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We investigate the scaling behaviors of bipartite fluctuations F of conserved quantities across a
class of interaction-driven quantum phase transitions out of Landau fermi liquids, where other phases
involve fermi-surface states of fractionalized degrees of freedom. Examples of such phases include
(compressible) composite fermi liquids for spinless electrons and (incompressible) spin-liquid Mott
insulators for spin-1/2 electrons. The two sides of the critical points are typically distinguished by
distinct leading-order scalings of bipartite charge fluctuations, F ∼ L log(L) in Landau fermi liquids,
and F ∼ L in the other phases, where L is the linear size of the subsystem under bipartition. In the
case of composite fermi liquids (with continuous translational and rotational invariance), we also
identify a universal constant term −F(θ)σxy/π arising when the subsystem geometry incorporates
a sharp corner. Here, F(θ) represents a function of the corner angle, and σxy denotes the Hall
conductivity. At the critical point of each example, we find that the leading-order scaling F ∼ L
is accompanied by a subleading universal corner contribution −F(θ)Cρ log(L) with the same angle
dependence F(θ). The universal coefficient Cρ is linked to the predicted universal longitudinal (and
Hall) resistivity jump ∆ρxx (and ∆ρxy) at the critical point.
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I. INTRODUCTION

Bipartite fluctuations of local observables offer crucial
insight into entanglement properties, symmetries, and
correlations in many-body quantum systems. Although
entanglement has become a fundamental organizing prin-
ciple for the study of quantum matter [1, 2], experimen-
tal measurement of many-body entanglement remains a
challenge. Significant progress (see, e.g., Ref. [3–12]) has
been made toward establishing a direct relationship be-
tween entanglement entropy and the fluctuations of glob-
ally conserved quantities, such as particle number and
magnetization. This relationship has been demonstrated
to be feasible in special cases, such as one-dimensional
Luttinger liquids [6, 8] and free fermions in higher di-
mensions [4, 8, 9]. However, the connection between the
two in strongly correlated systems beyond these examples
is still poorly understood. The two quantities are ob-
served to differ from each other in continuous symmetry-
breaking phases, where the entanglement entropy still fol-
lows a boundary-law scaling while the bipartite fluctua-
tions exhibit a multiplicative logarithmic enhancement to
the boundary law. Building on this observation, Ref. [13]
proposed the use of the distinct scalings of bipartite fluc-
tuations to detect conventional Landau phase transitions.
Despite decades of study, understanding unconven-

tional quantum phases and phase transitions that are
beyond Landau’s symmetry-breaking paradigm remains
a central problem in condensed matter physics. In re-
cent years, conceptual breakthroughs [14, 15] have been
achieved by employing extended operators to define gen-
eralized symmetries and to characterize phases and phase
transitions (see Ref. [16, 17] and references therein). For
instance, abelian topological orders can be understood
in terms of the condensation of 1-dimensional objects,
leading to the spontaneous breaking of discrete 1-form
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symmetries. Similarly, the Coulomb phase of electrody-
namics can be interpreted as a spontaneous symmetry-
breaking phase of U(1) 1-form symmetry, where gapless
photons serve as Goldstone modes. This helps establish
a generalized Landau symmetry paradigm. In this case,
the criterion for determining whether the phase is sym-
metric or not is given by the scaling of disorder opera-
tors (or Wilson loops under duality). In this context, the
concept of bipartite fluctuations is again closely related,
which can be identified as the U(1) disorder operator un-
der the small-angle limit [18, 19].

While extended operators play an important role in
the conceptual understanding of phases of matter, recent
studies have also shed light on intriguing quantitative
aspects of disorder operators (and related bipartite fluc-
tuations), particularly their scaling behaviors at confor-
mally invariant quantum critical points [18–25]. For in-
stance, when considering the configuration of the subsys-
tem as depicted in FIG. 1, bipartite fluctuations exhibit
a universal corner contribution with logarithmic scaling.
This contribution has a universal angle dependence and
is directly proportional to the current central charge CJ

of the conformal field theory (CFT) [18–20]. Given the
sometimes uncertain fate of proposed lattice realizations
for exotic quantum critical points, numerical simulations,
such as quantum Monte Carlo simulations, can assist in
identifying whether these lattice models correspond to
unitary CFTs by examining the sign of the universal cor-
ner contribution to disorder operators [21–25].

Understanding quantum phase transitions in metals is
significantly more challenging due to the abundance of
low-energy excitations near the electronic fermi surface.
Even for conventional phase transitions associated with
some form of broken symmetry in metals, the standard
Hertz-Millis-Moriya framework [26–28] encounters seri-
ous difficulties in two spatial dimensions. Despite numer-
ous attempts made in recent years [29–46], many aspects
of the low-energy physics remain difficult to describe the-
oretically. A scenario that is both technically and concep-
tually more challenging is a continuous transition from
an ordinary metal to an exotic gapless phase with abun-
dant fractionalized excitations forming a fermi surface.
One such example is the proposed continuous Mott tran-
sition at half-filling [47–50] from a Landau fermi liquid
(FL) to a gapless Mott insulator (MI) with a spinon fermi
surface. This is potentially realized by the recent experi-
mental observation [51] of a continuous bandwidth-tuned
transition from a metal to a paramagnetic Mott insula-
tor in the transition metal dichalcogenide (TMD) Moiré
heterobilayer MoTe2/WSe2. However, the observed crit-
ical resistivity is anomalously large [51], exceeding the
predictions of the original theory, at least in the clean
limit [52]. To address this discrepancy, Ref. [53] has pro-
posed a modified theory that explains the large critical
resistivity by charge fractionalization.

Another notable example that has appeared in litera-
ture is the continuous transition from a Landau fermi liq-
uid to a composite fermi liquid (CFL) describing the half-

FIG. 1. The real-space subsystem A with only one corner
angle 0 < θ < π. The linear size of A is denoted by L.

filled Landau level. The theoretical possibility was origi-
nally proposed by Ref. [54] and later refined by Ref. [55]
targeting TMD Moiré materials [56]. All these exam-
ples share a common theoretical framework, which we
will review in Sec. III, where electrons are fractionalized
into fermionic and bosonic partons. The fermion sector
forms a stable fermi-surface state, while the boson sec-
tor contains a single relevant operator that drives the
transition. Crucial insight into the possible transitions
comes from the filling constraints of the bosons under
translation symmetry and the Lieb-Schultz-Mattis the-
orem [53, 55]. Without better terminology, we refer to
this type of quantum critical points as “critical fermi sur-
faces,” following Refs. [49, 50].

One of the main contributions of this paper is to
point out the universal features of critical fermi sur-
faces from the perspective of bipartite charge fluctua-
tions F . Although the transitions go beyond any sym-
metry principles, including the generalized ones [16, 17],
the two phases can be distinguished by the distinct scal-
ings F ∼ L and F ∼ L log(L), just like conventional
symmetry-breaking transitions [13], where L is the linear
size of the subsystem under bipartition. Moreover, at
the critical point, we find a universal corner contribution
with logarithmic scaling, reminiscent of the behavior seen
in CFTs, despite the absence of conformal symmetry in
such systems. The universal coefficient (denoted by Cρ)
of the logarithmic term can be directly linked to trans-
port observables, such as the predicted longitudinal (and
Hall) resistivity jump [50, 53, 55] at the critical point.

In contrast to conformally invariant quantum critical
points, many powerful theoretical tools, such as the con-
formal bootstrap [57], are no longer applicable to strongly
correlated metals. However, it is theoretically feasible
in Monte Carlo simulations [21–25] to extract the sub-
leading universal corner term of F using the method pro-
posed in Ref. [58]. We anticipate that our findings, which
establish a connection between the universal data Cρ of
the critical points and charge fluctuations which are nu-
merically and experimentally accessible, could aid future
studies in identifying the existence and lattice realiza-
tions of these exotic quantum critical points in metals.
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II. PRELIMINARIES AND SUMMARY OF
RESULTS

In this section, we begin with a brief introduction
to some preliminaries regarding bipartite fluctuations in
various phases of matter. Subsequently, we summarize
our main findings regarding a class of quantum phase
transitions out of Landau fermi liquids. This also serves
as an outline for the remainder of the paper.

A. Preliminaries

For systems with a U(1) global symmetry, the bipartite
fluctuations can be defined as

FA =

〈(∫
A
Jτ

)
−
〈∫

A
Jτ

〉〉2

. (1)

Here, Jτ represents the zeroth component of the con-
served Noether current Jµ satisfying ∂µJ

µ = 0, and A
is a spatial subregion within the total system. The ex-
pectation value is taken with respect to the ground state
at zero temperature. By definition, the large-scale scal-
ing behavior of FA is ultimately governed by the long-
wavelength behavior of the equal-time density-density
correlation Πττ = ⟨JτJτ ⟩. In Sec. IV, we undertake the
task of evaluating FA assuming a generic power-law in-
stantaneous charge correlation in two dimensions. The
results are summarized in TABLE. I.

The simplest compressible state is given by the free
fermi gas. Utilizing the free-fermion propagator, one can
easily obtain Πττ (τ → 0,x) in real space or the static
structure factor Πττ (τ → 0,k) in momentum space

Πττ (τ → 0,x) =
kF
4π3

1

|x|3
,

Πττ (τ → 0,k) = −kF |k|
2π2

, (2)

where kF denotes the fermi momentum. According to
TABLE. I, we observe the scaling F ∼ L log(L). This
is a well-known result based on the relationship between
F and entanglement entropy [4, 8, 9, 59–62]. In Ap-
pendix A, we reproduce Eq. 2 based the LU(1) anomaly
of fermi surface states [44], which holds even in the pres-
ence of strong forward scattering preserving the LU(1)
symmetry. The bonus is a geometric interpretation [63]
of the static structure factor through the area difference
when shifting the fermi surface, as depicted in Fig. 3.

Another simple compressible state is provided by the
superfluid phase. Let us denote the U(1) order param-
eter by ϕ. The gapless Goldstone mode θ corresponds
to the angle fluctuation of ϕ = ρse

iθ, where ρs repre-
sents the stiffness. Since the power counting of the action∫
d3x(∂θ)2 yields a scaling dimension of ∆[∂θ] = 3/2 for

the U(1) charge density, the corresponding equal-time
correlation scales as |x|−3. Once again, one finds the
scaling of bipartite fluctuations F ∼ L log(L).

