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The area law of the bipartite information measure characterizes one of the most fundamental
aspects of quantum many-body physics. In thermal equilibrium, the area law for the mutual in-
formation universally holds at arbitrary temperatures as long as the systems have short-range in-
teractions. In systems with power-law decaying interactions, r−α (r: distance), conditions for the
thermal area law are elusive. In this work, we aim to clarify the optimal condition α > αc such
that the thermal area law universally holds. A standard approach to considering the conditions is
to focus on the magnitude of the boundary interaction between two subsystems. However, we find
here that the thermal area law is more robust than this conventional argument suggests. We show
the optimal threshold for the thermal area law by αc = (D + 1)/2 (D: the spatial dimension of the
lattice), assuming a power-law decay of the clustering for the bipartite correlations. Remarkably,
this condition encompasses even the thermodynamically unstable regimes α < D. We verify this
condition numerically, finding that it is qualitatively accurate for both integrable and non-integrable
systems. Unconditional proof of the thermal area law is possible by developing the power-law clus-
tering theorem for α > D above a threshold temperature. Furthermore, the numerical calculation
for the logarithmic negativity shows that the same criterion α > (D + 1)/2 applies to the thermal
area law for quantum entanglement.

Introduction.— Quantum correlation and entan-
glement play pivotal roles in understanding quan-
tum many-body systems from an information-theoretic
standpoint. They help in identifying the exotic quan-
tum phases [1–3] and serve as crucial resources in quan-
tum information processing [4]. One hallmark of quan-
tum many-body systems is the area law for the ground
state [5], which posits that the correlation and entan-
glement between two subsystems are constrained by the
surface area of their interface. This principle has under-
gone extensive verification through both analytical and
numerical approaches in a wide array of scenarios [6–16].
The area law not only elucidates the inherent complexi-
ties of quantum systems but also significantly enhances
their simulatability using classical computers [17, 18].

The quantum Gibbs state describing thermal equilib-
rium obeys an analogous principle, known as the ther-
mal area law, as long as the systems have short-range
interactions [19–23]. This law is reflected by the behav-
ior of mutual information, which contains both classical
and quantum correlations, as illustrated by the follow-
ing inequality:

I(A : B) ≤ 2β∥H∂A∥ , (1)

where I represents the mutual information of the Gibbs
state between two subsystems A and B at an inverse
temperature β. Here, ∥H∂A∥ denotes the operator norm
of the boundary interaction Hamiltonian, defined as the
sum of interactions whose supports intersect with the
boundary ∂A of A. In the short-range interacting case,
the norm of these boundary interactions scales with the
boundary area |∂A|, thereby affirming the thermal area
law. This law is not only relevant to mutual information
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FIG. 1. Schematic of the results. The thermal area law is
satisfied for α > (D + 1)/2 (indicated by a red region). The
thermal area law is much more robust than the relation (1)
suggests (a blue region). The key physics behind the area
law is the power-law clustering of bipartite correlations.

but also extends to a wider range of bipartite informa-
tion measures [20–22]. We also note that a recent study
has further clarified that genuine quantum correlations
cannot be as large as the system size for short-range
interacting systems [24].

In contrast to short-range interactions, the general
aspects of locality in long-range interacting systems re-
main less understood. Long-range interactions here re-
fer to interactions that decay as r−α with distance r
[25], which are ubiquitous in nature such as in atomic,
molecular, and optical systems [26–31]. These inter-
actions lead to non-trivial phenomena absent in short-
range systems [32–40]. Key unresolved issues include
(i) identifying the critical threshold αc above which any
systems have the thermal area law, (ii) understand-
ing the underlying physics, and (iii) distinguishing be-
tween classical and quantum correlations. This paper
addresses these questions as fundamental physics. In
a practical aspect, this direction may lead to finding
an efficiency-guaranteed algorithm for simulating the
long-range quantum Gibbs state. Should the funda-
mental physics be governed solely by the magnitude of
the boundary interaction, then the inequality (1) could
already be considered optimal; that is, the condition
of the thermal area law is given by α > D + 1 (or
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αc = D + 1), which is required to ensure ∥H∂A∥ ∝ |∂A|
as in [39]. Indeed, the threshold given by the finite
boundary interaction recurs across various contexts in
physics, indicating that physical properties undergo
qualitative changes at this threshold in various many-
body systems [39, 41–45].

However, in this work, we discover that the underly-
ing physics of the thermal area law is influenced by a
different characteristic: the clustering property, which
is expected to remain robust in any noncritical phases.
Note that the clustering property has been widely
adopted as a basic and natural assumption in discussing
various quantum properties such as entanglement area
law [14], quantum Gibbs sampling [46, 47], the eigen-
state thermalization [48, 49], etc. Consequently, we
show that the thermal area law for mutual information
possesses a greater resilience than traditionally antici-
pated. Utilizing the power-law clustering properties in
bipartite correlations, we analytically find that the suf-
ficient condition for the thermal area law in the mutual
information is given α > (D + 1)/2. Regarding the
critical threshold αc above which any systems satisfy
the thermal area law, our numerical analysis concludes
that αc = (D + 1)/2, since below αc we provide explicit
examples violating the area law. Remarkably, this con-
dition encompasses α < D, where the thermodynamic
extensivity is violated [25]. In this regime, most ana-
lytical techniques break down, and universal behaviors
remain largely unexplored. While the numerical inves-
tigation suggests that the clustering property robustly
holds even for thermodynamic nonextensive regimes, we
demonstrate that the power-law clustering theorem can
be rigorously derived for α > D by identifying a suit-
able temperature regime. Consequently, the thermal
area law unconditionally holds for α > D. Our key
results are depicted schematically in Fig. 1.

In addition, we investigate whether differences exist
between quantum and classical correlations in the con-
text of the thermal area law. By employing the logarith-
mic negativity proposed by Shapourian, Shiozaki, and
Ryu for bilinear fermionic systems [50], we demonstrate
that this criterion equally governs the thermal area law
for quantum entanglement.

Setup.— We consider a quantum system with N qu-
dits or fermions on the D-dimensional lattice. Let Λ be
the set of all sites on the lattice of N sites. We consider
the Hamiltonian H in the k-local form:

H =
∑

Z:|Z|≤k

hZ , (2)

where Z is a set of interaction sites and |Z| denotes the
number of interacting sites (i.e., |Z|-body interaction).
We consider the long-range interactions satisfying the
following condition

Ji,i′ :=
∑

Z:Z∋{i,i′}

∥hZ∥ ≤ g

(1 + di,i′)α
. (3)

Here, Ji,i′ is the maximum norm of the local Hamilto-
nian including the sites i and i′, and g is some constant.
The symbol di,i′ stands for the Manhattan distance be-
tween the sites i and i′. The parameter α is the in-
dex of power-law decay in the interaction. We will pro-
vide examples of the Hamiltonian in (9) and (10) later.

