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We study the statistical physics of the classical Ising model in the so-called α-Rényi ensemble, a
finite-temperature thermal state approximation that minimizes a modified free energy based on the
α-Rényi entropy. We begin by characterizing its critical behavior in mean-field theory in different
regimes of the Rényi index α. Next, we re-introduce correlations and consider the model in one and
two dimensions, presenting an exact analysis of the former and devising an unconventional Monte
Carlo approach to the study of the latter. Remarkably, we find that while mean-field predicts a
continuous phase transition below a threshold index value of α ∼ 1.303 and a first-order transition
above it, the Monte Carlo results in two dimensions point to a continuous transition at all α. We
conclude by performing a variational minimization of the α-Rényi free energy using a recurrent
neural network (RNN) ansatz where we find that the RNN performs well in two dimensions when
compared to the Monte Carlo simulations. Our work highlights the potential opportunities and
limitations associated with the use of the α-Rényi ensemble formalism in probing the thermodynamic
equilibrium properties of classical and quantum systems.

I. INTRODUCTION

Simulating finite-temperature states, both in equi-
librium and out-of-equilibrium, remains a significant
challenge in the study of quantum many-body sys-
tems. Quantum Monte Carlo approaches, long consid-
ered state-of-the art for the simulation of equilibrium
states in quantum many-body systems, are plagued by
fundamental sign problem issues in fermionic and frus-
trated quantum spin systems [1–7]. More recently, a
large number of approaches for Gibbs state simulation
involving the imaginary time evolution of a purified
mixed state to produce thermal pure quantum states
(TPQS) have been introduced [8–13]. Other pure state
approaches such as minimally entangled typical thermal
states (METTS) have also been proposed, leveraging
matrix product state (MPS) algorithms along the way
[14, 15]. In time, many in the community have turned
to the variational method, proposing TPQS and density
matrix ansätze parameterized by a set of parameters that
are tuned to approximate the Liouvillian dynamics of
mixed states coupled to Markovian baths using the time-
dependent variational principle (TDVP) [16, 17]. Those
behind the vast majority of these approaches have recog-
nized a common issue: simulating the Gibbs state vari-
ationally by minimizing the Gibbs free energy at finite
temperature is challenging due to the issues associated
with computing the von Neumann entropy of a parame-
terized quantum density matrix. As such, thermal state
approximations have started to emerge. One such ap-
proximation involves the minimization of a modified free
energy known as the 2-Rényi free energy, where the von
Neumann entropy is replaced by the second Rényi en-
tropy [18]. In this way, the 2-Rényi ensemble, which
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minimizes the 2-Rényi free energy, has provided a fresh
breeding ground for quantum simulation of finite temper-
ature states, in particular using MPS and neural network
quantum state (NNQS) approaches [19, 20].

In the last few years, NNQS models ranging from re-
stricted Boltzmann machines (RBMs) to convolutional
neural networks (CNNs) have exploded onto the scene,
providing highly expressive variational ansätze for the
efficient simulation of ground state wavefunctions, the
detection of continuous phase transitions and the recon-
struction of quantum states [21–25]. The continued de-
velopment of NNQS has since resulted in the emergence
of a highly efficient autoregressive model based on re-
current neural networks (RNNs) which has been used
for ground state wavefunction optimization in both frus-
trated and unfrustrated spin systems [26–28]. Some stud-
ies have sought to enhance RNN ground state optimiza-
tions by leveraging quantum simulation and Monte Carlo
sampling data in the process [29, 30], demonstrating the
flexibility of the overall NNQS approach.

Although the work in Refs. [18–20] has focused on
studying finite-temperature properties of quantum sys-
tems through the Rényi ensemble, here we take a step
back and examine whether the Rényi ensemble provides
an accurate approximation of the Gibbs state at the clas-
sical level. We focus on the Ising model in one and two
dimensions [31], which, in light of its analytical and nu-
merical tractability, provides an ideal playground for un-
derstanding to what extent and in which regimes the
α-Rényi ensemble reproduces the physics of the Gibbs
state. We first consider a mean-field solution of the model
within the ensemble, followed by a detailed exploration
of the model in the presence of fluctuations through the
development of a Markov-chain Monte Carlo technique
specifically designed to target the Rényi ensemble. In
the latter case, sampling via Monte Carlo presents a chal-
lenge as the distribution itself depends on the average en-
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ergy, which we estimate via an iterative procedure. Be-
yond our Monte Carlo method, we consider variational
approximations to the Rényi ensemble using recurrent
neural networks and assess their quality by comparing
their output to Monte Carlo and exact approaches.

Putting it all together, the paper is broken down as
follows. In Sec. II, we introduce the Rényi ensemble ma-
chinery that is the foundation of this entire article. Next,
we vet the Rényi ensemble approximation by applying it
to the mean-field study of the Ising model in Sec. III, fol-
lowed by an analytical treatment of the one-dimensional
(1D) Ising model in this ensemble in Sec. IV. We re-
introduce correlations in Sec. V, presenting Monte Carlo
results for the two-dimensional (2D) Ising model in the
Rényi ensemble, and in Sec. VI we compare those results
with the RNN predictions. In Sec. VII, we conclude and
discuss the future outlook of our work and thermal state
approximations more broadly.

II. THE RÉNYI ENSEMBLE

We consider the α-Rényi free energy given by

Fα = Tr(ρH)− T
1

1− α
log [Tr (ρα)] . (1)

Here, α represents the Rényi index satisfying α ≥ 1, and
ρ is the density matrix of the system. The α-Rényi en-
semble is defined as the density matrix ρ(α) that mini-

mizes Fα. It is expressed as ρ(α) =
∑

k p
(α)
k |Ek⟩ ⟨Ek|, as

previously derived in Ref. [18] and extensively explored in
Refs. [19, 20]. The eigenstates of the Hamiltonian {|Ek⟩}
have corresponding kth energy levels Ek with degenera-

cies Nk. The probabilities p
(α)
k ∈ [0, 1] are given by

p
(α)
k =

[
1− β α−1

α (Ek − Ē)
] 1

α−1

Zα
, (2)

Zα =

nβ∑
k=0

Nk

[
1− β

α− 1

α
(Ek − Ē)

] 1
α−1

, (3)

Ek ≤ α

β(α− 1)
+ Ē, (4)

where the temperature of the ensemble is T and its in-

verse is β = 1/T . The probabilities p
(α)
k satisfy the con-

straint Tr(ρ(α)H) ≡ Ē, where Ē = ⟨H⟩ is the average
energy of the system, and Zα is the partition function
of the generalized ensemble. The condition in Eq. (4)
must be satisfied in order to ensure the positive semi-
definiteness of ρ(α). It is possible to show that in the
limit α → 1, the Rényi ensemble tends exactly to the
Gibbs state [32]. The sum in Eq. (3) is over all nβ eigen-
states that satisfy Eq. (4), a number that depends on the
inverse temperature β.

The average energy Ē is computed by solving the fixed

point equation

Tr(ρ(α)H) = Ē −→
nβ∑
k=0

NkEkp
(α)
k = Ē. (5)

As discussed in App. B, we observe that the Tr(ρ(α)H) =
Ē fixed point is attractive for all α > 1 for the 1D and 2D
Ising models with no external field. This feature proves
especially useful in numerical simulations as it enables
the possibility to find Ē iteratively, which we use for both
exact and Monte Carlo simulations of the Ising model.

III. ISING MODEL: MEAN-FIELD

We first consider the α-Rényi ensemble within mean-
field theory, focusing on the classical Ising model H =
−J

∑
<i,j> σiσj with J > 0. Our mean-field calculation

follows the approach in Ref. [33], which is based on a
factorized density matrix

ρ =

N⊗
i=1

ρi ≡
N⊗
i=1

[
1+m
2 0
0 1−m

2

]
. (6)

We minimize the resulting α-Rényi free energy with re-
spect to the variational parameter m. Restricting m to
the interval [−1, 1] allows for the interpretation of ρi as a
classical probability distribution over the binary spin val-
ues {+1,−1} such that the average spin value is m. This
product state approach is equivalent to other mean-field
formulations and can be shown to recover the mean-field
equation for the magnetization m = tanh [m(qJ)/T ] of
the Ising model in the Gibbs state, with q = 2d the co-
ordination number associated with a hypercubic lattice
in D dimensions. Applying Eq. (6) to the α-Rényi free
energy leads to a free energy per spin of

fα(m) = −1

2
(qJ)m2

− T
1

1− α
log

[(
1 +m

2

)α

+

(
1−m

2

)α]
.

