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The topological phases of two-dimensional time-reversal symmetric insulators are classified by
a Z2 topological invariant. Usually, the invariant is introduced and calculated by exploiting the
way time-reversal symmetry acts in reciprocal space, hence implicitly assuming periodicity and
homogeneity. Here, we introduce two space-resolved Z2 topological markers that are able to probe
the local topology of the ground-state electronic structure also in the case of inhomogeneous and
finite systems. The first approach leads to a generalized local spin-Chern marker, that usually
remains well-defined also when the perpendicular component of the spin, Sz, is not conserved. The
second marker is solely based on time-reversal symmetry, hence being more general. We validate our
markers on the Kane-Mele model both in periodic and open boundary conditions, also in presence
of disorder and including topological/trivial heterojunctions.

I. INTRODUCTION

The topological phases of insulators are characterized
by a bulk topological invariant, whose non-trivial char-
acter is manifested by gapless boundary modes. In the
framework of two-dimensional systems, two main classes
of topological insulators (TI) can be identified: the quan-
tum anomalous Hall (also known as Chern) insulators
(QAHI) [1] and time-reversal (TR) symmetric TIs, also
known as quantum spin Hall insulators (QSHI) [2–4].
The topological phases of QAHIs are classified according
to the Chern number C ∈ Z, which signals the presence
of chiral edge states protected by the non-trivial topol-
ogy. As for QSHIs, TR symmetry is required and the
symmetry-protected topological phase [2] is classified by
an index ν ∈ Z2. QSHIs display an odd number of helical
edge states and edge currents that are spin-momentum
locked.

Within periodic boundary conditions (PBC), the pres-
ence of a non-zero topological invariant is related to the
impossibility of constructing a smooth gauge in the whole
Brillouin zone (BZ) [5, 6] and represents a topological
obstruction. Topological invariants are usually defined
as global quantities of the system, and in general they
cannot be evaluated as the expectation value of some
operator. The task further complicates when consid-
ering symmetry-protected topological phases, as it be-
comes necessary to include the protecting symmetries in
the definition of the topological invariant. Examples for
TR-symmetric insulators include the concept of TR po-
larization [7], the parity of TR invariant momenta [8], or
the flow of hybrid Wannier functions centers [6, 9, 10].
PBCs are usually chosen when doing electronic structure
simulations of solids, and symmetries are typically di-
rectly incorporated in reciprocal space [7, 8], rather than
real space. However, by construction, these global for-
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mulations target homogeneous and periodic systems. In
the case of periodic and disordered systems a number
of strategies have been developed to compute the global
topological invariant, such as the single-point sampling of
the BZ in the large supercell framework [11, 12], the Bott
index [13, 14], the structural spillage [15], and methods
based on the scattering matrix [16, 17] or on the non-
commutative index theorem [18–20].
When dealing with finite or inhomogeneous systems,

global invariants are of no avail, and one must adopt
a space-resolved approach, as done for instance in
Refs. [21–26]. The ability to sample these quantities lo-
cally in real space can be particularly useful when deal-
ing, for instance, with amorphous systems [27]. The long-
range order—that usually allows to calculate the topolog-
ical invariant via reciprocal space formulations—is lost,
and only on the local scale the system appears to retain
an ordered arrangement. Since the topological invariant
is related to the organization of electrons in the ground-
state, in principle it does not require the existence of
long-range order or translational invariance. Being the
ground-state electronic structure “nearsighted” [28], it
should be possible to probe the local topology of a re-
gion just with the knowledge on its neighborhood in real
space. A simple and relevant scenario is a heterostructure
composed by two regions with different topology, such as
an insulator in a topological phase at the interface with
a trivial insulator (or vacuum). There, the meaning of
a global invariant is ambiguous, since a single invariant
cannot capture the individual bulk topology of the two
regions and the presence of metallic edge states at the
interface between them.
In this work, we develop space-resolved formulas for

the Z2 topological invariant that can be used to probe
the local topology of inhomogeneous and non-crystalline
two-dimensional systems. Over the past years, a num-
ber of local markers have been developed to investigate
the presence of topological phases in different systems.
Examples include the local Chern marker [21], that has
been used to study also QSHIs [29], the mirror-Chern
marker [22], a spin-Chern marker based on the spin-Berry

ar
X

iv
:2

40
4.

04
59

8v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  6
 A

pr
 2

02
4

mailto:nicolas.bau@phd.units.it
mailto:amarrazz@sissa.it


2

curvature [30], a definition of the local Z2 invariant based
on a flux-insertion-induced spectral flow [31], and a local
marker to identify crystalline topological phases [32]. In
particular, the archetypal case of a local Chern marker for
two-dimensional QAHIs has been investigated in Ref. [21]
within open boundary conditions (OBCs) and in Ref. [33]
within PBCs. Moreover, a generalization of the concept
of local marker in odd dimensions D has been introduced
in Ref. [34] for both Z-phases (local Chiral marker) and
Z2-phases (local Chern-Simons marker). That is done by
introducing a (D + 1)-dimensional local Chern marker,
extending the one by Bianco-Resta [21] to higher dimen-
sions, together with a family of parametrized projectors
(where the parameter acts as the additional dimension)
that have to be integrated in order to get a local marker
when D is odd. In particular, the invariant is Z-valued
if the single-particle density matrix obeys a chiral con-
straint, and Z2 otherwise [35]. Recently, a universal topo-
logical marker, valid in any dimension and symmetry
class, has been proposed in Ref. [36]. This marker has
been successfully tested on various systems belonging to
different symmetry classes, but in the most general case
(of interest for this work) of two-dimensional class AII
systems with Rashba spin-orbit coupling (SOC), such as
the Kane-Mele model [3], a general and practical formu-
lation of the local Z2 marker that can always be applied is
still missing. Indeed, Rashba SOC (that can be intrinsic
or induced, for instance, by an electric field perpendic-
ular to the system) violates Sz conservation, so one can
no longer consider spins to be “up” or “down”, and must
resort to a different strategy to calculate the Z2 invariant.