Note that the Hamiltonian does not contain the Kac
factor for the thermodynamically nonextensive regime
α < D, since such a factor does not exist in realistic
situations [28, 51].

The quantum Gibbs state ρβ at an inverse tempera-
ture β is defined as ρβ := e−βH/tr(e−βH). The mutual
information of ρβ between two regimes A and B is de-
fined as

Iρβ
(A : B) := S(ρA

β ) + S(ρB
β ) − S(ρAB

β ), (4)

where ρX
β is the reduced density matrix of ρβ on the

subset X ⊆ Λ, and S(ρX
β ) := −tr(ρX

β log ρX
β ) is the von

Neumann entropy. We define the correlation function
of two observables OA and OB as

Corρβ
(OA, OB) := tr(ρβOAOB) − tr(ρβOA) · tr(ρβOB).

(5)

Main theorem.— We find that the thermal area law
of the mutual information holds above some power-law
threshold with the assumption of clustering.

Theorem 1: Let us assume that the correlation func-
tion of the quantum Gibbs state ρβ between two arbitrary
operators Oi and Oi′ supported on the sites i and i′ sat-
isfies the following power-law clustering property:

Corρβ
(Oi, Oi′) ≤ C

dα
i,i′

∥Oi∥ · ∥Oi′∥, (6)

where C is an O(1) constant. Then, for the bipartition
A, B of D-dimensional lattice Λ (A ∪ B = Λ) and α >
(D + 1)/2, the mutual information is upper bounded by

Iρβ
(A : B) ≤ const.β|∂A| . (7)

We postpone the proof to the end of the paper (the
details are in the supplementary material (SM) [52]).
Below, we focus on physically crucial points. The the-
orem ensures that the thermal area law holds for the
regime α > (D + 1)/2. This condition encompasses a
broader scope compared to the condition found in pre-
viously established thermal area law (1). It is known
that (e.g., Ref. [39]) the operator norm ∥H∂A∥ in (1) is
upper-bounded by the boundary area between A and B
when α > D+1 for generic interacting systems (the con-
dition for the bilinear systems is α > D/2 + 1). Hence,
the condition given in the theorem means that the ther-
mal area law is much more robust than expected from a
simple argument on the norm of the boundary interac-
tion. Remarkably, the condition partially includes the
thermodynamically nonextensive regime.

Power-law clustering and unconditional thermal area
law.— Theorem 1 suggests that the crucial physics be-
hind the thermal area law is not only from the mag-
nitude of the boundary interaction but also from the
clustering property. Note that the clustering property
is expected to be one of the robust physical properties in
non-critical thermal phases, rendering it an inherently
natural assumption [14]. We here demonstrate that the
power-law clustering property can be rigorously proven
for α > D above a temperature threshold as shown in
the following theorem 2.
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Theorem 2: Under the general Hamiltonian (2) with
(3) for the regime α > D, the following clustering prop-
erty holds for the temperatures above β−1

c :

Corρβ
(OX , OY ) ≤ C∥OX∥ · ∥OY ∥ |X||Y | e(|X|+|Y |)/k

dα
X,Y

,

(8)

where dX,Y = mini∈X,j∈Y di,j and |X| and |Y | are num-
bers of sites in the regions X and Y , respectively. C is
an O(1) constant and the threshold temperature is given
by βc = 1/(8ugk) with u =

∑
j∈Λ 1/(1 + di,j)α.

The proof is based on the cluster expansion technique.
The details in the proof are provided in the SM [52].
To the best of our knowledge, this is the first result to
establish the power-law clustering theorem in quantum
long-range interacting systems.

From this statement, the clustering property in The-
orem 1 is not an assumption but rigorously holds above
a threshold temperature as long as the thermodynam-
ically extensive regime (i.e., α > D) is considered. In
particular, in 1D systems, the clustering property is be-
lieved to hold at arbitrary temperatures [53, 54]. More-
over, we stress that even in the thermodynamically
nonextensive regime (α < D), numerical calculations
for the two models below show the validity of the clus-
tering property.

Numerical verification.— We numerically verify our
theorems in both integrable and nonintegrable systems,
establishing the bound’s tightness.

As a typical example of integrable systems, we use
the following long-range bilinear fermion system:

H = −
∑

i,j∈Λ

ti,j

dα
i,j

(c†
i cj + c†

jci), (9)

where ti,j is a hopping parameter of order O(1), and
ci and c†

i are the annihilation and creation operators of
the spinless fermion at site i, respectively. We consider
the Hamiltonian in the one dimension (1D) and the two
dimension (2D).

We first verify the clustering property (6) in the
Hamiltonian (9) [55, 56]. We analyze a 1D chain of
N = 1000 sites and a 2D square lattice of side length
N = 40, focusing on two-point correlation functions
⟨c†

i ci+r⟩ in 1D and ⟨c†
ici+r⟩ in 2D, setting β = 2. To

consider general bilinear systems, we assign randomly
chosen values ∈ [0, 1] to the hopping variable, and take
the average over 1000 samples. In Figs. 2(a) and (b),
we observe that |⟨c†

i ci+r⟩|× rα and |⟨c†
ici+r⟩|× |r|α sat-

urate at large distances for any α, thus verifying the
clustering property in both dimensions. Note also that
the clustering property holds even for α < D. While we
show here the averaged data over samples, even indi-
vidual data show the clustering property (not shown).
This indicates all correlation functions adhere to this
property due to the Wick theorem.

After establishing the clustering property, we affirm
the thermal area law is applicable for α > (D + 1)/2,
a sufficient condition whose optimality warrants exam-
ination. Let us investigate how tight the condition is,
through the numerical calculation with the same model.
The system is partitioned into subsystems A and B,
with A including the first N/2 sites and B the rest in
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FIG. 2. 1D and 2D long-range bilinear fermions. (a) The
two-point correlation function |⟨c†

i ci+r⟩| in the 1D chain of
N = 1000 sites between the (i = 250)th site and (i + r)-th
site multiplied by rα for different α’s. (b) The two-point
correlation function |⟨c†

ici+r⟩| in the 2D square lattice with
a side length N = 40 between the site i = (10, 10) and the
site i + r = (10 + r, 10 + r) multiplied by |r|α for different
α’s. (c) The mutual information Iρβ (A : B) in the 1D chain
of sites N between half (A) of the system and the other
half (B). (d) The mutual information Iρβ (A : B) in the 2D
square lattice with a side length N between half (A) of the
system and the other half (B) divided by N . All the figures
are the average over the 1000 samples of random variables
ti,j ∈ [0, 1] in Eq. (9) at β = 2.