(7)

Remarkably, while the mean-field free energy in the
Rényi index interval 1 ≤ α ≲ 1.3 predicts a continu-
ous phase transition for the Ising model, for α ≳ 1.3 the
transition is first-order. This can be seen in Fig. A.1 (see
App. A) and Fig. 2, where the hallmarks of continuous
and first-order transitions emerge for different values of
α. This stands in contrast with the well-known case of
the Ising model in the Gibbs state (α → 1), where the
mean-field transition is continuous with a critical temper-
ature Tc = qJ . The appearance of a first-order transition
at larger α arises because as T increases, higher energy
states can be ”suddenly” turned on and made accessible
to the system due to the nature of the Rényi constraint
(see RHS of Eq. (4)), which hints at the possibility of
a discontinuous jump in the value of the mean-field or-
der parameter at some transition temperature T ∗. On
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FIG. 1. Mean-field critical temperature Tc and transition
temperature T ∗ (solid blue), as well as Tc as extracted from
Monte Carlo simulations (green), as a function of the Rényi
index α, for the 2D Ising model (q = 4). The mean-field
data is extracted numerically from Eq. (7), while the Monte
Carlo Tc values are computed by data collapse (Sec. V). The
Monte Carlo error bars are smaller than the size of the data
points. We show the exact functional form for Tc in the con-
tinuous regime (purple dotted curve for Tc = qJ/α), the con-
stant value of qJ/(2 log 2) that T ∗ takes for all α > ᾱ ∼ 1.56
(grey dashed horizontal line) and the threshold α[c→1st] (red
dashed vertical line) that separates the continuous and first-
order regimes. J has been set to 1. The limit lim

α→1
Tc = qJ

recovers the mean-field result for the Ising model in the Gibbs
state. The inset displays Monte Carlo Tc data for large Rényi
index, where Tc is seen to approach Tc ∼ 1 as α → ∞.

the other hand, values of α closer to 1 produce a con-
tinuous transition since the Rényi ensemble tends to the
Gibbs state as α → 1. We can see from Eq. (4) that as
α approaches 1, more and more higher energy states are
rendered accessible to the system at any given tempera-
ture, making discontinuous jumps in m less likely at the
mean-field level.

We now derive expressions for the critical temperature
Tc in the continuous regime and the transition tempera-
ture T ∗ in the first-order regime. In particular, we focus
on their dependence on the Rényi index α. In between,
we also derive the value of α that exactly separates the
two regimes, which we denote α[c→1st]. Let us assume
that α is such that the mean field α-Rényi free energy
in Eq. (7) describes a continuous transition. Then Tc is
the temperature at which the nature of the extremum
at m = 0 changes from a local maximum to the global

minimum. To derive it, we compute ∂2fα
∂m2

∣∣
m=0

, set it to
0 and solve for Tc. We find

∂2fα
∂m2

∣∣∣∣
m=0,T=Tc

= −qJ + αTc = 0 −→ Tc =
qJ

α
. (8)

This expression recovers the Gibbs state mean-field limit
limα→1 Tc = limα→1 qJ/α = qJ .

Eq. (8) is valid for α ∈
[
1, α[c→1st]

]
, i.e. the continu-

ous regime of α values. It is possible to evaluate α[c→1st]

exactly. The procedure involves computing the Taylor

expansion of fα about m = 0 to 6th order in m, which we

denote as f
(6)
α , extremizing the result, and subsequently

identifying the regime of α values for which f
(6)
α allows

for the possibility of five real extrema depending on the
temperature T , which is a hallmark of a first-order transi-
tion. The reason we conduct this analysis to only O(m6)

and not greater is that f
(6)
α captures the macroscopic ”ex-

tremal shape” of the true free energy fα when fα has five
extrema. In other words, whenever fα has five extrema

in the interval m ∈ [−1, 1], f
(6)
α also has five extrema, al-

though for the latter, the interval may have to be widened
to observe them all depending on the specific Rényi index
under consideration. As such, a higher order analysis is
not needed. The details of the procedure are laid out in
App. A. It finds

α[c→1st] =

√
13− 1

2
≈ 1.303, (9)

which, as opposed to Tc, is independent of the dimen-
sionality of the system. In summary, mean-field theory
predicts a continuous symmetry-breaking phase transi-
tion for the Ising model in the α-Rényi ensemble for

α ∈
[
1,

√
13−1
2

]
and a first-order transition for α ∈(√

13−1
2 ,∞

)
.

We now focus on the dependence of the first-order tran-
sition temperature T ∗ on α. By examining the depen-
dence of fα on m at various values of α in the first-
order regime, we find that for α greater than or equal
to some value ᾱ, fα is globally minimized in the interval
m ∈ [−1, 1] at m = ±1 or m = 0, depending on the tem-
perature, meaning that the jump in magnetization as T ∗

is crossed is exactly mgap = 1 for all α ≥ ᾱ. Thus, the
transition temperature for all α ≥ ᾱ can be derived by
setting fα(m = ±1) = fα(m = 0), which leads to

−1

2
(qJ) = −T

1

1− α
log

(
21−α

)
−→ T ∗ =

qJ

2 log 2
. (10)

Using a simple numerical approximation, we find ᾱ ∼
1.56. In Fig. 1, we collect all the above results and plot
the mean-field critical temperature Tc and the first-order
transition temperature T ∗ as a function of α for the two-
dimensional Ising model in the α-Rényi ensemble. The
plot also includes results from our Monte Carlo data col-
lapse for comparison, described in detail in Sec. V below.
In Fig. 2, we plot the absolute value of the mean-field
magnetization per spin m (i.e. the value of m that min-
imizes fα(m)) as a function of temperature for various
values of α.
We now explore the critical exponents of the continu-

ous phase transition regime predicted by the α-Rényi en-

semble, i.e., for 1 ≤ α ≤
√
13−1
2 . Since the α-Rényi mean-

field free energy can be written analytically in terms of
m for T ∼ Tc (where we have |m| ∼ 0) by performing
a Taylor approximation of the logarithm (see Eq. (A1)
for the O(m6) expression), there must exist critical ex-
ponents that describe the behavior of the magnetization
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and the divergences of thermodynamic quantities such
as the specific heat and magnetic susceptibility within
mean-field theory. Specifically, our goal is to derive the
dependence of these exponents on α, if any. To that end,

we only require the free energy to 4th order inm, f
(4)
α (m),

equivalent to Eq. (A1) less the 6th order term. We find
that the mean-field critical exponents β, αcv , γ and δ (we
denote the specific heat critical exponent as αcv ) take the
exact same values for the Ising model in the Rényi en-
semble as they do in the Gibbs state: β = 1/2, αcv = 0,
γ = 1 and δ = 3 .
While the coefficients modulating the divergences of

some of the quantities of interest (e.g. A+ and A−, as in
χ ∼ A+|t|−γ for t > 0, where t ≡ |T − Tc|/Tc is the re-
duced temperature and χ is the susceptibility) do indeed
depend on the Rényi index α, in mean-field theory, we
find that the critical exponents listed above do not—a
remarkable result. The last of the relevant critical expo-
nents for this discussion is ν, which is the critical expo-
nent describing the divergence of the correlation length ξ
according to ξ ∼ |t|−ν . For the Ising model in the Gibbs
state, its derivation involves re-introducing fluctuations
into the partition function with the derivation heavily
reliant on the presence of the Gibbs state exponentials
[34]. An attempt at following an analogous argument for
the α-Rényi ensemble presents us with the challenge of
evaluating a partition function whose number of terms
depends on the temperature-dependent Rényi constraint
in Eq. (4), and whose terms depend on the average en-
ergy, which appears daunting to solve for analytically for
most values of α. However, mean-field theory predicts
that β, αcv , γ and δ not only all exist for α > 1 but are
also α-independent, and since the divergence of thermo-
dynamic quantities is understood in statistical physics to
stem from the divergence of the correlation length and
the resulting scale invariance, we claim that ν takes on
the mean-field Gibbs state value of 1/2 for all α.

