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Abstract

In this work, we investigate the statistical properties of drink serving in a nightclub bar, utilizing a
stochastic model to characterize pedestrian dynamics within the venue. Our model comprises a system
of n agents moving across an underlying square lattice of size l representing the nightclub venue.
Each agent can exist in one of three states: thirsty, served, or dancing. The dynamics governing the
state changes are influenced by a memory time, denoted as τ , which reflects their drinking habits.
Agents’ movement throughout the lattice is controlled by a parameter α which measures the impetus
towards/away from the bar. We show that serving time distributions transition from a power-law
to exponential and back to power-law as we increase α starting from a pure random walk scenario
(α = 0). Specifically, when α = 0, a power-law distribution emerges due to the non-objectivity of
the agents. As α moves into intermediate values, an exponential behavior is observed, as it becomes
possible to mitigate the drastic jamming effects in this scenario. However, for higher α values, the
power-law distribution resurfaces due to increased jamming. We also demonstrate that the average
concentration of served, thirsty, and dancing agents provide a reliable indicator of when the system
reaches a jammed state. Subsequently, we construct a comprehensive map of the system’s stationary
state, supporting the idea that for high densities, α is not relevant, but for lower densities, the
optimal values of measurements occurs at high values of α. To complete the analysis, we evaluate
the conditional persistence, which measures the probability of an agent failing to receive their drink
despite attempting to do so. In addition to contributing to the field of pedestrian dynamics, the present
results serve as valuable indicators to assist commercial establishments in providing better services to
their clients, tailored to the average drinking habits of their customers.
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1 Introduction

The dynamics of pedestrian movement have long
been of interest to researchers across various
disciplines, ranging from physics[1] to urban
planning[2] and beyond. Understanding how indi-
viduals navigate through crowded spaces [3], such
as city streets, public transportation systems, or
entertainment venues, is crucial for optimizing
infrastructures[4], ensuring public safety[5], and

enhancing overall efficiency[6]. In this context,
physicists have been striving to identify the essen-
tial features of theoretical models required to
replicate the significant phenomena arising from
systems composed of self-driven agents.

With this in mind, a pioneering model was
proposed by Helbing and Moln’ar [7], introduc-
ing the concept of a “social” force that directs
crowds toward a common target, such as an exit
or entrance door, particularly in scenarios of panic
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or stampedes. Other researchers have followed
this concept, seeking to understand the essential
conditions for phenomena such as the formation
of self organizing lanes [8–10] or clogging/jam-
ming [11, 12], among others [13–17] to occur.
At the same time, experimental observation of
real events[18–22] has been implemented in the
attempt to map the intrinsic aspects of realistic
crowd behavior.

A particular case of interest in pedestrian
dynamics is the analysis of financial pressures
within commercial venues and their potential cor-
relation with an elevated risk of fatalities during
tragic events. Such is the case of musical festivals
or a nightclub party, for instance, where the unpre-
ventable drug and acute alcohol consumption[23]
has an important role in intentional and uninten-
tional injuries[24].

In [25], we explored a significant topic brought
to light during the trial following the tragic Kiss
Nightclub fire1, which resulted in 242 casualties
and left more than 600 injured [26, 27]. Dur-
ing the event, a fire was sparked by the indoor
use of firecrackers by the scheduled band, igniting
the ceiling’s soundproof layer. Prosecutors argued
in the trial that the overcrowding of the night-
club, a fact confirmed by all witnesses including
the defendants, was driven by a desire for max-
imum revenue and was the primary cause of the
high casualty count. In contrast, the defendants
claimed that, even if the nightclub was at full
capacity as it was, this situation was financially
unfavourable once patrons were unable to access
the bar impacting the revenue of drink sales.

The intricacies surrounding pedestrian dynam-
ics within confined spaces such as bars or
nightclubs, characterized by fluctuating densities,
diverse movement strategies, and varying needs
such as accessing drinks, pose a multifaceted chal-
lenge that demands comprehensive exploration.
Whether driven by economic imperatives or con-
cerns for the safety and comfort of patrons during
events, this interdisciplinary issue warrants thor-
ough investigation.