1D. For 2D, A comprises the initial (N ×N/2) sites, and
B the remaining. The mutual information Iρβ

(A : B) is
calculated with the same parameters from the clustering
property study. Results are presented in Figs. 2(c) for
1D and (d) for 2D. The mutual information increases
with the system size if α < 1 and it saturates to a con-
stant value if α > 1 in 1D. In 2D, the mutual informa-
tion divided by the boundary area N grows for α < 1.5
and steadies for α > 1.5. These numerical results sup-
port the thermal area law holds for α > (D + 1)/2, and
hence the condition is optimal.

In general, bilinear systems can be special in sev-
eral physical aspects not only for the non-equilibrium
properties [57] but also for the static properties in-
cluding the thermal entanglement [58–60]. However,
the clustering is expected to be robust, regardless of
the (non)integrability, and hence the thermal area law
should also hold universally. We here check this uni-
versality using the specific nonintegrable system. Let
us consider the one-dimensional long-range Heisenberg
spin-1/2 chain of N sites

H =
∑

1≤i<j≤N

1
dα

i,j

Si · Sj , (10)

with a spin-1/2 operator Si = (Sx
i , Sy

i , Sz
i ) at site i.

Exploring the clustering property of ⟨Si · Si+r⟩ with
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FIG. 3. 1D long-range Heisenberg chain. (a) The two-point
correlation function |⟨Si · Si+r⟩| multiplied by rα in the 1D
chain with N = 200 sites between (i = 50)th site and (i +
r)th site at β = 2 for different α’s. (b) The entanglement
entropy Eq. (12) of the thermofield double state of the Gibbs
state at β = 2 for different α’s. We choose two subsystems
as half of the system and the other half and change the size
N of the chain. Here, we use the XTRG algorithm and
set bond dimensions (SU(2) multiplets) of 210 and 120 for
(a) and (b), which correspond approximately 850 and 450
states, respectively.

N = 200 and β = 2, we employ the exponential ten-
sor renormalization group (XTRG) algorithm, as de-
tailed in references [61, 62], in conjunction with the
QSpace tensor library [63, 64]. This approach enables
us to construct the matrix product operator for the
Gibbs state ρβ . See [65] for details. Fig. 3(a) presents
|⟨Si ·Si+r⟩| × rα, evidencing clustering by constant up-
per bounds. This observation, as well as the bilinear
Hamiltonian case, strongly suggests that the clustering
universally holds.

To verify the thermal area law, we compute the
entanglement entropy (E) for the thermofield double
(TFD) state of Gibbs state ρβ as it upper bounds
the mutual information [66]. We consider two iden-
tical copies HL and HR of the original Hilbert space
H. For the eigenvalues {En} and eigenstates {|n⟩}
of the Hamiltonian, the TFD state of the Gibbs state
ρβ =

∑
n e−βEn/tr(e−βH)|n⟩⟨n| is defined as

|TFD⟩ := 1√
tr(e−βH)

∑
n

e−βEn/2|n⟩L ⊗ |n⟩R. (11)

Partitioning the system into halves A and B, we define
E as the von Neumann entropy of the reduced density
matrix σAL,AR

= trBL,BR
(|TFD⟩⟨TFD|):

E := S(σAL,AR
) = −tr(σAL,AR

log σAL,AR
), (12)

where AL and AR (BL and BR) are the copies of the
original subsystem A (B). Then the mutual information
is upper-bounded by 2E , i.e. Iρβ

(A : B) ≤ 2E [22, 67].
We show the results of E in Fig. 3(b). E trends upward
for α < 1 and stabilizes for α > 1, supporting the ther-
mal area law’s optimality condition. While this discus-
sion focuses solely on Hamiltonian (10), it’s worth not-
ing that similar behaviors are numerically demonstrated
even when the disorder is added into the Hamiltonian
(see SM [52]).

Thermal area law in the quantum entanglement.—
The mutual information includes both classical and
quantum correlations. We now extract purely quantum
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FIG. 4. The SSR negativity ESSR of long-range bilinear
fermions. (a) ESSR of the 1D chain of N sites and (b)
ESSR/N of the 2D square lattice with a side length N be-
tween one half of the system and the other half for different
α’s. The figures are averaged over the 1000 samples of ran-
dom variables ti,j ∈ [0, 1] in Eq. (9) at β = 2.

correlations from the Gibbs state to analyze the thermal
area law condition. To this end, we investigate bilin-
ear fermionic systems (9) using Shapourian, Shiozaki,
and Ryu’s (SSR) logarithmic negativity [50] to quantify
quantum entanglement between subsystems A and B
in a mixed state efficiently. The SSR logarithmic neg-
ativity is formulated through the partial time-reversal
transform RA, yielding:

ESSR(ρ) := log ∥ρRA∥1 , (13)

where ∥ · ∥1 is the trace norm. Details on the SSR
logarithmic negativity for bilinear systems are in the
SM [52]. We calculate this for 1D and 2D Hamiltonian
systems (9) with identical parameters and partitioning
as mutual information, showing results in Figs. 4 (a) for
1D and (b) for 2D. These figures demonstrate that the
SSR logarithmic negativity shows the same behavior as
the mutual information in Figs 2(c) and (d). Hence, the
figures indicate that under the same conditions, namely
α > (D + 1)/2, quantum entanglement likewise follows
the thermal area law.

Proof of main theorem.— We here provide the out-
line of the proof of the main theorem. For the sake of
simplicity, we focus on the simple case where hZ is hi,j

that acts only on two different points i, j ∈ Λ. The
proof for the general case is in the SM [52]. Let us con-
sider the total Hamiltonian H = HA+HB +H∂A, where
HA, HB are the Hamiltonian supported only on A, B,
respectively. The part H∂A is the interaction Hamilto-
nian between A and B, given as H∂A =

∑
i∈A

∑
j∈B hi,j

with hi,j =
∑d4

0
s=1 h

(s)
i ⊗ h

(s)
j . Here, d0 is the Hilbert di-

mension of the one site. Following Ref. [19], one has the
following inequality from the Gibbs variational princi-
ple:

F (ρ) − F (ρβ) = β−1D(ρ||ρβ) ≥ 0 , (14)

where F (ρ) is the nonequilibrium free energy defined as
F (ρ) := tr(Hρ) + β−1tr[ρ log(ρ)] and D is the quan-
tum relative entropy defined as D(ρ||σ) = tr(ρ log ρ) −
tr(ρ log σ). Plugging ρ = ρA

β ⊗ ρB
β into this inequality,
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one obtains the relation on the mutual information:

Iρβ
(A : B) ≤ β tr

[
(ρA

β ⊗ ρB
β − ρAB

β )H∂A

]
= β

∑
i∈A

∑
j∈B

∑
s

Corρβ
(h(s)

i , h
(s)
j ) . (15)

The assumption of the clustering property leads to

Iρβ
(A : B) ≤ C

∑
i∈A

∑
j∈B

∑
s

β∥h
(s)
i ∥ · ∥h

(s)
j ∥d−α

i,j . (16)

By the condition (3), we have

max
s

(
∥h

(s)
i ∥, ∥h

(s)
j ∥
)

≤ Ji,j ≤ g

dα
i,j

. (17)

Combining Eq. (16) and Eq. (17), we finally obtain

Iρβ
(A : B) ≤

∑
i∈A

∑
j∈B

βd4
0gC

d2α
i,j

. (18)

It can be proven that the summation of the distance∑
i∈A

∑
j∈B d−2α

i,j is upper bounded by the boundary
area when 2α > D + 1. Therefore, Ineq. (18) leads to
the desired inequality (7).

