

δt√
2

)
− sin(

√
2δt)√
2

cos
(√

2δt
) sin(

√
2δt)√
2

sin2
(

δt√
2

)
− sin(

√
2δt)√
2

cos2
(

δt√
2

)
 , Q(t) =

 0 0 0
0 0 0
0 0 0

 . (S48)

Take Eqs. (S48) and (S12) into Eq. (S24), we get that Fκ1 ∝ t2 when t→ +∞ at κ1 = κ3 = 0.

B. With constraint

Consider the same three mode model in Eq. (S41) but with the constraint κ1 = κ2 = η. The Hamiltonian becomes

Ĥ ′
3 = iδ(â†1â2 − â†2â1 + â†2â3 − â†3â2) +

iη

2
(â21 − â†21 + â†23 − â23), (S49)

with the HEOM

i
d

dt
V̂3 = H ′

D3V̂3, (S50)

where V̂3 =
(
â1, â2, â3, â

†
1, â

†
2, â

†
3

)T

. The dynamical matrix H ′
D3 = τ0 ⊗K1 + τx ⊗K2 with

K1 = i

 0 δ 0
−δ 0 δ
0 −δ 0

 ,K2 = i

 −η 0 0
0 0 0
0 0 η

 . (S51)

V̂3(t) = e−iH′
D3tV̂3(0) = SV̂3(0), where S = τ0 ⊗ P (t) + τx ⊗Q(t). Add a perturbation to η, i.e., η =

√
2δ + ϵ (ϵ≪ δ),

and use Newton-Puiseux series expansion, we find the leading orders of the spectrum responses ∆ω±
j are

∆ω±
1 = 0, ∆ω±

2 = i

√
2
√
2δϵ, ∆ω±

3 = −i
√

2
√
2δϵ, (S52)

which show a ϵ1/2 scaling for the maximum spectrum response.

We consider the initial state |ψ0⟩ = |0⟩. |ψt⟩ = e−iĤ′
3t|ψ0⟩. At the third-order EP

√
2δ = η, we have Eq. (S47).

Take Eqs. (S47) and (S12) into Eq. (S24), we get that Fη ∝ t6 when t → +∞ at the third-order EP. It satisfies
dF < 4M − 2.
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SIV. QFI SCALING OF BOSONIC KITAEV CHAIN

A. At exceptional point

Consider a Hamiltonian ĤK = ĤBKC + Ĥη, where ĤBCK is the bosonic Kitaev chain with

ĤBKC =

N−1∑
j=1

(
iJâ†j âj+1 + iΩâ†j â

†
j+1 + h.c.

)
, (S53)

and

Ĥη = iη sin(θ)â†N â1 + iη cos(θ)â†N â
†
1 + h.c.. (S54)

is the edge coupling term that couples modes 1 and N . The HEOM

i
d

dt
V̂K = HDK V̂K , (S55)

with V̂K =
(
â1, â2, ..., âN , â

†
1, â

†
2, ..., â

†
N

)T

, and the dynamical matrix HDK = τ0 ⊗ L1 + τx ⊗ L2. Here L1 and L2 are

N ×N matrices. (L1)N,1 = −(L1)1,N = iη sin(θ), (L2)N,1 = (L2)1,N = iη cos(θ), (L1)j,j+1 = −(L1)j+1,j = iJ , and
(L2)j,j+1 = (L2)j+1,j = iΩ, where j = 1, 2, ..., N − 1. θ ∈ [0, 2π). Other elements of L1 and L2 are 0. Under unitary
transformation U = e−iπ

4 τy , (τx, τy, τz) → (τz, τy,−τx), and HDK can be block diagonalized as τ0 ⊗L1 + τz ⊗L2, with
HDK+ = L1 + L2 and HDK− = L1 − L2 being two irreducible blocks of HDK .

The eigenvalues of HDK at the N -th order EP J = Ω, η = 0 are

ω1(0) = ω2(0) = ... = ω2N (0) = 0. (S56)

Add a perturbation to η, i.e., η = ϵ (ϵ ≪ Ω), the eigenvalues of HDK are denoted as ω1(ϵ), ω2(ϵ), ... ω2N (ϵ). The
spectrum response are ∆ωj = ωj(ϵ) − ωj(0), where j = 1, 2, ..., 2N . From the equation HDK+ψ = EΨ, where
Ψ = [ψ1, ψ2, ..., ψN ]T , we find

−iEψj = 2Ωψj+1, for j = 2, 3, ..., N − 1, (S57)

−iEψ1 = ϵ[− sin(θ) + cos(θ)]ψN + ϵ[sin(θ) + cos(θ)]ψ2, (S58)

−iEψN = ϵ[− sin(θ) + cos(θ)]ψN−1 + ϵ[sin(θ) + cos(θ)]ψ1. (S59)

Combine Eqs. (S57)-(S59) with ψ1 = 1 (we can always have that by fixing the gauge by dividing a constant for the
eigenstates), we have

(2Ω)2zN − ϵ2 cos(2θ)zN−2 − 2ϵΩ[cos(θ) + sin(θ)] = 0, z =
−iE
2Ω

. (S60)

For θ ̸= 3π
4 and 7π

4 , we can omit the second term in Eq. (S60), and the maximum spectrum response has a ϵ1/N

scaling. Similar scaling also occurs for HDK−.

