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Abstract

We revisit the unified two-timescale Q-learning algorithm as initially introduced by Angiuli
et al. (2022). This algorithm demonstrates efficacy in solving mean field game (MFG) and
mean field control (MFC) problems, simply by tuning the ratio of two learning rates for
mean field distribution and the Q-functions respectively. In this paper, we provide a com-
prehensive theoretical explanation of the algorithm’s bifurcated numerical outcomes under
fixed learning rates. We achieve this by establishing a diagram that correlates continuous-
time mean field problems to their discrete-time Q-function counterparts, forming the basis
of the algorithm. Our key contribution lies in the construction of a Lyapunov function
integrating both mean field distribution and Q-function iterates. This Lyapunov function
facilitates a unified convergence of the algorithm across the entire spectrum of learning
rates, thus providing a cohesive framework for analysis.

Keywords: mean field games, mean field control, two-timescale algorithm, convergence
analysis, reinforcement learning

1 Introduction

Reinforcement learning (RL) is a dynamic machine learning technique formalized through
the framework of Markov Decision Processes (MDP), wherein an agent learns through in-
teraction within an environment, relying on trial and error and feedback derived from its
own actions and experiences (Sutton and Barto, 2018). RL has been prominent in artifi-
cial intelligence research in past decades and yields breakthroughs across diverse domains
ranging from robotics (Kober et al., 2013), classical games (Mnih et al., 2013; Silver et al.,
2016), to autonomous driving (Kiran et al., 2021). RL is closely related to the optimal
control problems in the sense that it optimizes the decision-making processes by maximiz-
ing long-term cumulative rewards or minimizing cumulative costs under accessible policies
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(Bertsekas, 2019). Multi-agent reinforcement learning (MARL) extends the classical RL to
scenarios involving multiple agents interacting within a shared environment, and we refer
to survey works (Busoniu et al., 2008; Zhang et al., 2021) for its fundamental background.
Despite its empirical success, the scalability of MARL with respect to the number of agents
remains to be a key issue (Hernandez-Leal et al., 2019).

One approach to tackle the curse of scalability is to consider MARL in the regime with
a large number of homogeneous agents. In this paradigm, mean field formulations provide
a mathematical framework to model and analyze large-scale interacting particle systems
independent of the number of agents N . Particularly, we focus on mean field game (MFG)
and mean field control (MFC) problems as their theory has been developed rapidly in
recent years. Mean field games, initially introduced by Lasry and Lions (2007) and Caines
et al. (2006), are non-cooperative N -player games aim to find a Nash equilibrium where no
individual agent can unilaterally improve the outcome by changing strategies. On the other
hand, a mean field control problem has a central planner to find the collective optimum in
a cooperative game within a large population. We refer to books Bensoussan et al. (2013)
and Carmona and Delarue (2018) for further details of both MFG and MFC.

In the past years, solving stochastic control and games using model-free RL algorithms
has gained a lot of interests, if one wants the agent to learn the optimal policy by directly
interacting with the system without inferring the model parameters. We refer to (Hu and
Laurière, 2023; Laurière et al., 2022) for a comprehensive review of recent developments. To
learn MFG and MFC solutions, there are numerous algorithms available including but not
limited to policy gradient based methods (Bhandari and Russo, 2024; Carmona et al., 2019;
Williams, 1992), actor-critic methods for linear-quadratic models (Fu et al., 2019; Yang
et al., 2018; Wang et al., 2021), fixed point iterations relying on entropy-regularization
(Cui and Koeppl, 2021; Guo et al., 2022), and value-based RL methods such as Q-learning
(Angiuli et al., 2022; Angiulia et al., 2023; Carmona et al., 2023; Guo et al., 2019; Mguni
et al., 2018; Subramanian and Mahajan, 2019; Zaman et al., 2023; Gu et al., 2021).

In this paper, we focus on the work by Angiuli et al. (2022) that proposed a unified RL
algorithm combining the classical Q-learning updates (Watkins, 1989; Watkins and Dayan,
1992) with the two-timescale approach (Borkar, 1997). This two-timescale Q-learning al-
gorithm updates the mean field distribution and the value function iteratively, and can
converge to either the MFG or MFC solutions by adjusting the ratio of associated Robbins-
Monro learning rates to zero or infinity. A natural question to ask is why this simple
two-timescale algorithm can produce bifurcated numerical results by just tuning two learn-
ing rates. We attempt to answer this question by:

1. Building a complete roadmap connecting the discrete-time Q-learning algorithm to
continuous-time Hamilton-Jacobi-Bellman (HJB) equations for both MFG and MFC.
The corresponding HJB equations for MFG and MFC are different depending on
whether the population distribution is fixed, while such dependence is not explicitly
captured in the two-timescale Q-learning algorithm.

2. Providing a unified convergence of the two-timescale Q-learning algorithm covering
all choices of fixed learning rates. Rather than focusing on the extreme regimes
of learning rates ratios and qualitative analysis, we aim to explain the algorithm’s
bifurcated numerical behaviors quantitatively using the unified convergence result.
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1.1 Our contributions

For the first part of our work, we start from the continuous-time MFG and MFC value
functions under stochastic control with infinite time horizon, and we give formulations
of corresponding discrete-time value and Q-functions which the two-timescale Q-learning
algorithm is built on. We provide a sequence of approximation results to verify connections
in Fig. 1 with respect to the time discretization h.

For the second part, we construct a Lyapunov function integrating both mean field
distribution and Q-function iterates from the two-timescale Q-learning algorithm and prove
its convergence quantitatively. Our approach takes generic assumptions on the cost function
and the transition kernel, in addition to assuming the transition kernel satisfying a uniform
Doeblin’s condition. The contraction of the constructed Lyapunov function exhibits explicit
dependence on the two-timescale learning rates, thus explains how the two-timescale Q-
learning algorithm can produce different solutions by tuning learning rates.

Figure 1: The diagram that links two-timescale Q-learning algorithm with optimal value
functions solving HJB equations.

1.2 Related works

We mention several works related to our approach. We build the convergence diagram as
in Fig. 1 since there is no continuous-time limit for the Q-learning iterations (Tallec et al.,
2019). In the continuous-time setting where we can seek for differences of MFG and MFC in
the HJB equations, the Q-function from the algorithm becomes ill-posed and collapses to the
value function that is independent of actions. To analyze the continuous-time counterpart
of Q-learning, Kim et al. (2021) restricts the action process to be Lipschitz continuous
so that Q-learning becomes a policy evaluation problem with the state-action pair as the
new state variable. Jia and Zhou (2023) and Wang et al. (2020) consider and analyze
the entropy-regularized, exploratory diffusion process formulation which approximates the
classical Q-function independent of time discretization. We list a few other papers (Kim and
Yang, 2020; Gu et al., 2016; Jiang and Jiang, 2015; Palanisamy et al., 2014; Vamvoudakis,
2017) regarding general continuous-time RL.

On the other hand, our unified convergence of the two-timescale Q-learning algorithm
takes motivations from the community that studies bi-level optimization. One problem
somewhat related to setups in this paper is the linear quadratic regulator (LQR) in RL,
and there have been many works studying two-timescale actor-critic algorithms for solving
the LQR problem (Konda and Tsitsiklis, 1999; Zhou and Lu, 2023; Yang et al., 2019; Zeng
et al., 2021). In particular, our Lyapunov function construction is inspired by Zhou and Lu
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(2023) who constructed a Lyapunov function involving both the critic error and the actor
loss, although our goal is different from Zhou and Lu (2023): We try to find the fixed point
of mean field problems, while Zhou and Lu (2023) aims to solve optimization problems.

We also mention that a recent paper by Angiuli et al. (2023) applies the theory of
stochastic approximation (Borkar, 1997) to the two-timescale Q-learning algorithm, and
they showed the algorithm convergence in extreme regimes where the ratio of learning rates
is either zero or infinity. Compared to Angiuli et al. (2023), our approach of using the
Lyapunov function is new and takes care of all ranges of learning rate ratios. Moreover, the
convergence in Angiuli et al. (2023) is qualitative while our result is quantitative.

1.3 Organization

The paper is organized as follows. In Section 2, we review the formulations of the mean
field game and mean field control problem that are the focus of our study. In Section 3,
we outline the discrete value functions and Q-functions for MFG and MFC in bounded
state and action spaces, and we review the continuous-time value functions solving the HJB
equations derived in unbounded state and action spaces. A sequence of approximation
errors between various formulations are provided. In Section 4, we revisit the two-timescale
Q-learning algorithm and illustrate its bifurcated numerical behaviors by a toy example.
In Section 5, we conduct the unified convergence analysis for the two-timescale Q-learning
algorithm. Lastly, the numerical experiments that verifying the algorithm are provided in
Section 6.

Notations Throughout the paper, we use ∥ · ∥ to denote the Euclidean norm;

∥Q(·, ·)∥∞ := supx∈X ,a∈A |Q(x, a)|; ∥µ∥p =
(∑

x∈X µ(x)p
)1/p

, and the total variation norm
is ∥µ∥TV = supA⊆X

∣∣∑
x∈A µ(x)

∣∣.
Acknowledgments JA would like to express thanks to Mo Zhou, Lei Li, Yingzhou Li,
and Jiequn Han for fruitful discussions. This work was done during YW’s visit of Duke
University and Rhodes Information Initiative at Duke. YX was partially supported by the
Project of Hetao Shenzhen-HKUST Innovation Cooperation Zone HZQB-KCZYB-2020083.

2 Background

We consider the Markov Decision Process (MDP) (Bellman, 1957; Watkins, 1989) with
finite state and action spaces, which we denote by X and A respectively. P(X ) is the space
of probability measures on X . The transition probability kernel can be viewed as a function

p : X × X ×A× P(X )→ [0, 1], (x, x′, a, µ) 7→ p(x′ | x, a, µ), (2.1)

which is, under the population distribution µ, the probability of jumping from state x to
state x′ using action a. Let f : X ×A×P(X )→ R+ be a running cost function. f(x, a, µ)
can be interpreted as the one-step cost incurred by an agent at state x to take an action a,
when the population distribution is µ.