Summary and outlook.— We consider the validity of
the thermal area law in the systems with long-range
interactions r−α. Under the assumption of the cluster-
ing property, we derive the critical threshold αc := (D+
1)/2 above which any systems obey the thermal area law
of the mutual information (See Fig.1). Remarkably, the
regime covers thermodynamically nonextensive regime.
This criteria potentially may allow for an efficient repre-
sentation of quantum Gibbs states exhibiting a power-
law decay up to r−αc . Given this criterion, it is a crucial
future problem to develop an efficiency-guaranteed algo-
rithm for simulating long-range interacting systems at
finite temperatures, as well as constructing tensor net-
work states with polynomial bond dimensions [68, 69].
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S.I. SETUP

We consider a quantum system, where we use Λ to represent the set of sites. Given an arbitrary subset X in
Λ, X ⊆ Λ, we denote the cardinality of the set X, i.e., the number of sites contained in X, by |X|. For any two
subsets X, Y in Λ, X, Y ⊆ Λ, we define the distance between the two sets, dX,Y , as the shortest path length of
the graph that connects X and Y . We remark that when X intersects with Y , X ∩ Y ̸= ∅, the distance between
the sets X and Y is zero: dX,Y = 0. We denote the complementary set of X as Xc, namely Xc := Λ \ X, and
the surface subset of X as ∂X, i.e. ∂X := {i ∈ X|di,Xc = 1}, respectively. Also, for an arbitrary operator O, we
denote the support of O by Supp(O). We often describe the support of the operator explicitly by adding an Index
of lower right subscript such as OX with Supp(OX) = X.

We consider a k-local Hamiltonian H with long-range interactions:

H =
∑

Z:|Z|≤k

hZ , (S.0)

where Z is a subset indicating the interacting sites, and hZ is the local Hamiltonian. Note that |Z| is the number
of the interacting sites, and hence hZ means Z-body interaction. We assume that the interaction form satisfies the
following property

Ji,i′ :=
∑

Z:Z∋{i,i′}

∥hZ∥ ≤ g

(1 + di,i′)α
. (S.1)

Here, Ji,i′ is the maximum operator norm of the local Hamiltonians containing the sites i and i′.
We consider the quantum Gibbs state ρβ with a fixed inverse temperature β defined as follows:

ρβ := e−βH/Z, Z = tr(e−βH). (S.2)

The mutual information of ρβ between two subsets A and B is defined as

Iρβ
(A : B) := S(ρA

β ) + S(ρB
β ) − S(ρAB

β ), (S.3)

where ρX
β is the density matrix of ρβ for the regime X ∈ {A, B, AB} and S(ρX

β ) := −tr(ρX
β log ρX

β ) is the von
Neumann entropy. The standard correlation function of the density matrix ρ between two observables OA and OB

is defined as

Corρ(OA, OB) := tr(ρOAOB) − tr(ρOA) · tr(ρOB). (S.4)
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S.II. PROOF OF MAIN THEOREM IN A GENERAL SETTING

Theorem 1. Let us assume that the correlation function of the quantum Gibbs state ρβ between two arbitrary
operators OX and OY supported on the subsets X and Y in Λ satisfies the following power-law clustering property:

Corρβ
(OX , OY ) ≤ C

dα
X,Y

∥OX∥ · ∥OY ∥, (S.5)

where C is an O(1) constant. Then, for the bipartition A, B of D-dimensional lattice Λ (A ∪ B = Λ) and α >
(D + 1)/2, the mutual information is upper bounded by

Iρβ
(A : B) ≤ β · C · |∂A| · const. (S.6)

Proof. We partition the lattice Λ into two subsets A, B ⊂ Λ and write the Hamiltonian as H = HA + HB + H∂A.
Here, HA, HB are the Hamiltonian supported only on A, B, respectively, and H∂A is the interaction between A
and B, i.e.,

H∂A =
∑

Z:Z∩A̸=∅
Z∩B ̸=∅

hZ . (S.7)

Using the non-negativity of the quantum relative entropy D(ρ∥σ) := tr(ρ(log ρ − log σ)) yields

D(ρ∥ρβ) = βtr(ρH) − S(ρ) + log Z = βFβ(ρ) − βFβ(ρβ) ≥ 0, (S.8)

for an arbitrary density matrix ρ. Here, Fβ(ρ) is the free energy defined as

Fβ(ρ) := tr(ρH) − β−1S(ρ), (S.9)

and it becomes Fβ(ρβ) = −β−1 log Z at equilibrium. Substituting ρ = ρA
β ⊗ ρB

β and using Iρβ
(A : B) = S(ρA

β ⊗
ρB

β ) − S(ρAB
β ) and tr((HA + HB)ρA

β ⊗ ρB
β ) = tr((HA + HB)ρAB

β ), we obtain

Iρβ
(A : B) ≤ β · tr((ρA ⊗ ρB − ρAB)H∂A). (S.10)

For the k-local Hamiltonian, each local term hZ can be expanded by sum of the tensor products of two operators
supported on ZA = Z ∩ A and ZB = Z ∩ B:

hZ =
d2k

0∑
s=1

h
(s)
ZA

⊗ h
(s)
ZB

. (S.11)

Equations (S.7), (S.10) and (S.11) lead to

Iρβ
(A : B) ≤

∑
Z:Z∩A̸=∅
Z∩B ̸=∅

d2k
0∑

s=1
β · tr((ρA ⊗ ρB − ρAB)h(s)

ZA
⊗ h

(s)
ZB

) =
∑

Z:Z∩A̸=∅
Z∩B ̸=∅

d2k
0∑

s=1
β · CorρAB

(h(s)
ZA

, h
(s)
ZB

). (S.12)

The assumption of the clustering property gives

Iρβ
(A : B) ≤

∑
Z:Z∩A̸=∅
Z∩B ̸=∅

d2k
0∑

s=1
β · ∥h

(s)
ZA

∥∥h
(s)
ZB

∥ C

dα
ZA,ZB

(S.13)

≤
∑
i∈A

∑
j∈B

∑
Z:ZA∋i
ZB∋j

d2k
0∑

s=1
β · ∥h

(s)
ZA

∥∥h
(s)
ZB

∥ C

dα
i,j

(S.14)

≤
∑
i∈A

∑
j∈B

∑
Z:ZA∋i
ZB∋j

β · d2k
0 max

s
∥h

(s)
ZA

∥∥h
(s)
ZB

∥ C

dα
i,j

. (S.15)

In the second inequality, we have used the fact that d−α
ZA,ZB

can be expressed as d−α
i,j for some i ∈ ZA and j ∈ ZB .

