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The paramagnetic phase diagrams of the half-filled Hubbard model on a twisted bilayer square
lattice are investigated using coherent potential approximation. Besides the conventional metallic,
band insulating, and Mott insulating phases, we find two site-selective insulating phases where
certain sites exhibit band insulating behaviors while the others display Mott insulating behaviors.
These phases are identified by the band gap, the double occupancy, the density of states, as well
as the imaginary part of self-energy. Furthermore, we examine the effect of on-site potential on the
stability of the site-selective insulating phases. Our results indicate that fruitful site-selective phases
can be engineered by twisting.

I. INTRODUCTION

Layered systems with twists have recently attracted
intense attention due to the discoveries of numerous fas-
cinating quantum phases, such as the Mott insulator1–5,
superconductivity6,7, and topological phases8–10. Mean-
while, the Hubbard model, employed to study vari-
ous intriguing phases including the Mott insulator11,
orbital-selective phase12–15, bond-ordered insulator16,17,
superconductivity18,19, antiferromagnetism20–22, etc.,
has received significant interest for decades. Therefore,
introducing twists in the Hubbard model may induce
novel phases and are currently hot topics. Until now,
much effort has been spent on the Hubbard model de-
scribing twisted transition metal dichalcogenides23–27 or
twisted bilayer graphene28, predicting numbers of cor-
related phases. Besides, a few works investigate the
Hubbard model on twisted bilayer square lattices but fo-
cus primarily on superconducting phase transitions29,30.
However, the phase transitions among Mott insulator,
band insulator, and metal in the Hubbard model on a
twisted bilayer square lattice remains unexplored.

As we konw, even for the untwisted bilayer Hubbard
model, the phase transitions at half filling are fascinating
and widely investigated. Such a model can not only de-
scribe high-temperature cuprate superconductors31 but
also be experimentally realized through fermionic atoms
trapped in an optical lattice32. Quantum Monte Carlo
simulations have revealed that the interlayer hopping
suppresses intralayer long-range magnetic order in such
a model on the square lattice33. Applying dynamical
mean-field theory to the bilayer Hubbard model on a
Bethe lattice, a smooth crossover between band and Mott
insulators is discovered within the paramagnetic phase
diagram34. Furthermore, the magnetic phase diagram of
this model on a square lattice is explored by cluster dy-
namical mean-field theory35 and quantum Monte Carlo
simulations36,37, where strong on-site Coulomb interac-
tion localizes electrons with weak interlayer hopping, fa-
voring a Mott insulator, while strong interlayer hopping
opens a gap between the bonding and antibonding bands,
resulting in a band insulator. Although these works35–37

also suggest a paramagnetic metallic phase in the mag-
netic phase diagram when both on-site Coulomb interac-
tion and interlayer hopping are weak, further investiga-
tions clarify it as an antiferromagnetic insulating phase
due to the perfect nesting property of the Fermi sur-
face within the noninteracting system38,39. In contrast, a
metallic phase can appear in the paramagnetic phase di-
agram with weak on-site Coulomb interaction present39.
In addition to these findings, superconductivity40–46,
non-Fermi liquid47, density-ordered phase48, and super-
fluid phases48 have also been reported in the bilayer Hub-
bard model or its extended versions as doping away from
half filling.

When the twist is applied to the layered systems, the
well-known moiré pattern emerges, giving rise to dis-
tinct hoppings present at the inequivalent sublattices due
to different atomic environments. In fact, distinct hop-
pings on different sublattices may cause a site-selective
phase. A typical example is that bond-length dispro-
portionation, corresponding to inequivalent sublattices
having distinct hoppings, leads to a site-selective insu-
lating phase in RNiO3 (R=Sm, Eu, Y, or Lu), where
certain Ni atoms exhibit a magnetic Mott insulating state
while the remaining Ni atoms form a singlet insulating
state49. Moreover, site-selective magnetic phases have
also been reported in other materials with inequivalent
sublattices50,51. Given that the interlayer hoppings favor
a band insulator in bilayer square lattice, the instabili-
ties of the band insulating state against the Mott insula-
tor on inequivalent sublattices of twisted bilayer square
lattice may be different in the presence of a strong on-
site Coulomb interaction owing to distinct interlayer hop-
pings. Therefore, a site-selective insulating phase may
probably appear in such a twisted system, characterized
by some sites entering a Mott insulating state while oth-
ers remain a band insulating state.

