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In the framework of the AdS/CFT correspondence, we report a complex scalar field dynamics in
a 2 + 1 dimensional black hole background can provide a scheme to study the pattern formation
process in 1 + 1 dimensional reaction-diffusion systems. The patterns include plane wave, defect
turbulence, phase turbulence, spatio-temporal intermittency where defect chaos coexists with stable
plane wave, and coherent structures. A phase diagram is obtained by studying the linear instability
of the plane wave solutions to determine the onset of the holographic version of the Benjamin-Feir
instability near a supercritical Hopf bifurcation.

Motivation– As a remarkable result emerged from
string theory, the duality between a classical gravity the-
ory and a quantum field theory living on its bound-
ary is called AdS/CFT correspondence, also known as
Gauge/Gravity duality or holography[1–3]. The corre-
spondence provides an unique method for studying a
strongly coupled quantum many body system in equilib-
rium/nonequilibrium by solving the independent/time-
dependent equations of motion in the dual classical grav-
ity theory, and has shown great power and potential in
condensed matter physics (AdS/CMT)[4–8]. Here we
firstly exhibit that duality can also provide a dual gravi-
tational description of non-equilibrium pattern formation
dynamics.

To understand the mechanism of spontaneous pattern
formation out of equilibrium in fluids, plasmas, cosmol-
ogy, crystals solidifying from a melt, and so on is one of
the fundamental questions in nonequilibrium physics[9–
14]. Rather than a physical system, pattern formation
is also frequently observed in a chemistry or biology
system[15–17]. In contrast to pattern formation within
thermodynamic equilibrium which rooted in the mini-
mization of (free) energy, patterns emerging in nonequi-
librium systems can only be understood within a dynam-
ical framework, even if the patterns of interest are time
independent. More often than not, when a system is
driven far from equilibrium, spatially uniform structures
become unstable toward the growth of small perturba-
tions, which leads to dynamics that amplify fluctuations
and increase complexity. Late-time dynamics is domi-
nated by the fastest-growing fluctuating modes, whose
characteristic length and time scales determine the re-
sulting spatiotemporal patterns, eventually stabilized by
nonlinear and dissipative mechanisms[10]. In such a dy-
namical framework, dynamical instabilities and nonlin-
ear mode coupling mechanisms are crucial for pattern
formation [11]. Due to the advent of Gauge/Gravity du-
ality and the high nonlinear properties of Einstein gravity
theory, we found that the dynamics of a neutral scalar
field living in a charged black hole can demonstrate im-
mense kinds of pattern formation on the boundary that
arise naturally and autonomously from a spatial homo-

geneous, uniform oscillating state, including spatial pe-
riodic plane wave, defect turbulence, phase turbulence,
spatio-temporal intermittency where defect chaos coex-
ists with stable plane wave, and coherent structures. This
is the first realization of Turing patterns [18] in reactive-
diffusion systems from black hole physics.
Model from holography– To introduce a gravity theory

that accounts for pattern formation, we consider a (d +
1)-dimensional anti–de Sitter (AdSd+1) spacetime, the
Reissner-Nordström (RN) black hole background with a
neutral complex scalar field Ψ living from the horizon
of the black hole to the infinity. The RN black hole is
a solution of the Einstein-Maxwell theory with negative
cosmological constant Λ = −d(d− 1)/2ℓ2,

L = R− 2Λ + αFµνF
µν . (1)

We further focus on the d = 2 case to study the pattern
formation dynamics of a 1+1 dimensional system living
on the boundary of the AdS3 RN black hole, where

At = −µ ln z, f = 1− z2 +
µ2

2
z2 ln z, (2)

with temperature

T =
1

4π

(
2− µ2

2

)
. (3)

In the Eddington coordinate, dt→ dt+ du/f , the metric
has the form

ds2 =
ℓ2

z2
(
−f(z)dt2 − 2dtdz + dx2

)
. (4)

In the background of the RN black hole, we consider a
neutral scalar with it’s Lagrangian reads

LΨ =
1

2κλ
(−VM (Ψ)− VK(Ψ)). (5)

One term of the the Lagrangian is the nonlinear Mexican
hat potential

VM =
1

4ℓ2
((1 + iβ)Ψ2Ψ∗2 + 2ΨΨ∗m2ℓ2), (6)
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and the other term is the kinetic energy term

VK =
1

2
(∂tΨ∂

tΨ∗ + ∂zΨ∂
zΨ∗ + (1 + iα)∂xΨ∂

xΨ∗), (7)

The equation of motion for the complex scalar field has
the following form

(2z2∂t∂z − z∂t)Ψ = z2(1 + iα)∂2xΨ− (1 + iβ)Ψ2Ψ∗

+z2∂z(f∂zΨ)− zf∂zΨ−m2Ψ. (8)

The asymptotic expansion of the field near the boundary
are

Ψ
∣∣
z=0

= Ψ−z△
−
+Ψ+z△

+

, (9)

where

△± =
2±

√
4 + 4m2

2
. (10)

Standard quantization is adopted on the boundary, where
Ψ− can be regarded as the source of the operator in
the boundary field theory and Ψ+ can be regarded as
the expected value of the scalar operators O. Setting
the source of the operator Ψ−=0, one obtains a sponta-
neous symmetry-breaking state in this holographic set-
ting when the temperature of the black hole below a crit-
ical value. By setting α = β = 0, this model was firstly
proposed and studied in [19], which dual to a mean field
second order phase transition with U(1) symmetry bro-
ken by tunning the temperature of the RN black.