In the third inequality, we has used
∑d2k

0
s=1 ∥h

(s)
ZA

∥∥h
(s)
ZB

∥ ≤ d2k
0 maxs ∥h

(s)
ZA

∥∥h
(s)
ZB

∥. By the condition Eq. (S.1) of the
long-range interaction, we obtain∑

Z:ZA∋i
ZB∋j

max
s∈Z[1,d2k

0 ]

∥h
(s)
ZA

∥∥h
(s)
ZB

∥ ≤
∑

Z:Z∋{i,j}

∥hZ∥ ≤ g

dα
i,j

. (S.16)



10

Combining Eq. (S.15) and Eq. (S.16),

Iρβ
(A : B) ≤

∑
i∈A

∑
j∈B

βd2k
0 gC

d2α
i,j

. (S.17)

It was proven that
∑

i∈A

∑
j∈B d−2α

i,j is upper bounded by the boundary area |∂A| when 2α > D + 1 [39]. With
Eq. (S.17), we finally obtain

Iρβ
(A : B) ≤ β · C · |∂A| · const, (S.18)

for 2α > D + 1.

S.III. POWER-LAW CLUSTERING THEOREM FOR α > D

We consider the regime α > D, so that the extensivity property holds as∥∥∥ĤL

∥∥∥ ≤ g|L|, ĤL =
∑

Z:Z∩L ̸=∅

hZ = H − HLc (S.19)

for an arbitrary subset L ⊆ Λ. Then, the clustering theorem for the bipartite correlations is rigorously proven as

Theorem 2. The following relation holds for long-range interacting systems for the temperatures above β−1
c :

Corρβ
(OX , OY ) ≤ C∥OX∥ · ∥OY ∥ |X||Y | e(|X|+|Y |)/k

dα
X,Y

, (S.20)

where C is an O(1) constant and the threshold temperature is given by βc = W (1/ue)/(2gk) with the Lambert W
function (i.e., the inverse function of xex) and u =

∑
j∈Λ 1/(1 + di,j)α. We can lower-bound βc as βc ≥ 1/(8ugk)

by using

W (1/ue) ≤ 1/(1 + ue) ≤ 1/(4u),

where we use u is always larger than 1 from the definition.

For the proof of the clustering theorem, we utilize the cluster expansion [69–71]. First of all, we describe the
correlation function Corρ(OX , OY ) can be written as

Corρβ
(OX , OY ) = 1

Z2 tr
(

e−βH(+)
O

(0)
X O

(1)
Y

)
, (S.21)

where we define the operators O(+), O(0) and O(1) as

O(+) = O ⊗ 1̂ + 1̂ ⊗ O, O(0) = O ⊗ 1̂, O(1) = O ⊗ 1̂ − 1̂ ⊗ O , (S.22)

by considering a copy of the original Hilbert space. The quantity Z is a normalization factor Z2 = tr(e−βH(+))(=
[tr(e−βH)]2 in the original Hilbert space). It is simple to observe that the following lemma holds:

Lemma 1. For an arbitrary set of operators {OZj }m
j=1, the following relation holds:

tr
(

O
(+)
Z1

O
(+)
Z2

· · · O
(+)
Zm

O
(0)
X O

(1)
Y

)
= 0 (S.23)

when the subsets {Z1, Z2, . . . , Zm} cannot connect the subsets X and Y [see Fig. 5 (a)], i.e.,

(X ∪ Zi1 ∪ Zi2 ∪ · · · ∪ Zis
) ∩
(
Y ∪ Zis+1 ∪ Zis+2 ∪ · · · ∪ Zim

)
= ∅ (S.24)

with {i1, i2, . . . , im} = {1, 2, . . . , m}.

Proof of Lemma 1. Without loss of generality, we let {i1, i2, . . . , is} = {1, 2, . . . , s} and {1, 2, . . . , s} \
{i1, i2, . . . , im} = {s + 1, s + 2, . . . , m}. We then denote

O
(+)
Z1

O
(+)
Z2

· · · O
(+)
Zs

= W1, O
(+)
Zs+1

O
(+)
Zs+2

· · · O
(+)
Zm

= W2, (S.25)

with

Supp(X ∪ W1) ∩ Supp(Y ∪ W2) = ∅, (S.26)
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FIG. 5. (a): Schematic picture of unconnected subsets. (b): Connected subsets. (c): Decomposition of the shortest subsets
and the rest of the subsets.

where the second equation is equivalent to the condition (S.24). We then decompose as

tr
(

O
(+)
Z1

O
(+)
Z2

. . . O
(+)
Zm

O
(0)
X O

(1)
Y

)
= tr

(
W1O

(0)
X

)
tr
(

W2O
(1)
Y

)
. (S.27)

Here, the operators O
(+)
Zik

= OZik
⊗ 1̂ + 1̂ ⊗ OZik

are symmetric for the exchange of the two Hilbert space while

the operator O
(1)
Y = OY ⊗ 1̂ − 1̂ ⊗ OY is antisymmetric, which yields tr

(
W2O

(1)
Y

)
= 0. We thus prove the main

equation (S.23). □

[ End of Proof of Lemma 1]

By using Lemma 1, the function Corρβ
(OX , OY ) can be expanded as

Corρβ
= 1

Z2

∞∑
m=0

∑
Z1,Z2,...,Zm:connected

(−β)m

m! tr
(

h
(+)
Z1

h
(+)
Z2

· · · h
(+)
Zm

O
(0)
X O

(1)
Y

)
, (S.28)

where the summation
∑

Z1,Z2,...,Zm:connected is taken over the collections {X, Z1, Z2, . . . , Zm, Y } that connect X

and Y . See Fig. 5 (b). Note that {Zs}m
s=1 can be the same, e.g., Z1 = Z2. Let us define the operator ρcl as

ρcl = 1
Z2

∞∑
m=0

∑
Z1,Z2,...,Zm:connected

(−β)m

m! h
(+)
Z1

h
(+)
Z2

· · · h
(+)
Zm

. (S.29)