In this paper, we aim to point out the presence of
site-selective insulating phases in the half-filled Hubbard
model on a twisted bilayer square lattice. To this end,
taking the case with a twisted angle of θ = 53.13◦ as
an example, we investigate the paramagnetic phase di-
agrams of this model under the combined effect of on-
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site Coulomb interaction and various interlayer hoppings
using coherent potential approximation (CPA). Inter-
estingly, we obtain two site-selective insulating phases,
where certain sites exhibit band insulating states while
the rests display Mott insulating states, when one type of
the interlayer hoppings is strong while the remaining in-
terlayer hoppings are weak if the strong on-site Coulomb
interaction is involved. In addition, we also discover Mott
insulating, band insulating, and metallic phases in this
model, which have been observed in the untwisted bi-
layer Hubbard model as well. The Mott insulating phase
emerges when strong on-site Coulomb interaction wins
over all the weak interlayer hoppings. In contrast, strong
t⊥, either in cooperation with strong t1 or strong t2, fa-
vors the band insulating phase [the definitions of t⊥, t1,
and t2 can be found in Fig.1]. Furthermore, we have illus-
trated that the site-selective insulating phases are stable
even in the presence of a moderate site-dependent on-site
potential. Our findings not only demonstrate a fascinat-
ing phenomenon that the band insulating state and Mott
insulating state can coexist in twisted strongly correlated
systems but also suggest twist as an effective approach
to access a site-selective phase.

The rest of this paper is organized as follows: Sec. II
describes the details of the structure, the model, and the
method we used. Sec. III demonstrates our primary re-
sults, including the paramagnetic phase diagrams under
different parameters, the gaps and double occupancies as
functions of various interlayer hoppings, the density of
states (DOS), the imaginary part of self-energy, the DOS
at the Fermi level varied with the Lorentzian broadening
factor, as well as the effect of an on-site potential differ-
ence on the stability of the site-selective phases. Sec. IV
includes a discussion of our results and Sec. V concludes
with a summary.

II. MODEL AND METHOD

To demonstrate the presence of site-selective insulating
phases in the half-filled Hubbard model on a twisted bi-
layer square lattice, we take the case with a twisted angle
of θ = 53.13◦ as an example since it is the smallest com-
mensurate structure of twisted bilayer square lattice as
presented in Fig. 1 and has also been used to study the
superconducting phase transitions29. According to the
atomic environment, two types of inequivalent sites are
distinguished within the supercell, containing 2 overlap-
ping sites and 8 non-overlapping sites (as viewed from the
top), which are located at region O (green) and region N
(light orange), respectively. Then, the Hamiltonian can
be written as

H = Hk +H⊥ +H∆ +Hµ +HU (1)

N

O O

O O
a

b
B

B C

C D

D

E

E

A A

AA

FIG. 1. The structure of bilayer square lattice (top view)
with a twisted angle of θ = 53.13◦, where different interlayer
hoppings are also shown, including interlayer nearest-neighbor
hopping t⊥, interlayer next-nearest-neighbor hopping t1, and
interlayer third-nearest-neighbor hopping t2. There are two
types of inequivalent sites within the supercell, containing 2
overlapping sites and 8 non-overlapping sites (as viewed from
the top), which are located in region O (green) and region N
(light orange), respectively.

with

Hk =− t0
∑
mσ

∑
⟨is,js′⟩

C†
ismσCjs′mσ,

H⊥ =− t⊥
∑
iσ

(C†
iA1σCiA2σ +H.c.)

− t1
∑
iσ

∑
⟨⟨s,s′⟩⟩

(C†
is1σCis′2σ +H.c.)

− t2
∑
iσ

∑
⟨⟨⟨s,s′⟩⟩⟩

(C†
is1σCis′2σ +H.c.),

H∆ =∆O

∑
imσ

niAmσ +∆N

∑
imσ

∑
s∈N

nismσ,

Hµ =− µ
∑
ismσ

nismσ,

HU =U
∑
ism

nism↑nism↓,

(2)

where Hk is the Hamiltonian of the intralayer nearest-
neighbor hopping. H⊥ is the Hamiltonian describing
interlayer nearest-neighbor, next-nearest-neighbor, and
third-nearest-neighbor hoppings. H∆ andHµ denote sep-
arately the energies of on-site potential and chemical po-
tential. HU depicts the on-site Coulomb repulsive inter-
action between spin-up and spin-down electrons. Here,
i(j), s(s′), m, and σ denote separately the cell, sub-
lattice, layer, and spin indexes. ⟨is, js′⟩, ⟨⟨s, s′⟩⟩, and
⟨⟨⟨s, s′⟩⟩⟩ stand for the summations over the intralayer
nearest-neighbor sites, interlayer next-nearest-neighbor
sites, and interlayer third-nearest-neighbor sites, respec-
tively. t0 and t⊥(t1, t2) represent individually the in-
tralayer nearest-neighbor hopping integral and inter-
layer nearest(next-nearest, third-nearest)-neighbor hop-
ping integral. ∆O and ∆N are on-site potentials of the
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inequivalent sublattices. µ is the chemical potential, and
U is the on-site Coulomb repulsive interaction.