IV. 1D ISING MODEL: ANALYTICAL
ARGUMENTS

Extremal Cases—We now focus on the 1D Ising model

given by H = −J
∑N

i=1 σiσi+1 with periodic boundary
conditions σN+1 = σ1. It is known that the classical Ising
model in 1D exhibits no spontaneous symmetry breaking
at finite temperature in the Gibbs state. We investigate if
long-range order at finite T is possible in the generalized
α-Rényi ensemble and, if so, at what values of α. We
start with the limit β → ∞. The constraint in Eq. (4)
becomes

Ej ≤ lim
β→∞

[
α

β(α− 1)
+ Ē

]
= Ē,

which means all allowed microstates have energies lower

than the average energy. Since Ē =
∑nβ

j=0 NjEjp
(α)
j is

a convex combination of the allowed Ej values, then for

FIG. 2. Absolute value of the mean-field magnetization per
spin m that minimizes fα(m) as a function of T for various
values of α. For all α > ᾱ ∼ 1.56, the magnetization jump

mgap is 1, while for α ∈
(√

13−1
2

,∼ 1.56
)
, mgap < 1. The red

curve depicts the magnetization at exactly α[c→1st] =
√
13−1
2

.
Below this value, the curves are characteristic of a continuous
transition. As α → 1, the critical temperature tends to the
Gibbs ensemble prediction Tc = qJ . We have set qJ = 1 for
simplicity.

a finite system, the only way to realize Ej ≤ Ē for all
allowed states is to ensure that only one state is allowed:
the ground state, with all spins aligned. Thus, Ē = E0

where E0 is the ground state energy. In the thermody-
namic limit, higher energy fixed points are possible at
T = 0 (see analysis in finite temperature section below
which applies here as well), but the fixed point that glob-
ally minimizes the free energy must be the ground state
fixed point Ē = E0 because at T = 0, the free energy
is simply Ē. The ground state is thus the only allowed
state at zero temperature in the α-Rényi ensemble in the
thermodynamic limit. In addition, while a finite system
occupies the all-up and all-down ground states equally, if
we assume local fluctuations only, an infinite system must
choose one or the other, because in the limit N → ∞, a
jump from one symmetry-broken regime to the other can-
not be considered local. Therefore, at zero temperature,
the symmetry is broken in this limit.

In the opposite limit, β = 0, we can see from the Rényi
constraint that all microstates become accessible, for all
α ≥ 1. The partition function evaluates to 2N , all prob-

abilities equalize as p
(α)
j = 1/2N , and the magnetization

vanishes. As expected, there is no long-range order at
infinite temperature.

Finite Temperature—Let us now consider finite tem-
perature. In the case of the Ising model in the Gibbs
state, the solution is found by evaluating the partition
function analytically and using the result to derive the
magnetization. Instead, we follow a different strategy
and make a Peierls argument [35]. If the system starts in
one of the two symmetry-broken ground states at T = 0,
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and T is then increased, if there is enough thermal en-
ergy to excite the system into flipping a single spin, then
the minority droplet of flipped spins can grow and move
until all states with two broken bonds become accessi-
ble with equal probability via local thermal fluctuations.
The system can now reach the other symmetry-broken
regime, making both ground states equally probable, and
the magnetization vanishes. The first excited state in 1D
with energy E1 = −JN+4J has two broken bonds. Once
E1 is ”turned on”, any long-range order is destroyed. Our
goal now is to solve the fixed point equation Eq. (5) at
finite β, and ultimately determine if higher energy fixed
points Ē > E0 are allowed at any finite T .

Firstly, we note that at a given finite temperature,
there may be multiple fixed points Ēfp that solve Eq. (5).
To demonstrate this, let us assume that the system is in
a state such that it can only access one of the two E0

configurations. If Ē = E0 is a fixed point, then E1 must
violate the constraint, i.e.

E1 >
α

β(α− 1)
+ E0,

−JN + 4J >
αT

(α− 1)
− JN,

which produces

T <
α− 1

α
4J. (11)

In other words, Ē = E0 is a fixed point for all T ∈[
0, α−1

α 4J
)
(T ∈ [0, 2J) when α = 2), a result valid in

all dimensions and in the limit N → ∞. However, for
T ∈

[
0, α−1

α 4J
)
, higher energy fixed points than Ē =

E0 also exist in the thermodynamic limit. We can show
this as follows. Firstly, in 1D, the degeneracy of the jth

energy level (with 2j broken bonds) is given by Nj = 2×(
N
2j

)
which is an O

(
N2j

)
number. We now ask whether,

given some temperature β, we can find a valid solution
to Eq. (5) for Ē in the limit N → ∞ that is a convex
combination of E0 and an arbitrary number of excited
state energies. As an example, if we assume E0 and E1

are the only two accessible energies, then we have

1∑
j=0

NjEj

[
1− β α−1

α (Ej − Ē)
] 1

α−1

1∑
j=0

Nj

[
1− β α−1

α (Ej − Ē)
] 1

α−1

= Ē.

With N0 = 2×
(
N
0

)
= 2 and N1 = 2×

(
N
2

)
= N(N − 1),

in the limit N → ∞, the O(N2) term dominates in
both the numerator and denominator of the left-hand
side, producing Ē = E1. Since E2 was assumed a
priori to be the lowest forbidden energy, then E2 >

α
β(α−1) +Ē = α

β(α−1) +E1, and with E2 = −JN+8J and

E1 = −JN + 4J , we find T < α−1
α 4J once again. Thus,

if E0 and E1 are the only allowed energies, Ē = E1 is a
thermodynamic limit fixed point for all T ∈

[
0, α−1

α 4J
)
.

So far, that makes two fixed points in the limit N → ∞
for any T ∈

[
0, α−1

α 4J
)
: Ē = E0 and Ē = E1. We

can continue with this line of thinking by introducing
the next energy E2 as an allowed energy a priori (with
E3 being the lowest forbidden energy), noting that N2 is
an O

(
N4

)
term and that it dominates in both numer-

ator and denominator of the left-hand side of the fixed
point equation as N → ∞, giving us Ē = E2 as another
mathematically valid solution for all T ∈

[
0, α−1

α 4J
)
.

In this way, higher energy fixed points for any T ∈[
0, α−1

α 4J
)

can be found by continuing to introduce
higher energies Ej as accessible states, until energies with
degeneracies that have similarN -scaling to the maximum

degeneracy of 2
(

N
N/2

)
∼ O

(
2N/

√
N
)

[36] are reached

and multiple terms begin to survive in the fixed point
equation in the limit N → ∞ as opposed to the sin-
gle dominant terms we have seen in the simple exam-
ples above. As a result, at each temperature, there is a
maximum energy fixed point that can be found in the
thermodynamic limit, and this maximum grows with in-
creasing T . It can be shown analytically that in the limit
N → ∞, this fixed point globally minimizes the free en-
ergy in any finite dimension D, because higher energy
microstates, which are not exponentially suppressed in
the Rényi ensemble, have increasing degeneracies that
significantly boost the entropy. This leads to the ap-
proach we use for the attractive fixed point search in
our 2D Monte Carlo simulations, the results of which
we present in Sec. V. In 1D, since the maximum energy
fixed point at all T > 0 satisfies Ē > E0 in the thermo-
dynamic limit, we conclude that there is no spontaneous
symmetry-breaking at finite T in the 1D Ising model in
the α-Rényi ensemble.