There are many available methods to compute the
global topological invariant of QSHIs by making explicit
use of TR symmetry [7, 8]. For our purposes, two partic-
ularly noteworthy approaches are the spin-Chern num-
ber [37], and the calculation of hybrid Wannier charge
centers [10, 38]. The underlying common strategy be-
tween these two methods is to split the Hilbert space
spanned by the occupied states as a sum of subspaces
such that the individual Chern number associated to each
subspace is an integer [10, 38]. That can be done in
an arbitrary way, but the individual Chern numbers are
meaningful only when such splitting is realized accord-
ing to the symmetries protecting the topological phase.
In QSHIs, for instance, one can use the projected spin
operator [37] or the TR symmetry [39] to obtain two
subspaces where TR must be broken in order to allow a
non-zero Chern number. Hence, calculating the Z2 topo-
logical invariant translates to the problem of identifying a
suitable partitioning of the occupied Hilbert space where
it is possible to compute integer individual Chern num-
bers. However, performing such partitioning might be
rather non-trivial in practice. Indeed, it has been dis-
cussed [37, 40, 41] that an exponentially localized pro-
jector commuting with lattice translations is a sufficient
condition to yield integer individual Chern numbers that
are invariant with respect to small perturbations of the
system.

Here, we propose two formulations for local Z2 invari-
ants: the first leverages the spin-Chern number intro-
duced by Prodan [37], while the second is based solely
on TR symmetry, in the spirit of the work by Soluyanov
and Vanderbilt [39]. These two strategies are used to de-
fine markers for finite samples in OBCs as well as for large
supercells in PBCs (where the BZ can be effectively sam-
pled by a single point, typically Γ). Our approach is par-
ticularly useful when dealing with non-homogeneous sys-
tems, such as disordered samples and heterostructures,
giving the possibility of inspecting the topology locally
in real space.
The paper is organized as follows. In Sec. II we re-

cap on some relevant results from the literature, namely
the OBC and PBC local Chern markers developed for
QAHIs. In Sec. III, we first discuss the local spin-Chern
marker and then introduce the local Z2 marker based
on TR symmetry within OBCs, that we further general-
ize to PBCs in Sec. IV. Then, in Sec. V we discuss the
tight-binding models used to benchmark our markers and
introduce a generalized smearing, which is particularly
useful when dealing with heterostructures. In Sec. VI,
we present numerical results and compare the different
methods introduced. Finally, we summarize our results
and conclusions in Sec. VII.

II. LOCAL CHERN MARKERS

In this section we review the OBC and PBC formu-
lations of the LCM introduced in Refs. [21, 33]. Con-
sider a QAHI with Nocc occupied bands, and let |unk⟩ =
e−ik·r |ψnk⟩ be the periodic part of Bloch functions. The
Hamiltonian of a QAHI breaks TR symmetry, and its
topological invariant is the Chern number:

C = − 1

π
Im

Nocc∑
n=1

∫
BZ

dk ⟨∂kx
unk|∂ky

unk⟩ . (1)

Since the Chern number is defined in the primitive cell,
it represents a global quantity meaningful only for pris-
tine and homogeneous systems within PBCs. Bianco and
Resta [21] showed that, starting from Eq. 1, it is possible
to derive a local Chern marker (LCM):

C(r) = −4πIm ⟨r|Px(I− P)y|r⟩ (2)

= 4πIm ⟨r|P[x,P][y,P]|r⟩ (3)

such that its macroscopic average describes the local
topology. In a pristine system, that reduces to the trace
per unit area TrA in the region of interest, and results in
the local Chern number of the system. In Equations 2
and 3, x and y are the Cartesian components of the posi-

tion operator r, and P =
∑Nocc

n=1 |un⟩ ⟨un| is the ground-
state projector. The key feature of this formulation is
that, by being expressed as a trace, the Chern number
can be evaluated locally in real space, making it par-
ticularly suited to study disordered and inhomogeneous
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systems. The LCM defined in Eq. 3 is also related to the
geometrical intrinsic contribution to the local anomalous
Hall conductivity in metals [42, 43]. So defined, the LCM
of Eq. 3 could, in principle, be applied in both PBCs
and OBCs, since the operators [rα,P] are well-defined
in both cases, despite r being an illegitimate operator
within PBCs [44]. However, when dealing with numerical
simulations, the operators [rα,P] are not directly acces-
sible and the usual way to construct them is to multiply
the “standard” position operator r with P, thus limiting
this method to the OBC case only [33]. Equation 3 shows
very clearly that a finite system is always globally trivial
in a certain sense, as its Chern number is always zero [21]
being the trace over the whole sample of commutators of
matrices with finite dimensions.

We can recover the local topology also within PBCs
[33], by leveraging the single-point formulation of the
Chern number in the large supercell limit [11]:

C(asym) = − 1

π
Im

Nocc∑
n=1

⟨ũnb1 |ũnb2⟩ , (4)

where b1,2 are the reciprocal lattice vectors and |ũnbj
⟩

are the “dual” vectors of |unΓ⟩, the latter are the periodic
part of the Hamiltonian eigenstates at Γ. The dual states
are defined as:

|ũnbj ⟩ =
Nocc∑
m=1

S−1
mn(bj)e

−ibj ·r |umΓ⟩ , (5)

where Smn(bj) = ⟨umΓ|e−ibj ·r|unΓ⟩ is the overlap ma-
trix between the states at Γ and the ones at bj once
the periodic gauge is imposed. The dual vectors satisfy
⟨ũnbj

|umΓ⟩ = δnm and represent, in the limit of a large
supercell, the vectors obtained from a parallel transport
procedure from Γ to bj [12, 45]. The single-point formu-
lation is based on a discretization of the covariant deriva-
tive, and depending on whether this is approximated by
forward or symmetric finite differences, the asymmetric
formula [Eq. 4] or the symmetric one [Eq. 6] can be ob-
tained, respectively:

C(sym) = − 1

4π
Im

Nocc∑
n=1

(
⟨ũnb1

| − ⟨ũn−b1
|
)
·

·
(
|ũnb2

⟩ − |ũn−b2
⟩
)
. (6)

As shown in Ref. [33], from Eqs. 4 and 6 the correspond-
ing PBC LCMs can be defined as:

C(asym)(r) = − 1

2π
Im ⟨r|[Pb1 ,Pb2 ]PΓ|r⟩ (7)

or

C(sym)(r) = − 1

8π
Im ⟨r|

(
[Pb1

,Pb2
] + [P−b1

,P−b2
]−

− [P−b1
,Pb2

]− [Pb1
,P−b2

]
)
PΓ |r⟩ (8)

where Pbj
=

∑Nocc

n=1 |ũnbj
⟩ ⟨ũnbj

| and PΓ =∑Nocc

n=1 |unΓ⟩ ⟨unΓ| are ground-state projectors. In par-
ticular, Eq. 7 derives from the asymmetric single-point
formulation [Eq. 4], while Eq. 8 derives from the symmet-
ric one [Eq. 6]. As discussed for the OBC case, also in
PBCs the local topology is described by the macroscopic
average of the LCM. A key feature of this formulation
is that the position operator appears only through the
exponential e−ibj ·r, thus resulting in a legitimate oper-
ator also within PBCs. The PBC LCM offers a simple
picture of the topological obstruction in non-crystalline
systems: In the trivial (C = 0) case, one can always have
[Pb1 ,Pb2 ] = 0 due to the existence of a smooth gauge
in the whole BZ. In the topological case, however, this
construction is impossible, and a non-zero (local) Chern
number arises from the fact that Pb1

and Pb2
(locally)

do not commute, also in inhomogeneous systems. If one
considers the case of a finite sample inside a much larger
supercell with PBCs, the LCM of Eq. 7 can be expanded
in powers of the linear dimension of the supercell L: In
the limit of L→ ∞, the expansion converges to the LCM
of Eq. 3. Both the OBC and PBC formulations of the
LCM of a QAHI can be applied to study the local topol-
ogy of disordered and amorphous materials, as well as
inhomogeneous systems such as trivial/topological het-
erojunctions and superlattices.

III. LOCAL Z2 MARKERS FOR FINITE
SYSTEMS

As mentioned in Sec. I, there are many equivalent
methods available to compute the global topological Z2

invariant of a QSHI. However, in general, it is not a triv-
ial task to remove the notion of reciprocal space in their
definition, as they often rely on some symmetries of the
BZ under the TR operator Θ. Moreover, Θ is antiunitary,
so unlike other unitary symmetries protecting topological
phases (like the mirror operator [46]), it cannot be diag-
onalized to get two Chern subspaces with well-defined
symmetry labels, and other strategies have to be devel-
oped.
Because of Kramers’ theorem, each eigenvalue of a TR

symmetric Hamiltonian is at least doubly degenerate.
Hence, only half of the occupied states is really needed
to compute the topological invariant, since the other half
can be obtained by symmetry. One can then split the
occupied Hilbert space into two Chern subspaces and ob-
tain two set of states (built in general as linear combina-
tion of the occupied eigenstates of the Hamiltonian) that
are mapped onto each other by TR symmetry. For in-
stance, one can split the Kramers-degenerate eigenstates
of the Hamiltonian such that, for each vector assigned to
a subspace, its TR partner is assigned to the other. By
doing so, in each subspace TR symmetry is broken by
construction, so it is possible to compute its individual
Chern number [10, 38]. Moreover, since TR symmetry
forces C = 0, the two subspaces must be characterized
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by opposite individual Chern numbers. Here we promote
the individual Chern number to a local individual Chern
marker, and use Eq. 3 on the states belonging to just
one of the two subspaces. Obtaining a decomposition of
the occupied Hilbert space that leads to an integer indi-
vidual Chern number, however, is not a trivial task. In
fact, we need exponentially localized projectors onto the
subspaces for the individual Chern numbers to be inte-
gers [37, 40, 41]. Here we propose two different meth-
ods to realize the splitting of the occupied states into
two Chern subspaces characterized by exponentially lo-
calized projectors, first via the projected spin operator
PSzP and then by using TR symmetry Θ, leading to
two distinct local markers of the Z2 topology.

A. Local OBC spin-Chern marker

Consider a HamiltonianH for which [H, Sz] = 0, where
Sz is the spin operator along the z-direction. Since H
commutes with Sz, it can be decoupled into spin sectors
that are mapped onto each other by TR symmetry. Such
splitting allows the definition of two individual Chern
numbers C↑,↓, physically related to the quantized spin
Hall conductivity [47], from which the Z2 invariant of
the system can be computed as:

ν =
C↑ − C↓

2
mod 2, (9)

where the two individual Chern numbers can be ob-
tained by integrating the Berry curvature of the rela-
tive spin-up or spin-down subspace. The states com-
posing the two spin sectors can be selected by comput-
ing the ground-state projector P(k) and diagonalizing
P(k)SzP(k), whose spectrum has eigenvalues ± 1

2 . Re-
markably, Prodan [37] proved that this strategy holds
even if [H, Sz] ̸= 0 as long as the operator P(k)SzP(k)
displays a gap in its spectrum. In this case, if one diag-
onalize P(k)SzP(k), its eigenvalues sλ will spread sym-
metrically about zero in the interval [− 1

2 ,
1
2 ], and the pro-

jectors onto the positive (σ = +) and negative (σ = −)
eigenvalues can be defined:

Pσ(k) =
∑

λ:sgn(sλ)=σ

|ϕλk⟩ ⟨ϕλk| (10)

where |ϕλk⟩ are the eigenstates of P(k)SzP(k) with
eigenvalue sλ. The existence of a spectral gap in the pro-
jected spin operator allows retaining exponentially local-
ized projectors Pσ(k), so that an integer individual Chern
number can still be defined. Moreover, the splitting of
the eigenstates according to the projected spin operator
satisfy:

P(k) = Pσ(k) + P−σ(k) = Pσ(k) + ΘPσ(−k)Θ−1 (11)

so, due to TR symmetry, it must hold that C+ = −C−,
and the Z2 invariant can be computed as a spin-Chern

number, as in Eq. 9, by substituting C↑ → C+ and
C↓ → C−.

