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The iron-based superconductor FeSe isovalently substituted with S displays an abundance of
remarkable phenomena that have not been fully understood, at the center of which are apparent
zero-energy excitations in the superconducting state in the tetragonal phase. The phenomenology
has been generally consistent with the proposal of the so-called ultranodal states where Bogoliubov
Fermi surfaces are present. Recently, nuclear magnetic resonance measurements have seen unusually
large upturns in the relaxation rate as temperature decreases to nearly zero in these systems, calling
for theoretical investigations. In this paper, we calculate the spin susceptibility of an ultranodal
superconductor including correlation effects within the random phase approximation. Although the
non-interacting mean-field calculation rarely gives an upturn in the low temperature relaxation rate
within our model, we found that correlation strongly enhances scattering between hot spots on the
Bogoliubov Fermi surface, resulting in robust upturns when the interaction is strong. Our results
suggest that in addition to the presence of Bogoliubov Fermi surfaces, correlation and multiband
physics also play important roles in the system’s low energy excitations.

I. INTRODUCTION

Iron-based superconductors have been drawing lots of
research interest for almost two decades since their dis-
covery, for their relatively high Tc, simple structure and
the interplay between rich phenomena including nematic-
ity, magnetization and non-trivial topology[1]. Among
all families of iron-based superconductors, the chalco-
genide 11 material FeSe has a distinct phase diagram
where a nematic transition can occur without accompa-
nying magnetic order[2–7]. The parent compound FeSe
shows a nematic transition at around 90K, a supercon-
ducting (SC) transition at 9K and no magnetic order un-
der ambient pressure. Upon applying hydrostatic pres-
sure the nematicity is suppressed and antiferromagnetic
(AFM) order develops. The AFM order in FeSe under
pressure should resemble that observed in iron pnictides,
and is likely a stripe order with in-plane magnetic mo-
ments [1, 8–10].

On the other hand, the S-substituted FeSe does not
show strong evidence for long-ranged magnetic order, but
exhibits peculiar changes in its superconducting states
across the nematic quantum critical point at around 0.17
sulfur substitution. For x > 0.17, the normal state of
FeSe1−xSx is tetragonal, established by various measure-
ments of the electronic structure[2, 11, 12]; and the trans-
port properties show non-Fermi liquid behavior near the
quantum critical point[13]. The superconducting state
shows curiously large zero energy density of states (DOS),
which has so far been evidenced by specific heat and
thermal transport measurements[14], scanning tunneling
microscopy (STM)[15], angular-resolved photoemission
spectroscopy (ARPES)[16] and most recently, by nuclear
magnetic resonance (NMR) studies[17].

Possible origins of such residual DOS in the supercon-
ducting states of the heavily S-substituted FeSe has been

discussed in the aforementioned Ref. [16, 17]. Impurity
effects or coexistence of spatially separated SC and nor-
mal phase are excluded, because the samples are clean
and homogeneous as seen from quantum oscillation[2]
and STM experiments[15]. For measurements done un-
der external field such as the NMR measurements, an-
other possible explanation for the observed residual DOS
is the Volovik effect[18]. However, the Volovik effect
cannot account for the order of magnitude difference in
the relaxation rate across samples with different substi-
tution levels but the same external field. It has been
suggested[19–21] that the so-called ultranodal supercon-
ducting state, which by definition hosts Bogoliubov Fermi
surfaces (BFS), is responsible for the large residual DOS
in these systems.

Ultranodal states are superconducting states with ex-
tended gap nodes that, in contrast to usual point nodes
or line nodes in three dimension, have the same dimen-
sion as the underlying normal state Fermi surface. Such
extended nodes are called Bogoliubov Fermi surfaces[22–
24]. The existence of BFS does not necessarily require
non-trivial topology, as is the case in [25], but they
are topologically protected by a Z2 invariant if the su-
perconducting state possesses inversion symmetry. In a
multiband spin-1/2 superconductor, BFS can arise from
a interband non-unitary triplet pairing term or from a
magnetic order that breaks time-reversal symmetry, and
may[19] or may not[21, 25] preserve the inversion sym-
metry. It has also been shown[21] that the non-unitarity
of the interband triplet pairing can be induced by driving
the system close to a magnetic instability, in which case
the magnetic moment of the the non-unitary triplet pair
aligns with the fluctuating magnetic order.