Leading-order term Universal term

2 < α < 3 L4−α L4−α

α = 3 L log(L) L log(L)

3 < α < 4 L/ϵα−3 L4−α

α = 4 L/ϵ log(L)

α > 4 L/ϵα−3 0

TABLE I. The scaling behaviors of the bipartite fluctua-
tions FA based on the equal-time density-density correlation
Πττ (τ → 0,x) ∼ |x|−α in two dimensions. Here, L represents
the linear size of A, and ϵ is a gauge-invariant UV cut-off in-
troduced in Eq. 21. The “universal term” here is defined by
the independence of the cut-off ϵ. There are some notable
features. The leading-order term exhibits boundary-law scal-
ing when α > 3. The universal subleading logarithmic term
exists only when α = 4 and the geometry of A contains any
sharp corners. For α > 4, the universal subleading term ap-
proaches zero in the large-L limit.

An important class of incompressible states is given by
unitary CFTs. The two-point function of the conserved
spin-1 current has a rigid structure [57]

⟨Jµ(x)Jν(0)⟩ = CJ

|x|4

(
δµν −

2xµxν

|x|2

)
, (3)

where the scaling dimension of Jµ is protected. The
overall coefficient CJ > 0, known as the current cen-
tral charge, is a universal data of the CFT and is related

to the longitudinal conductivity via σxx = π2

2 CJ . Con-
sidering the subsystem with a single corner, as shown in
FIG. 1, one can verify the scaling behavior [18–20]

F = #L− CJF(θ) log(L) + . . . . (4)

where # is a non-universal number depending on the UV
cut-off, and the universal angle dependence

F(θ) =
1

2
(1 + (π − θ) cot θ). (5)

applies to any (2 + 1)-dimensional CFTs.
Insulators with a charge gap represent another stan-

dard type of incompressible states. Due to the exponen-
tial decay of the equal-time density-density correlation,
the leading-order scaling obeys the boundary law, which
is the same as CFTs. An intriguing observation from
Ref. [20] is that quantum Hall insulators exhibit a uni-
versal corner contribution −(ν/2π2)F(θ), considering the
shape of A shown in FIG. 1. The angle dependence is
once again given by Eq. 5, and ν denotes the filling factor.
The corner term for ν ∈ Z can be derived analytically,
while the fractional quantum Hall insulator at ν = 1/3
has been verified using Monte Carlo simulations based on
the Laughlin wave function [20].

B. Summary of Results

Before delving into examples of critical fermi surfaces
in Sec. V and Sec. VI, we provide some useful general
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discussions in Sec. III and Sec. IV. In Sec. V, we estab-
lish a unified theoretical framework by introducing vor-
tex excitations in fermi liquids. Different exotic gapless
phases can be then realized by putting vortices in differ-
ent states. Within the vortex theory, the U(1) disorder
operator is represented by a (spatial) Wilson loop of an
emergent gauge field. In Sec. IV, we offer technical details
on how to regularize and calculate the Wilson loop. To
better understand contributions stemming from exotic
gapless modes, such as those in composite fermi liquids,
we derive the general results in TABLE. I allowing the
gauge field to have a generic tunable scaling dimension.

Below, we summarize the key results in Sec. V and
Sec. VI, where we consider examples of clean electron
systems at half-filling, assuming disorder effects are weak.

1. Composite fermi liquids, despite being compress-
ible, obey the boundary-law scaling F ∼ L of bi-
partite charge fluctuations, contrasting with the
F ∼ L log(L) scaling observed in other compress-
ible states like fermi liquids and superfluid. This is
because the instantaneous charge correlation from
the gapless modes decays as |x|−5 (up to logarith-
mic corrections). Additionally, the gapped modes
contribute a universal corner contribution, reminis-
cent of the behaviors seen in quantum Hall insu-
lators [20]. Considering the geometry depicted in
FIG. 1, the final result for ν = 1/2 reads

F = #L− σxy
π

F(θ) + . . . . (6)

Here, # denotes a non-universal constant. The uni-
versal coefficient is determined by the DC Hall con-
ductivity σxy = 1

4π for the composite fermi liquid
with continuous translational and rotational invari-
ance. The angle dependence remains governed by
the “super-universal” formula Eq. 5.

2. At the critical point of the transition from Lan-
dau fermi liquids to composite fermi liquids, we
find that the long-wavelength behavior of the static
structure factor follows |k|2 log(1/|k|). Despite the
absence of conformal symmetry in the system, this
behavior leads to the identical scaling of bipartite
fluctuations as in CFTs (c.f. Eq. 4)

F = #L− CρF(θ) log(L) + . . . . (7)

The coefficient Cρ [64] of the corner contribution
should be understood as universal data associated
with the critical fermi surface. An important phe-
nomenology of this type of transition is the univer-
sal jumps of longitudinal resistivity ∆ρxx(ω/T ) and
Hall resistivity ∆ρxy(ω/T ) at the critical point [55],
as depicted schematically in FIG. 2. Under the
limit ω/T → ∞, these jumps are related to the
universal coefficient Cρ through the equation

Cρ =
2

π2

∆ρxx
(∆ρxx)2 + (∆ρxy)2

. (8)

FIG. 2. (1) and (2) depict the predicted universal longitudi-
nal resistivity jump ∆ρxx and Hall resistivity jump ∆ρxy at
the transition between a fermi liquid (FL) and a composite
fermi liquid (CFL) [55]; (3) illustrates the predicted universal
longitudinal resistivity jump ∆ρxx at the transition between a
fermi liquid (FL) and a Mott insulator (MI) [50, 53]. In all of
these phase transitions, the tuning parameter g is related to
the electron bandwidth, and the critical resistivity jumps are
linked to the universal corner contribution of bipartite charge
fluctuations, as described by Eq. 8.

3. The continuous Mott transition [50] can be de-
tected by the distinct scaling behaviors of bipar-
tite charge fluctuations, Fc ∼ L log(L) in the
metal phase, and Fc ∼ L in the insulator phase.
Once again, at the transition, the conformally non-
invariant quantum critical point exhibits CFT-like
behavior in the static structure factor at long wave-
lengths. The scaling of bipartite charge fluctua-
tions Fc again follows Eq. 7 with the coefficient

Cρ given by the current central charge C
(XY)
J of

the 3D XY universality class. The behavior of the
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(1) FL-CFL transition (2) Mott transition (3) Mott transition . . .

electron c spinless c(x) = b(x)f(x) spinful cσ(x) = b(x)fσ(x) spinful cσ(x) = bσ(x)fσ(x) . . .

fermion f fermi surface fermi surface fermi surface fermi surface

boson b superfluid to Laughlin at ν = 1/2 superfluid to trivial gapped superfluid to ZN topological order superfluid to ...

vortex v trivial gapped to IQH at ν = −2 trivial gapped to Higgs trivial gapped to Higgs U(1) → ZN trivial to ...

TABLE II. The parton constructions c ∼ bf for the quantum phase transitions out of spinless and spin-1/2 Landau fermi
liquids at half-filling, where σ =↑, ↓ represents the spin quantum number. The dual vortex v is introduced in Eq. 11.

critical transport is simpler due to the vanishing
Hall response. The relation Eq. 8 to critical re-
sistivity jump still holds, where ∆ρxy = 0. Addi-
tionally, the system possesses a spin U(1) symme-
try, allowing the definition of bipartite spin fluctu-
ations Fs accordingly. The fermi-surface states of
spin fluctuations in both phases are manifested as
Fs ∼ L log(L). Richer physics can be revealed by
generalizing the vortex theory in Sec. III to involve
both charge and spin vortices. Further insights into
the multicritical behaviors will be elaborated upon
in Sec. VIB.

4. In the modified proposal [53] of the continuous
Mott transition involving charge fractionalization,
bipartite charge fluctuations Fc still exhibit dis-
tinct behaviors in two phases, characterized by scal-

ings of Fc ∼ L log(L) and Fc ∼ L. A crucial dis-
tinction from the original theory [50] is observed in
Fc at the critical point, where it follows Eq. 7 with

a suppressed universal coefficient Cρ = 2C
(XY)
J /N2,

where C
(XY)
J still denotes the current central charge

of the 3D XY fixed point. Here, N , an even inte-
ger, corresponds to the fractional electric charge
e/N carried by each charge carrier. Notably, in the
time-reversal invariant scenario described by Eq. 8
with ∆ρxy = 0, the critical resistivity jump ∆ρxx
experiences an enhancement by a factor of N2/2,
consistent with the experimentally observed large
critical resistivity [51]. Another deviation from the
original theory is observed in the behavior of bipar-
tite spin fluctuations Fs, which exhibit boundary-
law scaling Fs ∼ L in the Mott insulator phase.

III. VORTEX THEORY FRAMEWORK

In this section, we present a general theoretical frame-
work for describing a class of quantum phase transitions
out of Landau fermi liquids, which will be utilized re-
peatedly in this paper.

One route to quantum phase transitions is to incorpo-
rate vortex excitations in the Landau fermi liquid phase
of electrons. If the vortex sector is not trivially gapped,
the system is driven into a different phase. To formu-
late the idea, it is sometimes convenient to start with a
parton decomposition of the spin-1/2 or spinless electron
operator c(x), given by

c(x) = b(x)f(x). (9)

Here, the assignment of the spin quantum number to the
fermionic and bosonic partons f and b varies depending
on specific examples, as summarized in TABLE. II. In
fact, as will be commented in Sec. VII, the same physics
can be realized without the need to introduce partons,
utilizing nonlinear bosonization [46].

For illustrative purposes, let us consider the case of
spinless electrons here. Generalizations for spinful cases
proceed in a similar manner. Due to the U(1) gauge re-
dundancy in Eq. 9, both b and f are coupled to a dynam-
ical U(1) gauge field aµ with equal and opposite charges

±1. Including a background field Aµ for the global U(1)
symmetry, the effective Lagrangian can be schematically
written as follows

L = L[f, a+ efA] + L[b,−a+ ebA] + . . . (10)

Here, ef + eb = 1 is the U(1) charge carried by the elec-
tron. As we show in Appendix C, the gauge-invariant re-
sponse is independent of the charge assignment (ef , eb).
Let us simply take (ef , eb) = (0, 1), and refer to the
bosonic parton b as chargon.
The next step is to go to the dual vortex representation

of the chargon sector

L = LFS[f, a] +
i

2π
ã ∧ d(A− a) + Lvrtx[v, ã] + . . . ,

(11)

where the flux of the gauge field ã represents the density
of b. It’s important to note that under gauge constraint,
the density of b equals to the density of f , as well as
the density of electrons. We are interested in the par-
ton mean-field state (before turning on gauge-field fluc-
tuations), where the f -fermions are in the same fermi-
surface state as the original electrons. The fermi liquid
phase of electrons can be reproduced when the vortices v
are trivially gapped. Then the Maxwell term 1

2e2 dã∧⋆dã
becomes important. The equation of motion of ã leads to
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a mass term e2

8π2 (aµ)
2 for the gauge field aµ. In the IR,

the fermi-surface state of f -fermions becomes the fermi-
surface state of gauge-invariant electrons. On the other
hand, various interesting electronic phases can be real-
ized by placing the vortices v in different states. Specif-
ically, (incompressible) Mott insulators [49, 50, 53] can
be realized when the vortices are in the Higgs phase or
certain topological orders. Additionally, (compressible)
composite fermi liquids [54, 55, 65] can also be realized by
putting the vortices in integer quantum Hall states. Al-
though we are not going to consider translation symme-
try breaking in this paper, density-wave states [53, 55, 66]
are conveniently described by the theory Eq. 11 as well,
where the vortex band structure has multiple minima in
the Brillouin zone, and the condensation of vortices re-
sults in the breaking of lattice translation.