V. 2D ISING MODEL: MONTE CARLO

Let us now consider the case of the two-dimensional
classical Ising model in the α-Rényi ensemble. We are
interested in studying the critical behavior of the true,
correlated model. A key goal of this study is to shed
light onto the extent to which the Rényi ensemble re-
produces the Gibbs state in light of the claims made in
Refs. [19, 20] that these two ensembles reproduce each
other for local observables in the thermodynamic limit.
Similarly, we want to know if any phase transition that
emerges coincides with the mean-field prediction that
there is a ”threshold” α separating continuous and first-
order regimes. Unlike the Onsager result for the 2D Ising
model in the Gibbs state [31], the challenges associated
with evaluating the Rényi ensemble partition function in
Eq. (3) make an exact solution difficult to derive, render-
ing the model ripe for numerical exploration.

We use the Monte Carlo (MC) method with the
Metropolis algorithm to simulate the 2D Ising model in
an equilibrium defined by the α-Rényi ensemble proba-
bilities in Eq. (2), choosing single-spin flip dynamics for
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FIG. 3. (a)-(b) Average energy per spin Ēfp/N (with
N = L2) computed using the fixed point search technique
of Sec. V and (c)-(d) absolute value of the magnetization
per spin |m| as a function of temperature T for the 2D Ising
model in the 2-Rényi ensemble. In (a) and (c), the Monte
Carlo (MC) results for a 3× 3 system are compared with ex-
act results. In (b) and (d), the effects of changing system
size on the MC results are shown. The small system results
exhibit discontinuous jumps in Ēfp/N and |m| with changing
T , hinting at the possibility of a first-order transition in the
thermodynamic limit, but as L increases, the curves begin to
display a more continuous character, providing evidence of a
continuous phase transition. At all T , the MC error bars cor-
responding to the ”minimum errors” discussed in Sec. V are
smaller than the size of the data points.

simplicity. We customize the original Metropolis algo-
rithm [37] and define

Aα(µ → ν) =
[1−β α−1

α (Eν−Ē)]
1

α−1

[1−β α−1
α (Eµ−Ē)]

1
α−1

, Eν > Eµ

∣∣∣∣ Eν ≤ α
β(α−1) + Ē

1, Eν ≤ Eµ

∣∣∣∣ Eν ≤ α
β(α−1) + Ē

0, Eν > α
β(α−1) + Ē,

(12)

where Aα(µ → ν) represents the acceptance ratio asso-
ciated with a transition from the current state µ to a
proposed state ν (parametrized by the Rényi index α)
and where it is assumed that the system is already in a
state µ that satisfies the Rényi constraint prior to the
update.

The algorithm satisfies detailed balance, but for a cer-
tain range of lower temperature values, it does not nec-
essarily satisfy ergodicity. For example, if T is very low,
to reach one of the two ground states starting from the
other using local dynamics may require accessing states
that are strictly forbidden by the Rényi constraint. This
becomes less important as α approaches 1 and the Rényi
ensemble tends to the Gibbs state, but for all α > 1, it is
a factor nonetheless for at least a small range of nonzero
temperatures. We argue that this does not affect our
analysis for the observables we consider in our simula-

tions. In the Gibbs state at low temperature, Monte
Carlo simulations of the 2D Ising model for large system
sizes that result in excellent approximations of the critical
temperature and critical exponents can be conducted in
such a way that only one of the symmetry-broken regimes
ends up being explored in the typical amount of Monte
Carlo time for which such simulations are usually per-
formed. Thus, we do not expect the lack of ergodicity in
specific (T, α,N) parameter regimes to affect the study
of the critical behavior of the model.
A critical issue that must be resolved in order to sim-

ulate the Rényi ensemble is the presence of the average
energy Ē in the corresponding probabilities and by asso-
ciation the acceptance ratio in Eq. (12). At each tem-
perature β, we must solve for Ē by solving the fixed
point equation Eq. (5). In App. B, we argue that the
2-Rényi ensemble has an attractive fixed point for the
Ising model with no external field, and we expect this to
remain true for all α ≥ 1. We leverage this result in our
Monte Carlo simulations as follows. For each tempera-
ture T and Renyi index α, we start by pre-selecting an
initial value of Ē, defined as Ē(0), which allows the Rényi
acceptance ratio Eq. (12) to be fully characterized. We
use this ratio to perform a full Monte Carlo simulation
of the 2D Ising model and extract a new estimate of the
average energy Ē(1) using importance sampling and the
binning technique [38, 39]. The attractive nature of the
fixed point means that, unless Ē(0) happens to be the
true fixed point Ēfp, Ē

(1) should be closer to Ēfp than

Ē(0), barring Monte Carlo errors in the estimation of the
average energies. Next, we take Ē(1), plug it into Eq. (12)
to form a new acceptance ratio, and repeat the process to
extract Ē(2) at the new equilibrium. We continue in this
vein until we have found some Ē(k) ≈ Ēfp after k Monte
Carlo simulations. The fixed point search is defined by
the recursion

...

gα

(
Ē(i−1)

)
≈ Ēi

gα

(
Ē(i)

)
≈ Ēi+1

...,

(13)

where gα ≡ Tr(ρ(α)H). Here, there is Monte Carlo error
involved in the estimation of gα

(
Ē(i)

)
for every i in the

iteration. This noise is propagated through the recursion
as the simulation searches for the fixed point, but we find
that, at each step in the recursion, if the Monte Carlo
time is large enough and an accurate estimation process
based on the binning technique is used, this noise has
little effect when it comes to moving in the general direc-
tion of the fixed point and ultimately extracting a rea-
sonable estimate for Ēfp. To identify the fixed point, we
choose to define a new hyperparameter Nosc that counts
the number of times the fixed point search ”oscillates”.
In other words, once the general vicinity of the fixed
point has been approximately found, its attractive na-
ture means that continuing the recursion should make
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the Monte Carlo estimate for Ē oscillate about some av-
erage value that is very close to the true Ēfp, and we
quantify this oscillation by counting the number of times(
Ē(i+1) − Ē(i)

)
changes sign from one iteration to the

next, defining Nosc as precisely this number. In practice,
we find that as long as Nosc is large enough, changing its
value does not significantly affect the final results for the
Monte Carlo averages and data collapse.

At each temperature T , there may be more than one
fixed point. In Sec. IV, we showed that in the 1D
model, the Rényi ensemble can generate a large num-
ber of fixed points at each temperature in the thermo-
dynamic limit. While the analysis to prove this in the
2D Ising model is more involved, our Monte Carlo simu-
lations provide strong evidence for the existence of mul-
tiple fixed points at most T , for the finite system sizes
that we choose to study. Following on from the discus-
sion in Sec. IV, we make the explicit decision to follow
the ”maximum energy” approach at each temperature.
We start at T = 0.001, where we expect the maximum
energy fixed point to be either exactly the ground state
energy of E0 = −2JN or just above it (because Ē = E0

is the only fixed point at T = 0 when the system is fi-
nite). To be certain of finding it, we start the search from
above, setting the initial average energy in our recursion
equal to Ē(0) = E0 + ∆ where ∆ is any number that is
large enough to ensure Ē(0) is greater than the expected
value of Ēfp. We terminate the fixed point search once

Nosc = 30 oscillations have been detected for Ē(i). Defin-
ing k as the number of MC simulations required to reach
Nosc = 30, and Ē(k) as the energy of the kth run, we
take this Ē(k) value and run one final simulation with
Ē = Ē(k) in Eq. (12), this time significantly increasing
the Monte Carlo time, and compute the final average en-
ergy estimate which we define as our maximum energy
fixed point Ēfp ≈ Ē(k+1). It is this last Monte Carlo
simulation that we also use for the final estimate of the
magnetization |m| and the corresponding error. We note
that in all the above simulations, we choose the all-down
ground state as the initial configuration.