Within OBCs the BZ does not exist, and to obtain a
local spin-Chern marker (LSCM) it is possible to apply
the LCM formula [Eq. 3] to each of the individual Chern
numbers appearing in Eq. 9. By doing so, two individual
local Chern markers can be computed:

Cσ(r) = 4πIm ⟨r|Pσ[x,Pσ][y,Pσ]|r⟩ (12)

which, substituted into Eq. 9, results in a LSCM defined
as

ν(r) =
C+(r)− C−(r)

2
mod 2, (13)

whose macroscopic average is a local Z2 invariant. Being
expressed as a trace, the LSCM can be evaluated in real
space as for the OBC LCM. We stress again that such
formulation is useful only within OBCs, as the general
way to calculate the operators [rα,Pσ] requires the ex-
plicit evaluation of the terms rαPσ and Pσrα, which are
ill-defined within PBCs. We will discuss how to general-
ize these local markers to the PBC framework in Sec. IV.
As stated before, the LSCM remains well-defined when-
ever the projected spin operator displays a spectral gap,
meaning that it can also be computed for systems break-
ing TR symmetry. However, in general, the existence of a
gap in PSzP is not guaranteed, as it is not a fundamental
property of QSHIs. Hence, the LSCM is a valid approach
but not, in principle, a truly general formulation of the
Z2 invariant.

B. Local OBC Z2 marker based on time-reversal
symmetry

QSHIs are characterized by the TR symmetry Θ, which
forces the Chern number of the system to vanish, and the
classification of topological phases to be Z2, resulting in
a symmetry-protected topological phase. Hence, it seems
reasonable that a general definition of the Z2 topological
invariant should exploit TR symmetry explicitly, simi-
larly to what has been done, for instance, for the mirror-
Chern number [46, 48]. However, the TR operator Θ
is antiunitary and it cannot be diagonalized to define a
topological invariant. Nonetheless, we can still split the
occupied states into two Chern subspaces using Θ thanks
to Kramers’ theorem. A similar strategy was proven to
be successful in computing the global invariant of a ho-
mogeneous and periodic QSHI with only two occupied
bands [39]. The calculation of the topological invariant,
in this case, is achieved by performing a careful parallel
transport procedure in almost all the BZ: If one insists in
having a periodic and TR-symmetric gauge, this cannot
be smooth due to the topological obstruction arising in
the topological phase. To evaluate the Z2 invariant one
can impose a TR symmetric gauge that is smooth on the
BZ cylinder (but not on the BZ torus, i.e., a non-periodic
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gauge), disentangling the occupied bands into two Chern
manifolds, each characterized by its own integer individ-
ual Chern number [39].

Within OBCs, the parallel transport procedure be-
comes irrelevant, and the only meaningful step is the
TR constraint. Numerical diagonalizations carry ran-
dom global phases for each eigenvector, so to impose a
TR symmetric gauge we need to select an initial state in
the degenerate subspace and explicitly evaluate its TR
partner. If the dimension of the degenerate subspace is
greater than two, then an orthonormalization procedure
of the remaining eigenvectors with respect to the ones
considered before is needed in order to get a set of or-
thonormal basis vectors related by TR symmetry. This
procedure can be repeated until the number of vectors is
equal to the dimension of the degenerate subspace. By
doing so, the eigenstates of the Hamiltonian are split in
two orthogonal subsets (identified by the projectors P1

and P2) that individually break TR, and that can be
mapped onto each other by symmetry. That allows us to
evaluate the individual local Chern numbers of the two
subsets, and obtain a local Z2 marker. However, this
construction in general does not result in exponentially
localized projectors P1,2, and their decay properties in
the bulk depend on the choice of the eigenstates assigned
to each subspace.

One way to obtain exponentially localized projectors
is to build the maximally localized Wannier functions
(MLWF) of the system [49, 50] (also known as Boys or-
bitals in OBCs [51]). TR symmetric systems are charac-
terized by a vanishing Chern number, which in principle
should allow computing exponentially localized Wannier
functions (WF). In practice, however, the usual method
to compute them is via a projection procedure [50], which
is ensured to fail in the topological phase if the trial states
are TR symmetric [52]. This is a consequence of the topo-
logical obstruction, that forbids the existence of a smooth
and TR-symmetric gauge in the topological phase [39].
Within OBCs then, once a set of trial functions gn(r) is
chosen, these are projected onto the occupied orbitals:

|ϕn⟩ =
J∑

m=1

|ψn⟩ ⟨ψn|gn⟩ . (14)

The trial orbitals |ϕn⟩ are then rotated by using the over-
lap matrix Smn = ⟨ϕm|ϕn⟩, obtaining “projected” WFs:

|w̃n⟩ =
J∑

m=1

|ϕm⟩S−1
mn. (15)

If MLWFs are sought, one needs to find the unitary rota-
tion U such that |wm⟩ =

∑
n Unm |w̃n⟩ are the WFs that

minimize the quadratic spread

Ω =
∑
n

[
⟨wn|r2|wn⟩ − |⟨wn|r|wn⟩|2

]
. (16)

MLWFs can then be split by using the TR symmetry as
explained above. This procedure allows us to define a

local Z2 marker (LZ2M) that is uniquely based on TR
symmetry as

∆(r) =
C1(r)− C2(r)

2
mod 2, (17)

where C1(r) and C2(r) are computed via Eq. 3 using the
projectors P1 and P2 respectively. It is worth noting
that, being the LZ2M based entirely on TR symmetry,
its formulation does not rely on the existence of a spectral
gap in any operator (but the Hamiltonian), thus making
it a more general formulation of the local Z2 marker with
respect to the LSCM. However, the fact that the LZ2M
returns the correct value of the marker strongly depends
on the choice of the trial functions |gn⟩ introduced in
Eq. 14. Specifically, as explained in Sec. VIA, in order
to avoid the topological obstruction, the trial functions
|gn⟩ should not be related by TR symmetry. This condi-
tion, in turn, implies that P ̸= P1 +ΘP1Θ

−1. However,
since we want to split the occupied Hilbert space into
two subsets each representative for the whole space and
related by TR symmetry (to compute the Z2 invariant
from Chern numbers), we need the two projectors P and
PΘ = P1 + ΘP1Θ

−1 to be as close as possible [10]. For
this reason, we require that the choice of the trial pro-
jection, discussed in Sec. VIA, should also minimize the
spillage between the projectors P and PΘ, defined as [53]:

γ =
1

2Nocc
Tr

[
(P − PΘ)