There are various formulations of MFG and MFC problems available in the literature. In
Angiuli et al. (2022), three formulations in the infinite horizon were presented: asymptotic,
non-asymptotic, and stationary. We will focus on the asymptotic formulations given in
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Angiuli et al. (2022), since then the problem faced by an infinitesimal agent among the
crowd can be viewed as a MDP parameterized by the population distribution. We refer
other infinite time horizon formulations to Angiuli et al. (2022) and the finite time horizon
version to Angiulia et al. (2023) if readers are interested.

We start by reviewing the formulation of stochastic control problems in the infinite time
horizon with continuous state space. Let (Ω,F ,P) be a probability space accompanied with
filtration {Ft}t≥0 generated by a standard n-dimensional Brownian motion B = {Bt}t≥0.
For any time t, one has the state Xt ∈ X ⊆ Rd following the McKean–Vlasov dynamics (i.e.,
distribution-dependent dynamics) and the Markovian control αt = α(Xt) : X → A ⊆ Rk.
Given Borel-measurable functions

b : X ×A× P(X )→ Rd, σ : X ×A× P(X )→ Rd×n (2.2)

that satisfy necessary conditions for the well-posedness (see Section 3.2 for details). The
stochastic control problem is that an agent controls her state X via a sequence of actions
(policy) α with the goal of minimizing the expected discounted cost

inf
α

Jµ(α) = inf
α

E
[∫ ∞

0
e−γtf(Xt, αt, µt)dt

]
,

s.t. dXt = b(Xt, αt, µt)dt+ σ(Xt, αt, µt)dBt, X0 ∼ µ0,

(2.3)

with a discount factor γ > 0 and the probability measure flow µt starting from µ0 = P[X0],
i.e., µt is the law of Xt. For more general versions of stochastic control problems and
associated theory, we refer readers to the book by Carmona and Delarue (2018).

The above general formulation with stochastic differential equation (SDE) control is
based on unbounded state space X . To be closely connected with reinforcement learning
with a bounded state space X and an action space A, we would consider MFG and MFC
problems on discrete state space in the asymptotic sense following (Angiuli et al., 2022,
Section 2.2). In this setup, the control does not depend on time but only on the state,
since the transition probability p and the cost function f only depend on the limiting
distributions other than time. The SDE control is replaced by the transition probability p,
and the discount prefactor e−γt is replaced by rk for some r ∈ (0, 1).

Mean Field Game (MFG) Solving a MFG problem is to find a Nash equilibrium (α̂, µ̂)
in a non-cooperative game by following:

1. Fix a probability distribution µ̂ ∈ P(X ) and solve the standard stochastic control
problem

inf
α

J µ̂(α) = inf
α

E

[ ∞∑
k=0

rkf(Xα,µ̂
k , α(Xα,µ̂

k ), µ̂)

]
,

s.t. Xα,µ̂
k+1 ∼ p(· | Xα,µ̂

k , α(Xα,µ̂
k ), µ̂), Xα,µ̂

0 ∼ µ0,

(2.4)

2. Given the optimal control α̂, find the fixed point µ̂ such that

µ̂ = lim
k→∞

P[X α̂,µ̂
k ].

5
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Mean Field Control (MFC) Different from MFG that has fixed µ in the first step, the
population distribution µk = P[Xα

k ] in MFC changes instantaneuously when α changes.
The asymptotic version of the problem is thus written as

inf
α

J(α) = inf
α

E

[ ∞∑
k=0

rkf(Xα
k , αk, lim

k→∞
P[Xα

k ])

]
,

s.t. Xα
k+1 ∼ p(· | Xα

k , α(X
α
k ), lim

k→∞
P[Xα

k ]), Xα
0 ∼ µ0,

(2.5)

so that the control α is independent of time, as p and f depend only on the limiting
distribution (as k →∞).

We emphasize that the main difference between the two is that in MFG, the distribution
µ is prescribed when the optimal control is solved (and hence the superscript µ in the
notation), while in MFC, the distribution depends on the choice of α, when the policy is
optimized.

3 Value functions and Q-functions

We first recall formulations of value functions and Q-functions in both continuous and
discrete time. With these, we establish the sequence of approximations in Fig. 1 from Qh

which satisfies the Bellman equation to V which solves the HJB equation.

3.1 Value functions

We recall the classical continuous-time value functions for mean field game (MFG) and
mean field control (MFC) problems, respectively. The value function of the MFG, with any
fixed population distribution µ ∈ P(X ), is written as

V α,µ
MFG(x) = E

[∫ ∞

0
e−γsf(Xα,µ

s , αs, µ)ds

∣∣∣∣X0 = x

]
. (3.1)

On the other hand, the value function of the MFC, different from MFG, has population
distribution µt ∈ P(X ) changing over time depending on the control. For asymptotic MFC,
it is defined as

V α
MFC(x) = E

[∫ ∞

0
e−γsf(Xα

s , αs, lim
t→∞
P[Xα

t ])ds

∣∣∣∣X0 = x

]
. (3.2)

For formulations (3.1) or (3.2), the dynamics of Xt follows a Markov process with

Xt ∼ p(· | Xt′ , α(Xt′), µ) for t′ < t, (3.3)

where µ is fixed for MFG and µ = limt→∞ P[Xt] for MFC (recall we consider the asymptotic
MFC in this work).

Analogously, if we consider the discrete MDP (X ,A, e−γh, fk) as a counterpart of the
continuous-time MDP with time discretization h, and we use the notations Xk ≡ Xkh, αk ≡
αkh = α(Xk), µk ≡ µkh, fk ≡ f(Xk, αk, µk), then given an admissible policy α, the discrete
value functions V α

h for MFG has the form of

V α,µ
h,MFG(x) := E

[
h

∞∑
k=0

e−kγhf(Xα,µ
k , αk, µ)

∣∣∣∣X0 = x

]
, (3.4)
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with the state Xα,µ
k changes by

Xα,µ
k+1 ∼ p(· | Xα,µ

k , αk, µ). (3.5)

Similarly, for MFC, we have the form

V α
h,MFC(x) = E

[
h

∞∑
k=0

e−kγhf(Xα
k , αk, lim

k→∞
P[Xα

k ])

∣∣∣∣X0 = x

]
, (3.6)

with the state Xα
k changes by

Xα
k+1 ∼ p(· | Xα

k , αk, lim
k→∞

P[Xα
k ]). (3.7)

For (3.1) and (3.2), we can derive the optimal value functions by optimizing over policies
α:

V µ
MFG(x) = inf

α
V µ,α
MFG(x), VMFC(x) = inf

α
V α
MFC(x), (3.8)

Similarly, for (3.4) and (3.6), the discrete optimal value functions are defined as

V µ
h,MFG(x) = inf

αh

V µ,α
h,MFG(x), Vh,MFC(x) = inf

αh

V α
h,MFC(x). (3.9)

In addition, we introduce the assumption on the cost function f that will be used throughout
the paper.

Assumption 1 We assume that the cost function f : X ×A× P(X )→ R is bounded and
Lipschitz continuous in µ, in the sense that there exists a constant Lµ > 0 such that for
every (x, a) ∈ X ×A,∣∣f(x, a, µ1)− f(x, a, µ2)

∣∣ ≤ Lµ∥µ1 − µ2∥TV for any µ1, µ2 ∈ P(X ). (3.10)

3.2 HJB equations with SDE controls

While for most of this work, we consider discrete state space, we study in this section the
continuous state space analog, where the state dynamics is given by stochastic differential
equations (controlled diffusion)

dXt = b(Xt, αt, µt)dt+ σ(Xt, αt, µt)dBt. (3.11)

We use this setup to review the familiar Hamilton-Jacobi-Bellman equations, which would
shed light on the difference between MFG and MFC in the continuous-time solution view-
point. Furthermore, our numerical experiments in Section 6 are based on discretizations of
the SDE.

For continuous state space models, we require some additional assumptions to ensure
the wellposedness of the problem.

Assumption 2 Given an unbounded state space X , we assume that the cost function f :
X × A × P(X ) → R is bounded and measurable. For any fixed µ ∈ P(X ), f is Lipschitz
continuous in x, a, in the sense that there exist constants Lx, Lα > 0 such that∣∣f(x1, α1, µ)− f(x2, α2, µ)

∣∣ ≤ Lx∥x1 − x2∥+ Lα∥α1 − α2∥ for any x1, x2 ∈ X , a1, a2 ∈ A.
(3.12)
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Assumption 3 We assume that for any (x, a, µ) ∈ X × A × P(X ), both b(x, a, µ) and
σ(x, a, µ) are measurable, bounded, and Lipschitz in x, a, which means that there exist con-
stants Kx,Kα > 0, and for every µ ∈ P(X ), it holds uniformly that

∥b(x′, a′, µ)− b(x, a, µ)∥ ≤ Kx∥x′ − x∥+Kα∥a′ − a∥,
∥σ(x′, a′, µ)− σ(x, a, µ)∥ ≤ Kx∥x′ − x∥+Kα∥a′ − a∥.

(3.13)

Moreover, both b(x, a, µ) and σ(x, a, µ) are differentiable in x and a.

Given the optimal value functions V , one can obtain the HJB equations for MFG and
MFC by following the derivations in Chapter 3 and Chapter 4 of Bensoussan et al. (2013)
respectively. For simplicity, we give the statement with constant σ(x, a) ≡ σ > 0.

Definition 1 We say f(x, a, µ) is differentiable in µ if the first variation

d

dϵ
f(x, a, µ+ ϵm)

∣∣∣
ε=0

:=

∫
X

δf(x, a, µ)

δµ
(ξ)m(dξ) (3.14)

exists, for any m ∈ P(X ).