With the T = 0.001 simulation now complete, we seek
results for T ∈ [0.001, 5.000] in increments of dT = 0.001.
We increment T as T → T+dT , and, at every subsequent
temperature, we embark on an annealing strategy for the
fixed point search defined by

Ē(0)(T + dT ) = Ēfp(T ) + ∆E

≈ Ē(k+1)(T ) + ∆E .
(14)

In other words, for each temperature T + dT we set the
initial average energy used in the search for the elusive
fixed point equal to the fixed point estimate from the pre-
vious temperature T plus some ∆E that must be large
enough to ensure we are conducting the next search from
above. We note that k, the number of simulations re-
quired to reach Nosc = 30, is temperature-dependent.
In Fig. 3, we plot Monte Carlo results at α = 2 for

the average energy per spin Ēfp/N and absolute value

FIG. 4. Absolute value of the Monte Carlo magnetization per
spin |m| as a function of temperature T for the 2D Ising model
in the α-Rényi ensemble at L = 30, for a variety of values
of α. For each curve, the corresponding estimate of Tc as
extracted by collapsing the MC data using Eq. (15) is shown.
The curves are relatively continuous in character, hinting at a
continuous phase transition for all α. The shape of the curves
through the transition appears to be independent of α, but
the estimates of Tc exhibit a strong α-dependence. The error
bars are smaller than the size of the data points, but these
are ”minimum errors” as previously described.

of magnetization |m| as a function of T for various sys-
tem sizes of interest. The near-perfect overlap between
Monte Carlo and exact results in the 3×3 case highlights
the strength of the MC approach and the accuracy of the
annealing method we use for the fixed point search. We
note that the exact results were computed to high preci-
sion by leveraging the attractive nature of the fixed point
as well, with each search starting from above at exactly
Ē(0) = 0. For the 3 × 3 results, Ēfp/N and |m| exhibit
discontinuous jumps at various temperatures, hinting at
the possibility of a first-order transition in the thermo-
dynamic limit. However, that possibility is quashed by
the results at larger N , which provide stronger evidence
for the presence of a continuous transition at α = 2, with
the curves becoming more and more continuous with in-
creasing N , and tending to the shapes we would expect
in the α → 1 case for the 2D classical Ising model.
Turning to Monte Carlo error, the error bars in Fig. 3

are nominally smaller than the size of the data points,
but these errors must be termed ”minimum errors”, be-
cause the fixed point Ē(k+1) ≈ Ēfp found at each tem-
perature after the final Monte Carlo simulation is an ap-
proximation and not exact, with

∣∣Ē(k+1) − Ē(k)
∣∣ small

but nonzero. We do not attempt to quantify the error
beyond computing the errors of the final averages as per
the procedure outlined in Ref. [39].
So what happens when we vary the Renyi index α?

In Fig. 4, we plot the Monte Carlo results for the mag-
netization |m| as a function of T for an L = 30 Ising
model in 2D at various values of α. We find that for
each α probed, the shape of the curve remains effectively
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the same, generally continuous in character, indicating a
continuous phase transition in the thermodynamic limit.
What does change, however, is the position of the ap-
parent critical temperature Tc for each curve, which we
estimate using the data collapse technique described be-
low. The continuous nature of the curves becomes even
more apparent as L is increased beyond 30 (not shown).
To extract Tc, we take inspiration from renormalization

group (RG) scaling theory for continuous phase transi-
tions in classical models in the Gibbs state, elucidated in
full detail in Refs. [40–44]. Specifically, we make use of
the following RG-derived scaling function:

|m|Lβ/ν = f
(
tL1/ν

)
. (15)

Here, β is the critical exponent governing the behavior
of the magnetization m as T → T−

c such that m ∼ (Tc −
T )β , t ≡ (T−Tc)/Tc is the reduced temperature, and ν is
the critical exponent that characterizes the divergence of
the correlation length as the critical point is approached,
i.e. ξ ∼ |t|−ν . Eq. (15) tells us that given access to
high quality Gibbs state (α → 1) data for |m| vs T for
all values of L, all the data points collapse onto a single
|m|Lβ/ν vs tL1/ν curve.
Eq. (15) is only valid in the vicinity of the critical point

(i.e. near t = 0), because the analysis that produced it
was a single RG step performed under the assumption
that |t| = |(T − Tc)/Tc| ≪ 1 [41, 42]. This means that in
theory, only data points corresponding to temperatures
near T = Tc should form part of this collapse. Although
we know with certainty that Eq. (15) applies to the Ising
model in the Gibbs state, we note that the |m| vs T
curves in Fig. 4 do not seem to change shape significantly
as α departs from 1. This suggests that the collapse may
also apply to all α > 1 so long as the system is large
enough and the curves are ”continuous enough” through
the transition. To obtain a collapse, we must tune Tc,
β and ν. We recall that the Gibbs state values for the
2D Ising model as derived by Onsager are given by Tc =
2J/

[
log

(
1 +

√
2
)]

∼ 2.269J , β = 1/8 and ν = 1.
In Fig. 5, the results for the data collapse of the magne-

tization data associated with four relatively large values
of L are shown, for four different values of α. The col-
lapse is performed by fixing the critical exponents to the
Gibbs state values β = 1/8 and ν = 1, i.e., we only tune
Tc through the following procedure. At each value of α,
we select a range of Tc values to test within an inter-
val that contains the approximate critical temperature
as estimated from the raw magnetization data, and per-
form a grid search for the value of Tc in this interval that
minimizes the distance between the

(
tL1/ν ,mLβ/ν

)
data

points and a polynomial fit that includes only a certain
percentage of the data points either side of t = 0, since
the collapse is only supposed to apply in the vicinity of
T ∼ Tc. A simple average for Tc and rudimentary er-
ror bars are computed by varying the polynomial degree
(testing degrees of 15, 20 and 25) and the specific per-
centage of data points above and below t = 0 that are

FIG. 5. Results for the collapse of the Monte Carlo magne-
tization data for the 2D Ising model, for four different values
of α. The data collapses quite well for all α in the vicinity of
t ∼ 0. The collapse was performed as follows: β and ν are
fixed to the Gibbs state (α → 1) critical exponent values for
the 2D Ising model, and Tc is tuned using the polynomial fit
technique described in Sec. V, with a 25th order polynomial
used to fit 5% of the data either side of t = 0.

used in the fit (5%, 7.5% and 10%). We keep the per-
centages relatively low to focus on collapsing the data in
the vicinity of t = 0 only.

Returning to Fig. 1, the results of this procedure show-
case Tc as a function of α as compared to both the mean-
field results in 2D and the Onsager critical temperature
(α → 1). As α tends to 1, Tc increases and approaches
∼ 2.269J at a decreasing rate. In the other direction,
Tc initially decreases at a decreasing rate as α grows be-
yond 1, but the data points quickly revert to a decrease
at an increasing rate at larger values of α. It appears as
if Tc might tend to an asymptote near Tc ∼ 1 in the limit
α → ∞, but we have so far been unable to find an ana-
lytical argument supporting this claim. The Tc values we
extract seem to be a good fit when plotted against the
large-L magnetization data, as shown in Fig. 4.

Our Monte Carlo results imply that there is a finite-
temperature continuous phase transition that sponta-
neously breaks the symmetry in the 2D Ising model in
the α-Rényi ensemble for all α ≥ 1, with critical expo-
nents independent of α. The latter claim is backed by
the mean-field prediction for the exponents, the appar-
ent α-independence of the qualitative shape of the |m|
vs T curves through the transition and the quality of the
data collapse. However, from the strong α-dependence of
m (a local observable) and Tc, we cannot conclude that
the Rényi ensemble locally reproduces the Gibbs state in
the limit N → ∞ near the critical point.