Consider an initial vacuum state |ψ0⟩ = |0⟩ and |ψt⟩ = e−iĤKt|ψ0⟩. At the N -th order EP J = Ω and η = 0, we have

P (t) = I+
N−1∑
p=1

(2Ωt)p(Jp
+ + Jp

−)

2(p!)
, Q(t) =

N−1∑
p=1

(2Ωt)p(Jp
+ − Jp

−)

2(p!)
,

where Jp
+ and Jp

− are N ×N matrices. (Jp
+)j,j+p = 1, and (Jp

−)j+p,j = (−1)p, where j = 1, 2, ..., N −p. Other elements
of Jp

+ and Jp
− are zero. Thus

[P (t)]j1,j2 =(−1)(j1−j2)H(j1−j2)
(2Ωt)|j1−j2|

2[|j1 − j2|!]
for j1 ̸= j2, [P (t)]j1,j1 = 1

[Q(t)]j1,j2 =(−1)(j1−j2)H(j1−j2)sgn(j2 − j1)
(2Ωt)|j1−j2|

2[|j1 − j2|!]
for j1 ̸= j2, [Q(t)]j1,j1 = 0.

(S61)
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Here H(x) is Heaviside step function. Taking Eqs. (S61), (S12), and (S13) into Eq. (S24), we get that Fη =∑N
j,k=1 |C2,j,k|2, where

C2,1,N = C2,N,1 = − i

2

[
cos(θ)t+ [cos(θ) + sin(θ)]

2(−1)N−1(2Ω)2(N−1)

(p!)2
t2N−1

]
C2,j,k = −i[cos(θ) + sin(θ)]

[
(−1)N−j(2Ω)N−j+k−1tN−j+k

(N − j)!(k − 1)!(N − j + k)
+

(−1)N−k(2Ω)N−k+j−1tN−k+j

(N − k)!(j − 1)!(N − k + j)

]
,

C2,1,k = C2,k,1 = − i

2
[cos(θ) + sin(θ)]

[
2(−1)N−1(2Ω)N+k−2tN+k−1

(N − 1)!(k − 1)!(N + k − 1)
+

(−1)N−k(2Ω)N−ktN−k+1

(N − k)!(N − k + 1)

]
,

C2,N,k = C2,k,N = − i

2
[cos(θ) + sin(θ)]

[
2(−1)N−k(2Ω)2N−k−1t2N−k

(N − k)!(N − 1)!(2N − k)
+

(2Ω)k−1tk

(k − 1)!k

]
,

C2,1,1 = −i[cos(θ) + sin(θ)]
(2Ω)N−1tN

(N − 1)!N

C2,N,N = −i[cos(θ) + sin(θ)]
(−2Ω)N−1tN

(N − 1)!N
,

(S62)

j, k = 2, 3, ..., N − 1. When t→ +∞ at the N-th order EP, Fη ∝ t4N−2 for θ ≠ 3π
4 and 7π

4 , and Fη ∝ t2 for θ = 3π
4 or

7π
4 . The scaling exponent satisfies dF = 4M − 2 with M = N here.

B. Region close to the exceptional point

In this section, we derive the size (N) scaling of the QFI Fη at |J −Ω|/|J +Ω| ≪ 1 and η = 0 region, which is close

to the EP. Under the unitary matrix U = e−iπ
4 τy for the block diagonalization of ĤDK ,

U†HDKU =τ0 ⊗ L1 + τz ⊗ L2

=diag[L1 + L2,L1 − L2]

=diag[−J̃S−1ΣyS,−J̃SΣyS
−1],

(S63)

where J̃ =
√
(J − Ω)(J +Ω), S = diag[1, β, β2, ..., βN−1], and β =

√
J+Ω
J−Ω . Σy is a N ×N matrix with [Σy]j,j+1 =

−[Σy]j+1,j = i, and other elements being 0. Thus

e−iHDKt = Udiag[S−1eiJ̃ΣytS, SeiJ̃ΣytS−1]U†.

Denote S̃ = eiJ̃Σyt, then we have [S−1eiJ̃ΣytS]m,n = S̃m,nβ
−m+n , [SeiJ̃ΣytS−1]m,n = S̃m,nβ

m−n, and

Pm,n = S̃m,n
β−m+n + βm−n

2
, Qm,n = S̃m,n

β−m+n − βm−n

2
. (S64)

Take Eqs. (S64), (S12), and (S13) into Eq. (S24), we find that the β’s leading order of the QFI is β4N−4(
∫ t

0
dy|S̃N,1|2)2

when
∫ t

0
dy|S̃N,1|2 ̸= 0. Therefore Fη ∝ β4N−4.
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