Central to our discussion is the electromagnetic re-
sponse of the system. By definition, the conserved U(1)
current in the vortex theory Eq. 11 is given by

Jµ =
δL
δAµ

=
i

2π
εµνρ∂ν ãρ. (12)

Therefore, the response function Πµν = ⟨JµJν⟩ is deter-
mined by the fully dressed gauge-field propagator ⟨ãµãν⟩.
For the problem of a fermi surface coupled to a gauge field
aµ = (aτ ,a), it is convenient to use the Coulomb gauge
∇ · a = 0 [29, 30, 33, 67, 68]. (Our convention is in-
troduced in Appendix. B.) At the level of random phase
approximation (RPA), Eq. 11 leads to the effective theory

S =

∫
k

ã(−k)−Π̃(k)

2
ã(k)− ã(−k)ΠCS(k)A(k) + . . .

(13)

Here, k = (ω,k) is a collective notion of frequency and

momentum. The response kernels Π̃ and ΠCS are 2 × 2
matrices in the basis ã = (ãτ , ãT ) and A = (Aτ , AT ).
In our convention (see Appendix. B), the Chern-Simons

kernel is ΠCS(k) =
|k|
2π σ

1, where σ1 denotes the first Pauli

matrix. The fully dressed Π̃(k) contains contributions
from both the fermion sector and the vortex sector

Π̃ = −ΠCSΠ
−1
f ΠCS +Πv, (14)

where Πf is the response of the fermionic partons f to
aµ and Πv is the response of the vortices v to ãµ. The
electromagnetic response of electrons is then given by

Π−1 = −Π−1
CSΠ̃Π−1

CS = Π−1
f −Π−1

CSΠvΠ
−1
CS. (15)

This is nothing but the Ioffe-Larkin rule Eq. C3 for the
parton construction Eq. 9, as the duality relation in the
chargon sector imposes Πv = −ΠCSΠ

−1
b ΠCS. To avoid

redundant terminology, we refer to the equivalent expres-
sions under duality transformations, Eq. C3, Eq. 15, and
Eq. 14, as the Ioffe-Larkin rule.

From a different perspective, for any fermionic systems
with a global U(1) symmetry, one can always introduce a

gauge field ãµ to represent the conserved current Jµ via
Eq. 12. Consequently, Eq. 13 can be interpreted as the
bosonization [69, 70] of non-relativistic electrons.
Within the vortex theory framework, the charge disor-

der operator becomes the (spatial) Wilson loop operator
of the gauge field ã

OC = exp

(
i

2π

∫
C
ã

)
, (16)

where C is a closed loop in real space. For a spatial
subsystem A, the bipartite fluctuations Eq. 1 of the con-
served U(1) charge can be equivalently defined as

FA = ⟨(i logOC)
2⟩, (17)

where C = ∂A. The large-scale scaling behavior of FA is
determined by the gauge-field propagator ⟨ãµãν⟩ through
the Ioffe-Larkin rule Eq. 14.

IV. SCALING OF BIPARTITE FLUCTUATIONS

Here, we present details regarding the regularization
schemes and the calculations underlying the results sum-
marized in TABLE. I. This section delves into technical
aspects. Readers not inclined towards technical details
can opt to skip this section and proceed directly to Sec. V.
One must be very careful and choose a gauge-invariant

regularization scheme to handle the UV divergence in
evaluating Eq. 17. For instance, directly using the ex-
pression Eq. 14 (under the Coulomb gauge) and setting
a hard cut-off on the integration interval along C will
spoil the gauge invariance. To circumvent this issue, we
propose a method that is suitable for both dimensional
regularization and UV cut-off schemes.
Our starting point is the equal-time density response

of electrons (e.g., obtained through the Ioffe-Larkin rule
Eq. 15). At long wavelengths, we assume rotational in-
variance and consider a generic power-law correlation

Πττ (τ → 0,x) =
C0

|x|α
(18)

To keep our discussion as general as possible, we allow
the value of α to be continuously tuned with α > 2. It
is known that the overall coefficient C0 is universal in
electronic systems described by conformal field theories
where α = 4, while it is sensitive to interactions in Lan-
dau fermi liquids where α = 3. The next step is to embed
the equal-time density response Eq. 18 into a space-time
current-current correlation

⟨J̌µ(x)J̌ν(0)⟩ = C0

|x|α

(
δµν − α

α− 2

xµxν

|x|2

)
, (19)

such that Πττ (τ → 0,x) = ⟨J̌τ (τ,x)J̌τ (τ, 0)⟩. Once
again, we introduce a dual gauge field ǎµ to represent
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the current J̌µ = i
2π ε

µνρ∂ν ǎρ. The gauge-field propaga-

tor Ďµν(x− y) = ⟨ǎµ(x)ǎν(y)⟩ can be written as

Ď(α)
µν (x) =

(2π)2C0

|x|α−2

(
1 + ζ

(α− 2)2
δµν − ζ

α− 2

xµxν

|x|2

)
,

(20)

where ζ is a Faddeev-Popov gauge-fixing parameter. One
can replace the gauge field ãµ by ǎµ in the Wilson loop
Eq. 16, and calculate the bipartite fluctuations Eq. 17 by

F (α,ϵ)
A =

1

(2π)2

∫
C
dxi

∫
C
dyjĎ

(α)
ij (ϵ,x− y), (21)

where a small splitting ϵ > 0 in the “temporal direction”
serves as a small real-space UV cut-off, and the integrals
are performed along the closed spatial loop C = ∂A. In
Eq. 21, there are two parameters, ϵ and α. If the cut-
off ϵ is strictly set to zero, and the power α matches
the physical value from the Ioffe-Larkin rule Eq. 15, the
generalized formula Eq. 21 exactly reduces back to the
original definition Eq. 17.

Now, we are prepared to address the gauge-invariant
calculation of Eq. 21. In the UV cut-off scheme, we fix

the value of α and treat ϵ as a small expansion parame-
ter. Let us examine the square geometry of the loop C,
which has a side length of L. The case of CFTs where
α = 4 has been extensively discussed in Ref. [18]. It has
a leading cut-off-dependent boundary-law term together
with a universal subleading logarithmic term

F (4,ϵ)
A
C0

=
π

4

|C|
ϵ
− 2 log |C|+ const, (22)

where |C| = 4L is the perimeter of the square. By setting
α = 3 and following the calculations in Eq. (9)-(12) from
Ref. [18], we obtain the result for fermi liquids

F (3,ϵ)
A
C0

= 2|C|(log |C|+ const), (23)

As a self-consistency check, the final result of FA is again
independent of the Faddeev-Popov gauge-fixing parame-
ter ζ. We have also evaluated Eq. 21 for generic values
of α other than 3 and 4

F (α,ϵ)
A
C0

= |C|ϵ3−α

√
πΓ(α−3

2 )

(α− 2)2Γ(α−2
2 )

+ |C|4−α (2
α
2 − 2− 2(α− 4)Hypergeometric2F1(1, 3−α

2 ; 3
2 ;−1))

25−
3α
2 Γ(α− 1)/Γ(α− 4)

. (24)

The general expression Eq. 24 is informative in under-
standing different phases of matter. In non-local systems
where the instantaneous charge correlation decays even
slower than Landau fermi liquids (i.e., α < 3), the first
boundary-law term in Eq. 24 vanishes as ϵ approaches
zero, leaving only the second term, which is indepen-
dent of ϵ and scales as |C|4−α. Conversely, when α > 3,
the leading-order term is always given by the boundary
law |C|ϵ3−α, which contains a power-law UV divergence.
Another notable observation is that when the instanta-
neous charge correlation is weaker than in CFTs (i.e.,
α > 4), the universal subheading term |C|4−α vanishes
in the large-|C| limit. As we will see, this holds true for
composite fermi liquids. In TABLE. I, we summarize our

findings under the cut-off regularization scheme.

If one is only interested in the universal term that re-
mains independent of any UV cut-off, there is another
convenient regularization scheme that is in the same
spirit as dimensional regularization. Here, we set ϵ = 0
and retain α as an arbitrary parameter in the integrals for
Eq. 21. Subsequently, we consider the final result through
an expansion in terms of small δ = α − ᾱ, where ᾱ rep-
resents the physical value. In this scheme, all power-law
UV divergences are automatically eliminated, and the
logarithmic divergence manifests as δ−1. Let us check
two simple geometries, a square and a circle. One can
easily find the result for a square

F (α,0)
A
C0

= (the 2nd term in Eq. 24) =


2|C|(log |C| − δ−1 − 2 log(2) +

√
2− sinh−1(1)) α = 3

2(log |C| − δ−1) + log(32)− π
2 − 4 α = 4

|C|−1( 48−32
√
2

9 )→ 0 α = 5

, (25)

and the result for a circle

F (α,0)
A
C0

= |C|4−α πα− 5
2Γ( 32 −

α
2 )

2(α− 2)Γ(3− α
2 )

=


2|C|(log |C| − δ−1 − log(π2 )) α = 3

−π2

2 α = 4

−π2

3 |C|
−1(log |C| − δ−1 + 1

6 (5− log(π
6

64 )))→ 0 α = 5

, (26)
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where |C| represents the perimeter of C = ∂A in the both
cases. There are some lessons we can learn from this ex-
ercise. (1) When α = 3, the coefficient of the leading
term |C| log |C| remains independent of detailed geome-
tries. (2) Both the subleading term |C| in the case of
α = 3 and the universal constant term in the case of
α = 4 depend on detailed geometries. (3) When α = 5,
the universal term depends on the geometry but always
vanishes under the large-|C| scaling. (4) When α = 4,
the term log |C| only appears when the geometry con-
tains sharp corners. In fact, the corner contribution
can also be conveniently calculated using this regular-
ization scheme, compared to the calculation under the
cut-off scheme in Ref. [18]. It is convenient to choose
the gauge ζ = 1

α−3 , ensuring that contribution from the
same straight line vanishes. Considering the correlation
between two straight lines, we find that the contribution
exhibits a logarithmic divergence only when α = 3 and
α = 4. For α = 4, the angle dependence Eq. 5 can also
be exactly reproduced.