In this paper, our goal is to enhance the over-
all comprehension of pedestrian dynamics within
service systems, particularly in bar environments.

1Brazil nightclub fire: Four convicted over
blaze that killed 242, https://www.bbc.com/news/
world-latin-america-59617508

Through an examination of the statistical char-
acteristics of serving times in a nightclub bar,
we aim to uncover potential underlying patterns
and behaviors that dictate the movement of indi-
viduals within these venues. Our analysis utilizes
a stochastic model to depict the interactions
between patrons and servers, offering insights into
the dynamics of thirst, service, and movement
within the bar setting.

Our research endeavors to offer more than
just theoretical insights into pedestrian dynamics;
we seek to provide practical guidance for design-
ing and managing service systems in bustling
environments. By delving into the fundamental
principles governing pedestrian movement within
bars, our aim is to improve the efficiency and over-
all enjoyment of experiences for both patrons and
customers.

The contribution is organized as follows:
In the subsequent section, we introduce our

stochastic agent-based model, detailing param-
eters and key variables such as serving times,
concentration of states, and local conditional per-
sistence. The latter quantifies the proportion of
agents unable to obtain a drink when desiring
one, drawing on concepts from coarsening litera-
ture [28]. We then proceed to present and analyze
our findings. Finally, we summarize the results and
draw conclusions.

2 Model

In this study, we adopt the model proposed by
two of the authors [25], which builds upon the lat-
tice gas dynamics framework extensively explored
in existing literature (e.g., see the framework by
Katz et al. [36]), adapting the transition probabili-
ties initially outlined in [37]. The model comprises
a system of n agents (patrons) capable of mov-
ing on an underlying square lattice with a side
length of l, representing a nightclub. For simplic-
ity, we designate the bar as a region outside the
lattice (yet contiguous to it), centered on one of
its sides with length a, thus dividing the nightclub
venue into three primary regions: (1) the bar, (2)
the bar zone, and (3) the nightclub dance floor, as
illustrated in Fig. 1. Region (1), the bar, is inac-
cessible to the agents, who purchase drinks upon
entering Region (2), adjacent to the bar. The bar
zone (Region (2)) is composed by all cells with
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Fig. 1: (a) Visualization of a nightclub featuring a basic square layout with the bar situated along one
side. (b) The lattice utilized in our model to replicate the nightclub comprises three distinct regions: (1)
the bar, (2) the bar zone, and (3) the dance floor.

distance no greater than b from the bar and char-
acterizes a turbulent region resulting from patrons
attempting to reach the bar, others manoeuvring
away from it with beverages, and agents moving
randomly.

During a party, each agent is in one of three
possible states: (i) thirsty, (ii) served, and (iii)
dancing; the number of agents in each state is
denoted as nt, ns, and nd, respectivelly, with the
constraint nt + ns + nd = n. As the dynamics
evolves, agents change their states and the num-
ber of patrons within each states can be measured
by its concentration in relation to the total num-
ber of agents n. Then, the concentration of agents
in each of the three possible states are defined as
ct ≡ nt/n, cs ≡ ns/n, and cd ≡ nd/n, with the
constraint expressed as ct + cs + cd = 1.

Within the drinking dynamics, agents change
their states in a cyclic fashion (i)→(ii)→(iii)→(i)
which comprehends the drinking dynamics as fol-
lows:

• An agent in state (i) will tend to move towards
the bar to buy a drink. Once the agent reaches a
cell contiguous to the bar, he/she immediately
changes to state (ii);

• once in state (ii), the agent will tend to move
outside Region (2), changing to state (iii) imme-
diately after leaving that region;

• this agent will remain in state (iii) for τ time
steps until he/she wants another drink, so
switching to state (i) again.

Agents possess an individual characteristic
drinking time, denoted as τ , which represents the
interval between drinks. Depending on the rela-
tionship between τ and the maximum duration
of the party, denoted as tmax, an agent can be
classified as alcoholic (τ ≪ tmax), abstemious
(τ > tmax), or normal (with intermediate values
of τ).

