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Organic light-emitting diodes (OLEDs) have redefined lighting with their environment-friendliness
and flexibility. However, only 25 % of the electronic states of fluorescent molecules can emit light
upon electrical excitation, limiting the overall efficiency of OLEDs. Strong light-matter coupling,
achieved by confining light within OLEDs using mirrors, generates polaritons—hybrid light-matter
states—that could activate the remaining 75 % electronic states. Here, we show how different
processes in such polariton OLEDs can be expected to change using a phenomenological quantum
master equation model. We are especially interested in reverse inter-system crossing happening
directly from the dark triplet states to the emitting lower polariton. We derive a simple expression
for the enhancement factor of polaritonic RISC in the linear regime. In addition, we explore the
extension of our model to higher dimensions and study some potential effects of strong coupling on
nonlinear processes such as triplet-triplet annihilation.

I. INTRODUCTION

Organic light-emitting diodes (OLEDs) offer several
advantages over traditional lighting alternatives. One
key aspect is their versatility in design and form; OLEDs
are incredibly thin, lightweight, and flexible, allowing
for innovative lighting solutions and high-definition dis-
plays [1]. However, due to spin statistics, electrical in-
jection in molecular materials results in 25 % of the ex-
citations to populate singlet electronic states, the rest
75 % populating triplets. Typically, singlets are favored
due to their ability to undergo fluorescence, which is sub-
stantially faster compared to phosphorescence, thus re-
ducing the likelihood of losses from exciton-exciton and
exciton-polaron collisions [2, 3]. From the fundamen-
tal perspective, optical excitation is experimentally sim-
pler and allows to create more singlets, but electrical ex-
citation remains practical in real-life applications, e.g.,
OLEDs. Hence, 75 % of the created excitons are des-
tined to become triplets, yet our aim should be to con-
vert them into singlets or rapidly radiatively depopulate
them [4–6].

In reverse inter-system crossing (RISC), excited triplet
states can convert to singlet states via spin-orbit cou-
pling and thermal activation [7]. Through molecular de-
sign, the energy landscape of organic materials can be
manipulated to bring singlets and triplets closer in en-
ergy while maintaining high spin-orbit coupling, thereby
enhancing RISC. However, an alternative approach ex-
ists, leveraging strong light-matter coupling phenomena
to create polaritons—hybrid light-matter states with en-
ergy levels distinct from those of singlets and triplets [8–
10]. It is an active research question whether this “ar-
tificial Stokes shift” can facilitate more efficient energy
transfer from the triplet states, potentially bypassing the
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need for traditional molecular design and revolutionizing
the field of organic optoelectronics [11–18].
In Ref. [11], Erythrosine B was utilized to experimen-

tally investigate the impact of polaritonic states on RISC,
revealing a direct transition between molecular-centered
and polaritonic states when bringing the lower polariton
closer to the first-order triplet. However, the problem
is much more nuanced. With TDAF, for example, en-
hanced RISC was not observed [12]. There have been
contradictory results even with inverted lower polari-
tons; With DABNA-2, direct RISC from the triplets to
the lower polariton (inverted below the triplets) was ob-
served [13], but with 3DPA3CN it was not [14]. While
theoretical explanations have been given [15], they ap-
pear separate, and a unified theory is still missing.
Theoretically, a common approach to this and other re-

lated problems is through quantum master equations [18–
24]. While the existing models offer detailed insights into
specific aspects of the system’s behavior, they are either
too simplistic when omitting the abundance of other pro-
cesses occurring in OLEDs or they suffer from compu-
tational complexity, making them impractical for large-
scale simulations.
In this work, we develop a quantum master equation

model that treats all the major (linear) processes occur-
ring in polariton OLEDs as simple, incoherent quantum
jumps. With our model, we can i) perform more detailed
analysis on electrical excitation, often omitted in the lit-
erature, ii) obtain a simple expression for the RISC rate,
and iii) see how these and all other processes behave as
functions of g, the coupling strength of light and matter,
g = 0 corresponding to bare film outside a cavity; To the
best of our knowledge, no other model has simultaneously
covered both the cavity and bare-film case. Our model
is relatively simple, which allows for faster computations
and easier interpretations. Furthermore, while the model
only applies in the single-excitation subspace, we also dis-
cuss its extension to higher dimensions and how strong
coupling could affect such processes as singlet-singlet and
triplet-triplet annihilation. In general, our work helps to
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better understand the rich dynamics occurring in polari-
ton OLEDs and paves the way for more advanced hybrid
light-matter technologies.