V. CONTINUOUS CFL-FL TRANSITION

We begin by discussing critical fermi surfaces for spin-
less electrons at half-filling. An interesting example is the
continuous transition between a Landau fermi liquid and
a composite fermi liquid, initially discussed in Ref. [54]
and subsequently revisited and refined in Ref. [55] regard-
ing its potential realization in the twisted MoTe2 bilayer
through the tuning of the electron bandwidth. For sim-
plicity, in investigating bipartite fluctuations across the
phase transition, we adopt the universal critical theory
with rotational symmetry, without delving into the intri-
cate details of Morié band structures.

A. Critical Theories

Within the vortex theory framework, the critical the-
ory can be described by Eq. 11 where the fermionic vor-
tices undergo a Chern number changing transition from
C = 0 to C = −2. This transition can be formulated
using two Dirac fermions

Lvrtx[ψ, ã] =

2∑
I=1

ψ̄I /DãψI +
1

2e2
dã ∧ ⋆dã, (27)

where Dã = ∂ − iã denotes the gauge covariant deriva-
tive. Note that each Dirac fermion is defined through the
Pauli-Villars scheme with another heavy Dirac fermion
in the UV. There are two phases depending on the sign
of the fermion mass term m(ψ̄1ψ1 + ψ̄2ψ2). In the case
of C = 0, as argued in Sec. III, the Maxwell term in
Eq. 27 becomes important and causes the system to flow
back to the fermi liquid phase of electrons. In the case
of C = −2, the vortex sector in Eq. 11 is given by
Lvrtx = 2i

4π ã ∧ dã. After integrating out the gauge field

ã, we have the Halperin-Lee-Read (HLR) theory [67] for
half-filled Landau level

L = LFS[f, a]−
1

2

i

4π
(a−A) ∧ d(a−A), (28)

where the f -fermions become composite fermions with
flux attachment.
For completeness, let us briefly mention the critical

theory discussed in Ref. [54, 55], and illustrate its relation
to the vortex theory Eq. 11 together with Eq. 27. The
starting point is the parton construction Eq. 9 described
in Sec. III. The bosonic parton b is assumed to be further
fractionalized into two fermions

b(x) = f1(x)f2(x) (29)

introducing an additional U(1) gauge field denoted by â.
One can assign the charge of A − a to f2, and put it
in a mean-field state with Chern number C2 = 1. Then
a Chern number changing phase transition of f1 from
C1 = −1 to C1 = 1 will drive the transition of the chargon
b from a superfluid state to the bosonic Laughlin state at
ν = 1/2. The band touching of f1 typically involves two
massless Dirac fermions χ1, χ2. The full critical theory
can be written as

L = LFS[f, a] +

2∑
I=1

χ̄I /DâχI −
2i

4π
â ∧ dâ

− i

2π
â ∧ d(A− a)− i

4π
(A− a) ∧ d(A− a), (30)

where the transition is driven by the fermion mass term
m(χ̄1χ1 + χ̄2χ2). An important insight from Ref. [55] is
that a direct second-order phase transition can be pro-
tected by translation symmetry and filling constraints.
As we shown in Appendix. D, the critical theories

Eq. 30 and Eq. 11 (together with Eq. 27) can be related
via the fermionic particle-vortex duality [71, 72], where
the ψ1, ψ2 can be interpreted as the fermionic vortices of
χ1, χ2. Therefore, the transition from the superfluid to
the Laughlin state in the chargon sector can be effectively
described by the integer quantum Hall transition of vor-
tices. The analysis presented in Ref. [55] can be carried
over for Eq. 27, demonstrating that other fermion bilin-
ears are not permitted by translation symmetry under
filling constraints.

B. Charge Fluctuations

We are primarily focused on understanding the instan-
taneous density-density correlation, or the static struc-
ture factor, of electrons at long wavelengths, as it governs
the large-scale scaling behaviors of bipartite charge fluc-
tuations F . Since the leading-order scaling F ∼ L log(L)
is well-understood in the Landau fermi-liquid phase, we
will begin our analysis with the composite fermi liquid
and then examine the critical point.
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1. CFL Phase

In this subsection, we provide an RPA analysis of the
HLR theory Eq. 28 of the half-filled Landau level. For
simplicity, we assume continuous translational and rota-
tional invariance, just like in Ref. [33, 67]. Under the
Coulomb gauge, the response function of the f -fermions
is expressed as Πf (k) = diag(Πττ

f (k),ΠTT
f (k)), where

k = (ω,k). At the one-loop level, the longitudinal and
transverse components are

Πττ
f (k) = −DF

(
1− |ω|√

ω2 + (vFk)2

)
,

ΠTT
f (k) = DF

|ω|
√
ω2 + (vFk)2 − ω2

|k|2
. (31)

Here, vF is the fermi velocity, kF denotes the fermi mo-
mentum, and DF = kF

2πvF
represents the density of states

at the fermi level. The vortex sector is in the integer
quantum Hall state at ν = −2, which has the response

function Πv(k) = −2ΠCS(k) = −2 |k|
2π σ

1. The electron
density-density correlation is determined using the Ioffe-
Larkin rule Eq. 15. Upon integrating over all frequencies
ω, the static structure factor is obtained as follows

Πττ (τ → 0,k) =

∫
dω

2π

1

Πττ
f (k)−1 − (4π)2

|k|2 ΠTT
f (k)

≈ 1− e−(|k|ℓB)2/2

4πℓ2B
− |k|

3 log(1/|k|)
4π2kF

+ . . . (32)

where ℓB denotes the magnetic length scale. The first
term in Eq. 32 arises from the inter-Landau-level gapped
modes [73, 74]. Employing similar calculations to those
in Ref. [20], we find a universal corner contribution of
−1
4π2 F(θ) to the bipartite charge fluctuations, where F(θ)

is defined in Eq. 5. The second term |k|3 log |k| arises
from the gapless modes in the lowest Landau level. This
long-wavelength result has been predicted by both the
HLR theory [67, 75] as well as the Son-Dirac theory [71,
76]. In real space, the second term decays as |x|−5 (up
to logarithmic corrections), thus contributing only to a
boundary-law term. Combining both contributions from
gapped and gapless modes, we arrive at the final result
in Eq. 6 for the configuration depicted in FIG. 1. It
is noteworthy that Eq. 6 holds for both quantum Hall
insulators [20] and composite fermi liquids.

We note that the contribution of gapped modes (pro-
portional to |k|2) in the static structure Eq. 32 is derived

within the continuum theory by HLR [67]. This contri-
bution is directly proportional to the filling factor ν, or
equivalently, to the Hall conductivity σxy. However, the
relationship σxy = ν/(2π) between ν and σxy no longer
strictly holds in lattice models, such as those discussed
in Ref. [77, 78], which concern composite fermi liquids
in TMD Morié materials. A detailed investigation of the
universal corner contribution in Eq. 6 for these lattice
models is beyond the scope of this work, and we defer it
to future studies.

2. Critical Point

Then, we turn our attention to the critical point, the
analysis of which will be more involved. The quantum
Hall transition in the vortex sector (i.e., the chargon sec-
tor) is presumably described by a CFT. It was argued in
Ref. [54, 55] that the CFT sector and the f -fermion sec-
tor are dynamically decoupled right at the critical point.
This assertion is supported by two key observations. (1)
The Landau damping term of the gauge field aµ effec-
tively suppresses gauge fluctuations at the critical point.
(2) Considering the operator O from the CFT sector cou-
pled to the f -fermion via Of†f , an additional Landau

damping term
∫
k

|ω|
|k| |O(k)| will be generated. However,

this term is irrelevant when the scaling dimension sat-
isfies ∆[O] > 3/2, a condition likely met in the critical
theory under consideration [54, 55].
Assuming the dynamical decoupling of the two sectors,

the critical response in the vortex/chargon sector still
maintains the CFT form [79]. Under the Coulomb gauge,
it is expressed as

ΠCFT(k) =

(
− |k|2

ω FL(
ω
|k| ) −σxy|k|

−σxy|k| ωFT (
ω
|k| )

)
, (33)

where the dimensionless scaling functions of the longitu-
dinal and transverse components are given by

FL(λ) = σxx
λ√

1 + λ2
, FT (λ) = σxx

√
1 + λ2

λ
. (34)

Here, σxx and σxy represent the universal longitudinal
and Hall conductivities of the CFT. Their values in Πv(k)
for vortices and in Πb(k) for chargons are related by

σb
xx =

1

(2π)2
σv
xx

(σv
xx)

2 + (σv
xy)

2
,

σb
xy =

1

(2π)2
−σv

xy

(σv
xx)

2 + (σv
xy)

2
. (35)

According to the Ioffe-Larkin rule Eq. 15 (or Eq. C3),
the static structure factor can be calculated as
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Πττ (τ → 0,k) =

∫
dω

2π

|k|2Πττ
f (k)(Fb

L(
ω
|k| )(ωF

b
T (

ω
|k| ) + ΠTT

f (k))− ω(σb
xy)

2)

(ωFb
T (

ω
|k| ) + ΠTT

f (k))(|k|2Fb
L(

ω
|k| )− ωΠ

ττ
f (k))− ω|k|2(σb

xy)
2
= −σ

b
xx

π
|k|2 log(1/|k|) + . . . .

(36)

Here, Πττ
f (k) and ΠTT

f (k) are the components of the re-
sponse function of f -fermions given in Eq. 31. The scal-
ing functions Fb

L(k) and Fb
T (k) are provided by Eq. 34,

with the coefficient σb
xx. Evaluating the frequency in-

tegral in Eq. 36 is not an easy task. In Appendix E,
we present two methods for extracting the leading-order
long-wavelength behavior of the static structure factor.
If one retains only the leading-order term of the inte-
grand in the small-k expansion, the ω-integral can be
performed analytically. Additionally, we have numeri-
cally evaluated the full expression in Eq. 36. Remark-
ably, at small |k|/kF , the numerical result aligns closely
with the analytical expression.

The Fourier transformation of the static structure fac-
tor yields the power-law spatial correlation Eq. 18 with
the exponent α = 4. The overall coefficient C0 is given
by a universal number Cρ = 2(σb

xx)/π
2, which identi-

fies the current central charge of the CFT describing the
chargon sector. Considering the integrand of Eq. 36,
by first taking the limit ω → 0 and then k → 0, one
can demonstrate the vanishing compressibility. Conse-
quently, we find an incompressible state that displays
the CFT-like static structure factor despite the absence
of conformal symmetry. According to the general analy-
sis in Sec. IV, for the geometry depicted in FIG. 1, the
bipartite charge fluctuations have the scaling behavior
described by Eq. 7. Similar to the first term in Eq. 32,
note that Eq. 36 also includes a term |k|2 originating
from gapped modes. These modes contribute to a corner
contribution (const)F(θ) that does not scale with L, akin
to the subleading term in Eq. 6. The coefficient is a func-
tion of σb

xx and σb
xy. However, separating the constant

term from the log(L) scaling in experiments or numeri-
cal simulations might prove challenging. Furthermore, in
theory, this constant term also depends on the UV cutoff.