With that in mind, between time steps l and
l + 1, a given agent at cell (i, j) can hop to any-
one of its four neighboring cells, (i′, j′), with the
transition probability:

Pr
(l)
(i,j)→(i′,j′) = p+ α (∆r⃗ · û)σ(l), (1)

where p is the constant probability of making the
transition –because of the isotropic possibility of
choosing any of the four directions, p = 1/4; α is
the coefficient that regulates the degree of bias in
the movement; ∆r⃗ can be any of the four Carte-
sian movements (êx, êy, −êx, and −êy) with equal
probability; û = u⃗/||u⃗|| is the unit vector associ-
ated with the static floor field, which guides the
agents toward the bar. σ(l) is the state of the agent
associated with its drinking dynamics, previously
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referred, and that can assume the values

σ(l) =

 1, if state (i),
−1, if state (ii),
0, if state (iii).

(2)

The inner product presented inside parenthesis
on Eq. 1 is the component of the displacement vec-
tor of the referred transition pointing in the static
floor field direction, which reflects in an increment
or decrement of the agent chances to move in that
direction. The static floor field is responsible to
guide patrons in and out of the bar, which happens
whenever they are in states (i) or (ii). The fac-
tor α introduces asymmetry into the movement of
patrons as they travel to and from the bar. When
considering transition probabilities, it’s essential
to adhere to the following constraint:

Pr
(l)
(i,j)→(i,j) = 1−

∑
⟨i′,j′⟩

Pr
(l)
(i,j)→(i′,j′)

= 1− 4p,
(3)

this, along with our selection of p = 1/4, implies
that agents cannot remain stationary when they
are chosen in the current MC-step and the cell to
which they will transition is empty. The cells sym-
bolized by ⟨i′, j′⟩ denotes that the sum happens
for the four first neighboring cells.

Here, it is important again to clarify that
p = 1/4 does not imply that a particle neces-
sarily remains stationary. Two scenarios illustrate
when this occurs. Firstly, our computer simula-
tions operate asynchronously; that is, we select
a particle and determine its movement. If the
selected destination is already occupied, the par-
ticle remains stationary. We repeat this process
a number of times, exactly equal to the number
of agents in the system. Some particles may be
selected once, others with lesser probability, and in
certain instances, some particles are not selected
at all. In these cases, the particles also remain
stationary.

As a model to describe a nightclub dynamics,
we opted to maintain the simplicity of the model,
so it is important to clarify some points:

• Agents have an ideally infinity amount of money
to buy their drinks within the time frame of a
nightclub party;

• the number of agents is fixed during the entirety
of the party;

• there is only one type of drink to be bought;
• the drink is bought immediately after the agent
gets to a bar cell, which means we are not con-
sidering any waiting time to be served due to
drink preparation or queue related to it;

• each agent’s memory time τ is constant during
the whole party;

Our focus in this work is to study the temporal
features of the drinking dynamics and its rela-
tion with all system parameters. For that, we will
first study the serving time distribution, denoted
as ∆T , which is the time an agent takes between
wanting a drink and actually getting it. In prac-
tical terms, this random variable consists of the
time interval that an agent spends in the state of
thirstiness (state (i)). The serving time is one of
the variables that influence the satisfaction felt by
patrons within the nightclub experience.

Directly associated with the serving time is the
patrons ability to actually get a drink given they
wanted it. To measure this variable, we define the
conditional local persistence of drinking, denoted
as f(t), which is the probability that a given agent
do not drink for the first time until an instant t,
given he/she was thirsty.

While the notion of persistence originated
within the framework of spin system coarsening,
specifically as local persistence (see, for exam-
ple, [28, 29]), its application has since broadened
to encompass global parameters like magnetiza-
tion rather than individual spins, facilitating the
description of critical dynamics (see, for exam-
ple, [30, 31]). But the concept goes beyond with
aplications in game theory, Econophysics, spatial
exploration (see for example: [32–35]).

We modify the concept of local persistence to
account for the scenario in which agents desire
a drink but do not obtain one. This adjust-
ment results in a measure that does not exhibit
monotonically decreasing behavior, contrary to
the original definition. However, this deviation is
not problematic for our purposes as we are going
to explain in the subsequent section.