2
]
. (18)

That allows approximating the manifold of occupied
states as the sum of two “Chern subspaces” in which we
can evaluate individual Chern numbers. Note that we
can exchange the states from one subspace to the other
without changing the Z2 topological invariant. In fact,
as long as the states are mapped onto each other by TR
symmetry, they carry opposite contributions and the Z2

invariant does not change [10].
We also observe that the steepest descent procedure to

compute MLWFs does not particularly improve the value
of the topological marker, and projections-only WFs are
sufficient to obtain an accurate map of the local topology.
To be more precise, in this case one should not refer to the
states obtained after the projection procedure as WFs,
since the minimization of the spillage (which translates to
a requirement of minimal TR symmetry breaking in the
gauge) does not allow obtaining truly exponentially lo-
calized WFs, as it will be shown through numerical simu-
lations in Sec. VIB. These orbitals are somehow localized
in real space but also characterized by a seemingly diver-
gent spread in the thermodynamic limit: in the following
we will refer to them as quasi -WFs (qWF). Notably, a
certain degree of localization in real space—not neces-
sarily asympotically exponential—appears to be a suffi-
cient condition to define bona fide local markers. Indeed,
qWFs yield projectors P1,2 that might be exponentially
localized only at short distances in the topological phase.
Still, short-range exponential localization seems to be a
sufficient condition to calculate integer local individual
Chern numbers C1,2 through Eq. 3.
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IV. LOCAL Z2 MARKERS FOR PERIODIC
SYSTEMS

A. Local PBC spin-Chern number

Within PBCs, following the same strategy developed in
Sec. III A, the individual Chern numbers C± introduced
in Eq. 9 can be promoted to local individual Chern mark-
ers using the PBC LCM [Eq. 7]. A complementary, and
equivalent, way to look at this strategy is that we de-
rive from single-point spin-Chern numbers introduced in
Ref. [12] the corresponding local markers. In the limit
of a very large supercell, the BZ shrinks to the Γ-point
only, so just one diagonalization of the Hamiltonian is

required. Defining PΓ =
∑Nocc

n=1 |unΓ⟩ ⟨unΓ| the ground-
state projector, we can diagonalize the projected spin
operator (PΓSzPΓ) |ϕλΓ⟩ = sλ |ϕλΓ⟩, and construct the
dual states for each the spin sector:

|ϕ̃λbj ⟩ =
∑

µ:sgn(sµ)=σ

S−1
µλ (bj)e

−ibj ·r |ϕµΓ⟩ (19)

where σ = ± identifies the spin sector with overlap ma-
trix Sµλ(bj) = ⟨ϕµΓ|e−ibj ·r|ϕλΓ⟩. Then, we define the
projectors

P±
bj

=
∑

λ:sgn(sλ)=±

|ϕ̃λbj
⟩ ⟨ϕ̃λbj

| , (20)

that can be used to introduce two individual LCMs for
positive and negative eigenvalues of PΓSzPΓ:

C(asym)
± (r) = − 1

2π
Im ⟨r|[P±

b1
,P±

b2
]P±

Γ |r⟩ , (21)

C(sym)
± (r) = − 1

8π
Im ⟨r|

(
[P±

b1
,P±

b2
] + [P±

−b1
,P±

−b2
]−

− [P±
−b1

,P±
b2
]− [P±

b1
,P±

−b2
]
)
P±
Γ |r⟩ , (22)

where P±
Γ =

∑
λ:sgn(sλ)=± |ϕλΓ⟩ ⟨ϕλΓ|, so that it holds

that PΓ = P+
Γ +P−

Γ . In particular, the covariant deriva-
tive is approximated by the forward finite difference for-
mula in Eq. 21 and by the symmetric finite difference in
Eq. 22. Finally, the PBC LSCM can be defined as:

ν(r) =
C+(r)− C−(r)

2
mod 2. (23)

B. Local PBC Z2 markers based on time-reversal
symmetry

Within PBCs, given a set of J composite bands |ψnk⟩,
them-th WF in the unit cell labelled by the lattice vector
R can be defined as:

|wm(R)⟩ = A

(2π)2

∫
BZ

dk e−ik·R
J∑

n=1

U (k)
nm |ψnk⟩ (24)

where U
(k)
nm is a unitary rotation that is optimized to en-

sure the smoothness of the gauge. If such smooth and pe-
riodic gauge exists (that is, if the Chern number C = 0)
then the WFs are exponentially localized functions in
real space [54]. As discussed in Sec. III B, we compute the
WFs of the system via projection onto trial states |gn⟩. In
particular, the trial projections should break TR symme-
try (to avoid the topological obstruction in the topologi-
cal phase) and minimize the spillage between the projec-
tors P and PΘ, as defined in Eq. 18. Hence, we compute
qWFs and split them in two subspaces mapped onto each
other by TR symmetry, which allows computing the PBC
individual local Chern markers C1,2(r) through Eq. 22.
Since the Hilbert space spanned by qWFs will be com-
posed by pairs of states that are quasi-TR symmetric,
we need to consider only one of these states when build-
ing the projectors P1,2. Finally, the PBC LZ2M can be
defined as:

∆(r) =
C1(r)− C2(r)

2
mod 2. (25)

V. METHODS

A. Kane-Mele model

We validate our approach through numerical simula-
tions on the Kane-Mele model [2, 3], a tight-binding
model of spinful electrons hopping on a honeycomb lat-
tice, described by the Hamiltonian:

H = ∆
∑
i

(−1)τic†i ci + t
∑
⟨ij⟩

c†i cj + iλSO

∑
⟨⟨ij⟩⟩

νijc
†
iσzcj

+ iλR
∑
⟨ij⟩

c†i (e⟨ij⟩ · σ)cj + h.c. (26)

where c†i = (c†i↑, c
†
i↓) and sums on spin indices are implied,

with the convention that if no spin matrices appear, they
are contracted over the identity. In Equation 26, t is the
nearest-neighbor hopping amplitude, and ∆ is a stag-
gered on-site potential, depending on the sublattice iden-
tified by τi ∈ {0, 1}. In the following, we will set t = 1.
The parameter λSO is the intensity of the diagonal spin-
orbit coupling, introduced as a complex hopping between
second nearest-neighbors, where νij = sign(d1 × d2)z
accounts for the direction of the hopping and d1,2 are
unit vectors connecting second nearest-neighbors. Fi-
nally, λR is the amplitude of the Rashba term, which
couples the two spin sectors and breaks Sz symmetry.
Here σ = (σx, σy, σz) is the vector of Pauli matrices, and
e⟨ij⟩ = d⟨ij⟩ × ẑ where d⟨ij⟩ is the unit vector along the
direction connecting site i to site j.