Using the operator ρcl, the correlation Corρβ
(OX , OY ) has the following upper bound:

Corρβ
(OX , OY ) ≤ 2 ∥OX∥ · ∥OY ∥ · ∥ρcl∥1 (S.30)

To count the summation of
∑

Z1,Z2,...,Zm:connected, we first decompose as

{Z1, Z2, . . . , Zm} = wcl ⊕ wc
cl, wc

cl := {Z1, Z2, . . . , Zm} \ wcl, (S.31)

where wcl is taken such that wcl ⊕ {X, Y } are connected to each other (See Fig. 5 (b)), in other words,

Z ∩ Z ′ = ∅ for Z ∈ wcl, Z ′ ∈ wc
cl. (S.32)

We define all the sets of wcl and wc
cl as Gcl and Gc

cl, respectively. We also define the total support of the wcl and
wc

cl as Vwcl and Vwc
cl

, respectively. We then obtain

ρcl = 1
Z2

∞∑
m=0

(−β)m

m!

m∑
s=0

m!
(m − s)!s!

∑
{Z1,··· ,Zs}=wcl∈Gcl

h̃(Z1, · · · , Zs)
∑

wc
cl∈Gc

cl

∑
Zs+1,··· ,Zm

∈wc
cl

h(+)(Zs+1)h(+)(Zs+2) · · · h(+)(Zm)

= 1
Z2

∞∑
s=0

(−β)s

s!
∑

wcl∈Gcl

h̃(Z1, · · · , Zs)e
−βH

(+)
Vwc

cl . (S.33)

Here, we have defined

h̃(Z1, · · · , Zs) =
∑

P

h(+)(ZP1) · · · h(+)(ZPs
) , (S.34)
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where P implies taking all combinations of different elements for Z. In particular, when Z are all different, it means
taking a permutation. From the expression (S.33), we obtain

∥ρcl∥1 ≤ 1
Z2

∞∑
s=0

βs

s!
∑

wcl∈Gcl

∥h̃(Z1, · · · , Zs)∥ tr
[
e

−βH
(+)
Vwc

cl

]
≤

∞∑
s=0

βs

s!
∑

wcl∈Gcl

e2βg|Vwcl |∥h̃(Z1, · · · , Zs)∥ . (S.35)

Here, we use the Golden-Thompson inequality as follows:

tr
[
e

−βH
(+)
Vwc

cl

]
= tr

[
e

−β

(
H(+)+H

(+)
Vwc

cl
−H(+)

)]
≤ tr

[
e−βH(+)

e
−β

(
H

(+)
Vwc

cl
−H(+)

)]
≤ Z2e

2β∥HV c
wcl

−H∥

≤ Z2e2βg|Vwcl | ≤ Z2e2βgks (S.36)

where we use the condition (S.19) in the last inequality. From the k-locality of the Hamiltonian, we have |Vwcl | ≤
k|wcl| = ks.

We divide each element in the set wcl into the two subsets ws
cl and wr

cl, where ws
cl is a set representing the shortest

path with the length s′ and wr
cl is a set for the rest part with the length (s − s′). See Fig. 5 (c). We thus obtain

∥ρcl∥1 ≤
∞∑

s=0

(βe2βgk)s

s!

s∑
s′=1

s!
s′!(s − s′)!

∑
{Z1,··· ,Zs′ }=ws

cl

∥h̃(Z1, · · · , Zs′)∥′
∑

{Zs′+1,··· ,Zs}=wr
cl

∥h̃(Zs′+1, · · · , Zs)∥′

=
∞∑

s=0
(βe2βgk)s

s∑
s′=1

∑
ws

cl

∥h̃(Z1, · · · , Zs′)∥′

s′!
∑
wr

cl

∥h̃(Zs′+1, · · · , Zs)∥′

(s − s′)! , (S.37)

where

∥h̃(Z1, · · · , Zs′)∥′ :=
∑

P

∥h
(+)
ZP1

∥ · · · ∥h
(+)
ZP

s′
∥ ≤ 2s′ ∑

P

∥hZP1
∥ · · · ∥hZP

s′
∥ . (S.38)

Similarly to (S.38), ∥h̃(Zs′+1, · · · , Zs)∥′ is defined. Below, we evaluate the terms on ws
cl and wr

cl in (S.37). To this
end, the following lemma is useful.

Lemma 2. For α > D, the quantity Ji,j defined in (S.1) satisfies the following inequality

∑
j∈Λ

Ji,jJj,k ≤ g2u

(1 + di,k)α
, (S.39)

where u = 2α
∑

j∈Λ(1 + di,j)−α. The iterative use of (S.39) leads to
[
J ℓ
]

i,k
≤ gℓuℓ−1/(1 + di,k)α.

Proof of Lemma 2.

∑
j∈Λ

Ji,jJj,k = g2
∑
j∈Λ

1
(1 + di,j)α

1
(1 + dj,k)α

≤ g2

(1 + di,k)α

∑
j∈Λ

(2 + di,j + dj,k)α

(1 + di,j)α

1
(1 + dj,k)α

. (S.40)

Note (x + y)α ≤ 2α−1(xα + yα) for α > 1. Then we have

∑
j∈Λ

Ji,jJj,k ≤ g22α−1

(1 + di,k)α

∑
j∈Λ

1
(1 + di,j)α

+ 1
(1 + dj,k)α

= g2u

(1 + di,k)α
. (S.41)

The finiteness of u is guaranteed by the condition α > D.

[ End of Proof of Lemma 2]

Let us first consider the terms on ws
cl in (S.37).

∑
ws

cl

∥h̃(Z1, · · · , Zs′)∥′

s′! ≤ 2s′

s′!
∑

i1∈X

∑
i2∈Λ

∑
Z1∋{i1,i2}

∑
i3∈Λ

∑
Z2∋{i2,i3}

· · ·
∑

is′ ∈Λ

∑
is′+1∈Y

∑
Zs′ ∋{is′ ,is′+1}

∥hZ1∥ · · · ∥hZs′ ∥

= 2s′

s′!
∑

i1∈X

∑
i2∈Λ

· · ·
∑

is′ ∈Λ

∑
is′+1∈Y

Ji1,i2 · · · Jis′ ,is′+1 ≤ u−1(2gu)s′

s′! |X| |Y | 1
(1 + dX,Y )α

. (S.42)
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We next consider the terms of wr
cl in (S.37). We define n := s − s′ and L := X ∪ Y ∪ ωs

cl for a simplicity.