It is in a way remarkable that in mean-field theory, the
predicted transition is only continuous below a thresh-

old value of α[c→1st] =
√
13−1
2 ∼ 1.303. In the Rényi

ensemble, the constraint in Eq. (4) is such that at a
given value of α, as temperatures are increased, more and
more higher energy states are made accessible to the sys-
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FIG. 6. Comparison between RNN, Monte Carlo and exact results for the absolute value of the magnetization per spin |m| of
the 2D Ising model in the α-Rényi ensemble as a function of temperature T , for three combinations of system size and Rényi
index.The exact and Monte Carlo results are based on the maximum energy fixed point approach of Sec. IV. A single-layer
RNN was used with 50 memory units [26], 500 samples for gradient estimation, 2×104 training steps and 106 (2×105) samples
for the final observable estimation for the 4 × 4 (6 × 6) system. Overall, the RNN performs strongly for system sizes up to
6 × 6, despite some minor discrepancies near certain discontinuities when the RNN appears to find lower energy fixed points
as per the analysis in Sec. VI. At α = 1.05 in panel (c), |m| becomes ”Gibbs”-like in its continuous nature when compared to
the α = 2 results in panel (b).

tem discontinuously, each suddenly ”turning on” at some
temperature T . Now each state has a different magneti-
zation m, and in the true model, consecutive eigenstates
can be separated by a single spin flip, producing a small
gap in energy and magnetization between such states. In
the thermodynamic limit, this gap vanishes when con-
sidering quantities on a ”per spin” basis, and so, as new
states become accessible with increasing T , their emer-
gence into phase space occurs continuously in this ”per
spin” context. This is essentially what takes place in our
Monte Carlo simulations for all α as N increases. The
difference in mean-field is that the field at each site takes
on the same value—that of the mean-field order param-
eter, m. Thus, the per-spin gaps in energy and magneti-
zation between consecutive eigenstates do not vanish as
N → ∞, implying first-order behavior at a prospective
transition, assuming α is large enough. If α is small,
the right-hand side of Eq. (4) is such that most states
become accessible at all T , making continuous changes
more likely. This is why mean-field theory predicts the
existence of both continuous and first-order regimes.

VI. 2D ISING MODEL: RECURRENT NEURAL
NETWORKS

Having shown that Monte Carlo methods can success-
fully simulate the α-Rényi ensemble, we now turn to vari-
ational Monte Carlo (VMC). We take inspiration from
Ref. [19, 20] where the authors developed tensor network
and RBM ansätze to variationally simulate quantum spin
models in the the 2-Rényi ensemble at finite temperature.
Specifically, we leverage the positive recurrent neural net-
work (RNN) approach of Refs. [26, 28, 45] and apply it to
the study of the 2D classical Ising model in our ensemble
of interest. The cost function we wish to minimize is the

Rényi free energy Eq. (1), which in the case of a classical
spin model can be rewritten as

Fα =
∑
{σ}

P (σ)E(σ)− T

1− α
log

∑
{σ}

P (σ)P (σ)α−1

 ,

(16)
where P (σ) is the probability associated with a configu-
ration σ and E(σ) is the corresponding energy. If P (σ)
is parameterized by the variational parameters {λ} as
P (σ) → Pλ(σ) then the gradients of Eq. (16) are given
by

∂λFα =
∑
{σ}

Pλ(σ) [∂λ logPλ(σ)]E(σ)

− αT/(1− α)∑
{σ}

Pλ(σ)Pλ(σ)α−1

∑
{σ}

[
Pλ(σ) [∂λ logPλ(σ)]

Pλ(σ)
α−1

]
.

(17)

For large systems, the sum
∑

{σ} cannot be performed

exactly—instead it must be evaluated by drawing inde-
pendent samples {σ(i)} from Pλ(σ), rendering the eval-
uation of the gradients stochastic. The presence of the
generalized purity in the denominator of the second term
of Eq. (17), a quantity that tends to zero rapidly with in-
creasing temperature and increasing system size and one
that must be approximated stochastically, complicates
the VMC process due to the resulting large variance of
the gradient estimate. One way around this is to use the
variance reduction technique proposed by Refs. [46–48],
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FIG. 7. Comparison between the exact 2-Rényi ensemble probability distribution (corresponding to the maximum energy fixed
point) and the distribution of the trained RNN for a 4× 4 system corresponding to the 2D Ising model results in Fig. 6(a) at
(a) T = 1.0, (b) T = 2.4 and (c) T = 4.0. At all temperatures, the RNN finds a mixture of the two symmetry-broken regimes.
The exact results are computed in such a way to also display this mixture. At T = 2.4, the RNN finds a fixed point that is
both lower in energy and free energy compared to the maximum Ēfp, showing that the maximum energy approach does not
always result in the global free energy minimum for small systems near energy discontinuities, as per the discussion in Sec. VI.

which modifies the gradients as

∂λFα =
∑
{σ}

Pλ(σ) [∂λ logPλ(σ)] [E(σ)− E]

− αT/(1− α)∑
{σ}

Pλ(σ)Pλ(σ)α−1

∑
{σ}

[
Pλ(σ) [∂λ logPλ(σ)]

(
Pλ(σ)

α−1 −
∑
{σ}

Pλ(σ)Pλ(σ)
α−1

)]
.

(18)

It can be shown that the new terms in Eq. (18) do not
bias the gradient estimates [26]. The base parameteri-
zation we select for Pλ(σ) is a positive RNN with the
two-dimensional tensorized gated recurrent unit cell (2D
GRU) of Ref. [45], which we couple to the periodic RNN
structure introduced in Ref. [28] with a two-dimensional
sampling path. We use the Adam optimizer of Ref. [49]
to update the parameters.

In Fig. 6, the RNN magnetization results for three dif-
ferent combinations of the Rényi index α and system size
are compared with relevant exact and Monte Carlo re-
sults, both computed using the maximum energy fixed
point approach of Sec. IV. To produce the RNN results,
at each temperature, a single-layer RNN was used with
selected hyperparameters (see Fig. 6 caption). We an-
neal from T = 6, where an RNN initialized with weights
drawn from a Gaussian distribution is optimized, after
which we decrement T by dT = 0.01 and initialize the
RNN at each subsequent temperature using the trained
RNN from the previous temperature. The RNN performs
strongly for the system sizes shown, with the 6×6 results
in particular giving cause for optimism.

At α = 2, minor discrepancies emerge at some inter-
mediate temperatures. To see this clearly, in Fig. 7 we
plot the exact 2-Rényi ensemble probability distribution
associated with the maximum energy fixed point for the
4×4 2D Ising model of Fig. 6(a) and compare it with the

corresponding RNN prediction in three different temper-
ature regimes. The results are a near-perfect match in
the high and low temperature regimes, but at the specific
intermediate temperature shown (T = 2.4), the RNN
finds a lower energy, less entropic fixed point, one that
is shown to be lower in free energy. The conclusion from
Sec. IV that, in the thermodynamic limit, the maximum
energy fixed point produces the global free energy min-
imum remains valid, but for smaller systems, the free
energy may be minimized by a lower energy fixed point
in the vicinity of discontinuities. This might explain the
slight discrepancies between the 6 × 6 RNN and Monte
Carlo results near intermediate temperature discontinu-
ities in Fig. 6(b), despite the curves overlapping well over-
all. We observe that as system size increases, this effect
becomes less pronounced due to the increasingly contin-
uous nature of the curves, until at some large enough L,
the free energy minimum is produced by the maximum
energy fixed point at all T , justifying our approach to the
Monte Carlo fixed point search. The RNN’s success in
finding the equilibrium fixed point at T = 2.4 in Fig. 6(a)
speaks to its expressive power as a variational ansatz.

As α → 1, the magnetization becomes more continu-
ous and the RNN and Monte Carlo results at 6× 6 (see
Fig. 6(c)) generate near perfect overlap. As Fig. 7 shows,
the RNN tends to find mixtures of the two symmetry-
broken regimes after the optimization, which contrasts
with some of our low temperature Monte Carlo simula-
tions that are confined to one or the other.

All in all, the RNN produces promising results, but
our approach is susceptible to difficulties at larger sys-
tem sizes, when we expect the issue of having to estimate
the generalized purity in the denominator of the gradi-
ent to have an effect on convergence. And while this
approach works well for system sizes up to 6 × 6 (and
possibly slightly larger) in the 2D classical Ising model,
we expect further challenges to arise when applying this
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approach to quantum spin models. This emphasizes the
importance of the work of Ref. [20], where a method for
gradient estimation that avoids vanishing denominators
is introduced and applied to the quantum Ising model.