This article is structured as follows. In Sec. II, we de-
scribe our model in full detail and solve it under steady-
state conditions. In Sec. III, we derive the enhancement
factor of RISC. Extending the model to higher dimen-
sions and intermolecular processes are briefly discussed
in Sec. IV, and Sec. V concludes the paper.

II. THE MODEL

A. Hamiltonian and main assumptions

We consider a system of N identical organic molecules
carrying a single exciton coupled to a single cavity mode.
Taking singlets (S), triplets (T ), and the surrounding
phonon bath into account, we can describe the system
with the Holstein-Tavis-Cummings Hamiltonian [21, 22]

H =

N∑
n=1

Es|Sn⟩⟨Sn|+
N∑

n=1

Et|Tn⟩⟨Tn|+ Ecâ
†â

+
∑
m,n

Emb̂
†
m,nb̂m,n +

N∑
n=1

g√
N

(
|Sn⟩⟨G|â+ |G⟩⟨Sn|â†

)
,

(1)

where we have used the rotating-wave approximation
and assumed dominance of the singlet-cavity mode cou-

pling. Here, â† and b̂†m,n are the creation operators of a
photon with the energy Ec and a phonon with the en-

ergy Em at molecular site n, respectively. â and b̂m,n

are the corresponding annihilation operators. Global
ground state is denoted by |G⟩, and g—defined by g =

µ
√
NEc/(2ϵ0V )—is the light-matter coupling strength.

The transition dipole moment µ of triplets is typically
negligible for non-phosphorescent molecules [15], which
allows us to omit triplet-cavity mode interactions. The S-
T couplings, in turn, can be omitted if the energy gap be-
tween the lowest-order singlet and triplet is large enough,
which it is, e.g., with TDAF [12]. Finally, phonon-
couplings can be neglected due to polaritons being able
to decouple electronic and vibrational degrees of free-
dom [22]. And in the absence of such explicit decoupling,
phonons just suppress the effective light-matter coupling
strength [25]. That is, g should be understood as a func-
tion of the Huang-Rhys factor S with g(S) ∝ 1/S.

Diagonalizing the Hamiltonian (1), we arrive at the N
trivial eigenstates |Tn⟩ in the triplet manifold and the
following N + 1 eigenstates in the singlet-cavity mode

manifold,

|P+⟩ =
α√
N

N∑
n=1

|Sn⟩ ⊗ |0⟩+ β|G⟩ ⊗ |1⟩, (2)

|P−⟩ =
β√
N

N∑
n=1

|Sn⟩ ⊗ |0⟩ − α|G⟩ ⊗ |1⟩, (3)

|Dk⟩ =
1√
N

N∑
n=1

ei2πnk/N |Sn⟩ ⊗ |0⟩, k ∈ [1, N − 1]. (4)

|P+⟩ is the upper polariton (UP) and |P−⟩ the lower
polariton (LP), whereas {|Dk⟩} constitutes the non-
emitting exciton reservoir. In the above expressions,
|Sn⟩ (|Tn⟩) denotes the nth molecule carrying a singlet
(triplet) exciton, while the rest of the molecules are in
their electronic ground states. The matching eigenvalues
are

E± =
Es + Ec

2
±
√
g2 +

(Es − Ec)2

4
(5)

for the polaritons (+ for UP and − for LP) and Es for
the dark states.
It is straightforward to show that the parameters α

and β satisfy

|α|2 =
1

2

(
1 +

Es − Ec√
(Es − Ec)2 + 4g2

)
, (6)

|β|2 =
1

2

(
1− Es − Ec√

(Es − Ec)2 + 4g2

)
. (7)

The weights |α|2 and |β|2 are known as the Hopfield co-
efficients [26], and they will play a crucial role in what
follows. In particular, it is important to keep in mind how
these quantities behave when g → 0, as this corresponds
to the bare-film case: E+ → Es, E− → Ec, α → 1, and
β → 0.