We now introduce how to employ the CPA to solve
this many-body Hamiltonian. Hubbard views the elec-
tron correlation problem as a disordered alloy where an
electron with spin σ moving in the system encounters ei-
ther a potential of U at a site with a spin σ̄ present or
0 without52. Then, the alloy analogy of this Hubbard
model has the following form

HA = Hk +H⊥ +H∆ +Hµ +
∑
ismσ

Eismσnismσ, (3)

where Eismσ is a disordered potential depending on the
presence of a spin σ̄. Specifically, Eismσ = U with a prob-
ability of PU = ⟨nismσ̄⟩ or Eismσ = 0 with a probability
of P0 = 1 − ⟨nismσ̄⟩. The Green’s function of this dis-
ordered model necessitates the computation of an aver-
age overall possible disordered configurations. However,
performing this calculation exactly is impossible, and the
CPA should be employed to solve this alloy problem53–55.
Within the framework of the CPA, the disordered al-
loy is self-consistently mapped into an effective medium,
explicitly, the disordered potential Eismσ is substituted
with an energy-dependent, site-diagonal, and translation-
ally invariant self-energy Σsmσ. Then, the Hamiltonian
of the effective medium within the CPA becomes

Heff = Hk +H⊥ +H∆ +Hµ +
∑
ismσ

Σsmσnismσ. (4)

The detailed mapping from model (3) to model (4) is
given in Appendix A. Noticeably, despite some inher-
ent limitations56, the CPA remains valuable as a reli-
able and computationally cheap method for capturing
the phase transitions among a band insulator, metal,
and Mott insulator in many-body systems. For ex-
ample, the CPA successfully reproduces the phase di-
agram of ionic Hubbard model at half filling57,58, the
critical on-site Coulomb interaction for Mott transition
on the honeycomb lattice at half filling obtained by
the CPA59 is consistent with the results of the quan-
tum Monte Carlo simulations60–62 and cluster dynamical
mean field theory63,64, the experimental discrepancies of
the gap in both bilayer graphene65,66 and graphene/h-
BN heterostructure67,68 have been successfully under-
stood by employing the CPA to investigate their phase
diagrams69,70.

III. RESULTS

Now, we will demonstrate the presence of site-selective
insulating phases in the paramagnetic phase diagrams
of the half-filled Hubbard model on this twisted bilayer
square lattice. To this end, we employ the CPA to cal-
culate the paramagnetic phase diagrams of this model
under the combined effect of on-site Coulomb interaction
and various interlayer hoppings, where three interlayer
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FIG. 2. The paramagnetic phase diagrams of the half-filled
Hubbard model on twisted bilayer square lattice, involving
(a) the U/t0 − t⊥/t0 plane at t1/t0 = t2/t0 = 0, (b) the
t1/t0 − t⊥/t0 plane when U = 6t0 and t2/t0 = 0, (c) the
t2/t0 − t⊥/t0 plane when U = 6t0 and t1/t0 = 0, and (d)
the (t1/t0 = t2/t0) − t⊥/t0 plane at U = 6t0. t0 and t⊥
(t1, t2) are individually the intralayer and interlayer nearest
(next-nearest, third-nearest)-neighbor hopping integrals. BI,
MI, and BI+MI (MI+BI) denote the band insulating phase,
Mott insulating phase, and site-selective insulating phase, re-
spectively. Noticeably, BI+MI and MI+BI are two distinct
site-selective insulating phases. Specifically, BI+MI (MI+BI)
describes a site-selective insulating phase where the overlap-
ping sites (located at region O) exhibit a band (Mott) insu-
lating state while the non-overlapping sites (located at region
N) manifest a Mott (band) insulating state.