One may wonder whether the universal number Cρ can
be detected through other experimental observables, such
as transport measurements. A promising candidate is
the predicted resistivity jump at the critical point [55],
which is solely determined by the universal data of the
CFT sector. The key argument leading to the univer-
sal resistivity jump is based on the observation that
Πτj(iω,k → 0) = 0, where j = x, y, holds for both the
f -fermion sector and the b-chargon sector. Considering
the spatial components of the Ioffe-Larkin rule Eq. 15 (or

Eq. C3), the total resistivity is given by ρij = ρfij + ρbij .
Therefore, as one approaches the critical point from the
fermi-liquid side, there is an additional contribution to
the longitudinal and Hall components arising from the

gapless degrees of freedom in the CFT

∆ρxx = ρbxx =
σb
xx

(σb
xx)

2 + (σb
xy)

2
,

∆ρxy = ρbxy =
−σb

xy

(σb
xx)

2 + (σb
xy)

2
. (37)

From these equations, we can solve for σb
xx and express

the universal coefficient Cρ = 2(σb
xx)/π

2 in Eq. 7 as a
function of ∆ρxx and ∆ρxy as in Eq. 8. Note that both
∆ρxx and ∆ρxy are scaling functions of ω/T (i.e., fre-
quency over temperature), and Eq. 8 should be under-
stood as a relation in the limit T → 0. The precise values
of ∆ρxx and ∆ρxy could potentially be determined by the
numerical method of conformal bootstrap [57]. Nonethe-
less, these quantities represent universal numbers associ-
ated with the critical point.

VI. CONTINUOUS MOTT TRANSITION

In this section, we examine another type of critical
fermi surfaces, namely, continuous metal-insulator tran-
sitions of spin-1/2 electrons at half-filling, which pre-
serve time-reversal symmetry. We begin by consider-
ing the original proposal [48–50] which was motivated by
the Mott organic material κ-(ET)2Cu2(CN)3 [80]. Sub-
sequently, we discuss a modified theory [53] proposed
for another candidate material, the TMD Morié bilayer
MoTe2/WSe2, which exhibits an anomalously large crit-
ical resistivity [51].

A. Charge Fluctuations

In order to cause the electronic fermi surface to disap-
pear abruptly in a continuous manner, spin-charge sepa-
ration is necessary, and a neutral fermi surface remains on
the insulator side. The original theoretical proposal [48–
50] was based on the parton construction

cσ(x) = b(x)fσ(x), (38)

where each electron cσ undergoes fractionalization into
a spinless bosonic chargon b, which carries the electric
charge, and a charge-neutral fermionic spinon fσ, which
carries the spin quantum number. There is a dynami-
cal U(1) gauge field aµ = (aτ ,a) that couples b and f .
After introducing the dual bosonic vortices φ of the char-
gons b, the critical theory is described by Eq. 11, where
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LFS[fσ, a] represents the fermi-surface state of spinons.
The continuous Mott transition is triggered by the su-
perfluid to Mott insulator transition of chargons. In the
dual picture, the vortex condensation is described by

Lvrtx[φ, ã] = |Dãφ|2 + r|φ|2 + u|φ|4, (39)

where Dã = ∂ − iã denotes the gauge covariant deriva-
tive. Here, a single parameter r ∼ (g − gc) controls the
transition, with g denoting the bandwidth of the origi-
nal electrons. When r > 0, the vortices φ are trivially
gapped, resulting in the fermi-liquid phase of electrons.
Conversely, when r < 0, the condensation of vortices
Higgs the gauge field ã, leading the system to become a
spin liquid insulator with gapless spinons fσ.
An important feature of the critical theory is that the

chargon/vortex sector is dynamically decoupled from the
spinon sector, as the conditions outlined at the begin-
ning of Sec. VB2 are indeed satisfied by the XY fixed
point [49, 50]. Consequently, the zero-temperature re-
sponse function Πb of chargons follows the CFT from
Eq. 33. Here, σb

xx corresponds to the critical conductivity
of the 3D XY universality class, while the Hall conductiv-
ity σb

xy vanishes. In the dual picture, the response func-
tion of vortices Πv is given by Eq. 33 with the coefficients
σv
xx = 1/(4π2σb

xx) and σ
v
xy = 0. Assuming the f -fermions

are still in the mean-field state with the response function
Πf given by Eq. 31, we use the Ioffe-Larkin rule Eq. 15
(or Eq. C3) to obtain the leading-order long-wavelength
behavior of the static structure factor

Πττ (τ → 0,k) =

∫
dω

2π

1

Πττ
f (k)−1 − ω

|k|2F
b
L(

ω
|k| )

−1

= −σ
b
xx

π
|k|2 log(1/|k|) + . . . . (40)

Since the Hall response vanishes, Eq. 40 for the Mott
transition is much simpler than Eq. 36 for the CFL-
FL transition. The common feature of the two types
of critical points is that we have an incompressible state
where the static structure factor exhibits CFT-like long-

wavelength behavior, with an overall coefficient given by
the universal conductivity σb

xx of the chargons.

Once again, the bipartite charge fluctuations are de-
scribed by Eq. 7 for the configuration in FIG. 1, with a
universal corner contribution proportional to

Cρ = C
(XY)
J (41)

where we use C
(XY)
J = 2σb

xx/π
2 to denote the current cen-

tral charge of the 3D XY fixed point. A notable property
arising from time-reversal invariance is the direct relation
between the universal corner contribution and the longi-
tudinal resistivity jump at the critical point. With a van-
ishing Hall response, the total longitudinal resistivity is
given by the Ioffe-Larkin rule ρxx = ρfxx+ρ

b
xx, where ρ

f
xx

represents the spinon contribution and ρbxx is the char-
gon contribution. At T = 0, in the insulating phase, the
gapped chargon sector yields ρbxx = +∞, resulting in in-
finite total electrical resistivity ρxx. Conversely, in the
metallic phase, the chargon superfluid exhibits ρbxx = 0,
causing the total electrical resistivity ρxx to be solely
determined by the spinon contribution. At the critical
point, a universal jump ∆ρxx(ω/T ) is predicted [50] due
to the universal chargon contribution. Under the limit

ω/T →∞, ∆ρxx = 2/(π2C
(XY)
J ) is directly related to the

universal corner contribution to bipartite charge fluctu-
ations. In the absence of disorder, such that the spinon
contribution ρfxx ≈ 0, the total critical resistivity can be
approximated as ∆ρxx.

B. Spin Fluctuations

In addition to the U(1) charge symmetry, the system
also enjoys a U(1) spin symmetry, associated with the
conservation of the third component of spins. A deeper
understanding can be achieved by incorporating both
charge and spin vortices φc, φs in strongly correlated
metals. The full theory is introduced as follows

L = LFS[f, a
c, as] +

i

2π
ãc ∧ d(Ac − ac) + i

2π
ãs ∧ d(As − as) + 1

2e2c
dãc ∧ ⋆dãc + 1

2e2s
dãs ∧ ⋆dãs

+ |(∂ − iãc)φc|2 + rc|φc|2 + uc|φc|4 + |(∂ − iãs)φs|2 + rs|φs|2 + us|φs|4 + . . . . (42)

Here, the background fields Ac and As are introduced to
keep track of the two U(1) symmetries. The spinon f =
(f↑, f↓) still forms a fermi-surface state and is coupled to
emergent U(1) gauge fields ac and as through the gauge
covariant derivative D = ∂σ0 − iacσ0 − iasσ3, where σµ

denotes the vector of Pauli matrices. The fluxes of the
U(1) gauge fields ãc and ãs represent the densities of the
bosonic partons that carry the charge-U(1) and spin-U(1)

symmetries. The parton construction resembles that of
the U(2) gauge theory discussed in Ref. [81]. There is
no prior relationship between the two sets of coupling
constants e, r, u for the different vortices.

Based on the vortex theory Eq. 42, one can define two
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φs-gapped φs-condensed

φc-gapped (L logL,L logL) (L logL,L)

φc-condensed (L,L logL) (L,L)

TABLE III. The scaling behaviors of the charge and spin bi-
partite fluctuations (Fc,Fs) across the transitions described
by the vortex theory given in Eq. 42 involving the charge and
spin vortices φc and φs. At the critical point for each vortex
condensation, the corresponding bipartite fluctuations have a
universal corner contribution that is proportional to the criti-
cal conductivity associated with the 3D XY universality class.

gauge-invariant Wilson loop operators

Oc
C = exp

(
i

2π

∫
C
ãc
)
,

Os
C = exp

(
i

2π

∫
C
ãs
)
, (43)

which represent the charge-U(1) and spin-U(1) disorder
operators associated with the subsystem A where C =
∂A. The charge and spin bipartite fluctuations Fc

A and
Fs

A are then defined using the disorder operators Oc
C and

Os
C , as described in Eq. 17.

The vortex theory described by Eq. 42 is a multi-
critical theory governed by two coupling constants, rc
and rs. The Mott transition discussed previously cor-
responds to the scenario where the spin vortex φs is
gapped while the condensation of the charge vortex φc is
dual to the XY transition. In cases where both φc and
φs are gapped, a simple analysis results in the ordinary
metal phase of electrons. However, when φc is condensed,
we are left with gapless spinons coupled to a deconfined
gauge field ac, while the gauge field ãc is gapped out due
to the Higgs mechanism. This is the Mott insulator with
a spinon fermi surface. Similarly, one could consider the
scenario in which φc is gapped, and the condensation
of φs leads to a transition from an ordinary metal to
an algebraic charge liquid with power-law charge corre-
lations. We summarize the behaviors of the charge and
spin bipartite fluctuations in TABLE. III. Regarding the
final fate in the IR, an important difference arises in the
vortex-condensed phases of φc and φs. In the case of φs,
the gauge field as will ultimately drive a pairing instabil-
ity for the fermi-surface state, resulting in a ground state
of charge superconductor. Nonetheless, the charge liquid

should still be observable within a finite energy window.
When both charge and spin vortices φc and φs are

condensed, the f -fermions become coupled to two U(1)
gauge fields

L = LFS[f, a
c, as]+

1

2e2c
dac∧⋆dac+ 1

2e2s
das∧⋆das. (44)

There is a competition between the effects of as, which
drives a pairing instability, and ac, which suppresses the
tendency towards pairing. A perturbative RG analysis
has been conducted in Ref. [81]. The IR fate is de-
termined by the UV values of the coupling constants.
If ec/es < 1, the fermi-surface state becomes unsta-
ble against pairing. Conversely, if ec/es > 1, a stable
non-fermi liquid fixed point exists. The scenario when
ec/es = 1 resembles that of fermi liquids. The stability
of the fermi-surface state hinges on whether the pairing
term is repulsive or attractive in the UV.