1
n!
∑
wr

cl

∥h̃(Zs′+1 · · · , Zs)∥′ ≤ 2n

n!
∑
i1∈L

∑
Z1∋i1

∑
i2∈L∪Z1

∑
Z2∋i2

∑
i3∈L∪Z1∪Z2

∑
Z3∋i3

· · ·
∑

in∈L∪Z1∪···∪Zn−1

∑
Zn∋in

∥hZ1∥ · · · ∥hZn∥

≤ (2gu)n

n!
∑
i1∈L

∑
i2∈L∪Z1

∑
i3∈L∪Z1∪Z2

· · ·
∑

in∈L∪Z1∪···∪Zn−1

≤ (2gu)n

n! |L|(|L| + k) · · · (|L| + (n − 1)k)

≤ (2gu)n

(n/e)n
|L|(|L| + k) · · · (|L| + (n − 1)k) ≤ (2guek)n

(
1 + |L|/k

n

)n

≤ (2guek)ne|L|/k ≤ (2guek)ne(|X|+|Y |+s′k)/k , (S.43)

where we have used
∑

Z∋i ∥hZ∥ < gu, (n/e)n < n!, (1 + x/n)n < ex and |L| < |X| + |Y | + s′k.
Finally we sum over s′ to get the following expression

∥ρcl∥1 ≤ u−1|X| |Y | e(|X|+|Y |)/k

(1 + dX,Y )α

∞∑
s=0

(2βgkeu e2βgk)s
s∑

s′=1

(1/k)s′

s′!

≤ (e1/k/u)|X| |Y | e(|X|+|Y |)/k

(1 + dX,Y )α

1
1 − 2βgkeu e2βgk

. (S.44)

Here, we use
∑s

s′=1 (1/k)s′
/s′! < e1/k. This completes the proof of the Theorem 2.

S.IV. EXACT DIAGONALIZATION RESULTS FOR LONG-RANGE HEISENBERG CHAINS

Let’s examine a more general 1D long-range Heisenberg chain described by the Hamiltonian

H =
∑

1≤i<j≤N

ai,j

dα
i,j

Si · Sj , (S.45)

where ai,j is a parameter of order O(1), N is the number of sites, and Si = (Sx
i , Sy

i , Sz
i ) is a spin-1/2 operator

at site i. To support our argument that the thermal area holds for α > (D + 1)/2 and this criterion is optimal,
we compute the mutual information Iρβ

(A : B) between subsystems A and B, with A representing the first N/2
sites and B the remaining N/2 sites, by using the exact diagonalization method. We randomly assign ai,j from the
interval [0, 1], and then compute the average over 2000 samples. Fig. 6 shows that the mutual information increases
with the system size when α < 1, while it does not exhibit an increase for α > 1.

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

system length (N)

I ;
-
(A

:
B

)

, = 0:6
, = 0:8
, = 1:0

, = 1:2
, = 1:4

FIG. 6. Exact diagonalization results: the averaged mutual information Iρβ (A : B) over 2000 samples of the long-range
Heisenberg chain (S.45) with random numbers ai,j assigned from the interval [0, 1]. Here N is the number of sites, and A
and B are the first N/2 sites and the remaining N/2 sites, respectively.

S.V. NUMERICAL DETAIL OF SHAPOURIAN-SHIOZAKI-RYU NEGATIVITY

We consider n spinless fermionic particles with the basis states |0⟩ and |1⟩ = c†|0⟩. The determinant of the n × n
matrix X = (xi,j) is defined as

det X =
∑

σ∈Sn

sgn(σ)x1,σ(1) · · · xn,σ(n), (S.46)
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and the Pfaffian of the 2n × 2n skew-symmetric matrix Y = (yi,j), i.e. YT = −Y, is defined as

Pf[Y] = 1
2nn!

∑
σ∈S2n

sgn(σ)yσ(1)σ(2) · · · yσ(2n−1),σ(2n). (S.47)

Here, Sn and sgn(σ) denotes the symmetric group and the sign of the permutation σ, respectively. For an arbitrary
2n × 2n matrix Z, we use the following expression

Z =
(

[Z](1,1) [Z](1,2)

[Z](2,1) [Z](2,2)

)
(S.48)

to describe the n × n block matrix [Z](a,b) with a-th row and b-th column (a, b ∈ {1, 2}). We denote 1n as an n × n
identity matrix.

We use the Grassmann variables {ξj , ξj} to describe the fermionic systems with the following notation:

ξ ≡ (ξ1, · · · , ξn), (S.49)
(ξ, ξ) ≡ (ξ1, · · · , ξn, ξ1, · · · , ξn), (S.50)

with the differentials

dξ ≡ dξn · · · dξ1, (S.51)
dξdξ ≡ dξn · · · dξ1dξn · · · dξ1, (S.52)

d(ξ, ξ) ≡ dξ1dξ1 · · · dξndξn = (−1)n(n−1)/2dξdξ. (S.53)

We define the state with the Grassmann variable as

|ξj⟩ ≡ |0⟩j − ξj |1⟩j , (S.54)
|ξj⟩ ≡ ⟨0|j − ξj⟨1|j , (S.55)

|ξ⟩⟨ξ| = |ξ1⟩⟨ξ1| ⊗ · · · ⊗ |ξn⟩⟨ξn|. (S.56)

The definition naturally leads to ⟨ξj |ξj⟩ = eξjξj . We also use the notation (χ, χ) to describe another Grassmann
variables.

In terms of the Grassmann variables, the trace of an operator O is given by

Tr[O] =
∫

⟨−ξ|O|ξ⟩e−
∑

j
ξjξj d(ξ, ξ). (S.57)

We consider the following form of the density operator:

ρ = 1
Zρ

∫
dξdξ |ξ⟩⟨ξ|e(ξ,ξ) 1

2Γ(ξ,ξ)T+
∑

j
ξjξj . (S.58)

Imposing Tr[ρ] = 1 with Eqs. (S.57) and (S.58), we have Zρ = Pf[Γ]. Therefore, the density matrix is written as

ρ = 1
Pf[Γ]

∫
dξdξ |ξ⟩⟨ξ|e(ξ,ξ) 1

2Γ(ξ,ξ)T+
∑

j
ξjξj . (S.59)

Using Eq.(S.57), we can relate the two-point correlations functions of the fermionic creation and annihilation
operators to the matrix Γ by

Γ−1 =
(

[Γ−1](1,1) [Γ−1](1,2)

[Γ−1](2,1) [Γ−1](2,2)

)
=
(

⟨cjci⟩ρ −⟨c†
jci⟩ρ

⟨c†
i cj⟩ρ ⟨c†

jc†
i ⟩ρ

)
. (S.60)

In other words, we identify the density matrix with the covaraince matrix Γ.
Now we move onto the Shapourian-Shiozaki-Ryu (SSR) negativity. We partition the total system Λ into A and