We implemented our model via Monte Carlo
(MC) simulations considering a fixed number of
agents n throughout the party time frame and
with p = 0.25 for all cases. Also, we used in this
work initial conditions considering agents posi-
tioned randomly throughout the lattice by using
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two independent uniform distributed random vari-
ables (ran2 ). Each agent’s initial biologic clock
associated to their drinking habits was set ran-
domly using ran2 with support [0 : τi] for i =
1, ..., n. This biologic clock counts the amount of
time for the agent to reach the state of thirstiness.

Thus, in the next section we will show the
main results of the statistics associated with time
related variables that serves as reference of clients
satisfaction.

3 Results

The first results that we show are related to the
serving time distributions. Due to the random
nature of data acquisition of serving times, we
performed a non-fixed number of sequential exper-
iments (open loop) with same parameters (but
different seeds) to be sure that the serving time
sample had a size of at least nsam = 105.

In the sequence, we also show the results asso-
ciated with the conditional local persistence of
drinking (f(t)). To measure this quantity, we cal-
culate at each instant of the simulations the ratio
between the number of thirsty agents that did not
get any drink and the number of people that felt
thirsty at least once. We defined this quantity in
that way so it reflects only the inability to get a
drink of the people that actually wanted it, and
so no agent that was not thirsty was accounted
for. As a consequence of its definition, the persis-
tence can only be calculated after the first patron
felt thirsty and so its value at each time step is
averaged over a fixed number of identical experi-
ments (same set of parameters, but with different
seeds) but accounting only the ones that presented
a value of f(t). For the sake of persistence cal-
culation, the number of experiments is denoted
as nrun and it is constrained to the relation
n× nrun = 106.

3.1 Serving time distributions

We first studied the serving time distribution for
the simplest case where there is no biased move-
ment, i.e. α = 0 and b = 0. We explored the
influence of different bar sizes for a system of
agents with same memory time (τ) which can be
achieved by a Dirac’s Delta probability distribu-
tion Pr(τ) ∝ δ(τ). We simulated the nightclub
evolution for tmax = 104 MC steps on a lattice

with side of length l = 64 for a density of agents
ρ = 0.25.
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a=24
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a=16
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Fig. 2: Distribution of serving times for different
values of the bar length, a, for l = 64, b = 0,
ρ = 0.25, α = 0, and agents with memory time
given by P (τ) ∝ δ(τ). We note that serving times
distribution have a power-law form, with its expo-
nents decreasing slightly as a increases.

In Fig. 2, we observe in a log-log scale
that serving time distributions present a power-
law shape but with slightly different exponents
depending on the value of a. We note that as the
size of the bar increases the exponent decreases,
indicating that the unbiased motion of patrons
results on a wide range of serving times, with peo-
ple taking times up to the party time frame to get
a drink.

Another important parameter of the dynamics
is the density of patrons (ρ) which is kept fixed
throughout the nightclub party. So, in Fig. 3, we
show the serving time distribution for different
values of density for a system with same parame-
ters as used in the Fig. 2, but with the difference
that here we fixed a = 16. We observe that the
power-law exponent does not change with density
for the most part of serving times. However, a
larger number of people gets its drink rapidly for
larger densities, which can be observed by the dif-
ference of inclination of the distribution curves for
smaller values of ∆T . This behaviour suggests a
quasi-jamming scenario for higher density, where
agents that are closer to the bar keep getting their
drinks, even though they do not present a biased
movement, while agents that are far from the bar
rarely get their drinks.

Now we focus on the study of a more real-
ist scenario, where patrons tend to move towards
or away from the bar whenever they fell thirsty.
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Fig. 3: Distribution of serving times for different
values of density for a system with α = 0, a = 16,
b = 0, and memory times given by P (τ) ∝ δ(τ).
We can observe that the power-laws’ exponent are
not clearly influenced by the different values of ρ
for the most part of ∆T > 100 MC steps, even
though a upward vertical shift (on log-log scale) is
observed for increasing values of density. However,
∆T ≤ 100 MC steps suggests that the power-law
exponent decreases with density with a crossover
value ∆Tc ≈ 60 MC steps for which P (∆Tc) is the
same regardless of ρ.