C. Charge Fractionalization

Another type of vortex theory was introduced in
Ref. [53], motivated by the observation of a con-
tinuous Mott transition in the TMD heterobilayer
MoTe2/WSe2 [51]. In this theory, two bosonic chargons
b↑ and b↓ are introduced for the two spin/valley quantum
numbers, defined as

c↑(x) = b↑(x)f↑(x), c↓(x) = b↓(x)f↓(x), (45)

where fσ represents the fermionic spinon. Because of
time-reversal symmetry, the condensation of both b↑ and
b↓ occurs simultaneously, leading to the metal-insulator
transition. The novelty of this theory lies in the fill-
ing factor of the chargons. When the electron c is at
half-filling, both b↑ and b↓ are also at half-filling, in con-
trast to the integer filling of b in the construction given
by Eq. 38. In this case, the Lieb-Shultz-Matthis (LSM)
theorem [82, 83] dictates that the Mott insulator phase
of each chargon cannot be a trivial insulator. Instead, it
must either be a topological order or form a density wave
that spontaneously breaks the translation symmetry. In
both cases, the critical point exhibits charge fractional-
ization and leads to anomalously large critical resistiv-
ity [53]. For simplicity, in this section, we focus on the
case of topological order for illustration purposes.
We adopt the critical theory from Ref. [53] as follows

L = LFS[f↑, a
↑] + LFS[f↓, a

↓] +
i

2π
ã↑ ∧ d(Ac +As − a↑) + i

2π
ã↓ ∧ d(Ac −As − a↓) + 1

2e2
dã↑ ∧ ⋆dã↑

+
1

2e2
dã↓ ∧ ⋆dã↓ + |(∂ − iNã↑)φ↑|2 + |(∂ − iNã↓)φ↓|2 + r(|φ↑|2 + |φ↓|2) + u|φ↑|4 + u|φ↓|4 + . . . . (46)

The background fields Ac and As are defined in the same way as in Eq. 42. The two emergent U(1) gauge fields
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a↑ and a↓ arise from the gauge redundancies in the par-
ton construction Eq. 45. The fluxes of the U(1) gauge
fields ã↑ and ã↓ represent the densities of the chargons
b↑ and b↓ respectively. The vortex excitations φ↑, φ↓ are
charged under ã↑, ã↓ respectively. In Eq. 46, the theory
essentially contains two decoupled sectors labeled by the
quantum numbers ↑ and ↓, as inter-valley couplings in-
volve high-energy processes requiring large momentum
transfer. Due to time-reversal symmetry, the two sectors
are identical, i.e., the fermionic partons f↑, f↓ are in the
same mean-field state, and the coupling constants of the
terms in both sectors are the same. Because of the π
flux background of ã↑ (and ã↓) per unit cell, the vortex
dynamics become frustrated. Without breaking lattice
translation symmetry, only N -vortex bound states can
condense, where the allowed values of N are any even
integer. In Eq. 46, the bosonic field φ↑ and φ↓ represent
the N -vortex bound state. According to the theory in
Eq. 46, the charge and spin disorder operators are repre-
sented by the Wilson loop operators

Oc
C = exp

(
i

2π

∫
C
(ã↑ + ã↓)

)
, (47)

Os
C = exp

(
i

2π

∫
C
(ã↑ − ã↓)

)
, (48)

which define the charge and spin bipartite fluctuations
Fc

A and Fs
A through Eq. 17, where C = ∂A.

The condensation of both φ↑ and φ↓ is controlled
by a single coupling constant r, which is related to
the bandwidth of the electrons. In the Mott insula-
tor, each spin/valley sector forms a ZN topological or-
der. By following a similar analysis to that at the be-
ginning of Sec. VB2, it can be shown that the Lan-
dau damping effects are irrelevant at the 3D XY* tran-
sition. This implies that, once again, the vortex sector
of each spin/valley is dynamically decoupled from the
spinon fermi surface. In both the Mott insulator and
the critical point, the charge carriers are the anyons of
the ZN topological order. Each one carries the fractional
electric charge e∗ = e/N .

The scaling behaviors of charge fluctuations Fc can be
easily seen to follow L logL and L by using the gauge-
field propagators ⟨ã↑ã↑⟩ and ⟨ã↓ã↓⟩ before and after the
vortex condensation. At the critical point, an interesting
universal corner contribution appears with a coefficient
that deviates from Eq. 41. The self-energy of ã↑ is dom-
inated by the loop corrections from φ↑, which is propor-
tional to N2. The two-point function of the conserved
current J↑ = i

2π ⋆ dã↑ at the XY* fixed point can be

shown to be proportional to 1/N2 and follow the form

〈
J↑
µ(x)J

↑
ν (0)

〉
=
C

(XY)
J

N2

1

|x|4

(
δµν −

2xµxν
|x|2

)
, (49)

where we still use C
(XY)
J to denote the current central

charge at the XY fixed point. Identical expressions hold
for ã↓ and J↓. In total, we find the charge fluctuations

Fc now becomes Eq. 7 with a universal coefficient

Cρ =
2C

(XY)
J

N2
. (50)

The value of Cρ can be utilized to ascertain the univer-

sal resistivity jump ∆ρ = N2/(π2C
(XY)
J ), as delineated

in Eq. 8. In Ref. [51], it is argued that disorder effects
are weak. Neglecting the contributions to the total resis-
tivity from the spinon fermi surface, we approximate the
total resistivity by the jump ∆ρ. The factor of N2 en-
hancement in ∆ρ may potentially explain the large crit-
ical resistivity observed in Ref. [51].
One further difference compared to the Mott transition

described by Eq. 42 is the distinctive scaling of the bipar-
tite spin fluctuations Fs in the Mott insulator. Since the
vortex condensation Higgses both ã↑ and ã↓, the scaling
is given by the boundary law Fs ∼ L.

VII. DISCUSSION AND OUTLOOK

In this paper, we investigate the bipartite fluctua-
tions of conserved quantities across a class of quantum
phase transitions departing from Landau fermi liquids.
In the examples considered, the other phases involve non-
fermi liquids of fractionalized degrees of freedom, such as
spinon fermi surfaces and composite fermi liquids. Our
results, as shown in Eq. 7 and Eq. 8 for the first exam-
ple, the CFL-FL transition, stem from the general conse-
quence of the Ioffe-Larkin rule based on two dynamically
decoupled parton sectors right at criticality, where one
forms a stable fermi-surface state, while other behaves
like a CFT at the transition. We establish a direct rela-
tionship between two physical observables, the universal
corner term in bipartite fluctuations and the critical re-
sistivity jumps. This relationship holds true for examples
both with and without time-reversal symmetry.
Our calculations of static structure factors (e.g., Eq. 36

and Eq. 40) at the critical points are performed at the
level of RPA. One may question their validity when con-
sidering fluctuation effects. On the one hand, the Ioffe-
Larkin rule Π−1 = Π−1

f + Π−1
b , arising from local gauge

constraints, is a nonperturbative relation [68]. On the
other hand, the response function Πb in the CFT sec-
tor has a rigid structure described by Eq. 33. There-
fore, the potentially questionable part is the expres-
sion of Πf for the fermi-surface sector. As discussed in
Ref. [29, 30, 32, 33, 35, 40], the charge susceptibility of
the fermi surface does not contain any singular contribu-
tions. We anticipate that the long-wavelength behavior
of Πττ is still dominated by Πb. To support the conclu-
sion, one could attempt to derive the full expression of
Πf (iω,k) at finite ω and k, incorporating higher-order
diagrams as done in Ref. [33, 43, 45], albeit these calcu-
lations were only carried out under the limit k → 0 for
conductivity. Such an endeavor proves to be technically
challenging, and we defer it to future studies.
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The entanglement entropy in the CFL phase at ν = 1/2
has been numerically investigated in Ref. [84, 85]. Both
of their results exhibit the L log(L) scaling, resembling
that of free fermions, although their overall coefficients
differ by a factor of two. This clearly deviates from our
result of a boundary law Fc ∼ L for bipartite charge
fluctuations in Sec. VB1. As we have seen in the gapless
Mott insulator, although the charge fluctuations scale as
Fc ∼ L, the spinon fermi surface still gives rise to the spin
fluctuations Fs ∼ L log(L). Therefore, it would be inter-
esting to investigate the bipartite fluctuations of other
quantities in the CFL phase that potentially identify the
scaling of its entanglement entropy.

Although in this paper, we mainly discuss transitions
at half-filling, the critical theories for the CFL-FL tran-
sition at other filling factors can be easily formulated
within the vortex theory framework described in Sec. III.
Specifically, the case of ν = 1/4 can be described by
Eq. 11 together with the vortex sector

Lvrtx[ψ, ã] =

4∑
I=1

ψ̄I /DãψI +
1

2e2
dã ∧ ⋆dã. (51)

Through the fermionic particle-vortex duality [71, 72],
this theory can be demonstrated to be dual to the criti-
cal theory proposed in Ref. [55] based on a parton con-
struction, where the chargon is fractionalized into four
fermions. At the critical point, we again observe the bi-
partite charge fluctuations described by Eq. 7, which ex-
hibit a universal corner contribution related to the criti-
cal resistivity jumps via Eq. 8.

We have ignored the scenario of transitions between
Landau fermi liquids and charge-density-wave insulators
coexisting with neutral fermi surfaces [53, 55]. In such
cases, the coupling of the density-wave order parameter
O to the fermi surface of f -fermions leads to a different
Landau damping term

∫
k
|ω||O(ω,k)|2, which becomes

relevant if the scaling dimension satisfies ∆[O] < 1. This
scenario is likely true, and there is no dynamical decou-
pling of the boson and fermion sectors at criticality. It is
possible that the Landau damping eventually drives the
transition to become weakly first-order. It is also possi-
ble there is a new fixed point for the charge sector with a
dynamical exponent z > 1, as a technically similar theory
has been considered in Ref. [86]. At this stage, there is
no available theoretical control to determine the nature
of these transitions, and we have to defer the study of bi-
partite fluctuations across these exotic quantum critical
points to future research.