Theorem 2 (Bensoussan et al. (2013)) Under Assumptions 1, 2, and 3, with the Hamil-
tonian

H(x, µ, q) := inf
α
{q · b(x, α, µ) + f(x, α, µ)} , (3.15)

the optimal value function V µ
MFG for asymptotic MFG satisfies the HJB equation

−γV µ(x) +
σ2Tr∇2V µ(x)

2
+H(x, µ,∇V µ(x)) = 0. (3.16)

On the other hand, the optimal value function VMFC for asymptotic MFC satisfies the
HJB equation

−γV (x) + +
σ2Tr∇2V (x)

2
+H(x, µ,∇V (x)) +

∫
X

δH(y, µ,∇V (y))

δµ
(x)µ(dy) = 0, (3.17)

coupled with µ solving the stationary Fokker-Planck equation

−
d∑

i=1

∂

∂xi
(bi(x, α̂, µ)µ) +

σ2

2
∆µ = 0, (3.18)

where α̂ is the optimal control for the Lagrangian in (3.15).

From the above HJB equations, it is straightforward to see that, in general V µ
MFG and VMFC

are different solutions, as in the case of MFC the HJB equation has an additional term due
to the coupling with µ. In next few sections, we will study how the two-timescale Q-learning
algorithm converges to these different value functions.

The following results state that given any policy α, the discrete value function is close
to the continuous-time value function for sufficiently small h, which implies similar approx-
imation results for optimal value functions.

8
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Theorem 3 (Informal version of Theorem A.1) Under appropriate assumptions, under an
given policy α, for all x ∈ X , one has approximations

lim
h→0

V µ,α
h,MFG(x) = V µ,α

MFG(x), lim
h→0

V α
h,MFC(x) = V α

MFC(x). (3.19)

The idea of the proof is standard by extending Lemma 1 in Tallec et al. (2019) to a stochastic
version with additional assumptions. We defer the formal statement with convergence rates,
as well as proof details to Appendix A.

Corollary 4 By Theorem 3 and taking the optimal control α̂, we have that the approxima-
tions for the optimal value functions

lim
h→0

V µ
h,MFG(x) = V µ

MFG(x), lim
h→0

Vh,MFC(x) = VMFC(x). (3.20)

3.3 Q-functions

Following the context of asymptotic MFG (2.4) introduced in Angiuli et al. (2022), the dis-
crete time Q-function (i.e., state-action value function) and optimal Q-function are defined
as

Qα,µ
h,MFG(x, a) := E

[
h

∞∑
k=0

e−kγhf(Xα,µ
k , αk, µ)

∣∣∣∣X0 = x, α0 = a

]
,

Qµ
h,MFG(x, a) := inf

α
Qα,µ

h,MFG(x, a).

(3.21)

Optimizing over initial actions, we have that V µ
h,MFG(x) = infaQ

µ
h,MFG(x, a) for any x ∈ X .

Moreover, as µ is fixed, by (Sutton and Barto, 2018, Equation (3.20)), Qµ
h,MFG satisfies the

Bellman equation

Qµ
h,MFG(x, a) = hf(x, a, µ) + e−γh

∑
x′∈X

p(x′ | x, a, µ) inf
a′

Qµ
h,MFG(x

′, a′). (3.22)

On the other hand, the case of MFC is more complicated. In the context of asymptotic MFC
(2.5), considering µα to be the limiting distribution of the process Xα

t for an admissible
policy α, the discrete time modified Q-function introduced in Angiuli et al. (2022) is defined
as

Qα
h,MFC(x, a) := hf(x, a, µα̃) + E

[
h

∞∑
k=1

e−kγhf(Xα
k , αk, µ

α)

∣∣∣∣X0 = x, α0 = a

]
, (3.23)

where

µα = lim
k→∞

P[Xα
k ], α̃(s) =

{
α(s), if s ̸= x

a, if s = x.
(3.24)

We mention that α̃ is devised in such a form (3.24) in order to achieve policy improvement
(Angiuli et al., 2022, Theorem 4 in Appendix C). Then the optimal Q-function Qh,MFC is

Qh,MFC(x, a) = inf
α

Qα
h,MFC(x, a), (3.25)

9
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which satisfies the Bellman equation

Qh,MFC(x, a) = hf(x, a, µ̃∗) + e−γh
∑
x′∈X

p(x′ | x, a, µ̃∗) inf
a′

Qh,MFC(x
′, a′), (3.26)

for each (x, a) ∈ X × A. The optimal control α∗(x) = argmina∈AQh,MFC(x, a), and the
control α̃∗ is also defined as in (3.24). The modified population distribution µ̃∗ is based on
α̃∗ in the sense that µ̃∗ = µα̃∗

. Let us summarize the discrete time Q-function results for
asymptotic MFC as follows.

Theorem 3.1 (Angiuli et al. (2022), Appendix C) The Bellman equation for the dis-
crete time Q-function Qα

h,MFC is

Qα
h,MFC(x, a) = hf(x, a, µα̃) + e−γhE

[
Qα

h,MFC(X1, α(X1))|X0 = x, α0 = a
]

(3.27)

with α̃ defined as in (3.24). Moreover, for any x ∈ X , the value function is equivalent to
the Q-function with the policy α in the form of

V α
h,MFC(x) = Qα

h,MFC(x, α(x)). (3.28)

The optimal Q-function Qh,MFC(x, a) = infαQ
α
h,MFC(x, a) satisfies the Bellman equation

Qh,MFC(x, a) = hf(x, a, µ̃∗) + e−γh
∑
x′∈X

p(x′ | x, a, µ̃∗) inf
a′

Qh,MFC(x
′, a′), (3.29)

with µ̃∗ = µα̃∗
and α̃∗ being the modified control (3.24) of the optimal control α∗.

Proof All proofs can be found in (Angiuli et al., 2022, Appendix C). We review the proofs
of the first two statements here and delegate the last one to the reference.

(Angiuli et al., 2022, Appendix C, Theorem 3) : By the tower property, the definition
of (3.23) gives

Qα
h,MFC(x, a) = hf(x, a, µα̃) + e−γhE

[
E

[
h

∞∑
k=1

e−(k−1)γhf(Xk, αk, µ
α)

∣∣∣∣X1

] ∣∣∣∣X0 = x, α0 = a

]
= hf(x, a, µα̃)

+ e−γhE

[
hf(X1, α(X1), µ

α) + e−γhE

[
h

∞∑
k=2

e−(k−2)γhf(Xk, αk, µ
α)

∣∣∣∣X1

] ∣∣∣∣X0 = x, α0 = a

]
= hf(x, a, µα̃) + e−γhE

[
Qα

h,MFC(X1, α(X1))|X0 = x, α0 = a
]
.

(Angiuli et al., 2022, Appendix C, Lemma 3): By the form of modified control (3.24),
the discrete value function can be written as

V α
h,MFC(x) = hf(x, α(x), µα̃) + E

[
h

∞∑
k=1

e−kγhf(Xk, αk, µ
α)

∣∣∣∣X0 = x, α0 = α(x)

]
= Qα

h,MFC(x, α(x)).

10
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3.4 Approximation results for value functions

The Q-function is ill-posed for the continuous-time MDP (Tallec et al., 2019), as it becomes
independent of actions when h → 0. However, one can measure the difference between
discrete value functions and Q-functions in terms of h, when the control α is fixed. Such a
distance measure result can be found in (Tallec et al., 2019, Theorem 2) for MFG problems
when the state is driven by the deterministic differential equation. Here, we provide similar
results for both MFG and MFC under the McKean-Vlasov dynamics control, based on
formulations (3.22), (3.27), and (3.28).

Theorem 3.2 (Difference between Qα
h and V α

h ) Let 1x be the unit point mass proba-
bility distribution over X . Consider the infinitesimal generator G given by

G(· | x, a, µ) = lim
h→0

ph(· | x, a, µ)− 1x
h

(3.30)

being uniformly bounded for all (x′, x, a, µ) ∈ X × X × A × P(X ), and ph(· | x, a, µ) is the
one-step transition probability with respect to the time step h. If f is uniformly bounded
over X × A × P(X ), following the one-step McKean-Vlasov dynamics x′ ∼ ph(· | x, a, µ),
we have that

Qµ,α
h,MFG(x, a) = V µ,α

h,MFG(x) +O(h),

Qα
h,MFC(x, a) = V α

h,MFC(x) +O(h),
(3.31)

with sufficiently small h > 0, for every (x, a) ∈ X ×A.

Proof As f is uniformly bounded, V is also uniformly bounded over X by its formulations.
For MFG, the Bellman equation gives that

Qµ,α
h,MFG(x, a) = hf(x, a, µ) + e−γhE

[
Qµ,α

h,MFG(X1, α(X1))|X0 = x, α0 = a
]

= hf(x, a, µ) + (1− γh)E
[
V µ,α
h,MFG(x

′)
]
+O(h2),

with X1 = x′ and sufficiently small h. Note that

E
[
V µ,α
h,MFG(x

′)
]
=

∑
x′

V µ,α
h,MFG(x

′)ph(x
′ | x, a, µ)

= V µ,α
h,MFG(x) +

∑
x′

V µ,α
h,MFG(x

′)(ph(x
′ | x, a, µ)− 1x)

= V µ,α
h,MFG(x) +

∑
x′

V µ,α
h,MFG(x

′)G(x′ | x, a, µ)h+ o(h) = V µ,α
h,MFG(x) +O(h)

(3.32)

as the generatorG is uniformly bounded and X is finite. Therefore, by replacing E
[
V µ,α
h,MFG(x

′)
]

in the Bellman equation, we get

Qµ,α
h,MFG(x, a) = hf(x, a, µ) + (1− γh)

(
V µ,α
h,MFG(x) +O(h)

)
+O(h2) = V µ,α

h,MFG(x) +O(h),

for sufficiently small h. The estimate for MFC is similar by just replacing µ by the limiting
distribution µα = limk→∞ P[Xα

k ] under an admissible policy α. The Bellman equation

11
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(3.27) combined with (3.28) gives

Qα
h,MFC(x, a) = hf(x, a, µα̃) + e−γhE

[
V α
h,MFC(x

′)|X0 = x, α0 = a
]

= hf(x, a, µα̃) + (1− γh)E
[
V α
h,MFC(x

′)
]
+O(h2),

(3.33)

for sufficiently small h. Since

E
[
V µ,α
h,MFC(x

′)
]
=

∑
x′

V µ,α
h,MFC(x

′)ph(x
′ | x, a, µα)

= V µ,α
h,MFC(x) +

∑
x′

V µ,α
h,MFC(x

′)G(x′ | x, a, µα)h+ o(h) = V µ,α
h,MFC(x) +O(h),

(3.34)
then the Bellman equation gives that

Qα
h,MFC(x, a) = hf(x, a, µα̃) + (1− γh)

(
V α
h,MFC(x) +O(h)

)
+O(h2) = V α

h,MFC(x) +O(h)

for sufficiently small h.