In Fig. 4, we show the serving time distribution
for different values of α, ranging from the previ-
ous studied scenario of a lattice gas-like dynamics
(α = 0) to a strongly driven dynamics (α ≈ p).
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α=0.200
α=0.150
α=0.100
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Fig. 4: Distribution of serving times for different
values of α for a system of side length l = 64, bar
dimension a = 16, bar zone radius b = 12, and
a density of ρ = 0.25 agents. In this study, we
observe a transition in the serving time distribu-
tion during the party from a power-law form for
α = 0.0, to an exponential behaviour 0.5 ≤ α ≤
0.15, and a what appears to be a power-law dis-
tribution once again for α ≈ 0.25.

We notice that for α = 0 (Fig. 4), the serving
times follows the well defined power-law distribu-
tion, however a slightly increase on the patrons
impetus as we see for α = 0.05 the serving time
distribution start presenting two behaviours: an
exponential distribution for serving times ∆T ≲
1000 MC steps and uniform distribution for ∆T ⩾
1000 MC steps. This hybrid behaviour suggests
that a non-trivial transition is occurring. As we
study the interval 0.1 ≲ α ≲ 0.2, we note that the
serving time distribution assumes a well defined
exponential shape, but the support is shortened to
approximately [50, 1000] MC steps suggesting that
the level of efficiency of serving times is increased.
However, by only studying the distribution of serv-
ing time we would not be able to differ a jamming
scenario from an efficient serving service case. For
instance, if jamming were to occur in a rather early
time of the party in comparison with tmax, we
would not observe medium or long serving times,
because theoretically the serving times would be
infinite (∆T ≫ tmax).

3.2 Agents’ state concentration

To have a better understanding over the seem-
ingly lower serving times for the scenario with
biased patrons, we observe the evolution of the
average concentration of served, thirsty, and danc-
ing agents for the evolution of a system with same
parameters used in Fig.4. In Fig. 5, we show the
evolution of ⟨cs(t)⟩, ⟨ct(t)⟩ (inset plot), ⟨cd(t)⟩
(inset plot). We observe that for the simplest case
(α = 0), the concentration of thirsty agents follow
the trend of the other cases (α > 0), which is a
consequence of the chosen memory time.

However, when observing the concentration of
dancing and served agents in Fig. 5, we note that
is this simple case that has the greater number
of dancing agents as well as the smaller number
of served agents. This two variables accounts for
the patrons that are able to leave the bar zone
and make the state transition (ii)→(iii). This tran-
sition is not facilitated when we observe greater
values of α. For α ≥ 0.05, we note that the num-
ber of served agents increases, has a maximum,
and fall again. For α = 0.249, corresponding to a
regime of more eager thirsty patrons, we observe
that served patrons get trapped more rapidly on
the bar zone. This jamming also reflects on the
number of dancing patrons, which drops to zero
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once the boundaries of regions (2) and (3) (where
state (iii) agents are “formed”) presents a gridlock.

Fig. 5: Time series of the average concentration
of served, thirsty, and dancing agents denoted as
⟨cs(t)⟩, ⟨ct(t)⟩ (inset plot), ⟨cd(t)⟩ (inset plot) for
different values of α. As α increases, we identify
the occurrence of jamming on the system once
⟨ct(t)⟩ increases with time, at the same time that
⟨cs(t)⟩ stagnates and ⟨cd(t)⟩ drops to zero, which
implies that people with drinks are stuck in the
bar zone.

To better understand the transition that hap-
pens when changing α, we studied the average
concentration of served patrons at the end of the
party, i.e. t = tmax, as a function of α and ρ. We
studied both parameters α and ρ within its pos-
sible ranges given by 0 < α < p and 0 < ρ < 1
respectively.

As previous results suggests, the system
dynamics is quite sensitivity with small incre-
ments of α, thus we opted to increment each of
its value geometrically, so that a greater number
of small values of α could be studied in compari-
son with greater values of α within the proposed
range. The algorithm used to implement such
increment whilst performing trivial parallel sim-
ulations is shown in the Appendix A, where we
started from α1 = 0.001 to αn = p divided into
nint = 50 intervals and m = 10 parallel sim-
ulations for the results presented in this work.
Each point in the plane (α, ρ) was obtained by
averaging nnrun = 105 samples with identical

parameters, but different seeds. We implemented
a simple arithmetic increment of the parameter ρ
diving the studied range into nint = 50 interval as
well.