B. GKSL master equation and jump operators

No quantum system (like an exciton or cavity mode)
can be truly isolated from their environment. The
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) mas-
ter equation is a convenient tool to study the dynamics of
such open quantum systems. Denoting the open-system
state by ρ, the GKSL master equation reads [27]

ρ̇ = − i

ℏ
[H, ρ] +

∑
k

(
L̂kρL̂

†
k − 1

2
{L̂†

kL̂k, ρ}
)
. (8)

The commutator [H, ρ] := Hρ − ρH is responsible for
the unitary dynamics of the system, while the sum over
jump operators L̂k—having units of 1/

√
s—gives the

non-unitary dynamics emerging from the environment in-
teractions. The anti-commutator appearing in Eq. (8) is
defined as {A,B} := AB +BA.
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FIG. 1. Schematic picture of the energy landscape and processes we are interested in, i.e., electrical excitation, emission,
losses, ISC, RISC, and dephasing.

Eq. (8) is the main tool of this paper. That is, ρ
describes the joint state of singlets, triplets, and cavity
mode—phonons are counted in the environment. All the
processes are schematically visualized in Fig. 1, and we
will present the corresponding jump operators in the fol-
lowing subsections. Focusing on the non-unitary part of
Eq. (8) is a valid simplification due to the sheer size of the
system; With N ∼ 1020 molecules, coherences typically
get washed out due to interactions with the environment,
leading to the dominance of incoherent processes.

1. Electrical excitation

We describe electrical excitation with the 2N operators

L̂+
1,n =

√
χn

√
1− p|ψ+

n ⟩⟨G|, (9)

L̂−
1,n =

√
χn

√
p|ψ−

n ⟩⟨G|, (10)

i.e., electronic states |ψ+
n ⟩ and |ψ−

n ⟩ are created at the
molecular sites n with the site-dependent rates χn(1−p)
and χnp. Here, we have defined |ψ±

n ⟩ := 1
2

(
|Sn⟩±

√
3|Tn⟩

)
with triplets weighted threefold over singlets. That is,
we treat the different spin configurations of triplets in
a degenerate fashion. Furthermore, the parameter p ∈
[0, 1] (the probability of phase flip) controls the singlet-
triplet coherences; With p = 1/2, there are none.
From a simplistic point of view, the rate of electrical

excitation χn depends on only two factors: How many
electrons and holes per second and ground-state site are
injected to the system and where the available sites are
located. The number of electrons per second is given by
the ratio of current and elementary charge, I/e, which
we can also write in terms of the current density J and
the device’s active area A as JA/e. If there are less holes
than electrons, we need to multiply this by the electron-
hole balance ratio γ(J) [28]. Taking the available sites

into account, we get γ(J)JA/(e⟨G⟩); The more available
sites there are, the less probable it is for the specific site
n to get excited. With ⟨G⟩ = 0 the picture becomes
nonphysical, but this can be disregarded in our case since
we are dealing with one exciton and N ≫ 0 molecules.
Then, say the electrons and holes move at the drift

velocities ve and vh, respectively, and once they meet
somewhere between the electrodes, they combine to form
excitons in the characteristic recombination time τ =
∆z2/(4Deff) [29]. Here, ∆z is the width of the recombi-
nation zone and Deff = DeDh/(De +Dh) is the effective
diffusion coefficient of electrons and holes. If we assume
that no excitons can be formed outside the recombination
zone, we finally get the pumping rate

χn =χ
( veL

ve + vh
−
√
Deffτ ,

veL

ve + vh
+
√
Deffτ , zn

)

× γ(J)JA

e⟨G⟩
, (11)

where L is the distance between the electrodes and zn is
the distance between the nth molecule and cathode. We
also have χ(z1, z2, z) = 1 if z ∈ [z1, z2] and χ(z1, z2, z) =
0 otherwise.
Note that with slowly diffusing or rapidly recombin-

ing charge carriers the excitons can pile up on a very
thin recombination zone [30]. This can catalyze differ-
ent quenching processes that will be briefly discussed in
Sec. IV.

2. Emission

We describe emission with the single operator

L̂2 =
√
ksr

N∑
n=1

|G⟩⟨Sn|. (12)
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We use a collective operator due to the collective na-
ture of polaritons and dark states; The dark states |Dk⟩
appear dark because of the destructive interference that
arises when L̂2 operates on them. The emission rate ksr
depends on the density of states of the photonic environ-
ment and the transition dipole moment [31] which, for
simplicity, has been assumed to be equal for all the sin-
glets. We have omitted triplet emission due to reasons
discussed earlier.

