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Heat flows from hot to cold

A simple rigorous example of thermalization in an isolated macroscopic quan-

tum system

Hal Tasaki∗

In the present note, we discuss a simple example of a macroscopic quantum many-body
system in which the approach to thermal equilibrium from an arbitrary initial state in the
microcanonical energy shell is proved without relying on any unproven assumptions. The
model, which is equivalent to a free fermion chain, is designed to be a toy model for a
weakly heat-conducting one-dimensional solid. We take a phenomenological point of view
and perceive that the system is in thermal equilibrium when the measured coarse-grained
energy distribution is uniform.

The result on thermalization reported here is a variation (and an improvement) of our
previous result on the irreversible expansion in a free fermion chain [1]. As far as we know, this
is the first concrete and rigorous realization of the philosophy on the foundation of equilibrium
statistical mechanics proposed by von Neumann in 1929 [2, 3], and further developed recently
by Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zangh̀ı [4] and the present author [5, 6],
namely, to characterize thermal equilibrium from a macroscopic viewpoint and to make use
of the strong ETH [7, 8, 9, 10, 11] to control the long-time dynamics.

This note will be the most technical part of my longer article on thermalization, “What is
thermal equilibrium and how do we get there?”. I am making this document public at this
stage since I have already announced (and will announce) the results at some of my talks.
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1 Problem and the thermodynamic point of view

In this note, we focus on the phenomenon of thermalization in a one-dimensional uniform solid
that weakly conducts heat.
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Figure 1: We study thermalization in a weakly heat-conducting one-dimensional solid iso-
lated from the external environment. It is one of the fundamental premises of thermodynamics
that the solid reaches a unique thermal equilibrium state after a sufficiently long time. No
matter how the energy is distributed in the initial state, the thermal equilibrium state is
characterized by a uniform energy distribution. We shall study this problem in a simple
microscopic quantum model and prove, without relying on any unjustified assumptions, that
such thermalization takes place.

Figure 2: We divide our solid into m identical pieces and focus on the energy densities in
these pieces. Here we set m = 12. Initially, the m pieces may have arbitrary energy densities,
which we here wrote ũ1, . . . , ũ12.

Let us first examine this problem from the macroscopic thermodynamic point of view. Sup-
pose the solid is initially in an arbitrary state with total (macroscopic) energy U0 and is completely
isolated from the external environment. Then, it is a fundamental premise of thermodynamics
that, after a sufficiently long time, the solid will approach a unique thermal equilibrium state in
which the energy is equally distributed over the solid with the uniform energy density u0. See
Figure 1.

To make this idea more quantitative, we (fictitiously) divide the solid into m pieces with
identical lengths and focus on the energy densities in these pieces. See Figure 2. Here, m may
note be small, but it is assumed that each piece is still a macroscopic thermodynamic system. In
the initial nonequilibrium state, the energy densities in the m pieces may take arbitrary values,
ũ1, . . . , ũm, but they all take the identical value u0 in the equilibrium state. See Figure 3.

Throughout the present note, we shall take a phenomenological and operational point of
view when characterizing states of the solid. This means we focus solely on what a macroscopic
observer who is ignorant of microscopic physics finds out. To be specific, we assume that our
macroscopic observer pays attention only to the coarse-grained energy distribution in the solid
as formulated above. In particular, if the observer finds the energy densities in all the pieces to
be u0, then she/he concludes that the solid is in thermal equilibrium. We shall use this definition
of thermal equilibrium even when we study microscopic physics in the following sections.1

The goal of the present note is to establish the presence of thermalization in the above
phenomenological sense in a simple microscopic model for our one-dimensional solid.

1Note that our definition of thermal equilibrium thus depends on the choice of number m. One may say that our
notion of thermal equilibrium is not only phenomenological (in the sense we focus only on the results of macroscopic
observations) but also contextual (in the sense the notion may depend on which quantities the observer measures).
It should be emphasized that contextuality never implies that the notion is subjective.
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Figure 3: The energy densities in the pieces q = 1, . . . ,m. In the initial nonequilibrium state
of Figure 2, the energy densities take nonuniform values. In the thermal equilibrium state,
all the pieces have the same energy density u0, which is determined by the total energy in the
initial state. This phenomenological and operational characterization of thermal equilibrium
will be used throughout the present note.

2 Quantum mechanical model and main results on thermaliza-

tion

Here, we define our simple model of solid (section 2.1), discuss our phenomenological and oper-
ational criterion for thermal equilibrium (section 2.2), and state the main theorems for thermal-
ization (section 2.3). We then introduce two essential Lemmas and see how the theorems can be
proved assuming these lemmas (section 2.4). Finally we briefly discuss the puzzling issue about
integrability and thermalization (section 2.5).

2.1 Definition

Let us consider a “solid” consisting of L atoms indexed by x ∈ {1, . . . , L} and forming a chain.
We assume that each atom can take two states, namely, a state with zero energy and an excited
state with energy ǫ0 > 0. We describe the state of the x-th atom by the variable µx = 0, 1,
where 0 and 1 represent the zero-energy state and the excited state, respectively. The sum of the
energies of all atoms is then given by ǫ0

∑L
x=1 µx. See Figure 4.

In the quantum mechanical notation, we denote the zero-energy and the excited states of the
x-th atom as |0〉x and |1〉x, respectively. We assume that the set {|0〉x, |1〉x} forms an orthonormal
basis of the two-dimensional Hilbert space of the x-th atom. The 2L dimensional Hilbert space
H of the whole system is the tensor product of the Hilbert spaces of all atoms. It is spanned by
the basis states

|µ1, . . . , µL〉 =
L
⊗

x=1

|µx〉x, (2.1)

with µx = 0, 1.
We define the lowering and the raising operators âx and â†x acting on the local Hilbert space

of the x-th atom by

âx|1〉x = |0〉x, âx|0〉x = 0, â†x|1〉x = 0, â†x|0〉x = |1〉x. (2.2)
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Figure 4: The simple model of a one-dimensional solid with L = 8. Each atom can be in
the zero energy state (denoted by the small dot) or in the excited state (denoted by the big
dot) with energy ǫ0 > 0. An excitation can hop to a neighboring site with a small amplitude
ηǫ0/2.

The number operator defined as n̂x = â†xâx satisfies n̂x|1〉x = |1〉x and n̂x|0〉x = 0. Note that
these operators for different atoms, i.e., different indices x, commute with each other.

The Hamiltonian of our solid is

Ĥ = ǫ0

L
∑

x=1

n̂x +
ηǫ0
2

{

L−1
∑

x=1

(â†xâx+1 + â†x+1âx)− n̂L
}

. (2.3)

The first term on the right-hand side is the sum of the energies of atoms. The second term
represents processes in which an excitation is transferred to a neighboring site with amplitude
ηǫ0/2. We added an on-site potential at site L in order to break the reflection symmetry and
guarantee that the model is free from degeneracy. See Lemma 2.3 below. We assume that η is
small, i.e., the transfer energy is much smaller than the excitation energy.

Let us introduce the microcanonical energy shell, which plays an important role in the present
approach. It is a subspace of H defined by

Hmc = span
{

|Ψ〉
∣

∣

∣
Ĥ|Ψ〉 = E|Ψ〉,

∣

∣

∣

E

L
− u0

∣

∣

∣
≤ ∆u0

}

, (2.4)

where u0 ∈ (0, ǫ0) is a fixed energy density and ∆u0 defines the small energy width that is not
perceived by a macroscopic observer. We thus assume ∆u0/u0 is small. At the same time, ∆u0
must be sufficiently large so that the dimension of Hmc is large.

We interpret the energy shell Hmc as a collection of states with a definite total macroscopic
energy U0 = u0L in the thermodynamic setup. We also note that the microcanonical average is
nothing but the normalized trace in Hmc, i.e.,

〈· · · 〉mc =
TrHmc [· · · ]
TrHmc [1]

. (2.5)

2.2 Criterion for thermal equilibrium

We shall formulate our phenomenological and operational notion of thermal equilibrium discussed
in section 1 in the language of microscopic quantum mechanics. Our notion may be viewed as a
variant of MATE (macroscopic thermal equilibrium) formulated in [12].