In Fig. 6, we show three color maps of ⟨cs(t =
tmax)⟩ vs (α, ρ) for tmax = 103 MC steps (a),
tmax = 104 MC steps (b), and tmax = 2 × 104

MC steps (c). For simplicity, we adopt the nota-
tions ⟨ct(t = tmax)⟩ ≡ ⟨ct⟩, ⟨cs(t = tmax)⟩ ≡ ⟨cs⟩,
and ⟨cd(t = tmax)⟩ ≡ ⟨cd⟩. We also show each
corresponding optimized curve in black, which is
formed by the set of points that maximize ⟨cs⟩ vs
α for each value of ρ. In gray, we show the approx-
imated optimal curves. We note in each plot of
Fig. 6 ((a), (b), and (c)) that a patterned behav-
ior emerges where a maximum concentration of
served agents happens for a specific region of low
density and highly driven patrons observed in blue
in Figs. 6a, 6b, and 6c. This pattern does not
change qualitatively within the three time frames
studied, but solely looking at the served agents
concentration is not sufficient to make a complete
assessment on what actually is going on in the sys-
tem. So we also studied the dancing and thirsty
agents concentration.

In Fig. 7, we show the color maps of the aver-
age concentration of thirsty and dancing agents
for tmax = 2× 104 obtained by using the same set
of parameters in Fig. 6. We also show in each plot
the corresponding optimal curves in black and its
approximation in gray, whereas the optimal curve
corresponds to the set of points that minimize
(maximize) ⟨cd⟩(α) (⟨ct⟩(α)) for each values of ρ
in Fig. 7a (7b). We observe that the concentration
of thirsty and served agents have similar optimal
curves, which results from the fact that both con-
centrations are bound by a jamming scenario. As a
matter of fact, the concentration of dancing agents
can be even more reliable in terms of identifying a
jamming occurrence, once its population drops to
nearly zero in every case that the access to the bar
is compromised. So we are able to identify that
the optimal flow happens when the concentration
of dancing agents is maximum, which we identify
to occur for a low density of highly driven patrons
as shown by the blue region in Fig. 7b.

3.3 Local Conditional Persistence

As another important variable to measure the
overall clientele’s satisfaction and even identify
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(a) Heatmap of ⟨cs⟩ for tmax =
103 with curve formed by maxi-
mum ⟨cs⟩(α) (in black with curve
of approximation in gray) for each
value of ρ.

(b) Heatmap of ⟨cs⟩ for tmax =
104 with curve formed by maxi-
mum ⟨cs⟩(α) (in black with curve
of approximation in gray) for each
value of ρ.

(c) Heatmap of ⟨cs⟩ for tmax =
2 × 104 with curve formed by max-
imum ⟨cs⟩(α) (in black with curve
of approximation in gray) for each
value of ρ.

Fig. 6: Heatmap showing the average density of served patrons at tmax = 10000 as a function of α and
ρ. We note that the optimal curve of the average density of served patrons, ⟨cs⟩, occurs for the optimal
mobility for the largest densities.

(a) Heatmap of ⟨ct(tmax)⟩ with curve formed by mini-
mum ⟨ct⟩(α) (in black with curve of approximation in
gray) for each value of ρ.

(b) Heatmap of ⟨cd(tmax)⟩ with curve formed by max-
imum ⟨cd⟩(α) (in black with curve of approximation in
gray) for each value of ρ.