In this letter, we set the mass to m2 = −0.99, which is
a little above the Breitenlohner-Freedman bound −d2/4,
the critical temperature is Tc = 0.0135, corresponding
to µc = 1.90. We will show that by tuning on α and β
in the symmetry broken phase, the system will demon-
strate various pattern formations as observed in a one-
dimensional reactive-diffusion system. Notice that the
critical temperature of the model will not be affected by
the nonlinear high order term with α and β, which can be
throw out near the critical point when the scalar is tiny.
We chose a typical symmetry broken state T = 0.294Tc.
The size of a one-dimensional reaction-diffusion system
growing on the boundary is set to L = 500. In order to
solve the dynamic equation (8), the following numerical
methods are necessary the Chebyshev spectral method
is used in the z direction, the Fourier spectral method is
used in the x direction. Specifically, the number of points
in the z direction and the x direction is nz = 30 and
nx = 500, respectively. The fourth-order Runge-Kutta
method is used to simulate the evolution of the system
in the time direction, and the time step is h = 0.01.

Plane wave solution, Benjamin–Feir instability and
phase diagram– After solving dynamic Eq. (8) by the
fourth-order Runge-Kutta method from a zero Ψ ini-
tial state with small fluctuations, we found that there
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Figure 1. Holographic Benjamin-Feir-Newell (BF) line and
phase diagram of the holographic reaction-diffusion system.
The red fitting line is α = −0.828β−1.

are plane wave solutions in this holographic reaction-
diffusion system which are related to the parameters
(α, β, q) and take the form of

Ψ(z, t, x) = ψ(z)eiωt+iqx, (11)

where ψ(z) is a monotonically increasing function with
respect to z. It should be emphasized that the solutions
of the dynamic Eq. (8) is not always a plane wave so-
lutions unless the ansatz Eq. (11) is adopted. Then we
can obtain the Fourier transform form of the dynamic
Eq. (8)

iω(2z2∂z − z)ψ = −q2z2(1 + iα)ψ − (1 + iβ)ψ2ψ∗

+z2∂z(f∂zψ)− zf∂zψ −m2ψ. (12)

By the way, Eq. (12) can be easily solved by the Newton-
Raphson iteration method. According to Eq. (9), the
order parameter of the boundary field theory reads O =
|O|eiωt+iqx. O and ω are both related to parameters
(α, β, q). Specifically, they are

|O(α, β, q)2| = |O0(β)
2| − (0.0276+ 0.00219αβ)q2, (13)

and

ω(α, β, q) = ω0(β)− (0.108α− 0.127β)q2, (14)

where |O0(β)
2| and ω0(β) are defined at q = 0, they

are |O0(β)
2| = 0.00373 + 0.000190β2 and ω0(β) =

5.02|O0(β)
2|. All the plane wave solutions obtained from

Eq. (12) can be verified by the dynamic Eq. (8). How-
ever, the plane wave solutions may not be stable for all α
and β, this can be studied by using the linear instability
analysis.
In the background of plane wave solutions, the phase

diagram of holographic reaction-diffusion systems can be
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obtained through the instability of the solutions. Like
the usual linear instability analysis process, the plane
wave solution with q = 0, Ψ = Ψ0(z)e

iωt is disturbed by
adding a small perturbation ϵ(t, z, x) = δ1(z)e

λt+ikx +
δ∗2(z)e

λ∗t−ikx

Ψ = [Ψ0 + ϵ(t, z, x)]eiωt. (15)

Substitute Eq. (15) to the dynamic Eq. (8) we get the
first order perturbation equations for δ1 and δ2{

Âδ1 + Ĉδ2 = λD̂tδ1,

Â∗δ2 + Ĉ∗δ1 = λD̂∗
t δ2.