Let m ∈ {2, 3, . . .}, and assume that L is divisible by m.2 We decompose the chain into m
identical parts as

{1, . . . , L} =
m
⋃

q=1

Λq, (2.6)

where

Λq =
{L

m
(q − 1) + 1, . . . ,

L

m
q
}

, (2.7)

2We make this assumption only for notational simplicity.
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is the sublattice with L/m sites. We then define for q = 1, . . . ,m the Hamiltonian on Λq by

Ĥq = ǫ0
∑

x∈Λq

n̂x +
ηǫ0
2

L
m
q−1
∑

x= L
m
(q−1)+1

(â†xâx+1 + â†x+1âx). (2.8)

Note that different Ĥq commute because they do not contain operators on common sites. Con-
sequently, the sum

∑m
q=1 Ĥq is slightly different from the total Hamiltonian Ĥ.

As we discussed in section 1, we assume that the macroscopic observer pays attention only
to the energy densities in Λq. It is then convenient to define the energy density operator

ûq =
m

L
Ĥq, (2.9)

for q = 1, . . . ,m. It, of course, holds that

〈ûq〉mc ≃ u0. (2.10)

In the quantum mechanical setting, our observer is given an arbitrary pure state |Φ〉 ∈ Hmc. It
corresponds to a state with a definite macroscopic energy U0 = u0L, or the average energy density
u0. The observer makes a simultaneous projective measurement of the mutually commuting
operators û1, . . . , ûm and obtains a set of outcomes uout1 , . . . , uoutm . Then the observer concludes
that the solid is in thermal equilibrium if the measurement result satisfies |uoutq − u0| ≤ ∆u for
all q = 1, . . . ,m, where ∆u > 0 is a specified (small) precision. The precision ∆u should be
macroscopically observable, and hence we assume ∆u is much larger than ∆u0.

3

This scenario motivates us to define the projection operator onto nonequilibrium space, the
nonequilibrium projection for short, as4

P̂neq = Proj
[

|ûq − u0| ≥ ∆u for some q ∈ {1, . . . ,m}
]

. (2.11)

The expectation value of P̂neq gives the probability that the state in question is not found in
thermal equilibrium. Therefore, if it holds for a normalized state |Φ〉 ∈ Hmc that 〈Φ|P̂neq|Φ〉 is
negligibly small, then our observer almost certainly concludes that the state |Φ〉 is in thermal
equilibrium. In such a situation, we can simply say that the state |Φ〉 is in thermal equilibrium.

We stress that the microcanonical energy shell Hmc contains plenty of highly nonequilibrium
states, in which the probability 〈Φ|P̂neq|Φ〉 is not small, or even one.5 See section 3.2. This fact
is crucial for us since we need to take nonequilibrium initial states to discuss thermalization.

We note in passing that it is a common misconception, probably fostered by traditional-style
textbooks in statistical mechanics, that the prediction of equilibrium statistical mechanics should
always be compared with an averaged quantity in the corresponding physical system. As is clear
from the above discussion (and from our main result to be discussed below), it may happen
that the outcomes of a single simultaneous measurement coincide with the statistical mechanical
equilibrium values within a high precision, provided that both the system and the quantity to be
measured are macroscopic. One may say that this is a manifestation of the law of large numbers.

3This criterion of thermal equilibrium depends on the choice of the division number m and the precision ∆u.
As we discussed in footnote 1, our notion of thermal equilibrium is contextual.

4Here is a more careful construction. Since û1, . . . , ûm commute, one can form an orthonormal basis of the
whole Hilbert space H that consists of their simultaneous eigenstates |Ξν〉 with ν = 1, . . . , 2L. Suppose that

ûq |Ξν〉 = u
(ν)
q |Ξν〉 for q = 1, . . . , m, and let N ⊂ {1, . . . , 2L} be the set of ν such that |u(ν)

q − u0| ≥ ∆u for some q.
Then we define P̂neq =

∑
ν∈N |Ξν〉〈Ξν |.

5Nevertheless, an overwhelming majority of states in Hmc are in thermal equilibrium. This fact is known as the
typicality of thermal equilibrium.
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2.3 Main theorems

In what follows, we fix constants L, ǫ0 > 0, η > 0, u0 ∈ (0, ǫ0), ∆u0, m, and ∆u. As we already
discussed, we assume η, ∆u0/u0, and ∆u0/∆u are small. We understand, however, that these
quantities are of “order one” in the sense that they are independent of the system size L, which
we assume to be macroscopically large. In addition, we assume that η−1 is an integer and 2L+1 is
a prime. These somewhat exotic assumptions are necessary to prove the absence of degeneracy in
the energy spectrum. See Lemma 2.3. Although the above assumptions are enough to prove our
theorems, we shall make the following (rather technical) assumptions to make various estimates
quantitative:6

L ≥ 3mǫ0
ηu0

, (2.12)

∆u0
u0
≤ 1

50
, (2.13)

22∆u0 ≤ ∆u ≤ u0
2
, (2.14)

∆u0 ≥ ηǫ0. (2.15)

For a given initial state |Φ(0)〉, we denote its time evolution by

|Φ(t)〉 = e−iĤt|Φ(0)〉. (2.16)

Let us first state the “ergodic version” of our thermalization theorem. The theorem is proved in
section 2.4, assuming two basic lemmas.

Theorem 2.1 (ergodicity theorem) Let |Φ(0)〉 be an arbitrary normalized state from the mi-
crocanonical energy shell Hmc defined in (2.4). Then one has

lim
T↑∞

1

T

∫ T

0
dt〈Φ(t)|P̂neq|Φ(t)〉 ≤ C1 exp

[

− (∆u)2

8(m− 1)ǫ0u0
L
]

(2.17)

with

C1 = m
2m
η

+ 3
2 +m

( m

m− 1

)
2m
η

+ 1
2
. (2.18)

We have not tried to optimize the constants in (2.17). One might notice that the constant
C1 diverges as η ↓ 0, but there is nothing essential about this behavior. In fact, this constant is
originally written as

C1 = m
2
δ
+ 3

2 +m
( m

m− 1

)
2
δ
+ 1

2
. (2.19)

with another independent small constant δ > 0. We here set δ = η/m for notational simplicity.
See section 3.5.

Consider the natural setting where (∆u)2

ǫ0u0
is of order one and L is macroscopically large so

that (∆u)2

ǫ0u0
L≫ 1. Then, the right-hand side of (2.17) becomes negligibly small. We see that the

long-time average of the expectation value of the nonequilibrium projection P̂neq is essentially
zero.

6To prove our theorems, we can replace the assumption (2.15) by a weaker assumption η ≤ 1/50, which is
(3.72). We assumed (2.15) to guarantee that the energy shell Hmc contains nonequilibrium states. See section 3.2.
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This observation suggests that the system is mostly in thermal equilibrium in the long run. In
fact, one can easily convert Theorem 2.1 into the following statement relevant to an instantaneous
measurement of the energy densities. See the end of the present subsection for the proof. Here
we take a constant C2 > 0 such that (C2)

2 > C1.

Theorem 2.2 (thermalization at large and typical time) Let |Φ(0)〉 be an arbitrary nor-
malized state from Hmc. For any sufficiently large T > 0 (where how large T should be may
depend on |Φ(0)〉) there exists a subset of “atypical moments” A ⊂ [0, T ] such that one has

〈Φ(t)|P̂neq|Φ(t)〉 ≤ C2 exp
[

− (∆u)2

16(m− 1)ǫ0u0
L
]

, (2.20)

for any t ∈ [0, T ]\A. If we denote by ℓ(A) the total length (or the Lebesgue measure) of A, we
have

ℓ(A)
T
≤ C2 exp

[

− (∆u)2

16(m− 1)ǫ0u0
L
]

. (2.21)

Again, assume that (∆u)2

ǫ0u0
L≫ 1, which means that the right-hand sides of (2.20) and (2.21)

are negligibly small. From (2.21), we see that the subset A is extremely minor in the whole
interval [0, T ]. We can say that it is atypical for a moment t ∈ [0, T ] to belong to A. Take
any typical moment, i.e., t ∈ [0, T ]\A and consider the corresponding time-evolved state |Φ(t)〉.
Recalling the definition (2.11) of P̂neq, we see from (2.20) that if the observer makes a simultaneous
measurement of the energy densities û1, . . . , ûm, then all the measurement result, with probability
almost equal to one, coincide with the equilibrium value u0 within the precision ∆u.