B. Smearing

When dealing with non-homogeneous systems, such as
superlattices, the presence of metallic interfaces may af-
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fect the convergence of the topological marker. Hence,
we introduce smearing similarly to what has been done
in Ref. [42] to study the intrinsic geometrical part of the
local anomalous Hall conductivity in metals. However,
since the states appearing in the projectors Pσ

bj
are lin-

ear combinations of the eigenstates of the Hamiltonian,
we cannot simply use a Fermi-Dirac distribution as pre-
viously done for QAHIs in Refs. [33, 42]. Hence, we
introduce a weight cσnbj

for each state |ṽσnbj
⟩ (the par-

allel transported vectors of each subspace, so σ = ± or
σ = 1, 2) that measures its spillage with the ground-state
projector PΓ:

cσnbj
= Tr

{
PΓ|ṽσnbj

⟩⟨ṽσnbj
|
}

=
∑
m

f(ϵm, Ts, µ)|⟨umΓ|ṽσnbj
⟩|2, (27)

where f(ϵm, Ts, µ) is the Fermi-Dirac distribution at
smearing temperature Ts and with chemical potential
µ, evaluated for the m-th eigenstate of the Hamiltonian
HΓ |umΓ⟩ = ϵm |umΓ⟩. We further improve the conver-
gence by imposing a cutoff fc on the Fermi-Dirac distri-
bution to discard the empty states with very small occu-
pations f(ϵm, Ts, µ) < fc, where we set fc = 0.1. Finally,
the projectors with smearing can be written as

Pσ
bj

=
∑
n

cσnbj
|ṽσnbj

⟩⟨ṽσnbj
|. (28)

VI. NUMERICAL RESULTS AND DISCUSSION

A. Choosing the trial projections for the LZ2M

The topological obstruction arising when C ̸= 0 mani-
fests in the overlap matrix between projected states (the
S matrix of Eq. 15), that becomes singular somewhere
in the BZ [5], prohibiting the construction of MLWFs.
As discussed in Sec. III B, in order to have well-defined
local Z2 topological invariants based on TR symmetry,
we split the occupied manifold in two TR-conjugate sub-
manifolds and select trial projection orbitals |gn⟩ that
break TR symmetry and minimize the spillage γ between
PΘ = P1+ΘP1Θ

−1 and the ground-state projector P. If
we were to choose trial projections localized on just one
site of the cell, the information on the other basis site
would be missing since TR symmetry acts only on spin
in real space, resulting in a large value of γ. Nonethe-
less, the resulting WFs can still have contributions from
all the lattice sites, even though the trial projections are
localized on different sites [52]. To minimize the spillage,
we observe that it is convenient to choose initial projec-
tions with contributions from all sites. In the Kane-Mele
model, this can be realized, for instance, by these two

choices:

(Pr1)

{
|g1(R)⟩ = 1√

2
(|R, A,+⟩+ |R, B,+⟩)

|g2(R)⟩ = 1√
2
(|R, A,−⟩ − |R, B,−⟩)

(29)

(Pr2)

{
|g1(R)⟩ = 1√

2
(|R, A,+⟩+ |R, B,−⟩)

|g2(R)⟩ = 1√
2
(|R, A,−⟩+ |R, B,+⟩)

(30)

where |R, A, σ⟩ is a normalized δ-like orbital with spin
σ centered on site A in the primitive cell defined by R.
Here we use the lattice vectors R of the pristine system
defined in the primitive cell, as opposed to the lattice
vectors of the supercell R̃. Indeed, the supercell on which
the boundary conditions are imposed is constructed first
through repetition of its pristine primitive cell. Then,
we can choose the trial projections just in the primitive
cell and replicate the choice across the whole supercell,
even in the disordered case. The spillage between the
projectors P and PΘ can then be measured as a function
of the linear size of the system L. The results we obtain
are reported in Fig. 1, where we compare the spillage [53]
of the projections defined in Eqs. 29 and 30 with the
choice made in Ref. [52], that is

(Pr3)

{
|g1(R)⟩ = 1√

2
(|R, A,+⟩+ |R, A,−⟩)

|g2(R)⟩ = 1√
2
(|R, B,+⟩ − |R, B,−⟩)

. (31)

The spillage between the projections defined in Eq. 31

0 5 10 15 20 25 30

Lattice size L× L
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γ
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(P
−
P Θ

)2
]

(Pr1) PBC

(Pr2) PBC

(Pr3) Ref. [52] PBC

(Pr1) OBC

(Pr2) OBC

(Pr3) Ref. [52] OBC

FIG. 1. Spillage between the ground-state projector P and
PΘ = P1 +ΘP1Θ

−1, where P1 is constructed with half of the
quasi Wannier functions, as a function of the supercell size for
both open (OBC) and periodic (PBC) boundary conditions,
and for different choices of trial functions as discussed in the
text.

is small compared to other choices, we but since the trial
functions are localized on a single site, the marker we
can compute with those functions will not work. The
projections of Eq. 30 are localized on both sites but are
characterized by a large spillage, so we can expect a poor
convergence of the marker with this choice. Overall, the
best choice seems to be the one of Eq. 29 and will be used
from now on when referring to the LZ2Ms: these orbitals
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mix all sites resulting in the smallest spillage. When
smearing is introduced in the calculation of the LZ2Ms,
additional trial projections must be chosen to account for
the partly occupied states. This case is analogous to that
of a metal, where WFs can be computed via a “disentan-
glement” procedure [55]. However, it looks unclear how
the additional projections should be chosen, and how the
procedure should be carried out to ensure the require-
ments described before. Indeed, one would have to lo-
calize the trial functions in an arbitrary unit cell in such
a way as to preserve the exponential localization of the
projectors and to make the marker independent with re-
spect to the specific cell the trial functions are localized
in. Hence, the construction of a LZ2M with smearing is
left to further investigation.