B with |A| = nA and |B| = nB . To define the SSR negativity between A and B, we need the partial time-reversal
transformation RA on the subsystem A. The time-reversal transformation maps |ξ⟩⟨ξ| to |iξ⟩⟨iξ| in the coherent
basis. Therefore, we have

(|{ξj}j∈A, {ξj}j∈B⟩⟨{χj}j∈A, {χj}j∈B |)RA = |{iχj}j∈A, {ξj}j∈B⟩⟨{iξj}j∈A, {χj}j∈B |, (S.61)

and therefore the density matrix after the partial time-reversal transformation becomes

ρRA = 1
Pf[Γ]

∫
dξ dξ |iξA, ξB⟩⟨iξA, ξB |e(ξ,ξ) 1

2Γ(ξ,ξ)T+
∑

j
ξjξj . (S.62)
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Now, we rearrange the Grassmann variables. Let the vector (ξ′, ξ
′) ≡ (ξ′

A, ξ′
B , ξ

′
A, ξ

′
B) = (−iξA, ξB , −iξA, ξB), then

we represent it by introducing the matrix T:

(ξ′, ξ
′)T = T(ξ, ξ)T, T =

 0 0 −i1nA
0

0 1nB
0 0

−i1nA
0 0 0

0 0 0 1nB

 . (S.63)

Here, 1nA
(1nB

) is an nA × nA (nB × nB) identity matrix. With this matrix, a partial transformed density matrix
is rewritten as follows:

ρRA = 1
Pf[Γ]

∫
dξdξ |ξ⟩⟨ξ|e(ξ,ξ) 1

2 S′(ξ,ξ)T
, (S.64)

with a newly defined matrix

S′ := T
[
Γ +

(
0 −1n

1n 0

)]
T. (S.65)

The next step is to consider the product (ρRA)†ρRA . We introduce the matrix S′′ for the operator (ρRA)†:

S′′ =
(

([S′](2,2))† ([S′](1,2))†

([S′](2,1))† ([S′](1,1))†

)
. (S.66)

This leads to

(ρRA)† = 1
Pf[Γ]

∫
dξdξ |ξ⟩⟨ξ|e(ξ,ξ) 1

2 (S′′)(ξ,ξ)T
. (S.67)

After a straightforward computation, we find the following expression for the product (ρRA)†ρRA :

(ρRA)†ρRA = (−1)n2Pf[B]
Pf[Γ]2

∫
dξdξ |ξ⟩⟨ξ|e(ξ,ξ) 1

2Γ
′(ξ,ξ)T+

∑
j

ξjξj , (S.68)

with introducing two matrices

B =
(

[S′](1,1) −1n

1n [S′′](2,2)

)
, (S.69)

Γ′ = −
(

0 [S′′](1,2)

[S′](2,1) 0

)
B−1

(
0 [S′](1,2)

[S′′](2,1) 0

)
+
(

[S′′](1,1) 0
0 [S′](2,2)

)
−
(

0 −1n

1n 0

)
. (S.70)

Then the SSR negativity is

ESSR = log ∥ρRA∥1 = log Tr
[√

(ρRA)†ρRA

]
. (S.71)

A. Numerical Procedure

Based on the above calculations, we present the following procedure to numerically calculate the SSR negativity.

1. We first compute the covariance matrix Γ from Eq. (S.60). Then we calculate S′, S′′, and B from
Eqs. (S.65), (S.66), and (S.69) to construct Γ′ by Eq. (S.70).

2. Note the relation

(ρRA)†ρRA = (−1)n2Pf[B]Pf[Γ′]
Pf[Γ]2 ρ′′, (S.72)

ρ′′ = 1
Pf[Γ′]

∫
dξdξ |ξ⟩⟨ξ|e(ξ,ξ) 1

2Γ
′(ξ,ξ)T+

∑
j

ξjξj . (S.73)

From Γ′, using Eq. (S.60) again, we define the covariance matrix C of ρ′′:

C =
(

⟨c†
i cj⟩ρ′′ ⟨c†

i c†
j⟩ρ′′

⟨cicj⟩ρ′′ ⟨cic
†
j⟩ρ′′

)
=

 [(Γ′)−1](2,1)
(

[(Γ′)−1](2,2)
)T(

[(Γ′)−1](1,1)
)T

1n + [(Γ′)−1](1,2)

 . (S.74)
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3. We choose the unitary transformation U to define another fermionic annihilation operators d = (d1, · · · , dn):(
d†

d

)
= U

(
c†

c

)
, (S.75)

so that it diagonalizes ρ′′ as

ρ′′ = e−
∑n

i=1
ϵ′′

i d†
i
di

Z ′′ , (S.76)

where Z ′′ = Tr[ρ′′] =
∏n

i=1(1 + e−ϵ′′
i ). Equation. (S.76) yields(

⟨d†
i dj⟩ρ′′ ⟨d†

i d†
j⟩ρ′′

⟨didj⟩ρ′′ ⟨did
†
j⟩ρ′′

)
=

 1
e

ϵ′′
i +1

δi,j 0

0 e
ϵ′′

i

e
ϵ′′

i +1
δi,j

 = U

(
⟨c†

i cj⟩ρ′′ ⟨c†
i c†

j⟩ρ′′

⟨cicj⟩ρ′′ ⟨cic
†
j⟩ρ′′

)
U†. (S.77)

It means that we can obtain ϵ′′
i by diagonalizing the covariance matrix C:

C = U†diag(⟨d†
i di⟩ρ′′ , ⟨did

†
i ⟩ρ′′)U, (S.78)

⟨d†
i di⟩ρ′′ = 1

eϵ′′
i + 1

. (S.79)

4. From the following identity

Tr
[√

(ρRA)†ρRA

]
=

√
(−1)n2Pf[B]Pf[Γ′]

Pf[Γ]2 Tr
√

ρ′′ =

√
Pf[B]Pf[Γ′]

Pf[Γ]2
n∏

i=1

1 + e−
ϵ′′

i
2√

1 + e−ϵ′′
i

, (S.80)

we get the following expression of the SSR negativity with computable quantities:

ESSR = log Tr
[√

(ρRA)†ρRA

]
(S.81)

= 1
2 log

[
(−1)n2Pf[B]Pf[Γ′]

Pf[Γ]2

]
+

n∑
i=1

[
log
(

1 + e−
ϵ′′

i
2

)
− 1

2 log(1 + e−ϵ′′
i )
]

(S.82)

= 1
2 log

[
(−1)n2Pf[B]Pf[Γ′]

Pf[Γ]2

]
+

n∑
i=1

log
(√

⟨d†
i di⟩ρ′′ +

√
⟨did

†
i ⟩ρ′′

)
. (S.83)
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