Informally speaking, Theorem 2.2 establishes that, for a sufficiently large and typical time
t, the measurement outcomes of the energy densities in the m pieces in the time-evolved state
|Φ(t)〉 are almost certainly equal to u0. This means that the state |Φ(t)〉 is in thermal equilibrium
according to our criterion based on the measurement of the coarse-grained energy distribution. It
is essential here that we are dealing with the result of a single quantum mechanical simultaneous
measurement rather than quantum mechanical averages. Recall that the latter are obtained
through repeated measurements in an ensemble of states.

Suppose that the initial state |Φ(0)〉 is a nonequilibrium state in the sense that 〈Φ(0)|P̂neq|Φ(0)〉
is not small. We shall see in section 3.2 that the microcanonical energy shell Hmc contains plenty
of nonequilibrium states. Then Theorem 2.2 precisely states that the nonequilibrium initial state
relaxes to thermal equilibrium after a sufficiently long and typical time. Unfortunately, we (still)
do not have any quantitative estimates of the relaxation time. If the initial state |Φ(0)〉 is in
thermal equilibrium, i.e., 〈Φ(0)|P̂neq|Φ(0)〉 is small from the beginning, then Theorem 2.2 shows
the stability of thermal equilibrium.

Proof of Theorem 2.2 assuming Theorem 2.1: We write

W =
(∆u)2

16(m− 1)ǫ0u0
L, (2.22)

so that (2.17) reads

lim
T↑∞

1

T

∫ T

0
dt〈Φ(t)|P̂neq|Φ(t)〉 ≤ C1 e

−2W . (2.23)

Since C1 < (C2)
2, there exists T0 > 0 such that one has

1

T

∫ T

0
dt〈Φ(t)|P̂neq|Φ(t)〉 ≤ (C2 e

−W)2, (2.24)
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for any T ≥ T0. Fix an arbitrary T such that T ≥ T0 and define

A =
{

t ∈ [0, T ]
∣

∣ 〈Φ(t)|P̂neq|Φ(t)〉 > C2 e
−W

}

. (2.25)

The first statement of the theorem follows from this definition. We next observe that

ℓ(A)
T

=
1

T

∫ T

0
dt θ

(〈Φ(t)|P̂neq|Φ(t)〉
C2 e−W

− 1
)

, (2.26)

where the step function is defined by θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0. Noting that
θ(x− 1) ≤ x, we find

ℓ(A)
T
≤ 1

T

∫ T

0
dt
〈Φ(t)|P̂neq|Φ(t)〉

C2 e−W
≤ C2 e

−W , (2.27)

where we used (2.24). This proves the second statement of the theorem.

2.4 Basic Lemmas and the proof of Theorem 2.1

In this section, we prove the ergodicity theorem, Theorem 2.1, by assuming two Lemmas. These
lemmas are essential ingredients of the present theory of thermalization. Their proofs are based
on the exact mapping of our model of one-dimensional solid to a free fermion model.

The first lemma, Lemma 2.3 below, guarantees that the energy eigenvalues of our Hamiltonian
(2.3) is free from degeneracy. In general, it is believed that the energy eigenvalues of a quantum
many-body system are nondegenerate unless there are special reasons, such as symmetry or
integrability, that cause degeneracy. Even when there are accidental degeneracies, they may
always be lifted by adding an appropriate small perturbation to the Hamiltonian. It is, however,
not at all easy (if not impossible) to make this intuition into proof for a concrete class of models.7

For the present model, which is indeed integrable, we have the following lemma, which will be
proved in section 3.3.

Lemma 2.3 (nondegeneracy of the energy spectrum) Let 2L + 1 be a prime and η−1 be
an integer. Then, all the energy eigenvalues of the Hamiltonian (2.3) are nondegenerate.

Recall that the extra potential at site L in the Hamiltonian (2.3) breaks the reflection sym-
metry, which is present in the standard open chain and causes degeneracy. The requirement that
2L + 1 is a prime does not look physical since the properties of a physical system on the long
chain should not depend on whether the chain length is prime or not. Nevertheless, we do need
this condition to rule out degeneracy completely in our system.

The second lemma, Lemma 2.4 below, establishes a version of strong ETH (energy eigenstate
thermalization hypothesis). In general, a strong ETH is a statement that every energy eigenstate
(in the microcanonical energy shell) is in thermal equilibrium according to a certain criterion
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. For the present model, we prove the following lemma in sections 3.4
and 3.5.

Lemma 2.4 (large-devitaion type ETH) Assume that the conditions for the constants stated
at the beginning of section 2.3 are valid. Then, for any normalized eigenstate |Ψ〉 of the Hamil-
tonian (2.3) that belongs to the microcanonical energy shell Hmc, one has

〈Ψ|P̂neq|Ψ〉 ≤ C1 exp
[

− (∆u)2

8(m− 1)ǫ0u0
L
]

, (2.28)

where the right-hand side is exactly equal to that in (2.17).

7As far as we know, the absence of degeneracy in the energy eigenvalues of non-random quantum many-body
systems was proved only for free fermion chains by us in [5, 6, 13].
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When (∆u)2

ǫ0u0
is of order one and L is macroscopically large so that (∆u)2

ǫ0u0
L≫ 1, (2.28) implies

that the energy eigenstate |Ψ〉 itself is in thermal equilibrium according to our criterion. This
is nothing but the strong ETH for the energy densities û1, . . . , ûm in the large-deviation form
formulated by us in [6].

Assuming these two lemmas, Theorem 2.1 is easily proved as follows. We note that the
following proof is general and does not rely on the specific characters of the present model. This
means that Theorems 2.1 and 2.2 can be proved for any quantum many-body systems provided
that one has statements corresponding to Lemmas 2.3 and 2.4.

Proof of Theorem 2.1 assuming Lemmas 2.3 and 2.4: The proof is standard and easy. Let |Ψj〉
be a normalized eigenstate of Ĥ with energy eigenvalue Ej. We relabel the index so that |Ψj〉
with j = 1, . . . ,D precisely span the microcanonical energy shell Hmc. Expanding the initial
state as

|Φ(0)〉 =
D
∑

j=1

αj |Ψj〉, (2.29)

we see that the time-evolved state is explicitly given by

|Φ(t)〉 =
D
∑

j=1

e−iEjt αj |Ψj〉. (2.30)

Then, the expectation value in the integrand in the left-hand side of (2.17) is written as

〈Φ(t)|P̂neq|Φ(t)〉 =
D
∑

j,j′=1

ei(Ej−Ej′)t α∗
jαj′〈Ψj |P̂neq|Ψj′〉. (2.31)

Since Lemma 2.3 guarantees Ej 6= Ej′ whenever j 6= j′, the long-time average of (2.31) becomes

lim
T↑∞

1

T

∫ T

0
dt 〈Φ(t)|P̂neq|Φ(t)〉 =

D
∑

j=1

|αj |2〈Ψj |P̂neq|Ψj〉. (2.32)

We then get the desired (2.17) from (2.28).

2.5 Why do we have thermalization in an integrable model?

It is often said that an integrable quantum many-body system does not exhibit thermalization.
The reader might be then puzzled to learn that our model of solid, which exhibits thermalization,
is equivalent to a typical integrable model, namely, the free fermion chain. Let us clarify the issue.

The main reason that integrable models are said not to thermalize is that they generally
possess many conserved quantities. Suppose Â is conserved (in the sense that [Ĥ, Â] = 0) and
choose a nonequilibrium initial state |Φ(0)〉 ∈ Hmc such that 〈Φ(0)|Â|Φ(0)〉 6= 〈Â〉mc. Since
〈Φ(t)|Â|Φ(t)〉 is independent of t, the state |Φ(t)〉 is never in thermal equilibrium if one uses the
expectation value of Â as a criterion for thermal equilibrium.