VII. CONCLUSION & OUTLOOK

We developed various techniques to study the gener-
alized α-Rényi ensemble thermal state approximation of
the classical Ising model. First we analyzed the model at
the mean-field level, and found that there is a threshold
value of the Rényi index αc→1st =

(√
13− 1

)
/2 ∼ 1.303

separating continuous and first-order phase transition
regimes. We proceeded to present an analytical argu-
ment as to why there is no finite-temperature symmetry-
breaking phase transition in 1D for all values of the Rényi
index α. For 2D, we developed a Monte Carlo technique
that targets the Rényi ensemble distribution by leverag-
ing an attractive fixed point, and concluded that the true
phase transition of the fully correlated model is contin-
uous for all α ≥ 1. We argued that the Monte Carlo
results, combined with the mean-field predictions, pro-
vide strong evidence that the critical exponents associ-
ated with this transition are independent of α. However,
the predicted critical temperature as extracted from a
data collapse of the magnetization curves is strongly α-
dependent. While our numerical simulations away from
the critical point support the arguments in Refs. [19, 20]
that the Gibbs state and the Rényi ensemble become lo-
cally indistinguishable in the thermodynamic limit, our
results near the critical point suggest that the Rényi en-
semble predictions can diverge from the Gibbs ensemble
even for local observables.

Turning to recurrent neural networks (RNNs), we pre-
sented variational Monte Carlo results for the simula-
tion of the 2D classical Ising model in the Rényi ensem-
ble, finding that the RNN of Refs. [26, 28, 45] performs
strongly as a variational ansatz for system sizes up to
6× 6. For larger systems, our approach to the optimiza-
tion of the α-Rényi free energy suffers from difficulties
involved in estimating a vanishing purity in the denom-
inator of the entropy gradient term. For this, we pay
tribute to the work of Ref. [20], which found a way to
use an RBM ansatz to simulate the 2D quantum Ising
model in the 2-Rényi ensemble while avoiding vanishing
denominators in the gradient.

We anticipate that the combination of the Ref. [20] ap-
proach with highly expressive models such as the RNN
could prove promising for larger systems in the context
of variational studies of the Rényi ensemble in various
classical and quantum spin models of interest. The ap-
parent independence of the critical exponents of the 2D
Ising transition on the Rényi index makes the α-Rényi
ensemble a potentially rich playground for the extraction
of universal properties and critical exponents of finite-
temperature phase transitions in classical and quantum
systems through variational techniques.

OPEN-SOURCE CODE

Our Monte Carlo code, including code for the
fixed point search, is made publicly available at
”https://github.com/andrewjreissaty91/ising_
renyi_ensemble_MonteCarlo”, while details of the
RNN implementation of Sec. VI can be found at
”https://github.com/andrewjreissaty91/ising_
renyi_ensemble_RNN”.
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Appendix A: Mean-Field Details

As detailed in the main text, the mean-field product-
state technique encapsulated by Eq. (6) produces an ex-
pression for the Rényi free energy per spin fα(m) de-
tailed in Eq. (7). The expression fα as a function of
m showcases the existence of a ”threshold” value of the
Rényi index α[c→1st] =

√
13−1
2 ∼ 1.303 below which the

Ising model in the α-Rényi ensemble exhibits a continu-
ous phase transition (α ∈

[
1, α[c→1st]

]
), and above which

it produces a first-order transition (α > α[c→1st]). This
can be seen in Fig. A.1, where fα is plotted in the con-
tinuous regime above and below the critical temperature
Tc, as well in the first-order regime above and below the
transition temperature T ∗.

Let us now derive the threshold value α[c→1st]. To that
end, we need an analytic expression for fα as a function
of the order parameter m, in classic Landau tradition.
We return to Eq. (7), Taylor expand the logarithm about

https://github.com/andrewjreissaty91/ising_renyi_ensemble_MonteCarlo
https://github.com/andrewjreissaty91/ising_renyi_ensemble_MonteCarlo
https://github.com/andrewjreissaty91/ising_renyi_ensemble_RNN
https://github.com/andrewjreissaty91/ising_renyi_ensemble_RNN
www.vectorinstitute.ai/#partners
www.vectorinstitute.ai/#partners
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m = 0 to 6th order, and obtain

f (6)
α ≈ −T log 2 +

1

2
(αT − qJ)m2

+
αT

24
[(α− 2)(α− 3)− 3α(α− 1)]m4

+
αT

720

[
30α2(α− 1)2 − 15α(α− 1)(α− 2)(α− 3)

+ (α− 2)(α− 3)(α− 4)(α− 5)]m6,

(A1)

where f
(6)
α has been defined as the O(m6) approxima-

tion to fα. We can show that only even orders sur-
vive the Taylor expansion, fulfilling the Landau theory
vision of having an analytic free energy that captures
the symmetries of the Hamiltonian, in this case the Z2

spin-flip symmetry of the Ising model. We justify ig-
noring higher orders than O(m6) because in the vicinity
of α[c→1st], the transition is either continuous or ”nearly
continuous”, and so m ∼ 0 for all T near Tc or T ∗. We
also choose to restrict ourselves to 6th order specifically
because free energy expressions that capture first-order
transitions tend to have five extrema (three minima and
two maxima) near the transition temperature, and to
produce this number of extrema, at minimum an O(m6)
expression is needed. By plotting fα as a function of
m for values of α just above the numerically deduced
α[c→1st] ∼ 1.3, we confirm that five extrema emerge in
the interval m ∈ [−1, 1] when T ∼ T ∗, as can be seen in
Fig. A.1.

FIG. A.1. Mean-field α-Rényi free energy per spin (Eq. (7))
as a function of magnetization m for a value of α for which
the mean-field phase transition is continuous (α = 1.2) and
a value of α for which the transition is first-order (α = 1.5).
The dashed and solid curves respectively showcase the free
energy just above and below the given transition. At each
temperature, the phase is determined by the value of m that
minimizes fα globally, m. Below the transition, the symmetry
is broken (m ̸= 0) while above it, it is maintained (m = 0).

We find that the f
(6)
α approximation captures the ex-

act value of α at which five extrema begin to emerge for

fα near the transition. When fα has five extrema, f
(6)
α

also has five extrema, although in the case of the latter,
the extrema may extend beyond the interval m ∈ [−1, 1]
depending on α. In short, the O(m6) analysis is suffi-
cient for our goal. We now turn to Eq. (A1) to extract

α[c→1st]. Setting
∂f(6)

α

∂m = 0 and pulling out a factor m
which produces an extremum at m = 0, the remaining
extrema are the solutions of

Am4 +Bm2 + C = 0, (A2)

where we have defined

A ≡ αT

720

[
30α2(α− 1)2 − 15α(α− 1)(α− 2)(α− 3)

+ (α− 2)(α− 3)(α− 4)(α− 5)] ,

B ≡ αT

24
[(α− 2)(α− 3)− 3α(α− 1)] ,

C ≡ 1

2
(αT − qJ).

The solution to Eq. (A2) is

m2 =
−B ±

√
B2 − 4AC

2A
. (A3)

In order for Eq. (A3) to be able to generate four real ex-
trema (on top of the m = 0 extremum discussed above),
we must have −B > 0, while m2 and the argument of the
square root must also be positive. We find that for values
of α just above the approximate value of α[c→1st] ∼ 1.3,

the sign of B2 − 4AC depends on the temperature T .
Thus, the emergence of five extrema is determined first
by the sign of −B, and then by the choice of T . As such,
setting −B > 0 ends up being a sufficient condition for
the derivation of the exact α[c→1st]. We have

− [(α− 2)(α− 3)− 3α(α− 1)] > 0,

α2 + α− 3 > 0,(
α+

1

2

)2

>
13

4
−→ α >

√
13− 1

2
.

In other words, in order to have the possibility of five real
extrema and thus a first-order transition, we must have

α >
√
13−1
2 , which recovers equation Eq. (9) for α[c→1st].

Computing the exact fα for any α above and below

this exact threshold α confirms that α[c→1st] =
√
13−1
2

separates the continuous and first-order regimes exactly.
In addition, a related analysis using the O(m4) Taylor
expansion of fα, one that we do not detail here, can be
performed, and we find that it also produces the same
exact result for α[c→1st].