The existence of a BFS explains well the residual DOS
in the tetragonal Fe(Se,S) as seen from specific heat or
STS experiments (see however Ref. [26] for an alterna-
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tive picture), as well as the possible C4 symmetry break-
ing in the superconducting phase as seen in the ARPES
experiment[16]. However, it has not been fully under-
stood how the ultranodal scenario can fit the recent NMR
data presented in Ref. [17].

The NMR measurement in Ref. [17], performed on
FeSe1−xSx at several S-substitution level across the ne-
matic QCP with in-plane applied field and temperature
down to 100 mK, shows not only a finite value of 1/(T1T )
at zero temperature for the x = 0.18 and x = 0.23
samples, but also an unusual upturn as temperature de-
creases to zero. While the former can be understood
fairly straightforwardly as yet another signature of the
zero energy residual DOS in these materials, the latter
requires a more sophisticated understanding. In this pa-
per, we study the models for BFS systems discussed in
[19–21] to further calculate the spin fluctuations in the ul-
tranodal states. We compare our calculations of 1/(T1T )
to the experimental data, and show that the upturn is
likely due to the interplay between strong magnetic fluc-
tuation and multiband physics in such systems.

II. MODEL

We adopt a minimal two-band mean field model with
intraband spin-singlet pairing and interband non-unitary
spin-triplet pairing from previous works[19–21]

H =
∑
k,σ,i

ϵikσc
†
ikσcikσ −

∑
k,i

∆i(k)(c†ik↑c
†
i−k↓ + h.c.)

−
∑
k,σ

∆σσ(k)(c†1kσc
†
2−kσ + h.c.). (1)

Here i = 1, 2 is the band index. Seeking qualitative re-
sults at low temperatures, we make the assumption that
all gaps correspond to a single Tc and follow a BCS-like
temperature dependence, where the key feature is that
the deviation from the T = 0 value is exponentially or
power law small at low temperature. Also, for simplic-
ity, we consider a tight-binding model with only nearest
neighbor hopping and ϵikσ = 2(cos kx + cos ky) − µi. We
have set the nearest neighbor hopping parameter t = 1
and adopt it as our unit of energy throughout the calcu-
lations below.

We wish to calculate the spin susceptibility

χuv(q, t) = −θ(t)
∑
q′

⟨[Su(q, t), Sv(q′, 0)]⟩, (2)

where Su(q, t = 0) =
∑

i,k,α,β c
†
ikασ

u
αβcik+qβ is the

total spin operator summed over the two bands, and
u, v = x, y, z. In particular, since the z axis of the Pauli
matrices denotes the direction of the magnetic moment
of our non-unitary triplet pair, which in our model is the
direction the magnetization would condense in[21]. We
can choose z to be in the crystalline ab plane, i.e. z ⊥ c
corresponding to the direction of the magnetic field in the

experiment of Ref. [17], and focus on the zz-component
of the spin susceptibility, χzz.

To this end, we first find the Nambu Green’s func-
tion Gk(ω) by diagonalizing the Nambu Hamiltonian
corresponding to Eq. (1). The Nambu basis we use is

ψk = [c1k↑, c1−k↓, c2−k↑, c2k↓, c
†
1k↑, c

†
1−k↓, c

†
2−k↑, c

†
2k↓]T .

With the eigenvalues Elk and the eigenvector matrix Uk

of the Nambu Hamiltonian, the Nambu Green’s function
can now be expressed as

Gk(ω) = U†
kdiag

(
1

ω − E1k
, ...,

1

ω − E8k

)
Uk. (3)

At this point, we would like to also define the 8×8 Nambu
spin matrices Σu ≡ diag(σu, σu,−(σu)T ,−(σu)T ),
composed of 2 × 2 Pauli matrices on their diag-
onal blocks. The bare spin-spin correlation func-
tion in the Matsubara representation is Cuv(q, iν) =
− 1

2
1
β

∑
iωn

∑
k Tr (ΣuGk+q(iωn + iν)ΣvGk(iωn)). Sub-

stituting in Eq.(3) and having performed the Matsubara
sum and the analytic continuation to the real axis, we
obtain

χ(0)zz(q, ω) =
1

2

∑
l,m

Σz
llΣ

z
mmχ

(0)
llmm(q, ω), (4)

where the bare density-density bubble in the quasiparti-
cle band space reads

χ
(0)
llmm(q, ω) = −

∑
k,r,s

Wll(rk, sk + q)W ∗
mm(rk, sk + q)

× f(Esk+q) − f(Erk)

Esk+q − Erk − ω − i0+
.