Our model also possesses a number of conserved quantities. We nevertheless observe (and
can prove the presence of) thermalization because we use the phenomenological and operational
characterization of thermal equilibrium discussed in section 2.2. If our observer can measure
quantities other than the coarse-grained energy distribution and decides to use them also to
judge if a state is in thermal equilibrium, then it is possible that she/he concludes that our system
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does not thermalize.8 (We note in passing that it is physically reasonable to concentrate only
on the coarse-grained energy distribution if one is interested in thermalization in a weakly heat-
conducting solid.) If we use the language from [12], our system approaches thermal equilibrium in
the sense of MATE (macroscopic thermal equilibrium) but not in the sense of MITE (microscopic
thermal equilibrium).

We also note that thermalization, or, more generally, equilibration, in free fermion systems
has been established theoretically [14, 13, 1] and numerically [15, 16, 17] in various settings.

3 Proofs of Lemmas 2.3 and 2.4

In this section, which is a technical core of the present note, we prove two basic lemmas. We first
observe that the model is equivalent to a free fermion chain and write down exact energy eigen-
states and eigenvalues (section 3.1). As a simple application, we show that the microcanonical
energy shell Hmc contains many equilibrium states (section 3.2). Then we prove Lemma 2.3 for
nondegeneracy of energy eigenvalues by using a classical number theoretic theorem (section 3.3).
We finally prove Lemma 2.4 that establishes the strong ETH bound (sections 3.4 and 3.5).

3.1 Free fermion chain

A key for the proofs of the two basic lemmas is that our model of a one-dimensional “solid” with
the Hamiltonian (2.3) is equivalent to a model of spinless free fermions.

Let us first define a free fermion system on the chain {1, . . . , L} precisely. For each x ∈
{1, . . . , L}, let ĉx and ĉ†x be the annihilation and the creation operators, respectively, of a fermion
at site x. They satisfy the standard anticommutation relations9

{ĉ†x, ĉy} = δx,y, {ĉx, ĉy} = {ĉ†x, ĉ†y} = 0, (3.1)

for any x, y ∈ {1, . . . , L}. We define the number operator at site x by n̂x = ĉ†xĉx. We consider
states with all possible fermion numbers. The whole Hilbert space is spanned by the states of the
form ĉ†x1 . . . ĉ

†
xN |Φvac〉, where xi ∈ {1, . . . , L} with xi < xi+1 and N ∈ {0, 1, . . . , L}. Here |Φvac〉

is the normalized state with no fermions in the system, which satisfies ĉx|Φvac〉 = 0 for any x.
Let us relate the basis states (2.1) of the model of solid and the basis states of the fermion

model by a one-to-one correspondence as

|µ1, µ2, . . . , µL〉 ←→ (ĉ†1)
µ1(ĉ†2)

µ2 · · · (ĉ†L)µL |Φvac〉, (3.2)

where we define (ĉ†x)0 = 1. It is easily found that the action of the Hamiltonian (2.3) on the basis
{|µ1, . . . , µL〉} is precisely recovered by the free fermion Hamiltonian

Ĥ = ǫ0

L
∑

x=1

n̂x +
ηǫ0
2

{

L−1
∑

x=1

(ĉ†xĉx+1 + ĉ†i+1ĉx)− n̂L
}

, (3.3)

8A trivial example is given by the observable Â =
∑L−1

x=1 (â
†
xâx+1 + â†

x+1âx) − n̂L, which is nothing but the

hopping part of the Hamiltonian (2.3). It obviously commutes with Ĥ. By using the mapping to a free fermion
chain (see section 3.1), one can show that the thermal expectation value 〈Â〉mc is at most O(1), while it is possible
to prepare an initial state |Φ(0)〉 ∈ Hmc that is an eigenstate of Â with the eigenvalue of O(L). The state |Φ(0)〉
never thermalizes if one includes the observable Â in the criterion of thermal equilibrium.

9We write {Â, B̂} = ÂB̂ + B̂Â.
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x

ψ(3)
x

Figure 5: The single particle energy eigenstate ψ
(3)
x for the model with L = 8. Note that

ψ
(3)
0 = 0 and ψ

(3)
8 = −ψ(3)

9 , and hence the boundary equations (3.5) and (3.6) are satisfied.

acting on the standard free fermion basis (3.2). (Here, we make a slight abuse of notation
and use the same symbols Ĥ and n̂x as before to mean the operators of the fermion system.)
Recall that such a naive correspondence between a bosonic model (like our model of solid) and
a fermion model breaks down when a successive action of the Hamiltonian exchanges particles.
We are free from this problem since no exchange can occur in our model on the open chain
with nearest neighbor hopping. It should also be stressed that the introduction of the fermion
model has no physical significance. It is only a mathematical tool for conveniently expressing
antisymmetrization involved in the expressions of the energy eigenstates.

It is standard and elementary to write down the energy eigenstates and eigenvalues of the
Hamiltonian (3.3). The single-particle Schrödinger equation corresponding to (3.3) is

ǫ ψx = ǫ0 ψx +
ηǫ0
2

(ψx−1 + ψx+1), x = 2, . . . , L− 1; (3.4)

ǫ ψ1 = ǫ0 ψ1 +
ηǫ0
2
ψ2; (3.5)

ǫ ψL = ǫ0 ψL +
ηǫ0
2

(ψL−1 − ψL), (3.6)

where ǫ is the single-particle energy eigenvalue. From (3.4), one readily sees that the energy
eigenstate has the form ψx = A sin(kx), where k > 0 is the wave number to be determined, and
the corresponding energy eigenvalue is ǫ = ǫ0 + ηǫ0 cos k. Note that (3.5) is satisfied because
ψ0 = 0. By comparing (3.6) with (3.4), we see that it is necessary that ψL+1 = −ψL for the
above wave function to become an eigenstate. An inspection shows that it suffices to assume
ψL+(1/2) = 0, i.e.,

sin
(

k
(

L+
1

2

))

= 0. (3.7)

We thus find the wave numbers should be

k =
πj

L+ 1
2

, j = 1, . . . , L. (3.8)

For j = 1, . . . , L, the normalization single-particle energy eigenstate is

ψ(j)
x =

√

2

L+ 1
2

sin
( πj

L+ 1
2

x
)

, (3.9)
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and the corresponding single-particle energy eigenvalue is

ǫj = ǫ0 + ηǫ0 cos
( πj

L+ 1
2

)

. (3.10)

This solves the single-particle eigenvalue problem since we have obtained L eigenfunctions with
distinct eigenvalues. We used the general formula

ℓ2
∑

x=ℓ1

{sin(kx)}2 =
1

4

{

2(ℓ2 − ℓ1 + 1) +
sin(k(2ℓ1 − 1))

sin k
− sin(k(2ℓ2 + 1))

sin k

}

, (3.11)

with ℓ1 = 1 and ℓ2 = L to determine the normalization constant in (3.9).
To discuss the corresponding many-particle problem, we introduce the fermion operator

b̂j =
L
∑

x=1

ψ(j)
x ĉx, (3.12)

for j = 1, . . . , L. One finds from (3.1) and the orthonormality of the above set of energy eigen-
states that these operators satisfy the standard anticommutation relations

{b̂†j , b̂j′} = δj,j′, {b̂j , b̂j′} = {b̂†j , b̂
†
j′} = 0. (3.13)

The Hamiltonian (3.3) is diagonalized as

Ĥ =
L
∑

j=1

ǫj b̂
†
j b̂j . (3.14)

The corresponding many-particle energy eigenstate and eigenvalues are specified by a sequence
(j1, . . . , jN ), where ji ∈ {1, . . . , L} with ji < ji+1 and N ∈ {0, 1, . . . , L}. The normalized energy
eigenstate is

|Ψ(j1,...,jN )〉 = b̂†j1 · · · b̂
†
jN
|Φvac〉, (3.15)

and the corresponding energy eigenvalue is

E(j1,...,jN ) =

N
∑

i=1

ǫji . (3.16)

3.2 The existence of nonequilibrium initial states

In this short subsection, we prove that the microcanonical energy shell Hmc contains many
nonequilibrium states. Assume, for simplicity, that there is an integer N such that u0 = Nǫ0/L.
From (3.10) and (3.16), we see that any energy eigenvalue with N fermions satisfy

N(ǫ0 − ηǫ0) ≤ E ≤ N(ǫ0 + ηǫ0), (3.17)

which means
∣

∣

∣

E

L
− u0

∣

∣

∣
≤ ηǫ0

N

L
≤ ηǫ0 ≤ ∆u0, (3.18)

where we used the assumptiion (2.15). Recalling the definition (2.4) of the energy shell, we see
that any N fermion state is a member of Hmc.