Fig. 7: Heatmap showing the average concentration of thirsty patrons (a) and dancing patrons (b) as
a function of α and ρ as well as its respective optimal curves in black and its optimal approximation
curve in gray. We observe that the region of minimum (maximum) concentration of thirsty (dancing)
agents occurs for a low density, at approximately ρ ≤ 0.1, of highly driven patrons, at approximately
0.1 ≤ α ≤ 0.249 , which corresponds to the optimal serving service.

jamming occurrence is the conditional local per-
sistence (f(t)) defined at the end of the previous
section. In the Fig. 8, we studied the effects of dif-
ferent densities of agents on the persistence for a

system with l = 64, α = 0.1, a = 16, b = 12, and
P (τ) ∝ δ(τ − 256). The dashed vertical line iden-
tifies the transient time interval, t ≤ ⟨τ⟩, where
the number of thirsty agents is still growing and
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after which every agent has felt thirsty at least
once. This transient interval is easily known if
Dirac’s Delta are chosen to define agent’s memory
time. We observe that for ρ ≥ 0.25 the persistence
presents a stagnation, which is resulting from the
jamming that we already knew happened for that
particular choice of α and ρ values. This persis-
tence stagnation is also observed on in systems of
spins [29]. We also note that for ρ = 0.125 the
persistence drops monotonically for t ≥ ⟨τ⟩ sug-
gesting that this particular density lies near the
transition from a flowing to a jammed regime.
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1 10 100 1,000 10,000
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Fig. 8: Conditional persistence time series for dif-
ferent values of ρ considering a system with l = 64,
α = 0.1, a = 16, b = 12, and P (τ) ∝ δ(τ − 256)
to define agent‘s memory time. We note that a
fairly empty nightclub, ρ > 0.125, guarantees that
around 30% of consumers satisfied with serving
service in comparison with the a nightclub filled
up to ρ = 0.25.

We looked at the influence of different α on
the persistence for a system with identical param-
eters as previously used except for the density
ρ = 0.25. In Fig. 9, we note that after the tran-
sient interval (t ≤ τ) for α ≥ 0.1 the system jams
at that density, whilst for α = 0.05 the persistence
drops monotonically with time. The most inter-
esting result, though, is that the non-biased case
appears to be the best scenario because almost
half the patrons are able to drink within the party
time frame studied. This observation comes as a
result of a limitation of the lattice gas model,
where hard body exclusion do not allow agents to
pass through crowded areas, thus any minor bias
towards/away from the bar is sufficient to lead the
system to a gridlock state.
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Fig. 9: Conditional persistence time series for dif-
ferent values of α considering a system with l =
64, ρ = 0.25, a = 16, b = 12, and P (τ) ∝ δ(τ−256)
to define agent‘s memory time. We observe that
for the considered density, a slight increase of α
relative to the standard lattice gas regime is suf-
ficient to make more than 85% of patrons unable
to get a drink within the party time frame.

Finally, in Fig. 10, we show the influence of
different average memory times on the persistence
for a system with ρ = 0.25, α = 0.1, a = 16, and
b = 12. We note that increasing ⟨τ⟩ immediately
enlarges the transient time interval, t ≤ ⟨τ⟩, which
allows that a greater fraction of agents are able to
drink within the party time frame, even though
the system itself evolves to a jammed state. Even
if in each case agents have the same memory time,
their biologic clock is not synchronized duo to the
initial conditions and the resulting larger tran-
sient time interval reflects on a delayed jammed
scenario.

4 Conclusion

In this contribution, we investigated key features
in the dynamics of patrons (pedestrian) in a night-
club, specifically regarding the process of acquir-
ing drinks. We focus on a traditional topology that
encompasses dancing and consumption typical of
nightclub environments. Our model introduces
memory to drinking behavior, guiding patrons to
the bar when they seek service. Through these
dynamics, we unveil intriguing findings that sup-
port the notion that strong guidance is beneficial
only up to a critical density of agents/patrons.
At higher densities, approximately ρ ≈ 1/4, we
find that exponential serving times emerge only
for intermediate α values.
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Fig. 10: Conditional persistence time series for
different memory times considering a system with
l = 64, ρ = 0.25, α = 0.1 a = 16, and b = 12. We
note that the fraction of patrons that manage to
get a drink increases with the ⟨τ⟩ once the tran-
sient time (t ≤ ⟨τ⟩) is larger, which results in a
lower number of people trying to reach or leave
the bar.