3. Nonradiative losses

The nonradiative singlet and triplet losses can be de-
scribed by the local operators

L̂3,n =
√
ksnr|G⟩⟨Sn|, (13)

L̂4,n =
√
ktnr|G⟩⟨Tn|, (14)

respectively. This time the operators are local—as op-
posed to the sum in Eq. (12)—due to the involvement of
local phonon environments in facilitating the losses.

The cavity losses, on the other hand, are described by

L̂5 =
√
κâ. (15)

Note that the system’s behavior in the strong-coupling
regime crucially depends on the rates ksnr and κ, where
the condition g ≫ ksnr, κ typically ensures the emergence
of polaritons. It is also important to note that when
treating phonons and free-field photons in a similar, im-
plicit manner—as we have—one cannot distinguish be-
tween radiative and nonradiative cavity losses. However,
this does not impact the dynamics of ρ inside the cavity,
which is our primary focus.

The rates ksnr and ktnr depend on factors such as the
strength of exciton-phonon coupling and the presence of
nonradiative decay pathways, while κ is directly related
to the quality factor Q of the cavity. Q, in turn, depends
on factors such as cavity geometry, material properties,
fabrication techniques, and coupling to the external en-
vironment [25, 32].

4. ISC and RISC

Here, we construct the jump operators L̂6,n = |Tn⟩⟨φn|
and L̂7,n ∼ L̂†

6,n for ISC and RISC, respectively. We

require two things from them: (1) The excitonic spin-
orbit couplings should facilitate the processes. (2) When
g = 0, we should have |φn⟩ =

√
kISC |Sn⟩. Based on

these points, we define

|φn⟩ :=
√
kISC

N

(
e
− |E+−Et|

2kBT α|P+⟩+ e
− |E−−Et|

2kBT β|P−⟩

+ e
− |Es−Et|

2kBT

N−1∑
k=1

e−i 2πnk
N |Dk⟩

)
, (16)

where the polaritons are simply weighted by their ex-
citonic probability amplitudes to account for spin-orbit
coupling. This simultaneously fulfils the second require-
ment, when we remember how the quantities behave at
g → 0. Note the separation of the Arrhenius parts (where
T is the temperature) from the prefactor

√
kISC , which

contains information about the spin-orbit coupling(s) [33]
and reorganization energies [14] and is assumed to be in-

dependent from g. The RISC operator L̂7,n is essentially

L̂†
6,n but with kRISC instead of kISC .
In prior works, ISC and RISC have been attributed to

the unitary part of Eq. (8) (see, e.g., Ref. [18]). Here,
however, and as mentioned earlier, the energy gap be-
tween the first-order singlet and first-order triplet is as-
sumed too large to be crossed without thermal activation,
i.e., environment interactions. Furthermore, while here
we focused solely on excitonic ISC and RISC, it is worth
noting that also photonic RISC has been studied [34].
However, molecules able to display photonic RISC fall
outside our assumptions, as their triplet states would re-
quire nonnegligible transition dipole moment.

5. Dephasing

Finally, quantum systems interacting with bosonic
baths experience dephasing [27], which we also need to
take into account. We consider both local dephasing in
the singlet basis and nonlocal dephasing in the eigenba-
sis. The corresponding N + 1 jump operators read

L̂8,n =
√
λ|Sn⟩⟨Sn|, (17)

L̂9 =
√
νH, (18)

where H is the system’s Hamiltonian [see Eq. (1)]. Lo-
cal dephasing arises from interactions with individual
phonon environments affecting specific emitters, while
nonlocal dephasing originates from collective polariton-
phonon interactions, the interaction strengths being
quantified by λ and ν.
One can immediately see that L̂8,n does not affect the

singlet populations. However, it has a crucial role in tran-
sitions between UP, LP, and dark states, as we shall soon
see. L̂9 with ν ≫ 0, on the other hand, guarantees that
we can write the state ρ diagonal in its eigenbasis, which
simplifies the upcoming calculations. This does not con-
tradict our main assumptions; Even with weak exciton-
phonon coupling, we can have significant dephasing due
to the large number of available phonon modes that can
interact with excitons.