Then, it is apparent that Hmc contains many nonequilibrium states. For example, for
any sequence x1, . . . , xN ∈ {1, . . . , L} such that xi < xi+1 the corresponding N fermion state

ĉ†x1 . . . ĉ
†
xN |Φvac〉 is in Hmc. The state may be in thermal equilibrium or not depending on the

configuration x1, . . . , xN . We can choose a drastic nonequilibrium state in which, for example,
all the fermions, i.e., excited atoms, are densely packed in one end of the solid.

12



Figure 6: We show ζ, . . . , ζp−1 as vectors in the complex plane for the cases with (a) p = 4
and (b) p = 5. (a) For p = 4, one has ζ + ζ3 = 0 and (3.20) is invalid. (b) Since p = 5 is
a prime, Theorem 3.1 implies that α1ζ + α2ζ

2 + α3ζ
3 + α4ζ

4 6= 0 for any α1, α2, α3, α4 ∈ Q

unless α1 = α2 = α3 = α4 = 0. The same conclusion is never valid if α1, α2, α3, α4 ∈ R.

3.3 Proof of Lemma 2.3

We shall prove that the energy eigenvalues (3.16) are free from degeneracy. The proof makes
use of a particular form of the energy eigenvalues of the free fermion model and a theorem from
number theory. The strategy of the proof, therefore, works only for some free fermion chains.10

We start by stating an important number theoretic theorem without proof. The interested
reader is suggested to study my lecture video [18] for elementary proofs of the theorems. Let p
be an odd prime and

ζ = ei2π/p, (3.19)

be the p-th root of unity.

Theorem 3.1 For any m1, . . . ,mp−1 ∈ Z such that mµ 6= 0 for some µ, one has

p−1
∑

µ=1

mµ ζ
µ 6= 0. (3.20)

Here, it is crucial that the sum is from 1 to p− 1, rather than from 1 to p. Otherwise (3.20)
can never be true because

∑p
µ=1 ζ

µ = 0 for any p. The assumption that p is a prime is essential.

When p = 4, for example, one has ζ+ζ3 = 1, violating (3.20). See Figure 6 (a). It is also essential
that mµ are integers. Note that (3.20) says that the two-dimensional vectors ζ, . . . , ζp−1 in the
complex plane are linearly independent, provided that the coefficients are integers. (It is easy
to observe that the same conclusion holds for rational coefficients.) However, in standard linear
algebra with real coefficients, at most two vectors can be linearly independent. See Figure 6 (b).

The theorem is a straightforward consequence of the classical result by Gauss, known as the
irreducibility of the cyclotomic polynomials of prime index. The proof can be found in standard
texts in number theory (as well as in my video [18]). See, e.g., Chapter 12, Section 2 of [19], and
also Chapter 13, Section 2 of [20] or section 3.2 of [21].

To prove Lemma 2.3, it is convenient to introduce the standard occupation number de-
scription. For a given sequence (j1, . . . , jN ), we define the corresponding occupation numbers
(n1, . . . , nL) as

nj =

{

1, if j = ji for some i;

0, otherwise.
(3.21)

10As far as we know, the proof of the absence of degeneracy in certain free fermion chains based on number
theoretic results first appeared in [5, 6]. A stronger result was proved in [13] by using a new number theoretic
theorem. The new result summarized in Lemma 2.3 is more satisfactory than the previous results since it does not
require a fine-tuning of the model with a flux parameter.
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By using the occupation numbers, the energy eigenvalue (3.16) with (3.10) is written as

E(n1,...,nL) =
L
∑

j=1

njǫj = ǫ0N + ηǫ0

L
∑

j=1

nj cos
( πj

L+ 1
2

)

, (3.22)

where N =
∑L

j=1 nj is the total number of fermions. Let us write p = 2L + 1, which is a prime
by our assumption. Noting that

cos
( πj

L+ 1
2

)

=
1

2

{

ei2πj/p + e−i2πj/p
}

, (3.23)

we can express the energy eigenvalue as

E(n1,...,nL) =
ηǫ0
2

(

KN +

(p−1)/2
∑

j=1

nj(ζ
j + ζp−j)

)

=
ηǫ0
2

(

KN +

(p−1)/2
∑

µ=1

nµ ζ
µ +

p−1
∑

µ=(p+1)/2

np−µ ζ
µ
)

, (3.24)

where K = 2/η. Recall that K is an integer by our assumption about η.
Take arbitrary two distinct energy eigenstates labeled by (n1, . . . , nL) and (n′1, . . . , n

′
L). Let

us also write ∆N =
∑L

j=1 nj−
∑L

j=1 n
′
j, and assume ∆N ≥ 0 without losing generality. By using

(3.24), we see

2

ηǫ0

(

E(n1,...,nL) − E(n′
1,...,n

′
L)

)

= K∆N +

(p−1)/2
∑

µ=1

(nµ − n′µ) ζµ +

p−1
∑

µ=(p+1)/2

(np−µ − n′p−µ) ζ
µ

=

p−1
∑

µ=1

mµ ζ
µ, (3.25)

with

mµ =

{

nµ − n′µ −K∆N, µ = 1, . . . , (p − 1)/2;

np−µ − n′p−µ −K∆N, µ = (p+ 1)/2, . . . , p − 1.
(3.26)

Here we noted
∑p−1

µ=1 ζ
µ = −1.

We now claim that mµ 6= 0 for some µ. We then see from Theorem 3.1 that E(n1,...,nL) 6=
E(n′

1,...,n
′
L)
, which proves Lemma 2.3.

To show the claim, assume mµ = 0 for all µ. This implies nj − n′j = K∆N ≥ 0 for all
j = 1, . . . , L. Since (n1, . . . , nL) 6= (n′1, . . . , n

′
L), the difference nj − n′j can be independent of j

only when nj = 1 and n′j = 0 for all j = 1, . . . , L. But this implies 1 = K∆N with ∆N = L,
which is impossible as K is a (large) integer.

3.4 The essence of the proof of Lemma 2.4

Recall that the normalized single-particle energy eigenstates are given in (3.9). For each q =
1, . . . ,m and j = 1, . . . , L, we define

p(j)q =
∑

x∈Λq

∣

∣ψ(j)
x

∣

∣

2
, (3.27)

14



which is the probability of finding a particle in the sublattice Λq defined in (2.7) in the j-the
single-particle energy eigenstate. We also denote the number of fermions in Λq as

N̂q =
∑

x∈Λq

n̂x. (3.28)

The following simple lemma proved at the end of this section is the technical key of the present
work. It was proved in our previous work [1] by using the idea in [13].

Lemma 3.2 For any normalized many-particle energy eigenstate (3.15), any q = 1, . . . ,m, and
any λ ∈ R, we have

〈Ψ(j1,...,jN )|eλN̂q |Ψ(j1,...,jN )〉 ≤
N
∏

i=1

{

eλ p(ji)q + (1− p(ji)q )
}

. (3.29)

In what follows, we heuristically describe the central idea of the proof of Lemma 2.4, making
some uncontrolled approximations. For simplicity, we shall focus on the case with m = 2. A full
proof, which is rather technical and may be skipped, is given in section 3.5. We now take an
arbitrary energy eigenstate |Ψ(j1,...,jN )〉 that belongs to Hmc, and abbreviate it as |Ψ〉.