Jammed conditions lead to a high probabil-
ity of patrons failing to obtain drinks. We depict
this phenomenon using heat maps, illustrating,
as functions of ρ and α, the average density
of served patrons, the average concentration of
thirsty patrons, and dancing patrons. Addition-
ally, we present optimal curves overlaid on these
maps, showcasing the ideal conditions for drink
acquisition based on ρ and α.

Moreover, we extend the concept of local per-
sistence, which originated from coarsening dynam-
ics, to quantify the probability of a patron not
being served up to time t, given their desire to
drink. This conditional form of persistence capture
the monotonic decrease observed in the original
concept only after the transient time (t ≤ τ)
where the number of agents getting thirsty is
still increasing has passed. Moreover, the mono-
tonic decay occurs for a system of biased agents
(α > 0) but only for densities low enough so that
jamming does not occur. Also, stagnation of per-
sistence for when the system relax to a jammed
state is also observed in our results. Despite this
deviation caused by the transient time until all
agents present the urge to drink, i.e. persistence
conditioned to only thirsty agents, our adaptation
aligns with the original concept, as evidenced by
the heat maps, indicating that persistence remains
constant over time for certain α values, akin to
observations in coarsening dynamics.

Our work represents an interesting way of
approaching this complex system of agents that
comprehends the merge of commerce and pedes-
trian dynamics. It also can indicates statistical
insights on the serving services in enclosed envi-
ronments whilst considering profit of the nightclub
owners and overall clientele’s satisfaction. Our
model, however, can be further updated by includ-
ing even more realistic aspects in regards to the
agents’ drinking dynamics as well the possibility
to include a viscosity-like feature, for instance, to
overcome some limitations of the lattice gas model
as addressed in this work[38].
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Appendix A Trivial
parallelization
algorithm

To better investigate the transition of the system
that happens for small values of α, we imple-
mented its increment geometrically. In that sense,
if α1 is the initial value used in the simulation
and we want to observe the system’ behaviour for
n different values of α ranging from 0 < α ≤ p,
we increment α by a fraction ∆α of each previous
value, then the n-th value of α will be

αn = α1(1 + ∆α)n−1. (A1)

Now, to parallelized our code trivially, we must
now divide the interval within α in m parts where
n is a multiple of m, for simplicity, i.e., n = πm,
where π is a positive integer representing the num-
ber of values of α that each of our m codes will
observe. We will then, have

α1 < ... < απ︸ ︷︷ ︸
first code

< απ+1 < ... < α2π︸ ︷︷ ︸
second code

<

... < αn−π+1 < ... < αn︸ ︷︷ ︸
m-th code

,
(A2)

and the relation between the first and last values
of α to be studied at the j-th interval, where j =
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1, ...,m, is

αjπ = α(j−1)π+1(1 + ∆α)π−1 = α1(1 + ∆α)jπ−1,
(A3)

where the increment factor ∆α is constant defined
by the first and last values of α we want to study
as given by Eq.A1:

∆α =

(
αn

α1

) 1
n−1

− 1. (A4)

Within a certain interval j, the k-th value of
α, with k = 1, ..., π, is determined by

α(j−1)π+k = α(j−1)π+k−1(1 + ∆α)

= α(j−1)π(1 + ∆α)k−1

= α1(1 + ∆α)k−1+(j−1)π

(A5)

Thus, the parameters necessary to implement the
trivial parallelization, where each code is design to
study a different interval of α, are

• n: number of values of α to be studied in total;
• m: number of codes to run in parallel (must
be chosen such that n = πm with π positive
integer);

• α1: initial value of α;
• αn: final value of α;

Example of application

If we chose to study n = 50 values of
α within the range 0 < α ≤ p, we can have
α1 = 0.02 and α50 = p. We then chose to have
m = 5 codes running trivially in parallel (could be
more depending on the urgency!), so that π = 10
different values of α are studied in each interval.

The j-th code, will then have initial and final
values of α, respectively,

α(j−1)π+1 = α1(1 + ∆α)(j−1)π and

αjπ = α1(1 + ∆α)jπ−1
(A6)

where ∆α is given by Eq. A4.
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[20] José M. Pastor, Angel Garcimart́ın, Paula A.
Gago, Juan P. Peralta, César Mart́ın-Gómez,
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