(5)

Here we defined the coherence factors Wll(rk, sk
′) ≡

UrlkU
∗
slk′ , where rk is a composite label referring to

the Bogoliubov quasiparticle at momentum k in the rth
quasiparticle band.

We can further investigate using a random phase ap-
proximation (RPA) calculation of the effect of a residual
interaction in the particle-hole channel. We consider an
interaction of the Hubbard type

HU =
1

2

∑
r,i

Unir↑nir↓

≡1

8

∑
k,k′,q,l,m

Γllmmψ
†
lkψlk−qψ

†
mk′ψmk′+q (6)

In the last step we have rewritten the interaction using
the Nambu basis and defined a coupling tensor Γ that is
diagonal in the dimensions labeled by the 1st, 2nd and
3th, 4th indices and a constant function of momentum
transfer q. As shown in Appendix, it is sufficient to keep
only the partially diagonal part of the full tensor for our
purpose of calculating χ(RPA)zz, and both tensors in Eq.

(5) and (6) can be treated as 8×8 matrices χ̃
(0)
lm ≡ χ

(0)
llmm,
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FIG. 1. (a) Normal (black) and Bogoliubov (colored) Fermi surfaces for the two-band model (1), with µ1 = 3.5, µ2 = 3.2 and
∆1(k) = ∆2(k) = 0.06| cos 2θk|, where θk is the angle of k on the 2D Fermi surface. ∆↑↑(k) = 0.15, ∆↓↓(k) = 0 at T = 0.
Within the same color of the BFS the coherent scattering amplitudes are larger than between points on BFSs with different
color (See main text Sec. III). Arrows shows some of the dominant scattering processes as seen from panel (d-g). (b)The
normalized 1/(T1T ) as a function of T below Tc. Cyan and blue curves calculated from bare and RPA susceptibility near a
magnetic instability respectively. Red dots are experimental data taken from Ref. [17]. Tc is taken to be 0.08. The critical U
is determined from the normal and Bogoliubov band structure, and Uc(Tc) = 10.8, Uc(0) = 9.8. (c) Zero temperature DOS.
(d-g) Real and imaginary parts of the spin susceptibility at T = 0. The arrows are the same as in panel (a). One can see that
there is a shift of the dominant contribution from the red arrow to green arrow as U increases. The color bar maxima are 0.7,
0.03, 8, 5 for panel (d), (e), (f), (g) respectively.

Γ̃lm ≡ Γllmm. The RPA density-density bubble is related
to the bare bubble through

χ̃(RPA)(q, ω) = χ̃(0)(q, ω)
(
Ĩ + Γ̃χ̃(0)(q, ω)

)−1

. (7)

The sign convention for the above equation is explained
in the appendix. The RPA spin susceptibility is

χ(RPA)zz(q, ω) =
1

2

∑
l,m

Σz
llΣ

z
mmχ̃

(RPA)
lm (q, ω), (8)

by analogy to Eq. (4) with χ(0) → χ̃(RPA). The NMR
relaxation rate probes the spin fluctuation in the system,
and is proportional to the imaginary part of the spin
susceptibility,

1

T1
∝ T lim

ω→0

∑
q

Imχzz(q, ω)

ω
(9)

III. RESULTS

We numerically calculated the spin susceptibility of
the model Hamiltonian BFS. To summarize the result,

we found that the bare susceptibility calculation always
give rise to non-zero residual 1/(T1T ) at zero tempera-
ture when BFS are present, as expected due to the zero
energy residual DOS. However, the bare 1/(T1T ) rarely
increases as temperature decrease near T = 0, unless
van Hove singularities of the Bogoliubov quasiparticle
bands are tuned to the Fermi level, contributing to a
large zero energy peak in the DOS. On the other hand, if
we take into account the correlation effects using the RPA
calculation, certain scattering between hot spots on the
BFS can get strongly enhanced, resulting in an upturn in
the 1/(T1T ) as temperature decreases. This can happen
when the zero energy DOS is not peaked, or when the
BFS are not strongly nested. Below we discuss in details
these results.