Corollary 5 For discrete optimal value functions and Q-functions, by taking the infimum
over all admissible policies α, we have that

Qµ
h,MFG(x, a) = V µ

h,MFG(x) +O(h), (3.35)

and
Qh,MFC(x, a) = Vh,MFC(x) +O(h), (3.36)

for sufficiently small h > 0, for every (x, a) ∈ X ×A.

4 Two-timescale Q-learning algorithm

Given the discrete time Q-functions and the associated Bellman equations formulated in
the previous section, we first recall the two-timescale Q-learning algorithm introduced in
Angiuli et al. (2022). We will take the continuous-time approximation of the algorithm,
and analyze its different fixed point solutions in both MFG and MFC regimes. Then we
construct a toy one-dimensional example in which explicit fixed point solutions can be
obtained under different learning rates ratios. In the end we validate our findings for the
example by numerical simulations.

This iterative procedure, starting from some initial guess (Q0, µ0), updates both vari-
ables at each iteration k with different learning rates, ρQk > 0 and ρµk > 0:

µk+1 = µk + ρµk P(Qk, µk),

Qk+1 = Qk + ρQk T (Qk, µk),
(4.1)

with operators

P(Q,µ)(x) = (µPQ,µ)(x)− µ(x), for x ∈ X ,

(µPQ,µ)(x) =
∑
x0

µ(x0)P
Q,µ(x0, x), PQ,µ(x, x′) = p(x′ | x, argmin

a
Q(x, a), µ), (4.2)

12
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and

T (Q,µ)(x, a) = hf(x, a, µ) + e−γh
∑
x′

p(x′ | x, a, µ)min
a′

Q(x′, a′)−Q(x, a), for (x, a) ∈ X ×A.

(4.3)
When (4.1) converges to a stationary point (Q∗

h, µ̃
∗), this stationary point satisfies a fixed-

point equation (cf. the Bellman equation (3.26)): for all (x, a) ∈ X ×A,

µ̃∗(x) = µ̃∗PQ∗,µ̃∗
(x),

Q∗
h(x, a) = hf(x, a, µ̃∗) + e−γh

∑
x′

p(x′ | x, a, µ̃∗)min
a′

Q∗
h(x

′, a′). (4.4)

This two-timescale approach can converge to different limiting points by simply tuning two
learning rates. Following the idea of Borkar (1997, 2008), if ε := ρµ/ρQ ≪ 1, the numer-
ical updates (4.1) can be approximated by a system of two-timescale ordinary differential
equations (ODEs)

d

dt
µt = P(Qt, µt),

d

dt
Qt =

1

ε
T (Qt, µt).

(4.5)

As ε→ 0, µt changes much slower than Qt. So for the consideration of dynamics of Qt, we
can treat µt as frozen µt ≡ µ, and then the stable equilibrium point satisfies T (Qµ, µ) = 0.
We use the notation Qµ as the equilibrium point depending on µ. Moreover, by assuming
Qµ is Lipschitz continuous in µ (a verification can be found in estimates in Section 5, such
like (5.41) using the Lipschitz continuity assumptions of f, p). Given the pair (Qµ, µ), we
then consider to solve d

dtµt = P(Qµt , µt), which gives the eventual solution that satisfies
P(Qµ∞ , µ∞) = 0. From the stable equilibrium solution (Qµ∞ , µ∞), the derived µ∞ and
optimal control α̂ that minimizes Qµ∞ form a Nash equilibrium of MFG. Therefore, we call
ρµ ≪ ρQ the MFG regime.

On the other hand, when ρQ ≪ ρµ, we take the ratio ρQ/ρµ to be of order ε≪ 1, then
by a similar strategy, we have the approximated system of ODEs

d

dt
µt =

1

ε
P(Qt, µt),

d

dt
Qt = T (Qt, µt).

(4.6)

As ε→ 0, Qt changes much slower than µt. We can thus freeze Qt ≡ Q when the dynamics
of µt is concerned, and it leads to the stationary point µ̃Q satisfying P(Q,µQ) = 0, where
µQ is the asymptotic distribution of a population in which every agent uses the control
α(x) = argminaQ(x, a). We may assume µQ is Lipschitz continuous in Q (a verification
can be found in Section 5, Lemma 10), and replace µQ by µ̃Q defined with modified policy
(3.24), in order to be consistent with the previous MFC algorithm setup. Then we consider
to solve d

dtQt = T (Qt, µ̃Qt), and it gives the eventual solution satisfying T (Q∞, µ̃Q∞) = 0.
The pair (Q∞, µ̃Q∞) solves (4.4) for MFC Bellman equation, and thus we call ρQ ≪ ρµ the
MFC regime.

To better illustrate the above heuristics based on averaging, we consider a simple ex-
ample here to illustrate how a two-timescale algorithm can produce different stationary
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solutions under different limiting ratios of learning rates. Let Q,µ both be scalar numbers,
and for the updates (4.1), we consider

P(Q,µ) = (Q− 1)(µ−Q), (4.7)

T (Q,µ) = −(µ− 1

2
)(µ−Q+ 1). (4.8)

The Jacobian matrix is thus given by

J(Q,µ) =

[
∂P
∂µ

∂P
∂Q

∂T
∂µ

∂T
∂Q

]
=

[
Q− 1 µ− 2Q+ 1

−2µ+Q− 1
2 µ− 1

2

]
. (4.9)

When ρµ ≪ ρQ, we consider the approximate continuous-time ODEs

d

dt
µt = P(Qt, µt),

d

dt
Qt =

1

ε
T (Qt, µt).

(4.10)

As ε→ 0, µt can be assumed to be fixed. We first solves T (Qµ, µ) = 0 and obtainQµ = µ+1.
With such Qµ plugged in to solve P(Qµ∞ , µ∞) = 0, we obtain the fixed point solution to
be (Qµ∞ , µ∞) = (1, 0).

On the other hand, when ρQ ≪ ρµ, we have

d

dt
µt =

1

ε
P(Qt, µt),

d

dt
Qt = T (Qt, µt).

(4.11)

As ε → 0, Qt can be assumed to be fixed. We thus first solve P(Q,µQ) = 0, which
gives µQ = Q. Then with such µQ plugged in to solve T (Q∞, µQ∞) = 0, we obtain that
(Q∞, µQ∞) = (12 ,

1
2), which is different from the one of (4.10). It is easy to verify that

the above two fixed points are both stable, while the system in fact also has a third fixed
point (Q,µ) = (1, 12) which is unstable. Thus the different ratio of the dynamics serves as
a selection mechanism of different stable equilibria.

We present the numerical simulation of the two-timescale algorithm with this toy con-
struction (4.7). Figure 2 shows the trajectories of Q,µ respectively under various ini-
tializations and different learning rates. By setting ρµ = 0.001, ρQ = 1, µk runs slower
than Qk, which corresponds to the scenario (4.10), the algorithm converges to the solution
Q = 1, µ = 0. On the other hand, by setting ρµ = 1, ρQ = 0.001 so that Qk runs slower
than µk, which corresponds to the scenario (4.11), the algorithm converges to the solution
Q = 1

2 , µ = 1
2 . We present the results with different initializations (Q0, µ0), and simulation

results show that the two-timescale algorithm is insensitive to initializations and converges
to the fixed points determined by the step size ratios.
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(c) Q0 = 0.75, µ0 = 0.25

Figure 2: Visualization of (Q,µ) trajectories in the two-timescale algorithm: The learning
rates are set as ρQ = 1, ρµ = 0.001 so that µ runs slower than Q, and the learning rates are
ρQ = 0.001, ρµ = 1 so that Q runs slower than µ.

5 Unified convergence analysis

In this section, we provide a unified convergence analysis of the two-timescale Q-learning
algorithm (4.1) for fixed learning rates ρQ, ρµ > 0 covering all ratios ρQ/ρµ ∈ (0,∞).