The focus of this paper is on critical fermi surfaces
in two spatial dimensions. Continuous Mott transitions
between fermi-liquid metals and spin-liquid insulators in
three-dimensional systems can be constructed using simi-
lar techniques. For instance, in Ref. [87], the same parton
construction as described in Eq. 38 was employed, result-
ing in a critical theory similar to the two-dimensional
case. The spinon-chargon interaction is found to be
marginally irrelevant, and the chargon condensation be-
longs to the 4D XY universality class. Since the system

reaches its upper critical dimension, the scaling forms
of various physical quantities exhibit logarithmic correc-
tions. In the vortex theory framework, the U(1) disorder
operator is represented by aWilson surface. When study-
ing its shape dependence, there are more possibilities of
singular geometries, including cone corners as well as tri-
hedral corners. It would be interesting to understand the
universal terms in bipartite fluctuations for critical fermi
surfaces in three dimensions.
In Sec. III, we have provided a unified theoretical

framework for critical fermi surfaces by introducing vor-
tices in Landau fermi liquids. Another approach, concep-
tually equivalent but technically different, exists for con-
structing the vortex theory without the need for partons.
Let us illustrate this idea using the CFL-FL transition.
One can start with the non-linear bosonization of spin-
less fermi liquids [46] (also see Appendix. F for a brief
review). Then, we introduce vortex excitations in

L = LFS[ϕ] + (a+A) · J [ϕ]− i

2π
ã ∧ da+ Lvrtx[ψ, ã].

(52)

Here, LFS[ϕ] is the nonlinear theory introduced in Eq. F6,
and J [ϕ] represents the U(1) current. The dynamical
gauge field aµ is introduced as a Lagrangian multiplier,
enforcing the duality relation J [ϕ] = i

2π ⋆ dã. By consid-
ering the vortex sector as in Eq. 27, one can again real-
ize the CFL-FL transition. The essence lies in the fact
that the boson ϕ contains a large number of low-energy
excitations, including the modes represented by the par-
tons. The advantage of the theory in Eq. 52 lies in its
ability to undergo various generalizations by modifying
J [ϕ], such as for higher-angular momentum channels, as
already pointed out by Ref. [88].
One of our key findings pertains to the change in scal-

ing behaviors of bipartite charge fluctuations (or charge
disorder operators) across a class of quantum critical
points. It closely resembles the transition between dif-
ferent phases of higher-form symmetries. Despite re-
cent progress in understanding certain aspects of the
low-energy physics of fermi surfaces from the perspective
of LU(1) anomaly [44], and efforts towards formulating
fermi-surface dynamics using nonlinear bosonization by
employing the infinite-dimensional Lie group of canoni-
cal transformations [46] (also see Appendix. F), a gener-
alized symmetry principle for the quantum phase tran-
sitions considered in this paper remains an open ques-
tion. Nevertheless, our quantitative result Eq. 7 at the
critical point, which identifies a universal corner contri-
bution with a positive universal number Cρ, could be
verified through quantum Monte Carlo simulations, po-
tentially aiding in the discovery of lattice realizations.
Specifically, considering the recent numerical evidence of
the CFL phase in twisted MoTe2 [77, 78], it would be
intriguing to explore the possibilities of continuous CFL-
FL transitions in related lattice models. Furthermore,
the numerical verification of Eq. 7 would provide com-
pelling evidence supporting the universal critical theory
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proposed in Ref. [54, 55].
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Appendix A: LU(1) Anomaly and Static Structure Factor

In this section, we provide a geometric interpretation of the static structure factor, drawing from the LU(1) anomaly
of fermi-surface states [44, 45]. We begin by introducing the low-energy patch theory

L =

∫
dθψ†(τ,x, θ)(Dτ + ivjF (θ)Dj + κij(θ)DiDj)ψ(τ,x, θ) + (interactions). (A1)

Here, θ denotes an angle variable labeling the patch, vjF (θ) represents the fermi velocity, and κij(θ) is the curvature
tensor. The gauge covariant derivative is denoted by Dµ = ∂µ − iAµ, where Aµ is the background electromagnetic
field. Under the scaling limit, the paramagnetic current (at A = 0) is given by

Jτ (τ,x) =
δS
δAτ

= −i
∫

dθρ(τ,x, θ), (A2)

J i(τ,x) =
δS
δAi

=

∫
dθρ(τ,x, θ)viF (θ), (A3)

where ρ(τ,x, θ) = ψ†(τ,x, θ)ψ(τ,x, θ) represents the density at each patch of the fermi surface. We introduce the
phase-space current density J µ such that Jµ(τ,x) =

∫
dθJ µ(τ,x, θ). Due to the LU(1) anomaly [44], the Ward

identity (in Euclidean signature) is as follows

∂IJ I =
−i
8π2

εIJKL∂IAJ∂KAL, (A4)

where ∂I = (∂τ , ∂x, ∂θ). As for the phase-space background field AI, we introduce

Aτ = Aτ (τ,x), Ax = Ax(τ,x) + kF (θ), Aθ is independent of τ,x (A5)

Here, Aµ = (Aτ , Ax) is the ordinary background electromagnetic field. We provide two explanations for the inclusion
of kF (θ) in Ax. (1) We want to turn on a background flux Fxk that ensures the canonical commutation relation

[xi, kj ] = iδij [90]. (2) It aligns with the semiclassical equation of motion k̇ = E. (One may also check Sec. VI. B of
Ref. [44]). The LU(1) Ward identity Eq. A4 leads to

∂τJ τ (τ,x, θ) + ∂x · J x(τ,x, θ) =
−i

(2π)2
E × dkF (θ)

dθ
, (A6)

where E = −Fτx = ∂xAτ − ∂τAx. We have used ∂θJ
θ = 0 in the presence of a background electric field [44]. We

focus on the response to Aτ and set Ax = 0. In the momentum space, this is given by

(−iω + vF · k)ρ(ω,k, θ) =
−i

(2π)2

(
k × dkF (θ)

dθ

)
Aτ (ω,k). (A7)

The equal-time response of the total electric charge density Jτ (ω,k) = −i
∫
dθρ(ω,k, θ) is therefore

Πττ (τ → 0,k) =
1

(2π)2

∫
dω

2π

∫ 2π

0

dθ
1

iω − vF (θ) · k

(
k × dkF (θ)

dθ

)
= − Area

(2π)2
, (A8)
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FIG. 3. The geometric interpretation of the static structure factor Πττ (τ → 0, q), where the shaded area represents its value.

where (Area) represents the value of the shaded area in FIG. 3. The dependence on the fermi velocity vF is eliminated
after the ω-integral, and k × ∂θkF (θ) has the geometric interpretation of an area element.
For a spherical fermi surface kF (θ) = kF (cos θ, sin θ), we have k × ∂θkF (θ) = k · kF (θ), and accordingly

Πττ (τ → 0,k) =
1

(2π)2

∫
dω

2π

∫ 2π

0

dθ
kF |k| cos θ

iω − vF |k| cos θ
=
kF |k|
2π

∫ 2π

0

dθ

2π

(
−| cos θ|

2

)
= −kF |k|

2π2
. (A9)

This exactly reproduces the free-fermion result in Eq. 2. It’s worth noting that one can introduce interactions that
explicitly break the LU(1) symmetry, such as scattering between fermion modes from different patches. For instance,
considering the RPA treatment of a local density-density interaction, we obtain the density response

Π̂ττ (iω,k) =
Πττ (iω,k)

1− uΠττ (iω,k)
, (A10)

Here, Πττ (iω,k) represents the free-fermion result from Eq. 31, and u denotes a coupling constant. Consequently,
the equal-time function becomes∫

dω

2π
Π̂ττ (iω,k) = −kF |k|

2π2

√
2ũ+ 1 + 2ũ arctan(

√
2ũ+ 1)

(2ũ+ 1)3/2
, (A11)

where ũ = uDF is rescaled by the density of states DF = kF

2πvF
at the fermi level. Also, note that in the problem of

the half-filled Landau level, the Ward identity (Eq. A4) needs modification due to the presence of an emergent gauge
field [44]. Therefore, the geometric interpretation presented here should not conflict with the results in Sec. VB1.

Appendix B: Coulomb Gauge and Response Theory

In this appendix, we introduce our convention about the response theory under the Coulomb gauge. For any
rotationally invariant systems, the two-point function Πµν = ⟨JµJν⟩ of conserved currents has the structure

Πττ (k) =
|k|2

ω2
ΠL(ω, |k|),

Πτi(k) = −ki
ω
ΠL(ω, |k|) + εijkjH(ω, |k|),

Πij(k) =
kikj
|k|2

ΠL(ω, |k|) +
(
δij − kikj

|k|2

)
ΠT (ω, |k|) + ωεijH(ω, |k|), (B1)

where ΠL and ΠT represent the longitudinal and transverse components respectively, while H governs the Hall response.
It is sometimes beneficial to decompose the spatial components of the background/gauge field into longitudinal and
transverse components, expressed as A = AL +AT where

AL(k) = PLA(k), PL
ij =

kikj
|k|2

,

AT (k) = PTA(k), PT
ij = δij − PL

ij . (B2)
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It is useful to introduce a scalar AT to represent the transverse fields AT
i , which is defined by

AT
i (k) =

εijkj
|k|

AT (k), AT (k) =
εijkj
|k|

AT
i (k). (B3)

Under the Coulomb gauge AL = 0, the response theory can expressed in the basis (Aτ , AT )

S[A] =
∫

d3k

(2π)3
−1
2

(Aτ (−k) AT (−k))

(
Πττ (k) H(k)|k|
H(k)|k| ΠTT (k)

)(
Aτ (k)

AT (k)

)
, (B4)

where Πττ (k) = |k|2
ω2 ΠL(ω, |k|) and ΠTT (k) = −ΠT (k). Here, k = (ω,k) is a collective notion of frequency and

momentum. Notice that the Chern-Simons term is∫
−i
4π

A ∧ dA =

∫
d3k

(2π)3
−1
2

(Aτ (−k) AT (−k))
|k|
2π

(
0 1

1 0

)(
Aτ (k)

AT (k)

)
. (B5)

Appendix C: Ioffe-Larkin Rule

We investigate the response function of electrons using the parton theory described in Eq. 10. In the standard
RPA approach, integrating out both fermionic and bosonic partons f and b leads to

S =

∫
k

−Πµν
f (k)

2
(aµ(−k)+efAµ(−k))(aν(k)+efAν(k))+

−Πµν
b (k)

2
(−aµ(−k)+ebAµ(−k))(−aν(k)+ebAν(k)). (C1)

To enforce gauge invariance, we integrate out the dynamical gauge fields aµ at the RPA level. This yields the total
response theory L =

∫
k

−1
2 Πµν(k)Aµ(−k)Aν(k) with

Π = e2fΠf + e2bΠb − (efΠf − ebΠb)(Πf +Πb)
−1(efΠf − ebΠb)

= e2f (Πf −Πf (Πf +Πb)
−1Πf ) + e2b(Πb − (Πf +Πb)

−1Πb) + ebef (Πf (Πf +Πb)
−1Πb +Πb(Πf +Πb)

−1Πf )

= (ef + eb)
2Πf (Πf +Πb)