In Fig 1 and 2 we show in parallel two examples of
having upturns in the 1/(T1T ) at low temperature as a
result of correlations and multiband effects. Fig. 1 cor-
responds to a scenario where the intraband singlet ∆i(k)
is taken to be nodal s-wave with accidental nodes along
the 45 degree directions, and the interband triplet pairing
∆↑↑(k) isotropic. Fig. 2 corresponds to the C2 symmet-
ric scenario discussed in Ref. [21], where the interband
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FIG. 2. Same as Fig. 1 but with a different set of parameters: µ1 = 3.7, µ2 = 3.2, ∆1(k) = ∆2(k) = 0.05, ∆↑↑(k) = 0.3 cos θk,
∆↓↓(k) = 0, Tc = 0.1. Uc(Tc) = 10.8, Uc(0) = 10. The color bar maxima are 0.7, 0.026, 15, 2.3 for panel (d), (e), (f), (g)
respectively.

triplet pairing ∆↑↑(k) is assumed to be p-wave and the
intraband singlet pairing ∆i(k) is taken to be isotropic
for simplicity. A BFS then forms only when ∆↑↑ is suffi-
ciently large.

In both cases we have set ∆↓↓(k) = 0. In Fig. 1,
the bare susceptibility already gives rise to an upturn
in the 1/(T1T ) (panel (b) cyan curve). This is because
the van Hove singularity (band extremum corresponding
to where the superconducting gap opens) of the Bogoli-
ubov band has been tuned at the Fermi level by changing
the interband order parameter, and a peak in the quasi-
particle density of states exists at exactly zero energy
(panel (c)). We found that upturns in the bare 1/(T1T )
at low temperature seem to be always associated with
such peaks at zero energy in the DOS. Although such
peaks in the DOS are not desired as they are not con-
sistent with the spectroscopic data[15], they are not re-
quired once we include correlations. This can be seen
in Fig. 2 (b) and (c), where the density of states is not
peaked at zero energy and the bare 1/(T1T ) curve does
not have an upturn while the RPA curve close to mag-
netic instability does. The qualitative difference between
the U = 0 curve and the U ⪅ Uc(0) curve in Fig. 2
(b) is unusual, since normally one would expect, from
its simplest form for the normal metal as in Eq. (A.13),
the RPA susceptibility to be enhanced further where the
bare susceptibility is already large.

To better understand this unusual behavior, we first
divide the BFS into several segments, as shown by the
color scheme in panel (a) of Fig. 1 and 2, within each

segment the scattering is much stronger than across dif-
ferent segments. This is done by treating the k-points
on the BFS as vertices of an weighted undirected graphs
with weights given by the coherence factors defined in
Eq. (5), and employing the Leiden algorithm for com-
munity detection[27, 28]. We see that the parts of the
BFS that follow the shape of the normal Fermi surfaces
(red and blue in panel (a)) are well separated from the
rest of the BFSs in terms of scattering processes. Then
in panel (d,e) we plot the bare spin susceptibility as in
Eq. (4) at zero temperature, and in panel (f,g) we show
the RPA spin susceptibility (8) at U ⪅ Uc(0) and zero
temperature. We identify the important q vectors as
the red and green arrows connecting segments of BFSs
with the same color shown in Fig. 2(a). From panel
(d) we see that the real part of the bare susceptibility is
the largest at the q vectors connecting the red part of
the BFSs, but is not strongly peaked at any particular
q vector. The latter observation is an indication of no
strong nesting between the the BFSs. Secondly, by com-
paring panel (d,e) with panel (f,g), we see that although
the q vectors that connect the green part of the BFSs
are only subdominant in the bare susceptibility, they be-
come the dominant q vectors that connect ”hot spots” on
the BFSs near the magnetic instability. This shift of the
dominant q vectors as the interaction U increases within
an RPA calculation can only be explained by nontrivial
multiband effects embedded in the coherence factor W ,
which is consistent with the unusual change in the shape
of the normalized 1/(T1T ) curve as U increases.
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IV. CONCLUSION