First, it seems reasonable to assume p
(j)
q ≃ 1/m = 1/2 for all j since the energy-eigenstate

wave functions should spread almost uniformly over the chain. (In fact, this is not the case for
some exceptional states, and we must control the deviation carefully. See Lemma 3.3 below.) We
then have

〈Ψ|eλN̂q |Ψ〉 .
(eλ

2
+

1

2

)N
=

(

cosh
λ

2

)N
eλN/2. (3.30)

Secondly, we shall approximate u0L ≃ ǫ0N and Ĥq ≃ ǫ0N̂q since η is small. Then the
condition ûq − u0 = 2

LĤq − u0 ≥ ∆u is rewritten as N̂q & (N + ∆N)/2 with ∆N = L∆u/ǫ0.
Therefore, we see for any λ ≥ 0 that11

〈Ψ|Proj[ 2LĤq − u0 ≥ ∆u]|Ψ〉 ≃ 〈Ψ|Proj[N̂q − 1
2(N +∆N) ≥ 0]|Ψ〉

≤ 〈Ψ|eλ{N̂q−(N+∆N)/2}|Ψ〉,

where we used the simple inequality Proj[Â ≥ 0] ≤ eÂ for a self-adjoint operator Â. Then by
using (3.30), we can further bound this as

.
(

cosh
λ

2

)N
e−λ∆N/2 ≃ exp

[

N
(λ2

8
− λ∆N

2N

)]

,

where we used (3.30) and the approximation cosh(λ/2) ≃ 1 + λ2/8 ≃ eλ
2/8. We now choose

λ = 2∆N/N to minimize the right-hand side of (3.31) to get

. e−(∆N)2/(2N) ∼ exp
[

−(∆u)2

2 ǫ0u0
L
]

. (3.31)

Since the expectation value 〈Ψ|Proj[ 2LĤq − u0 ≤ −∆u]|Ψ〉 can be bounded almost similarly, we
recover (although non-rigorously) the desired inequality (2.28) for m = 2 with better constants.

11Let Â be a self-adjoint operator and |Ξ〉 be its eigenstate, i.e., Â|Ξ〉 = a|Ξ〉. We define Proj[Â ≥ a0]|Ξ〉 = |Ξ〉
if a ≥ a0 and Proj[Â ≥ a0]|Ξ〉 = 0 if a < a0.
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Proof of Lemma 3.2: Fix q = 1, . . . ,m. We note that the fermion operators satisfy

eλN̂q/2 ĉ†x =

{

eλ/2 ĉ†x eλN̂q/2, x ∈ Λq;

ĉ†x eλN̂q/2, x 6∈ Λq,
(3.32)

and eλN̂q/2|Φvac〉 = |Φvac〉. Then, we find from (3.15) that

eλN̂q/2|Ψ(j1,...,jN )〉 = d̂†j1 · · · d̂
†
jN
|Φvac〉, (3.33)

with
d̂j = eλ/2

∑

x∈Λq

ψ(j)
x ĉx +

∑

x 6∈Λq

ψ(j)
x ĉx. (3.34)

We then observe that

〈Ψ(j1,...,jN )|eλN̂q |Ψ(j1,...,jN )〉 = 〈Φvac|d̂jN · · · d̂j2 d̂j1 d̂
†
j1
d̂†j2 · · · d̂

†
jN
|Φvac〉

≤ ‖d̂j1 d̂†j1‖ 〈Φvac|d̂jN · · · d̂j2 d̂
†
j2
· · · d̂†jN |Φvac〉

≤
N
∏

i=1

‖d̂ji d̂†ji‖, (3.35)

where we used the basic property 〈Φ|Â|Φ〉 ≤ ‖Â‖〈Φ|Φ〉 of the operator norm repeatedly.

It remains to estimate the norm ‖d̂j d̂†j‖. From (3.1), we see

{d̂†j , d̂j} = eλ p(j)q + (1− p(j)q ). (3.36)

Denoting the right-hand side as α, we find (d̂j d̂
†
j)

2 = d̂j d̂
†
j d̂j d̂

†
j = α d̂j d̂

†
j . This implies that the

eigenvalues of d̂j d̂
†
j are either 0 or α, and hence the norm ‖d̂j d̂†j‖ is equal to α. We therefore get

(3.29) from (3.35) and (3.36).

3.5 Details of the proof of Lemma 2.4

Let us start with a technical lemma that shows the rough estimate p
(j)
q ≃ 1/m is justified except

for a finite number of j. It is crucial that the number of exceptions, denoted asM , is independent
of the system size L.

Lemma 3.3 Take any (small) δ > 0, and assume that the system size satisfies

L ≥ 1

mδ
. (3.37)

Then, one has
∣

∣

∣
p(j)q −

1

m

∣

∣

∣
≤ δ, (3.38)

except for M distinct values of j, where

M ≤ 2

δ
+

1

2
. (3.39)
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Proof : We write the single-particle energy eigenstate (3.9) as

ψ(j)
x =

2√
2L+ 1

sin(kx), (3.40)

with

k =
2πj

2L+ 1
, (3.41)

where j = 1, . . . , L. Note that k runs roughly between 0 and π. Let

xL =
L

m
(q − 1) + 1, xR =

L

m
q, (3.42)

be the endpoints of Λq. By using the general formula (3.11) for the summation, we can explicitly
evaluate the probability (3.27) as

p(j)q =
4

2L+ 1

xR
∑

x=xL

(sin kx)2 =
1

2L+ 1

{

2
L

m
+

sin(k(2xL − 1))

sin k
− sin(k(2xR + 1))

sin k

}

. (3.43)

Since sin k 6= 0, we find
∣

∣

∣
p(j)q −

1

m

∣

∣

∣
≤ 1

(2L+ 1)m
+

1

2L+ 1

2

sin k
. (3.44)

Since the assumption (3.37) implies

1

(2L+ 1)m
≤ δ

2
, (3.45)

the right-hand side of (3.44) is bounded from above by δ if

1

2L+ 1

2

sin k
≤ δ

2
. (3.46)

The bound (3.46) apparently does not hold for k ∈ (0, π) close to 0 or π. Let M be the
number of k of the form (3.41) that violates (3.46). Since sin k ≥ 2

πk and sin k ≥ 2
π (π − k) for

k ∈ (0, π), we can upper-bound M by counting the number of k such that

2π

(2L+ 1)k
≥ δ or

2π

(2L+ 1)(π − k) ≥ δ, (3.47)

or, equivalently, the number j ∈ {1, . . . , L} such that

j ≤ δ−1 or L+ 1
2 − j ≤ δ−1. (3.48)

We then get (3.39) by inspection.

We fix the microcanonical energy interval [(u0 −∆u0)L, (u0 +∆u0)L] and the corresponding
energy shell Hmc defined as (2.4). We take an arbitrary energy eigenstate |Ψ(j1,...,N)〉 ∈ Hmc and
abbreviate it as |Ψ〉.

The particle number N in the fermionic description satisfies ǫ0N ≃ u0L. Let us determine
the precise range of N . Since the single-particle energy eigenvalue is given by (3.10), we find that
the energy eigenvalue E for energy eigenstates with N particles satisfy

(ǫ0 − ηǫ0)N ≤ E ≤ (ǫ0 + ηǫ0)N. (3.49)
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Thus, we see that the possible particle number N for E ∈ [(u0 −∆u0)L, (u0 +∆u0)L] is

u0 −∆u0
(1 + η)ǫ0

L ≤ N ≤ u0 +∆u0
(1 − η)ǫ0

L. (3.50)

For q = 1, . . . ,m, we define the projection operators

P̂+
q = Proj[ûq ≥ uo +∆u], P̂−

q = Proj[ûq ≤ uo −∆u], (3.51)

where the energy density operator ûq is defined in (2.9). Note that these 2m projection operators
commute with each other. In the rest of the present section, we shall prove

〈Ψ|P̂+
q |Ψ〉 ≤ m

2m
η

+ 1
2 exp

[

− (∆u)2

8(m− 1)ǫ0u0
L
]

, (3.52)

〈Ψ|P̂−
q |Ψ〉 ≤

( m

m− 1

)
2m
η

+ 1
2
exp

[

− (∆u)2

8(m− 1)ǫ0u0
L
]

, (3.53)

for any q = 1, . . . ,m. Noting that

〈Ψ|P̂neq|Ψ〉 ≤
m
∑

q=1

(

〈Ψ|P̂+
q |Ψ〉+ 〈Ψ|P̂−

q |Ψ〉
)