B. Convergence

In Figure 2, we show the convergence of the LSCMs
and LZ2Ms, evaluated on a unit cell (two sites) in the cen-
ter of the supercell, as a function of the supercell linear
size L in both OBCs and PBCs. For the PBCmarkers, we
report in Fig. 2 the convergence of the symmetric formu-
lations only, as they converge faster than the asymmet-
ric ones. The comparison between the PBC asymmetric
and symmetric formulas in reported Fig. 3, that shows
clearly the faster convergence of the symmetric formula-
tions. The convergence of the PBC markers is polynomial
in both the trivial and the topological phases since the
error is dominated by the approximation of the deriva-
tive with finite differences in the single-point limit [33].
Within OBCs, we can see that the convergence of the
LSCM is always exponential (due to the exponential lo-
calization of the projectors P± [37]), while the LZ2M con-
verges exponentially in the trivial phase but polynomi-
ally in the topological one. This different behavior is due
to the fact that, in the topological phase, the projector
computed by first obtaining qWFs and then taking half
of them is exponentially localized only at short distances,
while its tail at large distances decays slower. This can
be clearly seen in Fig. 4, that shows, for the topological
phase, the decay of the matrix elements of the projectors
used in the OBC LSCM and OBC LZ2M in the bulk of a
100× 30 crystallite with 6000 sites. We could not deter-
mine unambiguously whether this long-tail is exponential
or polynomial, that would require studying much larger
systems. In the trivial phase, the projectors we obtain are
always exponentially localized, resulting in an exponen-
tial convergence of the markers. We note that the LZ2M
converges to the expected value despite its projectors not
being fully exponentially localized. Indeed, being the in-
variant a topological and a ground-state quantity, we only
need the information about the local electronic structure
to retrieve its local value in real space. For this reason,
we argue that the projectors need to be exponentially
localized only at short distances, while the tail behavior
determines other aspects such as the convergence of the

formula with the system size. We attribute the slower
decay of the tails of P1 to be a side effect of minimizing
the spillage γ [Eq. 18] between the projectors P and PΘ.
Because of the topological obstruction, we cannot obtain
TR symmetric and exponentially localized WFs. In our
procedure, we require that the sum of the projector com-
puted with half qWFs and its TR partner is as close as
possible to the initial projector, still performing a mini-
mal breaking of TR symmetry. That, in turn, results in
an almost TR symmetric gauge that leads to qWFs that
cannot be truly exponentially localized because of the
topological obstruction. In other words, we are looking
for a compromise between the breaking of TR symmetry
and the exponential localization of WFs that allows us to
probe the local Z2 topology in real space. As a result, the
spread [Eq. 16] of qWFs displays a very slow divergence
with the system size, and the long-tail behavior of P1

could be attributed to the fact that the qWFs we obtain
are not truly exponentially localized.

C. Disordered systems

In Figure 5, we show that both the LSCM and LZ2M
are capable of charting the local topology also in presence
disorder. In particular, we consider Anderson disorder
through a random on-site potential uniformly distributed
in the interval [−W/2,W/2], whereW is the disorder am-
plitude [56]. For small disorder amplitudes the topology
of the system is expected to survive, hence we consider a
Kane-Mele model in its topological phase (∆/λSO = 0.5,
λR/λSO = 1) with W = 2, for which the single-point
spin-Chern number [12] predicts a topological phase. As
shown in Fig. 5, the PBC markers display the expected
local topology aside from small fluctuations due to the
disordered environment. To account for the lack of peri-
odicity, a macroscopic average on a radius R = 3 (in units
of the lattice parameter) has been employed. Specifically,
the absence of boundaries of the supercell is evident when
comparing the PBC markers with the OBC ones. In fact,
despite showing the same behavior inside the bulk of the
system, near the boundary the PBC markers are contin-
uous while the OBC ones are not, due to the presence of
metallic edge states. Within OBCs the individual LCMs
C±(r) are such that their trace over the whole sample
vanishes, so the edge states contribution to the marker
should compensate the non-trivial bulk topology. When
computing the LSCM and LZ2M, since they are defined
only modulo 2, the divergence of the individual LCMs
results in a discontinuous behavior of the Z2 markers.

D. Heterojunctions and superlattices

Last, we validate and compare the performance of the
local markers on trivial/topological heterojunctions and
superlattices. We compute the LSCM in both OBCs
[Fig. 6] and PBCs [Fig. 7] for a 6000-site supercell made
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FIG. 2. Convergence of the local topological markers in pe-
riodic (PBC) and open boundary conditions (OBC) for the
topological (top) and trivial (bottom) phases. The conver-
gence of the local spin-Chern marker (LSCM) is exponential
in OBCs, and polynomial in PBCs. The local Z2 marker
(LZ2M) convergence is always polynomial except for the triv-
ial phase in OBCs where it is exponential.

of alternating topological (∆/λSO = 0.5) and trivial
(∆/λSO = 8) regions. Both the LSCM and LZ2M are
able to chart the local topology, however, since the LSCM
demonstrates a better convergence and performance with
respect to the LZ2M we use only the former to discuss the
numerical results for inhomogeneous systems. The pres-
ence of metallic edge states is highlighted in OBCs both
at the edge of the supercell and at the interface between
the subsystems, while in PBCs they appear only at the
interface, being the superlattice periodic in both direc-
tions. In the calculation of the PBC marker, we set the
smearing temperature Ts = 0.05 to improve convergence.
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FIG. 3. Convergence of the symmetric and asymmetric local
spin-Chern markers (LSCM) and local Z2 markers (LZ2M) in
periodic boundary conditions (PBC) for the topological (top)
and trivial (bottom) phases. The symmetric formulas con-
verge faster than the asymmetric ones, and the convergence
of all markers is polynomial.

