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We investigate the absorption spectrum of a Rydberg impurity immersed in and interacting with
an ideal Bose-Einstein condensate. Here, the impurity-bath interaction can greatly exceed the mean
interparticle distance; this discrepancy in length scales challenges the assumptions underlying the
universal aspects of impurity atoms in dilute bosonic environments. Our analysis finds three distinct
parameter regimes, each characterized by a unique spectral response. In the low-density regime,
we find that the Rydberg impurity is dressed by the surrounding bath similarly to the known Bose
polaron. Transitioning to intermediate densities, the impurity response, given by sharp quasiparticle
peaks, fragments into an intricate pattern bearing the hallmarks of a diverse molecular structure.
Finally, at high density, a universal Gaussian response emerges as the statistical nature of the bath
dominates its quantum dynamics. We complement this analysis with a study of an ionic impurity,
which behaves equivalently. Our exploration offers insights into the interplay between interaction
range, density, and many-body behavior in impurity systems.

The dynamics of strongly-correlated quantum mixtures
pose a significant challenge to theoretical description,
even at the level of a single impurity immersed in a non-
interacting bath. The apparent simplicity of the Hamil-
tonian of such a mixture,

Ĥ =
∑
kkk

kkk2

2µ
b̂†kkk b̂kkk +

∑
kkk,qqq

V (qqq)b̂†kkk+qqq b̂kkk, (1)

belies the rich complexity of the phenomena emergent in
this many-particle system [1–3]. In Equation 1, which is
written in a frame centered on the zero-momentum im-
purity, b̂†kkk and b̂kkk denote the bath creation and annihila-
tion operators, V (qqq) is the interspecies interaction, and
µ is the reduced mass of the impurity and a bath atom
[4]. Ĥ is commonly used to describe dilute gases with
a mean interparticle distance ρ−1/3, where ρ is the den-
sity, greatly exceeds the range of the potential V (rrr). This
justifies its replacement by a zero-range pseudopotential
proportional to the bath-impurity scattering length a [5].
Within this approximation, the physics of the system be-
comes universal, depending only on the scattering length,
the dimensionality of the system, and the density and
quantum statistics of the bath [6–16]. Measurements of
repulsive and attractive polaron quasiparticles and weakly
bound molecules in ultracold gases have provided strong
evidence for this universal behavior [16–26].

However, this universality is not expected to apply
when the interaction range is comparable to the typical
interparticle distance. Such is the case for a Rydberg im-
purity, where the highly excited Rydberg electron with
principal quantum number n mediates the impurity-bath
interaction by scattering off of the bath particles. The

s-wave electron-atom scattering length as (see Figure 1)
determines the overall strength of this interaction [27–
29]. For a Rydberg |nS⟩ state this leads to the isotropic
potential

VRyd(r) = 2πas|ψn00(r)|2, (2)

which, unlike a zero-range potential, can in principle sup-
port several bound states [30–34]. The appearance of the
Rydberg wave function, ψn00(r), causes the range R0 and
depth V0 of this highly oscillatory potential to vary as n2
and n−6, respectively [34]. Recently, the ultracold tool-
box has been expanded to include other impurity systems
with finite-ranged interactions, such as dipolar atoms [35–
37] and ion-atom mixtures [38–41]. These break the zero-
range universality in a similar fashion, and raise the ques-
tion of whether or not a unified description of a finite-
ranged impurity in a quantum environment exists.

In this article, we approach this question through an
exploration of the behavior of a Rydberg impurity inter-
acting with an ideal Bose-Einstein Condensate (BEC) at
zero temperature. Previous studies [42–45] have treated
such an impurity in isolation from the zero-range Bose
polaron due to the large discrepancy in length and en-
ergy scales. However, we show that these different im-
purities share the same underlying physics determined by
the universal parameter aρ1/3. Even though the spectral
response becomes more complicated in finite-ranged im-
purity systems, each component can be understood and
generally described. To further support these findings, we
also consider an ionic impurity. Together, this leads to
an extension of the universal description of Bose polarons
to a broader class of interactions. Further, we attempt
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Figure 1. Two scattering lengths characterize the interaction
of a Rydberg impurity with its environment. Atoms probing
the interior of the Rydberg atom collide with the highly excited
electron directly; these interactions are characterized by the
atom-electron scattering length as. In contrast, distant atoms
interact with the Rydberg atom as a single entity, and the
atom-impurity scattering length aRyd is characteristic of this
interaction.

to unify the disparate interpretations provided by the
many approaches developed for such impurity problems,
which include the field-theoretical quasiparticle methods
describing polaron physics, the few-body picture of molec-
ular physics, and semiclassical methods originating in the
theory of pressure broadening.