, (3.54)

we get the desired bound (2.28) with C1 as in (2.18).
Let us see in detail how the expectation value 〈Ψ|P̂+

q |Ψ〉 is bounded. Since (ǫ0+ηǫ0)N̂q ≥ Ĥq,

we see that the defining condition ûq − u0 = m
L Ĥq − u0 ≥ ∆u for P̂+

q implies N̂q ≥ R with

R =
u0 +∆u

m(1 + η)ǫ0
L. (3.55)

We thus find
〈Ψ|P̂+

q |Ψ〉 ≤ 〈Ψ|Proj[N̂q −R ≥ 0]|Ψ〉 ≤ 〈Ψ|eλ(N̂q−R)|Ψ〉, (3.56)

for any λ ≥ 0. The expectation value 〈Ψ|eλN̂q |Ψ〉 can be evaluated by using Lemmas 3.2 and 3.3.
(We shall verify the condition (3.37) for L in (3.70) below.) Recall that |Ψ〉 is an abbreviation for
|Ψ(j1,...,jN )〉, the many-particle energy eigenstate labeled by (j1, . . . , jN ). Lemma 3.3 guarantees
that the bound (3.38) is valid for at least N −M distinct indices ji. For the rest, we use a trivial

upper bound p
(j)
q ≤ 1. Since λ ≥ 0, we can upper bound the right-hand side of (3.29) to get

〈Ψ|eλN̂q |Ψ〉 ≤ eMλ
{( 1

m
+ δ

)

eλ +
(

1− 1

m
− δ

)}N−M
, (3.57)

for any N such that N ≥M . (We shall check the condition N ≥M in (3.71) below.) The bound
(3.57) essentially recovers the rough estimate (3.30) with an extra (but L-independent) factor
eM .

By substituting (3.57) into (3.56), we find

〈Ψ|P̂+
q |Ψ〉 ≤ eMλ

{( 1

m
+ δ

)

eλ +
(

1− 1

m
− δ

)}N−M
e−λR

≤
(

eλ

( 1
m + δ) eλ + (1− 1

m − δ)

)M
{( 1

m
+ δ

)

eλ +
(

1− 1

m
− δ

)}N
e−λR

≤ mM
{( 1

m
+ δ

)

eλ +
(

1− 1

m
− δ

)}N
e−λR

= mM
{

fm,δ(λ) exp
[

−λ
(R

N
− 1

m

)]}N
, (3.58)
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where we defined

fm,δ(λ) =
( 1

m
+ δ

)

e(1−
1
m
)λ +

(

1− 1

m
− δ

)

e−
1
m
λ. (3.59)

We can show that this function is bounded as

fm,δ(λ) ≤ eλ
2A2+λδ, (3.60)

for any λ ∈ [0, 1], with

A2 =
1

m

(

1− 1

m

)

+
(

1− 2

m

)

δ. (3.61)

To see this, we expand fm,δ(λ) in λ as

fm,δ(λ) =

∞
∑

n=0

An

n!
λn, (3.62)

with

An =
( 1

m
+ δ

)(

1− 1

m

)n
+

(

1− 1

m
− δ

)(

− 1

m

)n
. (3.63)

One finds that A0 = 1, A1 = δ, and A2 is given by (3.61). For n ≥ 3, we bound An as

An ≤
( 1

m
+ δ

)(

1− 1

m

)2
+

(

1− 1

m
− δ

)( 1

m

)2
= A2. (3.64)

Since λ ∈ [0, 1], we then have

fm,δ(λ) ≤ 1 + λδ + λ2A2

∞
∑

n=2

1

n!
= 1 + λδ + λ2A2(e− 2) ≤ 1 + λδ + λ2A2, (3.65)

which implies (3.60).
From (3.60), we find

fm,δ(λ) exp
[

−λ
(R

N
− 1

m

)]

≤ exp
[

λ2A2 − λ
(R

N
− 1

m
− δ

)]

. (3.66)

We now set

λ =
R
N − 1

m − δ
2A2

, (3.67)

to minimize the right-hand side of (3.66). Substituting the resulting bound to (3.58), we get

〈Ψ|P̂+
q |Ψ〉 ≤ mM exp

[

−(RN − 1
m − δ)2
4A2

N

]

= mM exp

[

− (RN − 1
m − δ)2

4{ 1
m (1− 1

m) + (1− 2
m )δ}N

]

= mM exp

[

− {RL − ( 1
m + δ)NL }2

4{ 1
m (1− 1

m) + (1− 2
m )δ}

L

N
L

]

, (3.68)

which essentially completes our estimate. The remaining (tedious but straightforward) task is to
simplify (3.68).

At this stage, we choose the small constant δ as

δ =
η

m
. (3.69)
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As we have noted already, this choice is quite arbitrary. We can now verify the conditions for L
and N mentioned above in the derivation of the key inequity (3.57). Note that the assumption
(2.12) for L now reads

L ≥ 3ǫ0
u0δ

. (3.70)

Since u0 ≤ ǫ0 + η, the condition (3.37) required in Lemma 3.3 is safely satisfied. We also note
that (3.70) and (3.50) imply

N ≥ 3
1− ∆u0

u0

1 + η

1

δ
. (3.71)

Noting that (2.13) and (2.15) imply

η ≤ 1

50
, (3.72)

one can verify that the right-hand side of (3.71) exceeds 2
δ +

1
2 . This verifies the desired condition

N ≥M .
By recalling the definition (3.55) of R and the upper bound for N in (3.50), we have

R

L
−

( 1

m
+ δ

)N

L
≥ u0 +∆u

m(1 + η)ǫ0
− 1 + η

m

u0 +∆u0
(1− η)ǫ0

=
1

m(1 + η)ǫ0

{

∆u− (1 + η)2

1− η ∆u0 −
3η + η2

1− η u0

}

≥ 3

4

1

m(1 + η)ǫ0
∆u. (3.73)

We here noted that the assumed lower bound for ∆u in (2.14) and the upper bound (3.72) for η
imply

3 + η

1− η ηu0 ≤
∆u

5
,

(1 + η)2

1− η ∆u0 ≤
∆u

20
. (3.74)

We also see that

1

m

(

1− 1

m

)

+
(

1− 2

m

)

δ =
1

m

(

1− 1

m

)

(

1 +
1− 2

m
1
m(1− 1

m)
δ

)

≤ 1

m

(

1− 1

m

)

{1 + (m− 2)δ}

≤ (1 + η)
1

m

(

1− 1

m

)

, (3.75)

where we recalled mδ = η.
Substituting (3.73) and (3.75) and recalling the upper bound for N in (3.50), the argument

of the exponential function in (3.68) is bounded as

{RL − ( 1
m + δ)NL }2

4{ 1
m (1− 1

m ) + (1− 2
m)δ}

L

N
L ≥ 1

4{(1 + η) 1
m (1− 1

m)}
(3

4

1

m(1 + η)ǫ0
∆u

)2 (1− η)ǫ0
u0 +∆u0

L

=
1

4

(3

4

)2 1− η
(1 + η)3

(

1 + ∆u0
u0

)

(∆u)2

(m− 1)ǫ0u0
L

≥ (∆u)2

8(m− 1)ǫ0u0
L. (3.76)
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We here noted that the bounds (2.13) and (3.72) for ∆u0/u0 and η imply

1

4

(3

4

)2 1− η
(1 + η)3

(

1 + ∆u0
u0

) ≥ 1

8
. (3.77)

Substituting (3.76) into (3.68), we finally get

〈Ψ|P̂+
q |Ψ〉 ≤ m

2m
η

+ 1
2 exp

[

− (∆u)2

8(m− 1)ǫ0u0
L
]