C. Population dynamics and steady-state solutions

Plugging all the above jump operators into Eq. (8)
and denoting the populations of UP, LP, dark states,
and triplets by ⟨P+⟩ = ⟨P+|ρ|P+⟩, ⟨P−⟩ = ⟨P−|ρ|P−⟩,
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⟨D⟩ =
∑N−1

k=1 ⟨Dk|ρ|Dk⟩, and ⟨T ⟩ =
∑N

n=1⟨Tn|ρ|Tn⟩, re- spectively, we get the following coupled rate equations,

⟨Ṗ+⟩ ≈ |α|2
[
1

4
⟨χ⟩⟨G⟩+ kRISC

N
e
− |E+−Et|

kBT ⟨T ⟩+ λ

N

(
|α|2⟨P+⟩+ |β|2⟨P−⟩+ ⟨D⟩

)]

−

[
|α|2

(
Nksr + ksnr + kISCe

− |E+−Et|
kBT + λ

)
+ |β|2κ

]
⟨P+⟩, (19)

⟨Ṗ−⟩ ≈ |β|2
[
1

4
⟨χ⟩⟨G⟩+ kRISC

N
e
− |E−−Et|

kBT ⟨T ⟩+ λ

N

(
|α|2⟨P+⟩+ |β|2⟨P−⟩+ ⟨D⟩

)]

−

[
|β|2

(
Nksr + ksnr + kISCe

− |E−−Et|
kBT + λ

)
+ |α|2κ

]
⟨P−⟩, (20)

⟨Ḋ⟩ ≈ N − 1

4
⟨χ⟩⟨G⟩+ N − 1

N
kRISCe

− |Es−Et|
kBT ⟨T ⟩+ |α|2(N − 1)λ⟨P+⟩+ |β|2(N − 1)λ⟨P−⟩

−
(
ksnr + kISCe

− |Es−Et|
kBT + λ

)
⟨D⟩, (21)

⟨Ṫ ⟩ ≈ 3

4
N⟨χ⟩⟨G⟩+ kISC

(
|α|2e−

|E+−Et|
kBT ⟨P+⟩+ |β|2e−

|E−−Et|
kBT ⟨P−⟩+ e

− |Es−Et|
kBT ⟨D⟩

)
−

[
ktnr + kRISC

(
|α|2

N
e
− |E+−Et|

kBT +
|β|2

N
e
− |E−−Et|

kBT +
N − 1

N
e
− |Es−Et|

kBT

)]
⟨T ⟩. (22)

Here, ⟨χ⟩ := 1
N

∑N
n=1 χn is the average pumping rate

of a single exciton. Neither the rate ν nor coherences
appear anywhere, because global dephasing induced by
L̂9 is assumed to dominate all other processes. That is,
the above rate equations only hold for time scales longer
than the said dephasing.

Eqs. (19)–(22) give a simplified yet comprehensive pic-
ture of the linear processes inside a polariton OLED.
Here, the latest, the significance of the Hopfield coeffi-
cients becomes particularly prominent; All excitonic pro-
cesses related to UP (LP) are weighted by |α|2 (|β|2) and
vice versa for the photonic processes. Hence, the Hop-
field coefficients—and g by extension—provide a simple
way to control the different processes, or more precisely,
to weight them between UP and LP. It is with ISC and
RISC that the situation becomes more nontrivial due to
the Arrhenius parts containing the eigenvalues E±. We
will return to this shortly.

In the bare-film case (g = 0), UP becomes the “miss-
ing” k = N dark state that is entirely excitonic and does
not suffer from cavity losses. At the same time, LP be-
comes a free-space mode, not coupled to anything and
only suffering from “cavity losses”. Moreover, if ⟨P−⟩ is
initially zero, it remains zero in the absence of pumping.
Hence, we need not care about the free-space analogy of
cavity losses. Note also that the local dephasing disap-
pears, as expected.

Under steady-state conditions, Eqs. (19)–(22) can be
written as

∑
X wi,X⟨X⟩ = 0, where i labels the original

rate equation and X = P+, P−, D, T,G, and the steady-

state solutions become

⟨X⟩ = −
∑

i ̸=j ̸=k ̸=l σijklwiUwjV wkWwlG∑
i ̸=j ̸=k ̸=l σijklwiUwjV wkWwlX

. (23)

Here, U ̸= V ̸= W ̸= X and σijkl is the parity opera-
tor equal to 1 (-1) if the permutation ijkl is even (odd).
We have otherwise the same rates in the numerator and
denominator except for pumping (wlG) and losses (wlX),
which only appear in either the numerator or denomina-
tor, respectively. While it is not particularly enlightening
to write Eq. (23) in terms of the actual rates, its general
form already quite well illustrates the “game of rates”
and what needs to be optimized when aiming, e.g., at
maximum LP populations. In this case, we would substi-
tute X = P−, U = P+, V = D, and W = T in Eq. (23).