To investigate and characterize the universal aspects of
the Rydberg impurity, we performed a detailed numerical
study of the absorption spectrum A(ω). This is obtained
from the Fourier transform of the auto-correlation func-
tion

S(t) = ⟨eiĤ0te−iĤt⟩ =

(∑
α

ei(ϵ0−ωα)t|⟨0|α⟩|2
)N

, (3)

where the expectation value is taken with respect to the
non-interacting BEC state (the ground state of Ĥ0) [44].
Since the ideal BEC is in a pure product state, the final
expression of the many-body response only requires the
eigenstates (|0⟩), |α⟩ and energies (ϵ0), ωα of the (non)-
interacting two-body Hamiltonian of the Rydberg atom
and a single boson. We solve for the two-body physics by
employing the eigenchannel R-matrix method [46], which
yields the energy-dependent logarithmic derivative of the
scattering wave function |α⟩ for r > R0. This allows us to

efficiently calculate thousands of box-continuum states,
molecular bound states, and the zero-energy scattering
length aRyd. Figure 1 shows aRyd(as), which carries in-
formation about both the interaction range R0 ∼ 2n2

and the dependence of two-body bound states on V0. We
study a Rydberg impurity with n = 50 as an illustrative
and generic example, and compute A(ω) as a function of
as [47]. In this way we adjust V0 independent of R0 [48].

Figure 2 shows A(ω) when R0ρ
1/3 ≪ 1. In this regime,

we recover all of the features known from the limit of a
zero-range impurity [3, 12, 49]. When as > −0.06a0, VRyd

does not support a two-body bound state, and A(ω) ex-
hibits a single peak at negative energy indicating the for-
mation of an attractive polaron. The mean-field energy
of the zero-range approximation of the Rydberg poten-
tial, Ezr = 2πaRydρ/µ, describes the position of this fea-
ture. However, this description fails dramatically near a
scattering resonance. Instead, the mean-field description
of the full Rydberg potential, ERyd = ρ

∫
VRyd(r)d

3r =
2πasρ/me, [28, 44, 50] follows the center of spectral weight
smoothly across unitarity, even as the spectral feature dif-
fuses and cannot be associated with a well-defined quasi-
particle [3, 51]. Using the Born approximation for the Ry-
dberg scattering length, aBRyd = asµ/me, one can rewrite
ERyd = 2πaBRydρ/µ to have the same structure as Ezr.

To the red of the resonance, Ezr again describes the
brightest spectral feature, which is located at positive en-
ergy and therefore identified as a repulsive polaron. Be-
low this feature lies a series of negative energy peaks as-

Figure 2. A(ω) of a 50S Rydberg impurity in a BEC with
ρ = 1012 cm−3. The mean-field energy shifts Ezr (teal) and
ERyd (green), as well as the bare and dressed dimer energies
Eb (solid white) and Eb + Ezr (dashed white) are overlaid.
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sociated with the molecular bound state, which can be
multiply occupied to form dimers, trimers, and the like.
These interact with the residual bath through the same
Rydberg interaction as the bare atom, and as a result
they are dressed by bath excitations in the same fash-
ion. Each ultralong-range Rydberg molecule therefore
possesses some quasiparticle character inherited from the
repulsive polaron and forms a "molaron" with a bind-
ing energy shifted from that of the bare dimer, Eb, to
Eb+Ezr [52–55]. Myriad experiments have observed this
vibrational spectrum, confirming its basic structure but
not yet providing conclusive evidence for the many-body
shift Ezr [43, 56–58]. This is not surprising, since theo-
retical uncertainties [59–63] would have hidden this small
shift.

Figure 3(a) displays A(ω) over a broader range of as
and at ten times the density of Figure 2, which causes the
molaron peaks to accumulate appreciable spectral weight
as R0ρ

1/3 ∼ 1. This reveals an intriguing internal struc-
ture due to the appearance of additional two-body bound
states as the potential deepens. This structure suggests a
nomenclature, the [n0, . . . , ni, . . . , nM ]M -molaron, where
M is the total number of two-body bound states sup-
ported by the potential and ni is the bosonic occupation
number of the ith bound state, with i = 0 representing
the bare atom. The peak position of the [00]M -molaron,
i.e. the polaron, coincides with Ezr. Exemplary molaron
peaks are labeled in Figure 3(a). At every scattering res-
onance each quasiparticle peak undergoes the same frag-
mentation seen in Figure 2. For example, at the second
scattering resonance, each of the [ni]1 states broadens and
eventually splits into a multitude of states [ni,mi+1]2.