, (3.78)

where we used the upper bound (3.39) of M and the choice (3.69) of δ. This is the desired (3.52).
We still need to justify the choice (3.67) of λ is in the range [0, 1]. That λ ≥ 0 was already

shown in (3.73). From (3.67) and (3.55), we find

λ =
R
N − 1

m − δ
2{ 1

m (1− 1
m) + (1− 2

m)δ} ≤
R
N − 1

m

2 1
m (1− 1

m)
≤ mR

N
− 1 =

u0 +∆u

(1 + η)ǫ0

L

N
− 1, (3.79)

where we noted that m ≥ 2. By using the lower bound for N in (3.50), we see

λ ≤ u0 +∆u

u0 −∆u0
− 1 =

∆u−∆u0
u0 −∆u0

≤ 1, (3.80)

where we noted ∆u ≤ u0 because of the assumed upper bound for ∆u in (2.14).12

The bound (3.53) for 〈Ψ|P̂−
q |Ψ〉 is proved in a very similar manner. Let us only sketch some

parts that differ from the case for 〈Ψ|P̂+
q |Ψ〉. The defining condition for P̂−

q is equivalent to

R′ − N̂q ≥ 0 where R′ = u0−∆u
m(1−η)ǫ0

L. Corresponding to (3.56) and (3.58) above, we see, again for
λ ≥ 0, that

〈Ψ|P̂−
q |Ψ〉 ≤ 〈Ψ|e−λN̂q |Ψ〉 eλR′

≤
{( 1

m
− δ

)

e−λ +
(

1− 1

m
+ δ

)}N−M
eλR

′

≤
(

1

( 1
m − δ) e−λ + (1− 1

m + δ)

)M
{( 1

m
− δ

)

e−λ +
(

1− 1

m
+ δ

)}N
eλR

′

≤
( m

m− 1

)M{( 1

m
− δ

)

e−λ +
(

1− 1

m
+ δ

)}N
eλR

′

=
( m

m− 1

)M{

fm,−δ(−λ) exp
[

λ
(R′

N
− 1

m

)]}N
, (3.81)

We again have
fm,−δ(−λ) ≤ 1 + λδ + λ2A′

2 ≤ eλδ+λ2A′
2 , (3.82)

with A′
2 =

1
m(1− 1

m)− (1− 2
m)δ. It is crucial here to note that R′

N − 1
m ≃ −∆u/m ≤ 0. Then we

set

λ = −
R′

N − 1
m + δ

2A′
2

≥ 0, (3.83)

to minimize the right-hand side. This leads to

〈Ψ|P̂−
q |Ψ〉 ≤

( m

m− 1

)M
exp

[

− {R′

L − ( 1
m − δ)NL }2

4{ 1
m (1− 1

m )− (1− 2
m)δ}

L

N
L

]

, (3.84)

which corresponds to (3.68). We get the desired (3.53) after similar (but easier) estimates as
above.

12We made a stronger assumption ∆u ≤ u0/2 in (2.14) since we need it in a similar evaluation for 〈Ψ|P̂−
q |Ψ〉.

21



Acknowledgement It is a pleasure to thank Shelly Goldstein, Hosho Katsura, Joel Lebowitz,
Shu Nakamura, Shin Nakano, Marcos Rigol, and Naoto Shiraishi for their useful discussions. The
present research is supported by JSPS Grants-in-Aid for Scientific Research No. 22K03474.

References

[1] H. Tasaki, Macroscopic Irreversibility in Quantum Systems: ETH and Equilibration in a
Free Fermion Chain, (preprint, 2024).
https://arxiv.org/abs/2401.15263

[2] J. von Neumann, Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik ,
Z. Phys. 57, 30 (1929);
English translation (by R. Tumulka), Proof of the Ergodic Theorem and the H-Theorem in
Quantum Mechanics, The European Phys. J. H 35 201–237 (2010).
https://arxiv.org/abs/1003.2133

[3] S. Goldstein, J. L. Lebowitz, R. Tumulka, N. Zangh̀ı, Long-time behavior of macroscopic
quantum systems: Commentary accompanying the English translation of John von Neu-
mann’s 1929 article on the quantum ergodic theorem, European Phys. J. H 35, 173–200
(2010).
https://arxiv.org/abs/1003.2129

[4] S. Goldstein, J. L. Lebowitz, C. Mastrodonato, R. Tumulka, and N. Zangh̀ı, On the Approach
to Thermal Equilibrium of Macroscopic Quantum Systems, Phys. Rev. E 81, 011109 (2010).
https://arxiv.org/abs/0911.1724

[5] H. Tasaki, The approach to thermal equilibrium and “thermodynamic normality” — An
observation based on the works by Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi
in 2009, and by von Neumann in 1929 , (unpublished note 2010).
https://arxiv.org/abs/1003.5424

[6] H. Tasaki, Typicality of thermal equilibrium and thermalization in isolated macroscopic quan-
tum systems, J. Stat. Phys. 163, 937–997 (2016).
https://arxiv.org/abs/1507.06479

[7] J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046
(1991).

[8] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).

[9] H. Tasaki, From Quantum Dynamics to the Canonical Distribution: General Picture and a
Rigorous Example, Phys. Rev. Lett. 80, 1373–1376 (1998).
https://arxiv.org/abs/cond-mat/9707253

[10] M. Rigol and M. Srednicki, Alternatives to Eigenstate Thermalization, Phys. Rev. Lett. 108,
110601 (2012).
https://arxiv.org/abs/1108.0928

[11] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From quantum chaos and eigenstate
thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239–362 (2016).
https://arxiv.org/abs/1509.06411

22

https://arxiv.org/abs/2401.15263
https://arxiv.org/abs/1003.2133
https://arxiv.org/abs/1003.2129
https://arxiv.org/abs/0911.1724
https://arxiv.org/abs/1003.5424
https://arxiv.org/abs/1507.06479
https://arxiv.org/abs/cond-mat/9707253
https://arxiv.org/abs/1108.0928
https://arxiv.org/abs/1509.06411


[12] S. Goldstein, D.A. Huse, J.L. Lebowitz, and R. Tumulka, Thermal equilibrium of a macro-
scopic quantum system in a pure state, Phys. Rev. Lett. 115, 100402 (2015).
https://arxiv.org/abs/1506.07494

[13] N. Shiraishi and H. Tasaki, Nature abhors a vacuum: A simple rigorous example of thermal-
ization in an isolated macroscopic quantum system, (preprint, 2023).
https://arxiv.org/abs/2310.18880

[14] M. Gluza, J. Eisert, and T. Farrelly, Equilibration towards generalized Gibbs ensembles in
non-interacting theories, SciPost Phys. 7, 038 (2019).
https://www.scipost.org/10.21468/SciPostPhys.7.3.038

[15] M. Rigol, A. Muramatsu, and M. Olshanii, Hard-core bosons on optical superlattices: Dy-
namics and relaxation in the superfluid and insulating regimes, Phys. Rev. A 74, 053616
(2006).
https://arxiv.org/abs/cond-mat/0612415

[16] M. Rigol and M. Fitzpatrick, Initial state dependence of the quench dynamics in integrable
quantum systems, Phys. Rev. A 84, 033640 (2011).
https://arxiv.org/abs/1107.5811

[17] S. Pandey, J.M. Bhat, A. Dhar, S. Goldstein, D.A. Huse, M. Kulkarni, A. Kundu, and J.L.
Lebowitz, Boltzmann entropy of a freely expanding quantum ideal gas, J. Stat. Phys. 190,
article number 142, (2023).
https://arxiv.org/abs/2303.12330

[18] H. Tasaki, Two number-theoretic theorems (that we found useful for quantum physics) and
their elementary proofs, YouTube video 2023.
https://youtu.be/YrCoBv0acgs

[19] J.-P. Tignol, Galois’ Theory of Algebraic Equations (second edition), (World Scientific, 2015).

[20] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory , (Graduate
Texts in Mathematics, Springer, 1990).

[21] I. Stewart and D. Tall, Algebraic number theory and Fermat’s last theorem, (Chapman and
Hall, 2020).

23

https://arxiv.org/abs/1506.07494
https://arxiv.org/abs/2310.18880
https://www.scipost.org/10.21468/SciPostPhys.7.3.038
https://arxiv.org/abs/cond-mat/0612415
https://arxiv.org/abs/1107.5811
https://arxiv.org/abs/2303.12330
https://youtu.be/YrCoBv0acgs

	Problem and the thermodynamic point of view
	Quantum mechanical model and main results on thermalization
	Definition
	Criterion for thermal equilibrium
	Main theorems
	Basic Lemmas and the proof of Theorem 2.1
	Why do we have thermalization in an integrable model?

	Proofs of Lemmas 2.3 and 2.4
	Free fermion chain
	The existence of nonequilibrium initial states
	Proof of Lemma 2.3
	The essence of the proof of Lemma 2.4
	Details of the proof of Lemma 2.4