To summarize, we have calculated the spin suscepti-
bilities for the ultranodal states in a minimal two-band
model, where the interband non-unitary spin-triplet pair-
ing is responsible for the Bogoliubov Fermi surfaces. We
found that the existence of BFSs in such models natu-
rally gives rise to finite residual value in the 1/T1T at zero
temperature, but does not necessarily produce the large
upturns at low temperature, as seen in the experiments
[17] on the Fe(Se,S) system, in a non-interacting calcu-
lation. We then studied the effect of correlation within
random phase approximation in the ultranodal state. By
adding a Hubbard interaction in the particle-hole chan-
nel while not changing the pre-assumed pairing gaps, we
see that the spin susceptibilities at q vectors connect-
ing hot spots on the BFS get strongly enhanced at low
temperature when the interaction is strong, resulting in
upturns in 1/T1T irrespective of the presence or absence
of upturns in the bare calculation. The hot spots have
strong interband character as indicated from their po-
sition on the BFSs, and do not have particularly large
contribution to the spin susceptibilities at weak interac-
tion. Therefore, we conclude the experimentally observed
upturn in 1/T1T can be explained as a combined effect of

the presence of BFS, interband physics and correlation.
Our theory is primarily applicable to the tetragonal

phase of FeSe1−xSx with x > 0.17 at ambient pres-
sure. For the nematic phase with x < 0.17 at ambient
pressure and the tetragonal phase with x < 0.17 under
pressure[29], the low temperature 1/T1T seems to have
a Korringa behavior, i.e. constant in temperature, with
smaller but finite residual values. Our calculation of the
1/T1T is consistent with these data assuming weak corre-
lation or small BFSs, but whether the ultranodal scenario
can apply to these situations requires a more careful and
comprehensive study in the future.
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APPENDIX

In this appendix we provide information about our sign convention in Eq. (7), and how the standard multiorbital
RPA formalism in e.g. Ref. [30, 31] corresponds to our 8 × 8 matrix formalism in Nambu space. We start by
considering a bare bubble that is Eq. (5) in its general form

χ
(0)
ll′mm′(q, ω) = −

∑
k,r,s

UrlkU
∗
sl′k+qU

∗
rmkUsm′k+q

f(Esk+q) − f(Erk)

Esk+q − Erk − ω − i0+
(A.1)

It transforms like a 8 × 8 × 8 × 8 rank-4 tensor as the Numbu basis transforms, while contracts like a 64 × 64 rank-2
tensor (matrix with ll′ a composite row index and mm′ a composite column index) in the RPA series. Accordingly
the full coupling tensor corresponding to the Hubbard interaction in Eq. (6) can be redefined as

HU =
1

2

∑
r,i

Unir↑nir↓ =
1

16

∑
k,k′,q,l,m,l′,m′

Γll′mm′ψ†
lkψl′k−qψ

†
mk′ψm′k′+q (A.2)

where on the RHS the terms quadratic in c,c† has been discarded since they only renormalize the chemical potential.
Let’s represent Γll′mm′ as a 64 × 64 matrix which only has two 8 × 8 non-zero blocks, ordered as following:

[Γll′mm′ ]64×64 =

[Γllmm]8×8 08×48 08×8

048×8 048×48 08×48

08×8 08×48 [Γll̄mm̄]8×8

 (A.3)

The first 8 × 8 block [Γllmm] is the same as the Γ̃ in Eq. (6), and is the direct interaction. The other 8 × 8 block
[Γll̄mm̄] is the exchange interaction. Here l̄ is defined as the the Nambu index that corresponds to the time-reversed
lth operator in the Nambu basis. For example, 1̄ = 2 and 8̄ = 7 (c.f. the choice of our Nambu basis above Eq. (3)).
The matrix elements of [Γllmm] and [Γll̄mm̄] are tabulated as in Table I.