III. ENHANCING RISC

The bare-film RISC rate is, according to the earlier
construction, kRISC exp

[
−|Es−Et|/(kBT )

]
. This can be

checked by solving the bare-film singlet dynamics, which
we do by setting g = 0 and ⟨S⟩ = N⟨D⟩/(N − 1) =
N⟨P+⟩. The resulting rate equation is

⟨Ṡ⟩ = N

4
⟨χ⟩⟨G⟩+ kRISCe

− |Es−Et|
kBT ⟨T ⟩

−
(
ksr + ksnr + kISCe

− |Es−Et|
kBT

)
⟨S⟩, (24)

which supports our statement.
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(a) Et = 2.2 eV (b) Et = 2.1 eV (c) Et = 2.0 eV

FIG. 2. The ratio of LP and bare-film RISC in room temperature and normal incidence (k∥ = 0) as a function of Es and

g with three different triplet energies Et. The used example parameters are N = 1020, neff = m = 2, and Lc = 200 nm [cf.
Eq. (26)].

Given our interest in enhancing RISC inside a micro-
cavity, the focal point becomes the ratio between the LP
RISC rate and the bare-film RISC rate,

F :=
|β|2

N
e

|Es−Et|−|E−−Et|
kBT . (25)

Clearly, any enhancement of RISC is washed out with
N . In fact, this inverse scaling was already shown in [14],
using a different approach. However, it should be possible
to achieve F > 1 under right conditions. The initial
energy gap |Es−Et| needs to be large enough to overcome
1/N . Furthermore, the coupling constant g needs to be
high enough to ensure the excitonic content of LP and
allowing us to access the (collective) spin-orbit coupling.
However, g can be too large; When increasing g, the gap
|E−−Et| first becomes smaller and smaller, increasing F .
However, after LP-T resonance the gap starts increasing
and F decreasing. Taking all imperfections into account,
such as molecular disorder and all the couplings we have
neglected, F should actually be interpreted as the upper
bound of (incoherent) RISC enhancement.

Fig. 2 shows F as a function of Es and g, with three dif-
ferent values of Et. It is important to notice the different
scales in the different panels. It is also interesting to no-
tice the slightly tilted maximum values of F . Fig. 2 well
illustrates the sensitivity of the problem; On one hand,
even a slight increase of Et (or decrease of Es) quickly
kills F . On the other, the range of g of enhanced RISC
is very narrow. In Fig. 2, we have used [15]

Ec =
ℏc
neff

√
m2π2

L2
c

+ k2∥ (26)

to evaluate E−. Here, neff is the refractive index of the
medium, m ∈ N, Lc is the length of the cavity, and k∥ is
the in-plane momentum.

When bringing LP closer to the first-order triplet state,
we inevitably enhance ISC as well. This is against our
goal: to convert the slow triplets to fast singlets (or po-
laritons). However, one can notice from Eqs. (20) and
(22) that while RISC is weighted by ⟨T ⟩, ISC is weighted
by ⟨P−⟩. Therefore, if kRISC ≈ kISC , we need to have
⟨T ⟩/N > ⟨P−⟩ in order for RISC to outdo ISC. This
is an important point we want to highlight, since high
RISC/ISC ratio can be achieved if the triplets have long
enough lifetimes and the LP empties quickly enough by
emission, losses, or dephasing. It is also worth mention-
ing that even though we have focused on LP, we might
be able to harvest higher-order triplets with UP and “hot
RISC” [28].

IV. TOWARD HIGHER DIMENSIONS

A. Second-order polaritons

Being restricted to the single-excitation subspace, our
model is unable to cover all the possible processes occur-
ring in (polaritonic) OLEDs. By extending our model to
encompass two-excitation polariton states, many crucial
phenomena such as polariton-polariton interactions can
start to unravel [35–39], providing a more comprehensive
picture of polaritonic OLEDs. While the exploration of
these processes is reserved for future research, here we
lay out the stepping stones toward that.
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Using the ansatz

|ψ(2)⟩ =α(2)

√
2

N(N − 1)

∑
m<n

|SmSn⟩ ⊗ |0⟩

+ β(2) 1√
N

∑
n

|Sn⟩ ⊗ |1⟩+ γ(2)|G⟩ ⊗ |2⟩, (27)

where |α(2)|2+|β(2)|2+|γ(2)|2 = 1, and requiring it to sat-
isfy H|ψ(2)⟩ = ξ|ψ(2)⟩, we arrive at the following system
of equations,


α(2)2Es + β(2)

√
2g = α(2)ξ,

β(2)(Es + Ec) +
(
α(2) + γ(2)

)√
2g = β(2)ξ,

γ(2)2Ec + β(2)
√
2g = γ(2)ξ.