Our approach for establish unified convergence relies on the following Lyapunov function,
inspired by the idea of Zhou and Lu (2023) for the analysis of single-timescale actor-critic
method for the linear quadratic regulator problem. The Lyapunov function that we consider
is

Lk := L(µk, Qh,k) = W∥Qh,k −Q∗
h∥∞ + ∥µk − µ̃k∥TV, (5.1)

where Qh,k, µk are numerical updates from the two-timescale Q-learning algorithm (4.1),
Q∗

h is the fixed point solving the Bellman equation

Q∗
h(x, a) = hf(x, a, µ̃∗) + e−γh

∑
x′

p(x′ | x, a, µ̃∗)min
a′

Q∗
h(x

′, a′), (5.2)

coupled with

µ̃∗(x) = µ̃∗PQ∗
h,µ̃

∗
(x). (5.3)

Here, we abuse the notationsQ∗
h, µ̃

∗ to represent fixed points, and they are independent from
previous sections. Moreover, µ̃k is an intermediate equilibrium distribution corresponding
to each Qh,k so that

µ̃k = µ̃kP
Qh,k,µ̃k . (5.4)

The weight parameter W > 0 is to balance two discrepancies in (5.1), it will actually be
chosen depending on the ratio ρQ/ρµ. One cannot consider the Q-function update and
the distribution update separately, since the operators P(Q,µ) and T (Q,µ) are highly
coupled. Therefore, we devise such a Lyapunov function (5.1) in order to capture the global
convergence of Q functions and local convergence of µ at the same time. We will establish
contraction of the Lyapunov function Lk following the algorithm (4.1).
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5.1 Assumptions and main result

For our main result, we need following technical assumptions, which are standard and
appear often in the analysis of convergence of Markov processes, see e.g., books like Meyn
and Tweedie (2012).

Assumption 4 There exist 0 < Lp < 1, LQ > 0 such that for all x ∈ X , µ1, µ2 ∈
P(X ), Q1, Q2, we have the Lipschitz continuity∑

x′∈X

∣∣PQ1,µ1(x, x′)− PQ2,µ2(x, x′)
∣∣ ≤ Lp∥µ1 − µ2∥TV + LQ∥Q1 −Q2∥∞.

Assumption 5 (Uniform Doeblin’s condition) We assume that for any bounded Q, the
transition probability PQ,µ(x, x′) = p(x′ | x, argminaQ(x, a), µ) has an equilibrium proba-
bility measure π that solves π = πPQ,π. There exist a constant

β ∈
(1 + Lp

2
, 1
)

and probability measure ν such that

PQ,π(x, ·) ≥ βν(·), (5.5)

for all x ∈ X .

Proposition 6 With Assumptions 4 and 5, for a fixed Qh,k, there exists a unique equilib-
rium distribution solving (5.4). In addition with Assumptions 1, with sufficiently small h
and large γ such that γh ≫ 1, there exists a unique fixed point (Q∗

h, µ̃
∗) solving (5.2) and

(5.3).

We defer the proof of the Proposition after Lemma 10.
Equipped with assumptions above, we are ready to state the main result: the unified

convergence of (4.1).

Theorem 5.1 With Assumptions 1, 4, and 5, we require learning rates to satisfy that

0 < ρµ < 2β − 1− Lp, 0 < ρQ <
1

1− e−γh
. (5.6)

With these bounds, and taking Λµ = 1−ρµ
(
2β−1−Lp

)
, the Lyapunov function (5.1) under

the two-timescale Q-learning algorithm (4.1) contracts as

Lk ≤ (1− c)kL0 +
2hΛµLQρ

Q∥f∥∞
c(1− e−γh)(2β − 1− Lp)

, (5.7)

where c = min{c1, c2} with

c1 = ρQ
(
1− e−γh −

(
Lf +

Lp∥f∥∞
eγh − 1

) hLQ

2β − 1− Lp

)
−

2ΛµLQ

W (2β − 1− Lp)
,

c2 = 1− Λµ −WρQh
(
Lf +

Lp∥f∥∞
eγh − 1

)
.

(5.8)

As k →∞, we have that L∞ = O(ρQ).
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Our convergence result significantly extends that of Angiuli et al. (2023), which only
considered extreme regimes where limk→∞ ρQk /ρ

µ
k = 0 and limk→∞ ρQk /ρ

µ
k =∞, and applied

convergence results from Borkar (1997) directly with no quantitative convergence rates.
Here we choose ρµk , ρ

Q
k to be fixed constants ρµ, ρQ rather than of the Robbins-Monro type

as in Borkar (1997) for simplicity. We believe our result can be extended to Robbins-Monro
type learning rates as well with some modifications.

Remark 7 Our quantitative convergence result sheds insight on how the contraction rate
1− c depends on learning rates ρQ, ρµ precisely. The choices of c in (5.7) illustrate the di-
chotomy convergence behaviors of the two-timescale Q-learning algorithm (4.1) when ρQ ≫
ρµ or ρQ ≪ ρµ, thus get connected to MFG and MFC regimes.

• In the MFG regime where ρQ ≫ ρµ, recall Λµ = 1 − ρµ
(
2β − 1 − Lp

)
, we need to

ensure

c2 = ρµ
(
2β − 1− Lp

)
−WρQh

(
Lf +

Lp∥f∥∞
eγh − 1

)
> 0, (5.9)

which implies that

W <
ρµ

(
2β − 1− Lp

)
ρQh

(
Lf +

Lp∥f∥∞
eγh−1

) ≪ 1. (5.10)

It means that the convergence of µ dominates the convergence of (4.1), which is aligned
with the fact that we have fast convergence for Q and slow convergence for µ.

• In the MFC regime where ρQ ≪ ρµ, we need to ensure c1 > 0 so that

W >
2ΛµLQ

ρQ(2β − 1− Lp)
(
1− e−γh −

(
Lf +

Lp∥f∥∞
eγh−1

)
hLQ

2β−1−Lp

) . (5.11)

It means that for sufficiently small ρQ, we need to put a larger weight on Q convergence
so that Q dominates the whole process. It is aligned with our observation that in the
MFC regime, we have fast convergence for µ and slow convergence for Q.

5.2 Auxiliary results

We first present some auxiliary results before proving Theorem 5.1. The following theorem
investigates the case when Qh,k ≡ Q is fixed.

Proposition 8 Let µk update as in (4.1) with Qh,k ≡ Q. Suppose µ̃ is the equilibrium
probability measure such that µ̃ = µ̃PQ,µ̃, the transition probability satisfies Assumption 4,
then given a fixed step size ρµ that satisfies

0 < ρµ < 2β − 1− Lp (5.12)

and β provided in Assumption 5, we can find a contraction rate Λµ = 1− ρµ
(
2β − 1− Lp

)
such that for all k ≥ 0,

∥µk+1 − µ̃∥TV ≤ Λµ∥µk − µ̃∥TV. (5.13)
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Proof The µk update step in (4.1) gives that

µk+1 − µ̃ = µk − µ̃+ ρµ
(
µkP

Q,µk − µk

)
= µk − µ̃+ ρµ

(
(µk − µ̃)PQ,µ̃ + µk(P

Q,µk − PQ,µ̃)− (µk − µ̃)
)

= (1− ρµ)(µk − µ̃) + ρµ
(
(µk − µ̃)PQ,µ̃ + µk(P

Q,µk − PQ,µ̃)
)
.

(5.14)

Using the triangle inequality, we have that

∥µk+1 − µ̃∥TV ≤ (1− ρµ)∥µk − µ̃∥TV + ρµ∥(µk − µ̃)PQ,µ̃∥TV

+ ρµ∥µk(P
Q,µk − PQ,µ̃)∥TV = (1− ρµ)∥µk − µ̃∥TV + I + II.

(5.15)

To treat I, we decompose µk − µ̃ as

µk − µ̃ = (µk − µ̃)+ − (µk − µ̃)− =: S+ − S−. (5.16)

Note that for any A ⊆ X , by (5.5),∑
x∈A

∑
x0∈X

S±(x0)P
Q,µ̃(x0, x) ≥ β

∑
x∈A

∑
x0∈X

S±(x0)ν(x), (5.17)

and ∑
x∈A

∑
x0∈X

S+(x0)ν(x) =
∑
x∈A

∑
x0∈X

S−(x0)ν(x). (5.18)

Therefore, we use (5.18) and apply the triangle inequality to get

∥(µk − µ̃)PQ,µ̃∥TV = sup
A⊆X

∣∣∣∑
x∈A

S+P
Q,µ̃(x)− S−P

Q,µ̃(x)
∣∣∣

≤ sup
A⊆X

∣∣∣∑
x∈A

S+P
Q,µ̃(x)− β

∑
x∈A

∑
x0∈X

S+(x0)ν(x)
∣∣∣+ sup

A⊆X

∣∣∣∑
x∈A

S−P
Q,µ̃(x)− β

∑
x∈A

∑
x0∈X

S−(x0)ν(x)
∣∣∣

=
∑
x∈X

(
S+P

Q,µ̃(x)− β
∑
x0∈X

S+(x0)ν(x)
)
+

∑
x∈X

(
S−P

Q,µ̃(x)− β
∑
x0∈X

S−(x0)ν(x)
)

=
∑
x∈X

∑
x0∈X

(S+ + S−)(x0)P
Q,µ̃(x0, x)− β

∑
x∈X

∑
x0∈X

(S+ + S−)(x0)ν(x)

= (1− β)
∑
x0∈X

|µk(x0)− µ̃(x0)| = (1− β)∥µk − µ̃∥1 = 2(1− β)∥µk − µ̃∥TV,

(5.19)
where the second equality above uses (5.17).

For II, we use Assumption 4 to get

∥µk(P
Q,µk − PQ,µ̃)∥TV = sup

A⊆X

∣∣∣∑
x∈A

∑
x0∈X

µk(x0)
(
PQ,µk(x0, x)− PQ,µ̃(x0, x)

)∣∣∣
≤

∑
x∈X

∑
x0∈X

µk(x0)
∣∣∣PQ,µk(x0, x)− PQ,µ̃(x0, x)

∣∣∣
≤ Lp∥µk − µ̃∥TV

∑
x0∈X

µk(x0) = Lp∥µk − µ̃∥TV.

(5.20)
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Combining all parts together, we have

∥µk+1 − µ̃∥TV ≤
(
1− ρµ

(
2β − 1− Lp

))
∥µk − µ̃∥TV.

Now let Qh,k update as in the algorithm, we have the following iteration bound for Qh,k.