To calculate the χzz component of the spin susceptibility, we can write the Σz operator (defined in the main text
below Eq. (3)) as a 1 × 64 vector, which in the same basis as for Eq. (A.3) is

[Σz
ll′ ]1×64 = (diag(Σz), 01×48, 01×8) (A.4)
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ll′
mm′

11 22 33 44 55 66 77 88

11 0 U 0 0 0 0 0 0
22 U 0 0 0 0 0 0 0
33 0 0 0 U 0 0 0 0
44 0 0 U 0 0 0 0 0
55 0 0 0 0 0 U 0 0
66 0 0 0 0 U 0 0 0
77 0 0 0 0 0 0 0 U
88 0 0 0 0 0 0 U 0

ll′
mm′

12 21 34 43 56 65 78 87

12 0 -U 0 0 0 0 0 0
21 -U 0 0 0 0 0 0 0
34 0 0 0 -U 0 0 0 0
43 0 0 -U 0 0 0 0 0
56 0 0 0 0 0 -U 0 0
65 0 0 0 0 -U 0 0 0
78 0 0 0 0 0 0 0 -U
87 0 0 0 0 0 0 -U 0

TABLE I. Non-zero matrix elements of [Γll′mm′ ]. The left panel corresponds to the 8 × 8 block [Γllmm] in Eq.(A.3), and the
right panel corresponds to the 8× 8 block [Γll̄mm̄].

The RPA spin susceptibility then is

χ(RPA)zz(q, ω) =
1

2
[Σz][χ(0)](q, ω)

(
I64×64 + [Γ][χ(0)](q, ω)

)−1

[Σz]T (A.5)

We want to show that Eq. (A.5) is equivalent to Eq. (7) and (8) where the tilded matrices are essentially the first
8 × 8 blocks of the [·] matrices. Since the vector [Σz] bears the form of Eq. (A.4), it suffices to show that

[χ(0)](q, ω)
(
I64×64 + [Γ][χ(0)](q, ω)

)−1

=

χ̃(RPA)(q, ω) ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 (A.6)

where χ̃(RPA)(q, ω) is the 8 × 8 matrix defined in Eq. (7), and ∗‘s are placeholders for unimportant blocks. Since [Γ]
has the form of Eq. (A.3), without using any knowledge about [χ(0)] except that the first 8 × 8 block of it is χ̃(0), we
can see that I64×64 + [Γ][χ(0)](q, ω) should have the following form

I64×64 + [Γ][χ(0)](q, ω) =

Ĩ + Γ̃χ̃(0)(q, ω) B8×48 C8×8

048×8 I48×48 048×8

D8×8 E8×48 F8×8

 (A.7)

Its inverse can be calculated as

(
I64×64 + [Γ][χ(0)](q, ω)

)−1

=

A−1 +A−1C(F −DA−1C)−1DA−1 ∗ ∗
0 ∗ ∗
∗ ∗ ∗

 (A.8)

where we have denoted A ≡ Ĩ + Γ̃χ̃(0)(q, ω). Now if we take a close look at the structure of [χ(0)], we will see that it

is zero at the off-diagnoal block χ
(0)
llmm̄, namely

[χ(0)](q, ω) =

χ̃(0)(q, ω) ∗ 08×8

∗ ∗ ∗
08×8 ∗ [χ

(0)

ll̄mm̄
]8×8

 (A.9)

This is because the pair of Green’s functions Gm̄lk(ω′) and Glmk+q(ω′ +ω) cannot be both non-zero at the same time
given that there is only the intraband singlet pairing and interband triplet pairing processes in the Hamlitonian (1).
Now if we combine Eq. (A.8) and (A.9) and notice that C = D = 0 once we know (A.9), we see that Eq. (A.6) is true.
Therefore, we have shown that the full RPA treatment of our model can be reduced to an 8 × 8 matrix formalism,
which is easier to deal with numerically.