VII. SUMMARY AND CONCLUSIONS

We developed a framework to probe the local Z2 topol-
ogy of 2D TR-symmetric systems in real space for both fi-
nite samples in OBCs and extended systems in PBCs, by
introducing a number of topological markers. All mark-
ers are based on the fundamental idea that the occupied
manifold can be split into two TR-conjugate subspaces,
where a corresponding individual local Chern marker can
then be calculated. In the first approach (LSCM), the
separation is performed by diagonalizing the projected
spin operator PSzP, as its spectrum is generally made
of two sectors of positive and negative eigenvalues sep-
arated by a gap, in the spirit of Prodan’s spin-Chern
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FIG. 4. Matrix elements of the projectors P+ used in the lo-
cal spin Chern marker (LSCM) and P1 of the local Z2 marker
(LZ2M) inside the bulk as a function of the distance between
lattice sites in the topological (ν = 1, top) and trivial (ν = 0,
bottom) phases in open boundary conditions (OBC). The
semilogarithmic scale highlights the exponential localization
of the projectors, while the LZ2M projectors are exponen-
tially localized at short distances and their tail decays more
slowly in the topological phase. Nonetheless, P1,2 are local-
ized enough to return the correct topological invariant of the
system. In the trivial phase, both projectors are exponen-
tially localized.

number [37]. Hence, the LSCM depends on the existence
of such spectral gap, which is not an essential property of
QSHIs but seems to be usually satisfied also in presence
of rather strong Rashba SOC: we never observe such a
gap closure for the PSzP spectrum in our simulations on
the Kane-Mele model, at least as long as the Hamiltonian
gap remains finite. Notably, the LSCM could in princi-
ple be used also for systems with a small breaking of TR
symmetry, as in the TR-symmetry-broken quantum spin
Hall effect [57], provided that the aforementioned spec-
tral gap remains finite, since the construction does not
explicitly make use of TR.

Conceptually the extra condition required by Prodan’s
spin Chern number is not completely satisfactory, so we
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FIG. 5. Profile along the x direction of the local spin-Chern
(LSCM) and local Z2 (LZ2M) markers with both open (OBC)
and periodic (PBC) boundary conditions for the Kane-Mele
model in the topological phase and in presence of Anderson
disorder (W = 2). First, a macroscopic average is performed
over a radius R = 3 and then over the two sites of the pris-
tine lattice. The topological phase persists for sufficiently
small disorder amplitudes, as confirmed by all markers. The
discontinuous behavior of the OBC markers near the edges is
due to the presence of metallic edge states, which are absent
in PBCs.

introduced another marker (LZ2M) that is entirely based
on TR symmetry and does not make use of the spin op-
erator. Crucially, Ref. [41] remarked that exponentially
localized projectors on each half of the manifold guaran-
tee to yield an integer local Chern number. While this
is guaranteed in the LSCM procedure by the existence
of a spectral gap for PSzP, this is not the case if TR is
used to split the occupied manifold in two TR-conjugate
halves.

Hence, we find unitary rotations to obtain expo-
nentially localized projectors onto the two subspaces,
through the WF construction. However, QSHI do not ad-
mit a TR-symmetric smooth gauge, hence exponentially-
localized WFs cannot be obtained as TR-conjugate cou-
ples. Still, the calculation of the Z2 invariant through
the difference modulo two of individual Chern num-
ber requires a partition in two TR-conjugate subspaces.
We solve the conundrum by constructing “quasi” WFs
(qWFs) that minimize the spillage between the ground-
state projector P and the sum of one TR-split projector
and its TR-conjugate, i.e., P1 + ΘP1Θ

−1. These qWFs
are still exponentially localized at short distances but ex-
hibit a slower asymptotic decay.

Once the TR-conjugate subspaces and their corre-
sponding well-localized projectors are found, we calculate
local Z2 markers through local individual Chern mark-
ers on the two subspaces, both in OBCs [21, 42] and
PBCs [33]. Numerical simulations on the Kane-Mele
model show that all these markers agree with each other
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FIG. 6. Local spin-Chern marker for a 6000-site heterojunction of the Kane-Mele model made of topological and trivial regions
in open boundary conditions. The left and right regions are topological (ν = 1) while the center is trivial (ν = 0). One-
dimensional metallic edge states surround the topological regions, separating different topological phases. The inset displays
the model parameters used for the trivial (gray) and topological (blue) regions.
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FIG. 7. Local spin-Chern marker for a 6000-site superlattice of the Kane-Mele model made of topological and trivial stripes
in periodic boundary conditions. The left and right regions are topological (ν = 1) while the center is trivial (ν = 0), and
one-dimensional metallic channels separate the regions with different Z2 invariants. The inset displays the model parameters
used for the trivial (gray) and topological (blue) regions.

and are able to probe the local topology also for disor-
dered systems as well as topological/trivial heterojunc-
tions and superlattices.

An implementation of all our markers is available in
the StraWBerryPy Python package [58], which is part
of the Wannier function software ecosystem [59] and
is interfaced to popular tight-binding engines such as
TBmodels [60, 61] and PythTB [62].

The LSCM is computationally easier to implement and
use, essentially avoiding the need of qWFs or any other
localization procedure, so we suggest using that method
in applications whenever possible. Otherwise, if the sys-
tem of interest is such that the projected spin opera-
tor does not have a finite gap, the LZ2M approach can
always be used (if TR symmetry holds). We empha-
size that the construction of the LZ2Ms is more delicate,
as an accurate choice of the initial projection orbitals is
needed to obtain well-behaved topological markers. The
specific projections we selected in our numerical experi-
ments might be improved and the choice is not universal,
depending on the details of the system and its topological
phase.

Finally, it is worth remarking that the domains of ap-
plications for the LSCM and LZ2M markers mostly over-
lap, but there are some cases covered only by one of the
two approaches: The LSCM requires a finite gap in the
projected spin operator, but could in principle be used
also if TR symmetry is broken; on the contrary, the LZ2M
approach necessitates TR symmetry, but can be used also
if the projected spin operator is gapless.

Our local markers are based on the ground-state elec-
tron distribution only, hence being very suited to large-
scale ab initio electronic structure simulations of non-
crystalline systems, not only under Anderson disor-
der but also in presence of defects or interfaces, and
for amorphous topological materials [63–65] or quasi-
crystals [14, 66]; in all cases even if TR symmetry or
the perpendicular component of the spin, Sz, are not
conserved.
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