(28)

Using the normalization condition of the second-order
Hopfield coefficients and the approximation N − 1 ≈ N ,
we get

ξ0 = Es + Ec, (29)

ξ± = 2E±, (30)

|α(2)|2 =

[
1 +

(ξ − 2Es

ξ − 2Ec

)2
+
(ξ − 2Es√

2g

)2]−1

, (31)

|β(2)|2 =

[
1 +

( √
2g

ξ − 2Ec

)2
+
( √

2g

ξ − 2Es

)2]−1

, (32)

|γ(2)|2 =

[
1 +

(ξ − 2Ec

ξ − 2Es

)2
+
(ξ − 2Ec√

2g

)2]−1

. (33)

It might be tempting to write higher-order eigenvalues
as similar mixtures of Es and Ec and integer-multiples
of E±. However, the higher the dimension d of the
system, the more erroneous the required approximation
N − d + 1 ≈ N becomes, among other complications.
Nevertheless, the form of |ψ(2)⟩ already suggests that in
higher dimensions the dilution of RISC might be much
stronger, scaling polynomially with N .

B. Triplet-triplet annihilation

When two triplet excitons come within their cap-
ture radii, they form an encounter complex with the
energy 2Et, which can then relax to two lower-energy
states following the spin statistics, one of them being the
ground state. This is known as triplet-triplet annihila-
tion (TTA) [40]. In the context of this paper, TTA could

be described by

L̂++
10,m,n = (1− q)

√
km,n

2
(|ϕ+m⟩+ |ϕ+n ⟩)⟨TmTn|, (34)

L̂+−
10,m,n =

√
q(1− q)km,n

2
(|ϕ+m⟩ − |ϕ+n ⟩)⟨TmTn|, (35)

L̂−+
10,m,n =

√
q(1− q)km,n

2
(|ϕ−m⟩+ |ϕ−n ⟩)⟨TmTn|, (36)

L̂−−
10,m,n = q

√
km,n

2
(|ϕ−m⟩ − |ϕ−n ⟩)⟨TmTn|, (37)

where q is again the phase flip probability [cf. Eqs. (9)

and (10)], km,n ∼ exp
[
−
(
|r⃗m − r⃗n|/Rc

)s]
, s controlling

interaction confinement near the capture radius Rc,

|ϕ±n ⟩ :=
1

2

[
1√
N

(
τ+α|P+⟩+ τ−β|P−⟩

+ τs

N−1∑
k=1

e−i 2πnk
N |Dk⟩

)
±

√
3|Tn⟩

]
, (38)

and τi := min{exp[−(Ei−2Et)/(2kBT )], 1}; If Ei < 2Et,
their difference does not affect TTA [16]. Here, we would
move from the two-excitation subspace to the single-
excitation subspace.
Since polaritons are collective states and TTA an in-

termolecular process, one might anticipate more promi-
nent enhancement with TTA than with the intramolec-
ular RISC. However, the enhancement factor of TTA in
our case (from the encounter complex to LP) becomes

FTTA :=
|β|2

N

τ2−
τ2s
, (39)

which also dilutes with N .
An interesting prospect arises if the triplets are

sparsely created—i.e., outside their capture radii and
therefore not promoting TTA—and if their transition
dipole moment can no longer be neglected: Since the
triplet polaritons would consist of all the possible permu-
tations of triplet-occupied molecular sites, some of them
might be within the capture radii and contribute to TTA.