As a further sanity check, we turn off the pairing amplitudes and calculate the charge and spin susceptibility in
the normal state starting from Eq. (7). In this case χ̃(0)(q, ω) is a diagonal matrix, and Γ̃χ̃(0)(q, ω) is block diagonal
with four 2 × 2 blocks on the diagonal. Let’s take the first block as an example (for a one band system) and denote

the 2 × 2 matrices as hatted matrices and the matrix elements χ
(0)
1111 = χ

(0)
2222 ≡ χ

(0)
1 . We have

Î + Γ̂χ̂(0)(q, ω) =

(
1 Uχ

(0)
1 (q, ω)

Uχ
(0)
1 (q, ω) 1

)
(A.10)
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Inverting the above matrix gives

χ̂(RPA)(q, ω) = χ̂(0)(q, ω)
(
Î + Γ̂χ̂(0)(q, ω)

)−1

=
χ
(0)
1 (q, ω)

1 − U2χ
(0)
1 (q, ω)2

(
1 −Uχ(0)

1 (q, ω)

−Uχ(0)
1 (q, ω) 1

)
(A.11)

The diagonal elements χ
(RPA)
1111 (q, ω) = χ

(RPA)
2222 (q, ω) are the polarization bubbles with the same spin on the left and

right vertices (Here 1 stands for up and 2 stands for down, c.f. the choice of our Nambu basis above Eq. (3)). The
off-diagonal elements are the bubble with opposite spins on the vertices. The charge susceptibility of the first band is
given by

χ(RPA)c(q, ω) = χ
(RPA)
1111 + χ

(RPA)
1122 + χ

(RPA)
2211 + χ

(RPA)
2222 =

2χ
(0)
1 (q, ω)

1 + Uχ
(0)
1 (q, ω)

(A.12)

And the spin susceptibility of the first band is

χ(RPA)zz(q, ω) = χ
(RPA)
1111 − χ

(RPA)
1122 − χ

(RPA)
2211 + χ

(RPA)
2222 =

2χ
(0)
1 (q, ω)

1 − Uχ
(0)
1 (q, ω)

(A.13)
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Lesseux, A. E. Böhmer, S. L. Bud’ko, P. C. Canfield,
and Y. Furukawa, Impact of nematicity on the relation-
ship between antiferromagnetic fluctuations and super-
conductivity in FeSe0.91S0.09 under pressure, Phys. Rev.
B 101, 180503 (2020).

[30] A. T. Rømer, D. D. Scherer, I. M. Eremin, P. J.
Hirschfeld, and B. M. Andersen, Knight shift and lead-
ing superconducting instability from spin fluctuations in
Sr2RuO4, Phys. Rev. Lett. 123, 247001 (2019).

[31] A. T. Rømer, T. A. Maier, A. Kreisel, P. J. Hirschfeld,
and B. M. Andersen, Leading superconducting instabili-
ties in three-dimensional models for sr2ruo4, Phys. Rev.
Res. 4, 033011 (2022).

https://doi.org/10.1126/sciadv.aar6419
https://doi.org/10.1126/sciadv.aar6419
https://doi.org/10.21203/rs.3.rs-2224728/v1
https://doi.org/10.1038/s42005-023-01286-x
https://doi.org/10.1038/s42005-023-01286-x
https://doi.org/10.1103/PhysRevB.85.104524
https://doi.org/10.1103/PhysRevB.85.104524
https://doi.org/10.1038/s41467-020-14357-2
https://doi.org/10.1038/s41467-020-14357-2
https://doi.org/10.1103/PhysRevB.102.064504
https://doi.org/10.1103/PhysRevB.108.224506
https://doi.org/10.1103/PhysRevB.108.224506
https://doi.org/10.1103/PhysRevLett.118.127001
https://doi.org/10.1103/PhysRevLett.118.127001
https://doi.org/10.1103/PhysRevB.96.094526
https://doi.org/10.1103/PhysRevB.96.094526
https://doi.org/10.1103/PhysRevB.98.224509
https://doi.org/10.1103/PhysRevB.98.224509
https://arxiv.org/abs/2306.11200
https://arxiv.org/abs/2306.11200
https://doi.org/10.48550/arXiv.2310.17728
https://arxiv.org/abs/2310.17728
https://www.nature.com/articles/s41598-019-41695-z
https://doi.org/10.1103/PhysRevB.101.180503
https://doi.org/10.1103/PhysRevB.101.180503
https://doi.org/10.1103/PhysRevLett.123.247001
https://doi.org/10.1103/PhysRevResearch.4.033011
https://doi.org/10.1103/PhysRevResearch.4.033011

	Spin fluctuations in the ultranodal superconducting state of Fe(Se,S)
	Abstract
	Introduction
	Model
	Results
	Conclusion
	Acknowledgements
	Appendix
	References