Proposition 9 With Assumptions 1 and 4, we can find a contraction rate ΛQ = 1−ρQ(1−
e−γh) ∈ (0, 1) such that the maximal difference between Qh,k and the fixed point Q∗

h in (5.2)
iterates as

∥Qh,k+1 −Q∗
h∥∞ ≤ (1− ρQ(1− e−γh))∥Qh,k −Q∗

h∥∞ + ρQh∥µk − µ̃∗∥TV

(
Lf +

Lp

eγh − 1
∥f∥∞

)
.

(5.21)

Proof We rewrite the absolute value difference

∆k(x, a) := |Qh,k(x, a)−Q∗
h(x, a)| (5.22)

for shortness. The two-timescale Q-learning (4.1) gives that

Qh,k+1(x, a)−Q∗
h(x, a) = Qh,k(x, a)−Q∗

h(x, a) + ρQT (Qh,k, µk)

= (1− ρQ)(Qh,k(x, a)−Q∗
h(x, a)) + ρQ

(
hf(x, a, µk)− hf(x, a, µ̃∗)

+ e−γh
∑
x′∈X

p(x′ | x, a, µk) inf
a′

Qh,k(x
′, a′)− e−γh

∑
x′∈X

p(x′ | x, a, µ̃∗) inf
a′

Q∗
h(x

′, a′)
)
.

(5.23)
By the triangle inequality, we get that

∆k+1(x, a) ≤ (1− ρQ)∆k(x, a) + ρQh|f(x, a, µk)− f(x, a, µ̃∗)|

+ ρQe−γh
∣∣∣ ∑
x′∈X

p(x′ | x, a, µk) inf
a′

Qh,k(x
′, a′)−

∑
x′∈X

p(x′ | x, a, µ̃∗) inf
a′

Q∗
h(x

′, a′)
∣∣∣

≤ (1− ρQ)∆k(x, a) + I + II + III,
(5.24)

where

I = ρQh|f(x, a, µk)− f(x, a, µ̃∗)|,

II = ρQe−γh
∣∣∣ ∑
x′∈X

p(x′ | x, a, µk) inf
a′

Qh,k(x
′, a′)−

∑
x′∈X

p(x′ | x, a, µ̃∗) inf
a′

Qh,k(x
′, a′)

∣∣∣,
III = ρQe−γh

∣∣∣ ∑
x′∈X

p(x′ | x, a, µ̃∗) inf
a′

Qh,k(x
′, a′)−

∑
x′∈X

p(x′ | x, a, µ̃∗) inf
a′

Q∗
h(x

′, a′)
∣∣∣.

For I, we use the Assumption 1 to get

I ≤ ρQhLf∥µk − µ̃∗∥TV. (5.25)
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For II, we use the Assumption 4 to get

II ≤ ρQe−γh∥Qh,k∥∞Lp∥µk − µ̃∗∥TV ≤ ρQ
Lph

eγh − 1
∥f∥∞∥µk − µ̃∗∥TV, (5.26)

since by the definition of discrete time Q-function,

∥Qh,k∥∞ ≤
h

1− e−γh
∥f∥∞. (5.27)

For III, we have
III ≤ ρQe−γh sup

a′
sup
x′∈X

∆k(x
′, a′). (5.28)

Now combining all bounds of I, II, III together, we can take the supremum over (x, a) ∈
X ×A on the right side first and left side later to obtain that

∥Qh,k+1−Q∗
h∥∞ ≤ (1−ρQ(1−e−γh))∥Qh,k−Q∗

h∥∞+ρQh∥µk− µ̃∗∥TV

(
Lf +

Lp

eγh − 1
∥f∥∞

)
.

We do not know the relation between µ̃k and µ̃∗ a priori, since the equation µ =
µPQ,µ is highly nonlinear. However, we can control the difference between two equilibrium
distributions by the difference of their corresponding Q-functions, if one of PQ,µ satisfies
the uniform Doeblin’s condition.

Lemma 10 Given Q1, Q2 ∈ R+, if µ1, µ2 ∈ P(X ) solves

µ1(I − PQ1,µ1) = 0, µ2(I − PQ2,µ2) = 0 (5.29)

respectively, then based on Assumptions 4 and 5 of PQ2,µ2 (or PQ1,µ1), we have the relation

∥µ1 − µ2∥TV ≤
LQ

2β − 1− Lp
∥Q1 −Q2∥∞. (5.30)

Proof The proof resembles the proof of Proposition 8. Note that

∥µ1−µ2∥TV = ∥µ1P
Q1,µ1−µ2P

Q2,µ2∥TV ≤ ∥(µ1−µ2)P
Q2,µ2∥TV+∥µ1

(
PQ1,µ1−PQ2,µ2

)
∥TV.

(5.31)
The first term above can be treated in the same way as for part I in (5.15) to have the
bound

∥(µ1 − µ2)P
Q2,µ2∥TV ≤ 2(1− β)∥µ1 − µ2∥TV. (5.32)

The second term in (5.31) uses Assumption 4 so that

∥µ1

(
PQ1,µ1 − PQ2,µ2

)
∥TV ≤ Lp∥µ1 − µ2∥TV + LQ∥Q1 −Q2∥∞. (5.33)

Combining all terms together we have

(2β − 1− Lp)∥µ1 − µ2∥TV ≤ LQ∥Q1 −Q2∥∞ (5.34)
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to obtain the relation.

Based on Lemma 10, we can control the difference between µ̃k and µ̃∗ to be

∥µ̃k − µ̃∗∥TV ≤
LQ

2β − 1− Lp
∥Qh,k −Q∗

h∥∞. (5.35)

Proof [Proof of Proposition 6]Consider the mapping MQ : P(X ) → P(X ) such that
MQ(µ) = µPQ,µ. For a given Q,MQ is continuous since

∥MQ(µ1)−MQ(µ2)∥TV = ∥µ1P
Q,µ1 − µ2P

Q,µ2∥TV

≤ ∥(µ1 − µ2)P
Q,µ1∥TV + ∥µ2(P

Q,µ1 − PQ,µ2)∥TV

≤ 2(1− β)∥µ1 − µ2∥TV + Lp∥µ1 − µ2∥TV

= (2(1− β) + Lp)∥µ1 − µ2∥TV.

(5.36)

Because X is finite, by Brouwer’s fixed point theorem, there exists µ such thatMQ(µ) = µ
for the given Q. This fixed point µ is unique due to (5.34).

For equations (5.2) and (5.3), we define the Bellman operator

Bµ(Q)(x, a) := hf(x, a, µ) + e−γh
∑
x′

p(x′ | x, a, µ)min
a′

Q(x′, a′). (5.37)

The mapping pair (Bµ(Q),MQ(µ)) : R+ × P(X )→ R+ × P(X ) is continuous since

∥Bµ1(Q1)− Bµ2(Q2)∥∞ ≤ ∥Bµ1(Q1)− Bµ2(Q1)∥∞ + ∥Bµ2(Q1)− Bµ2(Q2)∥∞
≤ (hLf + e−γhLp∥Q∥∞)∥µ1 − µ2∥TV + e−γh∥Q1 −Q2∥∞,

(5.38)

and

∥MQ1(µ1)−MQ2(µ2)∥TV ≤ ∥MQ1(µ1)−MQ2(µ1)∥TV + ∥MQ2(µ1)−MQ2(µ2)∥TV

≤ LQ∥Q1 −Q2∥∞ + (2(1− β) + Lp)∥µ1 − µ2∥TV.
(5.39)

Thus by Brouwer’s fixed point theorem, there exists a fixed point (Q∗
h, µ̃

∗) solving (5.2)
and (5.3). In terms of uniqueness, suppose that we have two fixed points (Q∗

h,1, µ̃
∗
1) and

(Q∗
h,2, µ̃

∗
2) both solving (5.2) and (5.3), by Lemma 10, we have

∥µ̃∗
1 − µ̃∗

2∥TV ≤
LQ

2β − 1− Lp
∥Q∗

h,1 −Q∗
h,2∥∞. (5.40)

On the other hand,

∥Q∗
h,1 −Q∗

h,2∥∞ = ∥Bµ̃∗
1
(Q∗

h,1)− Bµ̃∗
2
(Q∗

h,1)∥∞
≤ (hLf + e−γhLp∥Q∥∞)∥µ̃∗

1 − µ̃∗
2∥TV + e−γh∥Q∗

h,1 −Q∗
h,2∥∞,

(5.41)

so that

∥µ̃∗
1 − µ̃∗

2∥TV ≤
LQ

2β − 1− Lp

hLf + e−γhLp∥Q∥∞
1− e−γh

∥µ̃∗
1 − µ̃∗

2∥TV. (5.42)

With sufficiently small h and large γ such that γh≫ 1, we have the factor

LQ

2β − 1− Lp

hLf + e−γhLp∥Q∥∞
1− e−γh

< 1, (5.43)

and therefore µ̃∗
1 = µ̃∗

2 in the total variation norm, which implies that Q∗
h,1 = Q∗

h,2.
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5.3 Proof of Theorem 5.1

Proof The proof strategy is to obtain the iteration inequality in the form

Lk+1 − Lk = W∥Qh,k+1 −Q∗
h∥∞ −W∥Qh,k −Q∗

h∥∞ + ∥µk+1 − µ̃k+1∥TV − ∥µk − µ̃k∥TV

≤ −cLk + ek,

with some c ∈ (0, 1) and bounded errors ek. Then by iteration, we can get that for each
k ≥ 1,

Lk ≤ (1− c)kL0 +
k−1∑
j=0

(1− c)k−1−jej . (5.44)

Estimate on µk − µ̃k The proof of Proposition 8 implies that

∥µk+1 − µ̃k+1∥TV ≤ Λµ∥µk − µ̃k+1∥TV. (5.45)

Therefore, in addition with the triangle inequality, we can write

∥µk+1 − µ̃k+1∥TV − ∥µk − µ̃k∥TV ≤ Λµ∥µk − µ̃k+1∥TV − ∥µk − µ̃k∥TV

≤ Λµ∥µ̃k+1 − µ̃k∥TV − (1− Λµ)∥µk − µ̃k∥TV

≤ Λµ

(
∥µ̃k − µ̃∗∥TV + ∥µ̃k+1 − µ̃∗∥TV

)
− (1− Λµ)∥µk − µ̃k∥TV

≤
ΛµLQ

2β − 1− Lp

(
∥Qh,k −Q∗

h∥∞ + ∥Qh,k+1 −Q∗
h∥∞

)
− (1− Λµ)∥µk − µ̃k∥TV

≤
2ΛµLQ

2β − 1− Lp
∥Qh,k −Q∗

h∥∞ +
ΛµLQρ

Q

2β − 1− Lp
∥T (·, ·)∥∞ − (1− Λµ)∥µk − µ̃k∥TV,

(5.46)
where the last inequality is obtained by the Q iteration in (4.1) and the uniform boundedness
of the operator T over Q,µ.