An important consequence of the large extent of the
Rydberg potential is that aRyd is large and positive ex-
cept close to a resonance, where it dips below zero. As
a result, the attractive polaron exists only in a very lim-
ited parameter space. At the transition from a repulsive
to an attractive polaron, aRyd vanishes at a Ramsaeur-
Townsend zero [64, 65]. Despite its non-zero interaction
potential, the Rydberg atom effectively does not interact
with the bath – the scattering phase shift vanishes. Here,
the molaron features sharpen, losing quasiparticle weight
as they more closely resemble bare molecules.

At higher density (Figure 3b) the spectral weight shifts
entirely into molaron states. Their absorption peaks blur
together and A(ω) takes on a Gaussian profile with mean
values ERyd whose emergence is explained by the central
limit theorem [42, 44, 66]. However, the regression to a
Gaussian distribution does not occur at the same density
for each as: the distinct molaron peaks, still resolvable

a)

b)

c)

Figure 3. A(ω) of a 50S Rydberg impurity in a BEC with (a)
ρ = 1013 cm−3, (b) ρ = 5·1013 cm−3, and (c) ρ = 5·1014 cm−3.
In (a), the mean-field energy Ezr (teal) is shown alongside
the mean-field energies of various molaron states. In panels
(b) and (c) cuts of A(ω) at fixed as (white curves) show the
lineshape more clearly. ERyd is shown in green.

in the vicinity of the Ramsauer-Townsend zeros in Fig-
ure 3(b), merge to form a Gaussian spectral profile only
at higher density (panel (c)).

This progression from an individual Lorentzian at zero
density through asymmetric lineshapes and polymer for-
mation to a symmetric Gaussian distribution at high den-
sity is largely consistent with the semi-classical theory of
pressure broadening [50, 67–73]. This theory predicts the
occurrence of "satellite" peaks at integer multiples of the



4

Figure 4. Effective quasiparticle weight of the Rydberg impu-
rity, calculated by averaging S(t) over late times. The solid
white curve shows aRydρ

1/3 = 1, which demarcates the two
phases: quasiparticle (molaron or polaron limit with Z = 1)
and semiclassical / statistical (Z = 0). The dashed white line
shows R0ρ

1/3 = 1, the semiclassical transition.

extrema of the interaction potential, an obvious parallel to
the molaron structure, as well as their blending together
into a Gaussian response as the number of particles within
the range of the potential, R3

0ρ, increases [66, 69]. Our
calculation shows that a more accurate condition takes
into account the zero-energy scattering length, and thus
generalizes the above condition to ρ−1/3 ≪ aRyd.

This more accurate condition is depicted in Figure 4,
which shows a qualitative estimate of the quasiparticle
weight given by a temporal average of S(t) in the long
time limit. The curve aRydρ

1/3 = 1 indicates the transi-
tion between a spectrum dominated by quasiparticle fea-
tures (where S(t) ≫ 0) to a purely statistical state char-
acterized by the Gaussian lineshape with no quasiparticle
weight. In the extreme limit aRyd → 0+/−, the above
condition is never satisfied and A(ω) will show distinct
peaks no matter the density. This explains the regions
with large quasiparticle weight even at high densities seen
in Figure 4 where the impurity has a small but non-zero
quasiparticle character due to its vastly reduced coupling
to the dense environment.

In contrast, the region of approximately zero quasi-
particle weight extends to very low densities when aRyd

diverges. This corresponds to the parameter regime where
the loss of quasiparticle characteristics and a broadening
of the well-defined polaron peak into a diffuse continuum
is known from zero-range impurities as well [6, 52, 74].
Consequently, the spectral broadening of the attractive

polaron peak near resonance in the zero-range polaron
and the emergence of the Gaussian feature in Rydberg
polaron studies share the same underlying physical origin.