(16)

where Â = z
(
(1 + iα)k2z − iω

)
+m2 +2(1+ iβ)Φ0Φ

∗
0 +

z (−z∂zf + f + 2iωz) ∂z − z2f∂2z , Ĉ = (1 + iβ)Ψ2
0, D̂t =

z − 2z2∂z. Solving the generalized eigenvalue Eq. (16)
the growing rate Re(λ(k)) of the perturbation can be ex-
tracted, where Re(λ(k)) is the real part of the eigenvalue
λ(k). The zero q plane wave solution will be destroyed by
the growing perturbations if there are Re(λ(k)) > 0, cor-
responding to the linear unstable region in the phase dia-
gram as shown in Fig.1. Four sample results of Re(λ(k))
for different combinations of α and β are given in Fig. 4.
If Re(λ(k)) ≤ 0, the plane wave solution is robust to the
added perturbation, corresponding to the linear stable
region in Fig.1. This is a holographic version of Ben-
jamin–Feir instability, where deviations from a periodic
waveform solution are reinforced by nonlinearity, leading
to the generation of spectral-sidebands and the eventual
breakup of the plane wave solution into a chaotic solution
[20, 21].

Spatiotemporal Chaos– Now let us discuss behaviour
of the solutions ofthe holographic model when the
Benjamin-Feir-Newell criterion is violated. In partic-
ular beyond the BF instability line but close to the
critical line in Fig.1 exhibits so-called phase turbulence
regime. Phase turbulence is a state that O(x, t) = |O|eiθ
evolves irregularly, but with its modulus always fluctu-
ates a bit near a constant value far from zero. While for
the phase θ, periodic boundary conditions enforce the
winding number to be a constant of motion, fixed by
the initial condition. As can be seen on Fig. 2, when
(α, β) = (3,−0.65), this is a spatio-temporally chaotic
state the amplitude of order parameter never reaches zero
and remains saturated. Moreover, away from the BF
line, for example (α, β) = (3,−1.5) the system exhibits
spatio-temporally disordered regime called amplitude or
defect turbulence. The behaviour in this region is char-
acterised by defects, where the order parameter vanishes
(see Fig. 2) . To obtain dynamics for the formation of
chaos we begin with a zero Ψ plus spatial noise of ampli-
tude h = 10−3, admits the standard normal distribution..
Sure, we can also get the same results by beginning with
the plane wave solution of the corresponding α and β
with spatial noise (not shown ). The linear instability

Figure 2. Configuration of |O(x, t)| for Defect turbulence
(left) and phase turbulence (right) in the linear unstable re-
gion. The column below shows |O(x)| at t = 10000.

Figure 3. Configuration of |O(x, t)| for The moving hole-shock
pair(left) and spatio-temporal intermittency (right).The col-
umn below shows |O(x)| at t = 10000.

analysis results of the plane wave solution shown in Fig.
4 confirmed the plane solution will finally enter a chaotic
state after a long-time evolution.

The spatio-tempora intermittency and Coherent struc-
tures in the plane wave stable region– Even in the regime
where plane waves are stable, where the perturbation
with finite k will exponential decay as shown in Fig. 4,
the linear stability of the plane wave solution Eq. (11)
can not exclude the existence or coexistence of the other
nontrivial solutions of Eq. (8). Below the Benjamin-
Feir instability line, plane waves attract most initial con-
ditions. However, using a suitably large and localized
initial condition, spatio-temporally intermittent states,
where defect chaos coexists with stable plane wave may
appear. After a rather short time evolution, a typical
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intermittency regime solution consists of localized struc-
tures, separating lager regions of almost constant am-
plitude which are patches of stable plane wave solution
emerges, as shown in Fig. 3 (right), when (α, β) =
(0,−1.8). Fig. 3 (left) shows another typical nontriv-
ial solution called sink solutions with Bekki-Nozaki holes
[22], observed for (α, β) = (−1,−1.8). In this case, the
spatial extension of the system is broken by irregular ar-
rangements of stationary hole- and shock-like objects sep-
arated by turbulent dynamics. These structures asymp-
totically connect plane waves of different amplitude and
wave number. Notice that the solution illustrated in Fig.
3 (left) are part of a family of solutions called coherent
structures which are comprised of fixed spatial profiles
that can vary through propagation and oscillation [23].

Discussion– We have shown that a simple 2+1 dimen-
sional classic gravity theory shows many patterns that
appear in the 1+1 dimensional systems on its boundary.
By tuning the two parameters α and β the plane wave
solution will be unstable and finally the system will en-
ter various patterns. This model provides a holographic
simulation of the dynamics of generic spatially extended
systems which undergoes a super-critical Hopf bifurca-
tion from a stationary state to an oscillatory state. We
also notice that the obtained patterns are very similar
to the 1+1 dimension complex Gindzburg-Landau equa-
tion (CGLE)[10, 24–27], the classic reductive perturba-
tion method proved that any reaction-diffusion system
that is close to this bifurcation can be deduced to the
CGLE [28, 29]. With similarity we can refer the bulk the-
ory to a holographic reaction-diffusion system. There are
many extensions that we hope to consider elsewhere: (i)
Extend the model to higher spatial dimensions. (ii) Try
to derive the effective boundary field theory of the holo-
graphic model and compare it to the CGLE. (iii) Find
the complete phase diagram and other possible coherent
structures include sinks, fronts and shocks amongst oth-
ers of the holographic model.
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