Estimate on Qh,k −Q∗
h Based on Proposition 9, we have that

∥Qh,k+1 −Q∗
h∥∞ − ∥Qh,k −Q∗

h∥∞

≤ −ρQ(1− e−γh)∥Qh,k −Q∗
h∥∞ + ρQh

(
Lf +

Lp

eγh − 1
∥f∥∞

)
∥µk − µ̃∗∥TV

≤ −ρQ(1− e−γh)∥Qh,k −Q∗
h∥∞ + ρQh

(
Lf +

Lp

eγh − 1
∥f∥∞

)(
∥µk − µ̃k∥TV + ∥µ̃k − µ̃∗∥TV

)
≤ −ρQ(1− e−γh)∥Qh,k −Q∗

h∥∞

+ ρQh
(
Lf +

Lp

eγh − 1
∥f∥∞

)(
∥µk − µ̃k∥TV +

LQ

2β − 1− Lp
∥Qh,k −Q∗

h∥∞
)
,

(5.47)
where in the last inequality we use (5.35).
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Combined estimates Now we are ready to combine (5.46) and (5.47) together and obtain
that

Lk+1 − Lk

≤
(
−WρQ(1− e−γh) +WρQh

(
Lf +

Lp∥f∥∞
eγh − 1

) LQ

2β − 1− Lp
+

2ΛµLQ

2β − 1− Lp

)
∥Qh,k −Q∗

h∥∞

−
(
1− Λµ −WρQh

(
Lf +

Lp∥f∥∞
eγh − 1

))
∥µk − µ̃k∥TV +

ΛµLQρ
Q

2β − 1− Lp
∥T (·, ·)∥∞

≤ −cLk + ek.

This inequality holds if we let

c1 := ρQ
(
1− e−γh −

(
Lf +

Lp∥f∥∞
eγh − 1

) hLQ

2β − 1− Lp

)
−

2ΛµLQ

W (2β − 1− Lp)
,

c2 := 1− Λµ −WρQh
(
Lf +

Lp∥f∥∞
eγh − 1

)
,

(5.48)

and we require that
c := min{c1, c2} ∈ (0, 1), (5.49)

with the error term denoted as

ek :=
ΛµLQρ

Q

2β − 1− Lp
∥T (·, ·)∥∞. (5.50)

Note that by (4.1) and (5.27), ∥T (·, ·)∥∞ is bounded by

∥T (·, ·)∥∞ ≤ h∥f∥∞ + (e−γh + 1)∥Qh,k∥∞ ≤
2h

1− e−γh
∥f∥∞. (5.51)

Eventually we have the convergence

Lk ≤ (1− c)kL0 +
2hΛµLQρ

Q∥f∥∞
(1− e−γh)(2β − 1− Lp)

k−1∑
j=0

(1− c)k−1−j

≤ (1− c)kL0 +
2hΛµLQρ

Q∥f∥∞
c(1− e−γh)(2β − 1− Lp)

.

6 Numerical experiment

We carry out some numerical experiments to validate our convergence result of (4.1) with
different ratios of fixed learning rates ρµ and ρQ. Our examples are adapted from those
of Angiuli et al. (2022) with slight modifications. The algorithm we use is sample-based
with stochastic approximations to the iterations (4.1). For better control of the numerical
comparison, we use the maximum number of iterations Nk as stopping criterion.
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Algorithm 1 Unified Two-timescales Q-learning - Tabular version

Require: T : number of time steps in a learning episode,
X = {x0, . . . , x|X |−1} : finite state space.
A = {a0, . . . , a|A|−1} : finite action space.
µ0 : initial distribution of the representative player.
ϵ : parameter related to the ϵ-greedy policy.
Nk : number of episodes.
γ, h : fixed constants.

1: Initialization: Q0(x, a) = 0 for all (x, a) ∈ X ×A, µ0
n =

(
1
|X | , . . . ,

1
|X |

)
for n = 0, . . . , T

2: for each episode k = 1, 2, . . . Nk do
3: Initialization: Sample Xk

0 ∼ µk−1
T and set Qk ≡ Qk−1

4: for n← 0 to T − 1 do
5: Update µ:

µk
n = µk−1

n + ρµ(δ(Xk
n)− µk−1

n ) where δ(Xk
n) =

(
1x0(X

k
n), . . . ,1x|X|−1

(Xk
n)
)

6: Choose action Ak
n using the ϵ-greedy policy derived from Qk(Xk

n, ·)
Observe cost fn+1 = f(Xk

n, A
k
n, µ

k
n) and state Xk

n+1 provided by the environment
7: Update Q:

Qk(Xk
n, A

k
n) = Qk(Xk

n, A
k
n) + ρQ[hfn+1 + e−γhmina′∈AQk(Xk

n+1, a
′)−Qk(Xk

n, A
k
n)]

8: end for
9: end for

10: return (µk, Qk)

Benchmark problem For MFG and MFC problems introduced in (2.4) and (2.5), we
take X ,A ⊂ R, and define the cost function

f(x, α, µ) =
1

2
α2 + c1 (x− c2m)2 + c3 (x− c4)

2 + c5m
2, b(x, α, µ) = α, (6.1)

wherem =
∑

x∈X xµ(x), c1 = 0.25, c2 = 1.5, c3 = 0.50, c4 = 0.6, c5 = 5, discount parameter
γ = 1 and volatility σ = 0.3. The infinite time horizon is truncated at time T = 20.
The continuous time is discretized using step h = 0.01. We adopt a larger action space
A = {a0 = −2, . . . , aNA = 2} and the state space is X = {x0 = −2+xc, . . . , xNX = 2+xc},
where xc is the center of the state space. The step size for the discretization of the state
and action spaces X and A is given by ∆ =

√
h = 0.1. For the discretization of the SDE

dXt = αtdt+ σdBt, we consider the transition matrix given by

p(x′ | x, a, µ) ∝ P(Z ∈ [x′ −∆/2, x′ +∆/2]) (6.2)

with Z ∼ N (x + a, σ2h); the distribution is normalized to avoid any artifacts due to nu-
merical approximations.

We use the unified two timescale mean field Q-learning algorithm in Angiuli et al. (2022)
with a fixed ratio of step sizes ρQ and ρµ. In the Q-learning, we set the number of episodes
Nk = 140000 and the learning rates ρQ = 0.02, ρµ = 0.0001 (and hence ratio ρQ/ρµ = 200)
for the MFG problem, ρQ = 0.0001, ρµ = 0.5 (ratio ρQ/ρµ = 0.0002) for the MFC problem.
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Results We compare the numerical value functions achieved by the two-timescale Q-
learning algorithm with the calculated theoretical value functions: Figure 3a plots value
functions of MFG and Figure 3b plots value functions of MFC problem. One can calculate
theoretical value functions from the HJB equations based on Theorem 2, and we refer
computation details to (Angiuli et al., 2022, Appendix A). In addition, we present the
optimal control function α̂ = argminaQ(x, a) and the theoretical optimal control function
in Figure 3c for MFG and in Figure 3d for MFC problem. Figure 3e shows the empirical
equilibrium distribution averaged over last 10000 episodes in the unified two-timescale Q-
learning algorithm with different ratios of learning rates ρµ, ρQ.
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(d) MFC control averaged over
last 10000 episodes
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Figure 3: Numerical results of the two-timescale Q-learning algorithm where MFG learning
rates are ρQ = 0.02, ρµ = 0.0001, and MFC learning rates are ρQ = 0.0001, ρµ = 0.5. The
theoretical value/control functions are represented by solid lines and numerical value/control
functions are represented by dotted lines in figure 3a-3d.

Intermediate ratios of ρQ/ρµ In addition to extreme ratios where numerically ρQ/ρµ =
200 for MFG problem and ρQ/ρµ = 0.0002 for MFC problem, we take some intermedi-
ate ratios where ρQ/ρµ = 10, 1, 0.1 and present the respective resulting value functions in
Figure 4. In the figure, the theoretical solutions are labeled “MFG” and “MFC” and rep-
resented by solid lines, and the numerical results of two timescale algorithm are labeled
with prefix “U2-” and represented by dotted lines. We observe in the intermediate regimes,
the algorithms seem to converge to some solutions lying between the MFG and MFC value
functions; while in this work we do not identify these limits, this would be an interesting
future research direction.
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Figure 4: Numerical results of the two-timescale Q-learning algorithm where intermediate
ratios ρQ/ρµ = 10, 1, 0.1 are adopted, in addition to numerically extreme ratios ρQ/ρµ =
200, 0.0002.