This collection of phenomena is not limited to a Ry-
dberg atom, but is shared by all impurity systems: the
quantitative differences between the absorption spectra of
various impurities are a matter of degree rather than of
kind. This can be seen by comparing the spectrum of a
neutral impurity [49, 52] or an ionic impurity [38] with the
present results. In the latter case, the interaction is often
taken to be a regularized polarization potential [38, 75]

VIon(r) = − α

(r2 + b2)2
r2 − c2

r2 + c2
, (4)

with a characteristic length scale RIon =
√
2µα. We

calculated A(ω) for c = 0.0023RIon, varying b to adjust
the potential depth, as shown in Figure 5. We observe
polaron features and fragmentation of the molaron
states as they cross a scattering resonance, familiar from
Figure 3(a). At the density of ρ = 2R−3

Ion, the molaron
states possess significant spectral weight and hint at
the emerging Gaussian lineshape centered around the
mean-field energy shift EIon = ρ

∫
VIon(r)d

3r, which
becomes completely dominant at higher densities as in
Figure 3(c) [76]. As with the Rydberg impurity, by
writing EIon = 2πaBIonρ/µ we see that this feature is
simply characterized by the Born approximation for the
scattering length, the reduced mass and the bath density.

With the insights provided by these two impurity sys-
tems, we have shown that the universal parameter aρ1/3

Figure 5. A(ω) of an ionic impurity at ρ = 2R−3
Ion. The green

line shows the mean-field energy shift EIon. The inset high-
lights the fragmentation of molaron states.
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determines the qualitative behavior of their absorption
spectra. This unites the phenomena of finite-ranged im-
purities with those known from the well-studied zero-
range impurity (the "Bose polaron"). Even deeply bound
molecular states, whose energies depend on the details of
the two-body interaction, respond identically to the in-
fluence of the bath. At sufficiently high densities, these
details become irrelevant and the system response is uni-
versal, depending only on its scattering length in the Born
approximation within a mean-field description.

The huge length scales of the Rydberg atom are es-
pecially appropriate for the approximations made in Ĥ:
the neglect of boson-boson interactions and kinetic en-
ergy correlation. Rydberg impurities therefore may serve
as a more suitable platform for studying molarons and
refining their theoretical description than ground-state
atoms, even though the bath-induced density shift of the
molecule peaks, typically on the scale 4πn2ρ/µ, is small
relative to the binding energies. These subtle many-body
energy shifts, including the shift of the bare atomic line
(the repulsive Rydberg polaron), could be isolated by a
careful study of the density-dependence and asymmetry
of the absorption peaks, particularly for light atoms. Ad-
ditionally, fermionic environments, which have been par-
tially explored for Rydberg and ionic impurities, provide
another avenue for future investigation [45, 77].

We are grateful for many enlightening discussions with
P. Giannakeas, A. Eisfeld, and S. Wüster.
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Here the state |0⟩ is the ground state of the non-
interacting two-body Hamiltonian

h0(r) = −∇2
r

2µ
(8)

with eigenenergy ϵ0, while |α⟩ are the eigenstates of the
interacting two-body Hamiltonian

h(r) = −∇2
r

2µ
+ VRyd(r) (9)

with eigenenergies ωα. Calculating S(t) ultimately in-
volves determining the interacting eigenstates |α⟩ and
their corresponding eigenenergies ωα. A more complete
derivation can be found in [45]. We perform the time
evolution of S(t) up to tmax = 1000µs in order to com-
pute A(ω) from directly integrating the Fourier trans-
form of S. To have a numerically well-defined Fourier
transformation we multiply S(t) with a exponential decay
exp[−t/(0.4 · tmax)]. This decay time is chosen to be large
in the present study to avoid obscuring any interesting
results by numerical broadening of the spectral features.
Tests for shorter decay times, which model the finite Ryd-
berg lifetime, did not show significant deviation from the
calculations performed here.

Rydberg potential

For an s-state Rydberg electron the interaction poten-
tial VRyd(r) is isotropic and spherically symmetric. To
simplify the theoretical analysis, we neglect the effect of
a finite quantum defect and use the electronic wave func-
tion ψnlm(r) of the hydrogen atom. Further, we assume
that the electron-atom scattering length as, which sets the
strength of the overall interaction, is energy-independent.
These assumptions yield the two-body interaction poten-
tial,

VRyd(r) = 2πas|ψn00(r)|2, (10)

which captures the features of more sophisticated cal-
culations to a semi-quantitative degree. In the main
text our results are computed for an electronic n = 50
state of a mass-balanced system with the mass of 84Sr,
µ = 83.91342/2 [au], in a box with radial extent of
L = 550n2a0.

Within the Born approximation, the zero-energy scat-
tering length is given by aBRyd = me

µ as, from which we
obtain the density shift ERyd = 2πas

me
. This gives the po-

sition of the Gaussian feature in the high density regime.