−1Πb = Πf (Πf +Πb)
−1Πb, (C2)

where we have used ef + eb = 1. Therefore, we find the Ioffe-Larkin decomposition rule

Π−1 = Π−1
f +Π−1

b , (C3)

which is independent of the assignment (ef , eb) of the global U(1) charge.
Under the Coulomb gauge, the parton response functions Πf and Πb can be written as

Πf =

(
Πττ

f (k) Hf |k|
Hf |k| ΠTT

f (k)

)
, Πb =

(
Πττ

b (k) Hb|k|
Hb|k| ΠTT

b (k)

)
. (C4)

The Ioffe-Larkin rule Eq. C3 leads to the gauge-invariant response

Πττ =
Πττ

f det(Πb) + Πττ
b det(Πf )

det(Πf +Πb)
,

ΠTT =
ΠTT

f det(Πb) + ΠTT
b det(Πf )

det(Πf +Πb)
,

ΠτT = ΠTτ = |k|Hf det(Πb) + Hb det(Πf )

det(Πf +Πb)
. (C5)

For time-reversal invariant systems such that Hf = 0 and Hb = 0, one simply has

Πττ =
Πττ

f Πττ
b

Πττ
f +Πττ

b

, ΠTT =
ΠTT

f ΠTT
b

ΠTT
f +ΠTT

b

, ΠτT = ΠTτ = 0. (C6)
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Appendix D: Dual Theories for CFL-FL Transition

We begin by establishing the duality relation between the vortex theory Eq. 11 (together with Eq. 27) and the
critical theory Eq. 30. It is known that a single Dirac fermion enjoys the fermion-fermion duality [71, 72]

ψ̄ /DAψ ←→ χ̄ /Daχ−
i

2π
adb+

i2

4π
bdb− i

2π
bdA+

i

4π
AdA, (D1)

where each Dirac fermion is defined through the Pauli-Villars scheme with another heavy Dirac fermion in the UV.
Upon integrating out the gauge field b, the resulting expression takes on the usual form found in the literature, albeit
with incorrectly quantized topological terms

ψ̄ /DAψ −
1

2

i

4π
AdA ←→ χ̄ /Daχ−

1

2

i

4π
ada− 1

2

i

2π
adA. (D2)

Its time-reversal image yields yet another fermionic particle-vortex duality

ψ̄ /DAψ −
1

2

i

4π
AdA ←→ χ̄ /Daχ−

1

2

i

4π
ada+

1

2

i

2π
adA. (D3)

Let us apply the duality Eq. D3 to the two fermions in Eq. 27, subject to the constraint ψ†
1ψ1 = ψ†

2ψ2

χ̄1 /Db̃χ1 + χ̄2 /Dc̃χ2 −
1

2

i

4π
b̃db̃− 1

2

i

4π
c̃dc̃+

i

2π
ãd(A− a+ b̃/2 + c̃/2) +

i

4π
ãdã+

i

2π
λd(b̃− c̃), (D4)

where the fluxes of b̃ and c̃ represent the densities of ψ1 and ψ2, and λ serves as a Lagrangian multiplier. After

integrating out both λ and ã, we find that (when ψ†
1ψ1 = ψ†

2ψ2)

2∑
I=1

ψ̄I /DãψI +
i

2π
ãd(A− a) ←→

2∑
I=1

χ̄I /Db̃χI −
2i

4π
b̃db̃− i

2π
b̃d(A− a)− i

4π
(A− a)d(A− a). (D5)

Together with the fermi-surface sector described by LFS[f, a], we find Eq. 11 (together with Eq. 27) and Eq. 30 are
indeed related by the fermionic particle-vortex duality [71, 72].

In view of the abelian duality web [72], there are other formulations of the critical theory as well. For a single Dirac
fermion, there is a fermion-boson particle-vortex duality

ψ̄ /DAψ ←→ |Daφ|2 + |φ|4 −
i

4π
ada− i

2π
adA. (D6)

Using Eq. D6, we can express the dual theory of ψ̄1 /Dãψ1 + ψ̄2 /Dãψ2 − i
2π ãda as follows

|Db̃φ1|2 + |φ1|4 + |Dc̃φ2|2 + |φ2|4 −
i

4π
b̃db̃− i

4π
c̃dc̃− i

2π
ãd(a+ b̃+ c̃). (D7)

Integrating out ã imposes the constraint c̃ = −a− b̃, leading to the bosonic dual theory for the CFL-FL transition

L = LFS[f, a+A] + |Db̃φ1|2 + |φ1|4 + |D−a−b̃φ2|2 + |φ2|4 −
2i

4π
b̃db̃− i

2π
b̃da− i

4π
ada. (D8)

The phase transition is driven by the simultaneous condensation of φ1 and φ2.
In addition, several other dual critical theories based on level-rank dualities have been reviewed in Ref. [55].

Appendix E: Static Structure Factor of Critical Fermi Surfaces

In this appendix, we provide technical details regarding the evaluation of integrals for the static structure factors,
as expressed by Eq. 36 and Eq. 40, at the quantum critical points. If we naively consider the small-k expansion of
the integrand before doing the integral, the leading-order term can integrated analytically, resulting in

Πττ (τ → 0,k) ≈
∫

dω

2π

−|k|2kF vF (kF vFσb
xx + 4πω(σb

xx)
2 − 4πω(σb

xy)
2)

ω(kF vF + 4πωσb
xx)

2 − 16π2ω3(σb
xy)

2
= −σ

b
xx

π
|k|2 log(1/|k|) + . . . . (E1)
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FIG. 4. (1) The numerical result (in black) of the static structure factor given by Eq. 36 at the CFL-FL Transition, where
kF =

√
2π, vF = 0.25, and σxx = −σxy = 1/(8π); (2) The numerical result (in black) of the static structure factor given by

Eq. 40 at the Mott Transition, where kF =
√
2π, vF = 0.25, and σxx = 0.355155/(2π). The numerical results are compared to

the CFT-like scaling (in red) and that of ordinary fermi surfaces (in blue).

Here, a logarithmic divergence arises from the ω-integral, leading to the factor log(1/|k|) due to the identical scaling
of ω and k at the critical point. The naive analytical calculation of Eq. 40 proceeds in a similar manner and is a
special case of Eq. E1 with σxy = 0.

To confirm the final result in Eq. E1, we also numerically evaluated the integrals using the exact expressions from
Eq. 36 and Eq. 40, with the results presented in FIG. 4. In these numerical calculations, the value of kF is determined
by the Luttinger theorem VFS/(2π)

2 = 1/2 at half-filling [91], where the fermi-surface volume is given by VFS = πk2F .
We use a small value of vF for estimations. For the chargon conductivity σb

xx at the Mott transition, we adopt the
critical conductivity at the XY transition from conformal bootstrap [92]. For chargons at the CFL-FL transition, as
a very crude estimation, we assume the universal transverse and Hall resistivities ρbxx, ρ

b
xy are both around 4π [55].

In both cases, the numerical results agree well with the analytical expressions at small-k, confirming the expectation
that the static structure factor of critical fermi surfaces behaves in a CFT-like manner and deviates from that of
ordinary fermi surfaces.

Appendix F: Non-Linear Bosonization

In this Appendix, we offer a brief introduction to non-linear bosonization [46] of fermi liquids from the perspective
of coherent-state construction. For any fermionic systems with translation symmetry, we can introduce the fermion
bilinear operator

t(x,k) =

∫
q

c†
k− q

2
ck+ q

2
eiq·x, (F1)

where c is the gauge-invariant election operator. It generates an infinite-dimensional Lie algebra

[t(ξ), t(η)] = −2i sin
(
∂ξ ⋏ ∂η

2

)
δ2d(ξ − η)t(ξ), (F2)

where ξ = (x,k) is a coordinate in the 2d-dimensional phase space, and the antisymmetric product ⋏ is defined by
ξ ⋏ η = ξx · ηp − ξp · ηx. When d = 1, this algebra is commonly known as the W∞ algebra. In higher dimensions, we
refer to it as the particle-hole algebra. In the context of condensed matter systems, we assume that the phase space
is compactified, with the momentum vector k living on the Brillouin zone which is a d-dimensional torus. The first
observation is that fermi liquids realize a condensation of the Lie-algebra generator t

F0(x,k)
df
= ⟨FS|t(x,k)|FS⟩ = Θ(ϵF − ϵk), (F3)

where |FS⟩ =
∏

ϵk≤ϵF
c†k|0⟩ is the fermi surface (FS) ground state. This is just the distribution function F0(x,k) that

describes the shape of FS. This is analogous to magnetic orders that realize the condensation of fermion bilinears
⟨c†σ⃗c⟩ where σ⃗ are Pauli matrices.
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The fluctuations of the condensation ⟨t⟩ are systematically described by nonlinear bosonization [46]. Given the
symmetry group generated by the Lie algebra Eq. F2, one can introduce the coherent state

|ϕ⟩ = exp

(
i

∫
x,k

ϕ(x,k)t(x,k)

)
|FS⟩, (F4)

where ϕ(x,k) is a bosonic variable in phase space. The distribution function dressed by fluctuations is then

F (x,k)
df
= ⟨ϕ|t(x,k)|ϕ⟩. (F5)

The quantization of FS fluctuations is given by the coherent-state path integral

Z =

∫
D[ϕ]e−S[ϕ], S[ϕ] =

∫
dτ⟨ϕ|∂τ +H|ϕ⟩. (F6)

which can be unpacked order by order in terms of the boson ϕ. In practical calculations [46], it is useful to consider
a truncation of the algebra Eq. F2 using the separation of energy scales ∂x∂k ∼ q/kF ≪ 1, where q is the low-
energy relative momentum of particle-hole pairs. Another simplification comes from the redundancy in ϕ(x,k) due
to the group generated by Eq. F2 being partially broken by the FS ground state. The FS fluctuations are sufficiently
described by ϕ(x,kF ) where kF labels points on the FS manifold [46]. The leading-order Gaussian part reproduces
the well-known result based on patch assumptions

S =
1

4π

∫
kF∈FS

∫
τ,x

(v̂F · ∂xϕ)(i∂τϕ+ vF · ∂xϕ), (F7)

where vF is the fermi velocity and v̂F denotes its direction. In other words, one has a chiral Luttinger liquid on
each patch of the FS in the direction v̂F . In the full action Eq. F6, different patches are allowed to talk to each
other. Namely, the third-order term in ϕ contains the gradient ∂kF

ϕ along the FS, and therefore couples the nearest
neighbor patches. For a more detailed analysis of the higher-order terms in the calculation, interested readers may
consult Ref. [46]. It is worth noting that the procedure we have outlined here has parallels with the derivation of
the non-linear sigma model for magnetic orders using spin coherent-state path integral methods. (see e.g. [93] for a
textbook treatment).
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