7 Conclusion

In this work, by establishing the approximation diagram Fig. 1, we explain why the two-
timescale Q-learning algorithm can converge to MFG or MFC solutions by tuning two
learning rates. Based on our constructed Lyapunov function, we provide a novel unified
convergence result for the algorithm for all ranges of learning rate ratios. It would be
interesting to investigate what type of problems that the two-timescale Q-learning algorithm
solves when 0 < ρQ/ρµ < ∞, as shown in Figure 4. We guess that for the intermediate
regime, devising a mixed model of MFG and MFC might be a reasonable approach, and we
leave it as our future work. We believe that the idea of this Lyapunov function construction
can shed lights on convergence proofs for other algorithms in the study of MFC and MFG.
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Appendix A.

The case of MFC problems need extra treatments due to the value function’s dependence on
the changing population distribution. We thus consult the Itô-Lions’ formula in Wasserstein
space studied in Buckdahn et al. (2017), and give a brief review of additional required
assumptions in order to apply this Itô-Lions’ formula for MFC.

Consider the square-integrable space P(X ), the lifting of functions u : P(X ) → R is
defined as ũ(ξ) := u(P [ξ]). We say that u is differentiable (resp., C1) on P(X ) if the lift
ũ is Fréchet differentiable on L2(F ;X ), that is, there exists a linear continuous mapping
Dũ(ξ) : L2(F ;X )→ R such that

ũ(ξ + η)− ũ(ξ) = Dũ(ξ)(η) + o(∥η∥), (A.1)

with ∥η∥ → 0 for η ∈ L2(F ;X ). On the law P [ξ], for ξ, ξ′ ∈ L2(F ;X ), one can write

u(P [ξ′])− u(P [ξ]) = E[∂µu(P [ξ], ξ) · (ξ′ − ξ)] + o(∥ξ′ − ξ∥) (A.2)

to define ∂µu. Moreover, the second derivative is defined as

∂2
µu(µ, x, y) :=

(
∂µ

(
(∂µu)j(·, y)

)
(µ, x)

)
1≤j≤d

, for (µ, x, y) ∈ P(X )×X × X . (A.3)

Let us state the expansion formula from Buckdahn et al. (2017):

Lemma 11 (Buckdahn et al. (2017), Lemma 2.1) If (∂µu)j(·, y) ∈ C1,1
b (P(X )) for all

y ∈ X , 1 ≤ j ≤ d, ∂µu(µ, ·) is differentiable for every µ ∈ P(X ), and ∂2
µu, ∂y∂µu are bounded

and Lipschitz continuous, then one has the second-order expansion

u(P [ξ′])− u(P [ξ]) = E[∂µu(P [ξ], ξ) · η] + 1

2
E
[
Ẽ
[
Tr

(
∂2
µu(P [ξ], ξ̃, ξ) · η̃ ⊗ η

)]]
+

1

2
E
[
Tr

(
∂y∂µu(P [ξ], ξ) · η ⊗ η

)]
+O(∥η∥3)

(A.4)

where η = ξ′− ξ, and Ẽ[·] =
∫
X̃ (·)dP̃ associated with the copy (X̃ , F̃ , P̃ ) where P̃ [ξ̃] = P [ξ].

Now we are ready to restate the Theorem 3 with complete assumptions.

Theorem A.1 We assume that α is Lipschitz in x: there exists a constant Cα > 0 such
that

∥α(x1)− α(x2)∥ ≤ Cα∥x1 − x2∥. (A.5)

With Assumptions 1, 2, and 3, in addition to assumptions on f in order to apply Lemma
11, we have the approximations that, for all x ∈ X ,

V µ,α
h,MFG(x) = V µ,α

MFG(x) + O(h1/2),

V α
h,MFC(x) = V α

MFC(x) + O(h1/2),
(A.6)

when h→ 0.
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Proof We may consider the discrete time iteration

Xk+1
h = b(Xk

h , α(X
k
h))h+ σ(Xk

h , α(X
k
h))
√
hBk, (A.7)

with Bk ∼i.i.d N (0, I), which can be viewed as the Euler-Maruyama scheme of the SDE

dXt = b(Xt, αt)dt+ σ(Xt, αt)dBt. (A.8)

We ignore b, σ’s dependence on µ here by assuming the limiting distribution is fixed. It is
well-known that the Euler-Maruyama scheme is an order 1/2-scheme in the strong sense
Kloeden et al. (2012). In other words, with Lipschitzness assumptions of b, σ, and a slight
modification of the induction proof, one can conclude immediately that there exists a con-
stant C > 0 such that

E
[
∥Xk

h −Xkh∥
∣∣X0 = x

]
≤ Ch1/2 (A.9)

for all k ≥ 1. Then, for t ∈ [kh, (k + 1)h), since

Xt = Xkh +

∫ t

kh
b(Xs, αs)ds+

∫ t

kh
σ(Xs, αs)dBs, (A.10)

by Itô’s isometry and boundedness of b, σ, we get

E
[
∥Xt −Xkh∥

∣∣X0 = x
]
≤ Ch1/2. (A.11)

Therefore, the triangle inequality gives that for t ∈ [kh, (k + 1)h),

E
[
∥Xk

h −Xt∥
∣∣X0 = x

]
≤ Ch1/2. (A.12)

MFG: We start from the definition of V µ,α
h,MFG and derive that

V µ,α
h,MFG(x) = E

[
h

∞∑
k=0

e−γkhf(Xk
h , α(X

k
h), µ)

∣∣∣∣X0 = x

]

=E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γkhf(Xk

h , α(X
k
h), µ)ds

∣∣∣∣X0 = x

]

=E
[∫ ∞

0
e−γsf(Xs, α(Xs), µ)ds

∣∣∣∣X0 = x

]
+ E

[ ∞∑
k=0

∫ (k+1)h

kh

(
e−γkhf(Xk

h , α(X
k
h), µ)− e−γsf(Xs, α(Xs), µ)

)
ds

∣∣∣∣X0 = x

]
:= V µ,α

MFG(x) + EMFG,
(A.13)
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and what remains is to estimate the error term EMFG. Apply the triangle inequality, we get∣∣EMFG

∣∣ ≤ E

[ ∞∑
k=0

∫ (k+1)h

kh

∣∣e−γkh − e−γs
∣∣∣∣f(Xk

h , α(X
k
h), µ)

∣∣ds∣∣∣∣X0 = x

]

+ E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γs

∣∣∣f(Xk
h , α(X

k
h), µ)− f(Xs, α(Xs), µ)

∣∣∣ds∣∣∣∣X0 = x

]

≤ ∥f∥∞
∞∑
k=0

∫ (k+1)h

kh

∣∣e−γkh − e−γs
∣∣ds+ L̃E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γs∥Xk

h −Xs∥ds
∣∣∣∣X0 = x

]

= ∥f∥∞O(h)

∫ ∞

0
e−γsds+ L̃O(h1/2)

∫ ∞

0
e−γsds = O(h1/2)

(A.14)
for small h, where in the last inequality we use Assumption 1, Lipschitz assumption of α,
and take L̃ := max{Kx,KαCα}. Thus we conclude that

V µ,α
h,MFG(x) = V µ,α

MFG(x) + o(1), (A.15)

as h→ 0.

MFC: For the MFC case, we need to additionally deal with f(x, a, µ)’s dependence on
the changing distributions µ. We again start from the definition of V α

h,MFC and derive that

V α
h,MFC(x) = E

[
h

∞∑
k=0

e−γkhf(Xk
h , α(X

k
h),P[Xk

h ])

∣∣∣∣X0 = x

]

=E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γkhf(Xk

h , α(X
k
h),P[Xk

h ])ds

∣∣∣∣X0 = x

]

=E
[∫ ∞

0
e−γsf(Xs, α(Xs),P[Xs])ds

∣∣∣∣X0 = x

]
+ E

[ ∞∑
k=0

∫ (k+1)h

kh

(
e−γkhf(Xk

h , α(X
k
h),P[Xk

h ])− e−γsf(Xs, α(Xs),P[Xs])
)
ds

∣∣∣∣X0 = x

]
:= V α

MFC(x) + EMFC.
(A.16)

The error term EMFC can be further split into∣∣EMFC

∣∣ ≤ E

[ ∞∑
k=0

∫ (k+1)h

kh

∣∣e−γkh − e−γs
∣∣∣∣f(Xk

h , α(X
k
h),P[Xk

h ])
∣∣ds∣∣∣∣X0 = x

]

+ E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γs

∣∣∣f(Xk
h , α(X

k
h),P[Xk

h ])− f(Xs, α(Xs),P[Xk
h ])

∣∣∣ds∣∣∣∣X0 = x

]

+ E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γs

∣∣∣f(Xs, α(Xs),P[Xk
h ])− f(Xs, α(Xs),P[Xs])

∣∣∣ds∣∣∣∣X0 = x

]
:= I + II + III.

(A.17)
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Apply the triangle inequality and Assumption 1 as we did for MFG, we get again that

I + II = O(h1/2). (A.18)

For III, we need to apply Lemma 11. By taking ηk,s := Xk
h−Xs and write f(Xs, α(Xs), ·) ≡

fs(·), we have that

III = E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γsE[∂µfs(P[Xs], Xs) · ηk,s]ds

∣∣∣∣X0 = x

]

+ E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γs 1

2
E
[
Ẽ
[
Tr

(
∂2
µfs(P[Xs], X̃s, Xs) · η̃k,s ⊗ ηk,s

)]]
ds

∣∣∣∣X0 = x

]

+
1

2
E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γsE

[
Tr

(
∂y∂µV

α
h,MFC(P[x], x) · ηk,s ⊗ ηk,s

)]
ds

∣∣∣∣X0 = x

]

+ E

[ ∞∑
k=0

∫ (k+1)h

kh
e−γsO(∥ηk,s∥3)ds

∣∣∣∣X0 = x

]
= O(h1/2),

(A.19)
since the first term above dominates others as E[∥ηk,s∥|X0 = x] ∼ O(h1/2) for small h. Thus
we conclude that

V µ,α
h,MFC(x) = V µ,α

MFC(x) + o(1), (A.20)

as h→ 0.
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