C. Singlet-singlet annihilation

When two singlet excitons interact, they are promoted
to a higher-order excited singlet which then either relaxes
back to the first-order singlets or ground state—releasing
heat at the same time—or breaks into free charge carri-
ers [41]. With thin and tightly packed recombination
zones, as discussed earlier in the context of electrical ex-
citation, this may lead to efficiency roll-off and device
degradation [42]. This time it would be beneficial for
strong coupling to separate such close singlets, opposite
to what was just discussed with TTA.
Single-excitation subspace is enough for us to clar-

ify this idea. Consider the initial state ρ(0) =
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(a)

(c)

(b)

FIG. 3. Singlet probabilities outside the recombination zone. (a) pm(t) as a function of t and g, when pm = 0. (b) Arithmetic
mean of pm(t) as a function of g. (c) pm(t) when pm = 0 and g = 60 meV [indicated by the dashed lines in (a) and (b)]. The
used example parameters are N = 1000, Es = 3 eV, neff = m = 2, Lc = 200 nm, and k∥ = 0.

∑N
n=1 pN |Sn⟩⟨Sn|, where the majority of pn are zero

due to thin recombination zone. If the pump has been
switched off and all the decay channels act on ρ slowly
enough, we can focus solely on the unitary dynamics
induced by U(t) = exp(−iHt/ℏ). The probability to
find a singlet on site m at time t becomes pm(t) =∑N

n=1 pn|⟨Sm|U(t)|Sn⟩|2 which, after some algebra and

defining γij(t) := cos
[
(Ei − Ej)t/ℏ

]
, can be written as

pm(t) =
pm
N

(
N − 2 + 2|α|2γ+s(t) + 2|β|2γ−s(t)

)
+

2

N2

(
1− |α|2|β|2 + |α|2|β|2γ+−(t)

− |α|2γ+s(t)− |β|2γ−s(t)
)
. (40)

In Fig. 3, we have plotted the singlet probability pm(t)
outside the recombination zone, i.e., when pm = 0. Inter-
estingly, when taking its average over multiple instances,
an optimum value of g can be observed from Fig. 3(b)
(∼ 60 meV). Here, the timespan was from 0 to 100 fs in
timesteps of 0.1 fs. Fig. 3(c) shows pm(t) at this optimum
coupling strenght.

Fig. 3 essentially demonstrates that, even though elec-
trical excitation may be spatially confined [see Eq. (11)],
with strong coupling singlets can be formed beyond the
recombination zone. OLEDs with polariton-improved
operational lifetimes were recently reported in [6], to
which our analysis ultimately provides an alternative
(or complementary) explanation. In [6], however, the
OLEDs were phosphorescent, but the same analysis holds
for TTA.

V. CONCLUSIONS

In this article, we investigated the incoherent dynam-
ics of polariton OLEDs by employing a phenomenological

master equation model within the linear regime. In addi-
tion, we outlined several nonlinear scenarios that strong
coupling might influence. Our master equation model
is comprehensive yet very simple—and hence it helps to
better understand the rich open-system dynamics hap-
pening in polariton OLEDs. In the future, the model can
be refined by taking into account all the interstate cou-
plings and constructing the entire system-environment
Hamiltonian. Here, the environment was treated only
implicitly.
One of the main results of this paper is the enhance-

ment factors of polaritonic RISC and TTA. Our approach
predicts their dilution with the number of molecules,
which is in line with previous works and was used as a
benchmark. In the emerging field of polariton organic op-
toelectronics, the inverse-scaling problem is expected to
hinder strong polariton-induced dynamics. Thus, com-
prehensive ruling out of Purcell enhancement [43] and
polariton-induced spectral filtering with refocused emis-
sion intensity [44, 45] is necessary in future experiments.
Even though it might appear an elusive goal to fully

harness triplets with polaritonic RISC and TTA, strong
coupling might influence OLEDs in other, perhaps more
surprising ways. Strong coupling can, in a sense, redis-
tribute excitons. This can benefit fluorescent materials
by either accelerating TTA or alternatively delaying SSA.
While further research is needed to fully understand these
fascinating new directions, strong coupling clearly holds
tremendous potential for next-generation OLEDs.
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[1] S. R. Forrest, The path to ubiquitous and low-cost or-
ganic electronic appliances on plastic, Nature 428, 911
(2004).

[2] G. F. Trindade, S. Sul, J. Kim, R. Havelund, A. Eyres,
S. Park, Y. Shin, H. J. Bae, Y. M. Sung, L. Matjacic,
Y. Jung, J. Won, W. S. Jeon, H. Choi, H. S. Lee, J. C.
Lee, J. H. Kim, and I. S. Gilmore, Direct identification
of interfacial degradation in blue OLEDs using nanoscale
chemical depth profiling, Nature Communications 14, 1
(2023).
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