Ion potential

The interaction between an ion and a neutral atom has
a long-range tail ∝ −α/(2r4), with α the polarizability
of the neutral atom. To avoid problems at short inter-
particle distances we include a short-range regularization,
which gives us the ionic interaction potential

V (r) = − α/2

(r2 + b2)2
r2 − c2

r2 + c2
(11)

with characteristic range RIon =
√
2µα. We fix the

free parameters to be c = 0.0023RIon, α = 320, and
µ = 86.9092/2 [au], corresponding to the polarizability
and mass of 87Rb atoms.

Within the Born approximation, the zero-energy scat-
tering length is

aBIon = −R
2
ionπ

4b

(b2 + 2bc− c2)

(b+ c)2
. (12)

From this, or alternatively from the integral
ρ
∫
VIon(r)d

3r, we obtain the density shift EIon = 2π
µ ρa

B
Ion

giving the position of the Gaussian feature in the high
density regime.

Spectrum of h

In the following, we describe our general approach to
calculating the spectrum of a given two-body Hamilto-
nian h with a generic interaction potential which can be
truncated at some finite distance. When we give details,
such as the number of basis states and dimensions of the
quantization volume, they are specific to the calculation
of the Rydberg impurity. The ionic impurity can require,
due to the slower decay of its interaction, a larger basis
size and matching of interacting and free wave fucntions
at a larger radius to achieve convergence.

We separate the bound state calculation from the con-
tinuum state calculation in order to save computational
effort, since we want to avoid diagonalizing a huge matrix
to obtain many hundreds of continuum states.

In our calculations for the continuum of single-particle
states |α⟩, we employ the eigenchannel R-matrix ap-
proach. This method obviates the need to solve the
Schrödinger equation numerically over the entire quan-
tization volume. We partition the space around the im-
purity into two distinct regions: one (roughly for 0 <
r < 3n2) where the Rydberg potential differs significantly
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from zero, and another 3n2 < r < L where the interac-
tion potential is negligible and the wave function is known
analytically. At the boundary of the interaction volume,
we compute the log-derivative of the wave function at a
specific energy E,

−bβ(E) =
∂ ln rψβ

∂r
. (13)

We compute bβ using the streamlined eigenchannel ap-
proach detailed in Ref. [46], using 500 B-spline functions
of order 12 to span the range from the inner boundary
r0 = 200a0 to r1 = 3n2. By now matching the analytical
log-derivative of the free particle solutions outside of the
range of the interaction potential with those inside, we
compute the energy-dependent phase shift δ(E) and the
scattering length aimp of the potential as follows:

tan(δ(E)) =
b(E)j0(kr1)r1 + ∂rj0(kr1)

b(E)y0(kr1)r1 + ∂ry0(kr1)
(14)

aimp = −limk→0 tan(δ(k))/k. (15)

In a second step we discretize the continuum by imposing
the hard wall boundary condition at r = L. To achieve
this, we do an energy search for all wave functions that
have zero amplitude at the box boundary. In total we use
about 10000 interacting states |α⟩ up to a energy cut-off
(Emax = 300 [MHz]) to represent the continuum. Espe-
cially close to a resonance the continuum couples strongly
and a good numerical representation of the continuum be-
comes particularly important. The calculated overlaps of
the low-lying box-continuum states with the free BEC
wave function is shown in Figure 6, for two different in-
teraction strengths. In both cases we see an exponential
decay with energy, however for a value close to resonance
as = −0.315a0 (blue line) the overlaps tend to be one or
two orders of magnitude larger than they are for an inter-
action strength far from resonance as = −0.2a0 (red line).
This underscores the importance of considering a compre-
hensive continuum description, especially in proximity to
a resonance.

To calculate the bound states, we use a basis of around
20000 B-splines spanning the entire box and standard di-
agonalization routines designed for sparse matrices. This
step is especially important in order to accurately obtain

bound states close to threshold which decay very slowly
at large r.

Figure 6. The energy-dependent Frank-Condon overlaps of
the continuum states of h with the ground state of the non-
interaction system h0.

Figure 7. A(ω) of an ionic impurity at ρ = 30R−3
Ion. The green

line shows the mean-field energy shift EIon.

Ion in the high density limit

Here we show the absorption spectrum of an ionic im-
purity for the same parameters in the text, except at a
density ten times greater. Here, the Gaussian lineshape
is again clear, and the peak position follows EIon. Some
deviation from the smooth Gaussian can be seen near to
one of the Ramsauer Townsend zeros.
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