Appendix B: The α-Rényi Ensemble Fixed Point

Let us now consider the Rényi ensemble at α = 2. We
wish to study the nature of its fixed point. We define the
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function f2
(
Ē
)
as

f2
(
Ē
)
=

nβ∑
j=0

NjEj

[
1− 1

2β(Ej − Ē)
]

nβ∑
j=0

Nj

[
1− 1

2β(Ej − Ē)
] , (B1)

which corresponds to the left-hand side of Eq. (5) with
α = 2. At the fixed point Ē = Ēfp, we have f2

(
Ēfp

)
=

Ēfp. Now, in order to prove that the fixed point is at-
tractive, we would have to show that∣∣f2 (Ēfp + dĒ

)
− f2

(
Ēfp

)∣∣ < ∣∣dĒ∣∣ , (B2)

where we have defined dĒ as an infinitesimal perturba-
tion away from the fixed point. Given Eq. (B1), we can
write

f2
(
Ēfp + dĒ

)
=

nβ∑
j=0

NjEj

[
1− 1

2β(Ej − Ēfp)
]
+ 1

2βdĒ
nβ∑
j=0

NjEj

nβ∑
j=0

Nj

[
1− 1

2β(Ej − Ēfp)
]
+ 1

2βdĒ
nβ∑
j=0

Nj

(B3)

≡ X +X ′

Y + Y ′ , (B4)

where the variables X ≡
nβ∑
j=0

NjEj

[
1− 1

2β(Ej − Ēfp)
]
,

X ′ ≡ 1
2βdĒ

nβ∑
j=0

NjEj , Y ≡
nβ∑
j=0

Nj

[
1− 1

2β(Ej − Ēfp)
]

and Y ′ ≡ 1
2βdĒ

nβ∑
j=0

Nj have been defined to supplement

the subsequent analysis. In all the above equations, we
have assumed that a perturbation of the fixed point Ēfp

by an infinitesimal quantity dĒ does not change the set
of nβ + 1 energies that satisfy the constraint in Eq. (4)
when Ē = Ēfp.
Next, we consider Eq. (B2). In the language of X and

Y , if the fixed point is attractive, it must mean that∣∣∣∣X +X ′

Y + Y ′ − X

Y

∣∣∣∣ < ∣∣dĒ∣∣ . (B5)

Some algebraic work yields

∣∣∣∣X +X ′

Y + Y ′ − X

Y

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1
2β

nβ∑
j=0

Nj(Y Ej −X)dĒ

Y 2 + Y 1
2β

nβ∑
j=0

NjdĒ

∣∣∣∣∣∣∣∣∣
≈

∣∣∣∣∣∣∣∣∣
1
2β

nβ∑
j=0

Nj(Y Ej −X)

Y 2

∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≡A

∣∣dĒ∣∣ , (B6)

where the fraction A, which we can write as

A =∣∣∣∣∣∣∣∣∣
1
2β

nβ∑
j=0

nβ∑
k=0

NjNk

[
1− 1

2β(Ej − Ēfp)
]
(Ek − Ej)

nβ∑
j=0

nβ∑
k=0

NjNk

[
1− 1

2β(Ej − Ēfp)
] [

1− 1
2β(Ek − Ēfp)

]
∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1
2β

nβ∑
k=0

Nk(Ek − Ēfp)

nβ∑
k=0

Nk

[
1− 1

2β(Ek − Ēfp)
]
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1
2β

nβ∑
k=0

Nk(Ek − Ēfp)

nβ∑
k=0

Nk − 1
2β

nβ∑
k=0

Nk(Ek − Ēfp)

∣∣∣∣∣∣∣∣ , (B7)

must be less than 1 in order for the fixed point to be at-
tractive. In the high-temperature limit, β tends to zero

and we have
nβ∑
k=0

Nk ≫ O(β), producing A < 1 and thus

an attractive fixed point. In the opposite limit T → 0,
the ground state fixed point Ēfp = E0 must be attrac-
tive as well since the sums in Eq. (B7) have only one
term Ek − Ēfp = E0 − E0 = 0, so at low temperatures,
the ground state fixed point, which our 2D Monte Carlo
simulations of the Ising model indeed find, is attractive
as well with A < 1. We also showed in Sec. IV that in
the 1D Ising model in the generalized α-Rényi ensemble,
there are an infinite number of lower energy fixed points
Efp = E0, E1, E2, ... that can be found in the thermody-

namic limit for any T ∈
[
0, α−1

α 4J
) ∣∣∣∣

α=2

= [0, 2J) such

that Ej ≤ Efp for all allowed energies {Ej}. For each of

those those fixed points, we have
nβ∑
k=0

Nk(Ek − Ēfp) ≤ 0,

producing A < 1 in Eq. (B7) and thus a large set of
attractive fixed points.
In our exact and Monte Carlo simulations of the 1D

and 2D Ising models with no external field, we observe
that the maximum energy fixed point, which we explicitly
target, is also attractive for all values of the Rényi index
α > 1 that we test.



14

[1] E. Y. Loh, Jr., J. E. Gubernatis, R. T. Scalettar, S. R.
White, D. J. Scalapino, and R. L. Sugar, “Sign problem
in the numerical simulation of many-electron systems,”
Phys. Rev. B 41, 9301 (1990).

[2] A. W. Sandvik and J. Kurkijärvi, “Quantum Monte
Carlo simulation method for spin systems,” Phys. Rev.
B 43, 5950 (1991).

[3] P. Henelius and A. W. Sandvik, “Sign problem in Monte
Carlo simulations of frustrated quantum spin systems,”
Phys. Rev. B 62, 1102 (2000).

[4] M. Troyer and U.-J. Wiese, “Computational complex-
ity and fundamental limitations to fermionic quantum
Monte Carlo simulations,” Phys. Rev. Lett. 94, 170201
(2005).

[5] C. Wu and S.-C. Zhang, “Sufficient condition for absence
of the sign problem in the fermionic quantum Monte
Carlo algorithm,” Phys. Rev. B 71, 155115 (2005).

[6] Z.-X. Li, Y.-F. Jiang, and H. Yao, “Solving the fermion
sign problem in quantum Monte Carlo simulations by
Majorana representation,” Phys. Rev. B 91, 241117(R)
(2015).

[7] Z. C. Wei, Congjun Wu, Yi Li, Shiwei Zhang, and T. Xi-
ang, “Majorana positivity and the fermion sign problem
of quantum Monte Carlo simulations,” Phys. Rev. Lett.
116, 250601 (2016).

[8] S. Sugiura and A. Shimizu, “Thermal pure quantum
states at finite temperature,” Phys. Rev. Lett. 108,
240401 (2012).

[9] S. Sugiura and A. Shimizu, “Canonical thermal pure
quantum state,” Phys. Rev. Lett. 111, 010401 (2013).

[10] K. Takai, K. Ido, T. Misawa, Y. Yamaji, and M. Imada,
“Finite-temperature variational Monte Carlo method for
strongly correlated electron systems,” Journal of the
Physical Society of Japan 85, 034601 (2016).

[11] A. Iwaki, A. Shimizu, and C. Hotta, “Thermal pure
quantum matrix product states recovering a volume law
entanglement,” Phys. Rev. Research 3, L022015 (2021).

[12] Y. Nomura, N. Yoshioka, and F. Nori, “Purifying deep
boltzmann machines for thermal quantum states,” Phys.
Rev. Lett. 127, 060601 (2021).

[13] N. Irikura and H. Saito, “Neural-network quantum states
at finite temperature,” Phys. Rev. Research 2, 013284
(2020).

[14] S. R. White, “Minimally entangled typical quantum
states at finite temperature,” Phys. Rev. Lett. 102,
190601 (2009).

[15] E. M. Stoudenmire and S. R. White, “Minimally entan-
gled typical thermal state algorithms,” New J. Phys. 12,
055026 (2010).

[16] J. Nys, Z. Denis, and G. Carleo, “Real-time quantum
dynamics of thermal states with neural thermofields,”
(2023), arXiv:2309.07063 [quant-ph].

[17] F. Vicentini, R. Rossi, and G. Carleo, “Positive-definite
parametrization of mixed quantum states with deep neu-
ral networks,” (2022), arXiv:2206.13488 [quant-ph].

[18] A. G. Bashkirov, “Maximum Rényi entropy principle for
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