hoppings are concerned, including interlayer nearest-
neighbor hopping t⊥, interlayer next-nearest-neighbor
hopping t1, and interlayer third-nearest-neighbor hop-
ping t2. Figure 2(a) illustrates the phase diagram in
the U/t0 − t⊥/t0 plane at t1/t0 = t2/t0 = 0. As can
be seen, when interlayer hoppings are absent, equivalent
to two unrelated monolayer square lattices, the system
undergoes a phase transition from metal to Mott insula-
tor with increasing on-site Coulomb interaction, consis-
tent with the results obtained by other methods39,71,72.
Thus, the CPA provides reliable results for two irrelevant
monolayer square lattices, and we go on with the case of
interlayer hoppings present. Remarkably, a site-selective
insulating phase (BI+MI), where overlapping sites ex-
hibit a band insulating state while non-overlapping sites
display a Mott insulating state, emerges at the region
of strong on-site Coulomb interaction if the interlayer
nearest-neighbor hopping t⊥ exceeds a critical value.
This is because a strong t⊥ generates interlayer singlets
at the overlapping sites, corresponding to the appear-
ance of a band insulating state there37,39, while a strong
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on-site Coulomb interaction U stabilizes a Mott insulator
state at non-overlapping sites due to the lack of interlayer
hoppings.

Figure 2(b) and 2(c) demonstrate the phase diagrams
in the t1/t0 − t⊥/t0 plane at t2/t0 = 0 and t2/t0 − t⊥/t0
plane at t1/t0 = 0, respectively, under a strong on-site
Coulomb interaction of U = 6t0. Interestingly, two dis-
tinct site-selective insulating phases are observed in both
phase diagrams, specifically BI+MI and MI+BI, where
MI+BI is the counterpart phase of BI+MI. In MI+BI, a
Mott (band) insulating state is replaced by a band (Mott)
insulating state at specific sites compared with BI+MI.
Besides, despite slight differences in the phase bound-
aries, both phase diagrams contain the same phases. This
happens because increasing either t1 or t2 will destroy
the Mott insulating state at non-overlapping sites and
subsequently form a band insulating state there. Conse-
quently, as either t1 or t2 is increased, the system expe-
riences phase transitions from the Mott insulating phase
to a metallic phase and then into MI+BI for a weak t⊥
while it evolves from BI+MI to a metallic phase and then
into the band insulating phase for a strong t⊥.

The phase diagram in the (t1/t0 = t2/t0) − t⊥/t0
plane are also investigated when U = 6t0 as illustrated
in Fig.2(d). Apparently, the enhancement of both t1
and t2 also destroys the Mott insulating state at non-
overlapping sites. As a result, although the critical val-
ues of t1 and t2 resulting in the phase transition decrease,
the phase transitions in Fig.2(d) are comparable to those
in Fig.2(b) and 2(c) when both t1 and t2 are weak. How-
ever, in the region where both t1 and t2 are strong, nei-
ther BI nor MI+BI will occur as the interlayer singlets
between non-overlapping sites fail to form when strong
t1 and strong t2 present simultaneously.

In brief, in this twisted bilayer Hubbard model, we not
only observe the Mott insulating, band insulating, and
metallic phases proposed in the untwisted case but also
identify two site-selective phases with the coexistence of
band and Mott insulating states. These findings suggest
twist as an effective approach to access a site-selective
phase in strongly correlated systems.

Next, we proceed to explain how the phases in the
paramagnetic phase diagrams (Fig.2) are determined.
As the trend in the band gap with interlayer hopping
provides a valuable distinguishing characteristic for the
phases in the untwisted case35, we plot the evolution
of the band gap in this twisted system under various
interlayer hoppings in Fig.3, where a sufficient strong
on-site Coulomb interaction with U = 6t0 is adopted.
We discover that the band gap first closes and then re-
opens as t⊥ increases in the absence of other interlayer
hoppings [Fig.3(a)], confirming the presence of two insu-
lating phases separated by a metallic phase within the
U/t0 − t⊥/t0 plane [Fig.2(a)]. By inspecting the effect
of t1 [Fig.3(b)] and that of t2 [Fig.3(c)] on the band gap
of these two insulating phases, four insulating phases are
distinguishable in both t1/t0− t⊥/t0 plane [Fig.2(b)] and
t2/t0 − t⊥/t0 plane [Fig.2(c)]. This can be understood
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FIG. 3. The band gaps as functions of various interlayer
hoppings. (a) The band gap varies with interlayer nearest-
neighbor hopping t⊥ when t1/t0 = t2/t0 = 0 and U = 6t0.
(b) Band gaps as functions of interlayer next-nearest-neighbor
hopping t1 for two indicated t⊥ values, namely, 0t0 (solid line)
and 6t0 (dotted line), where t2/t0 = 0 and U = 6t0 are used.
(c) Band gaps as functions of interlayer third-nearest-neighbor
hopping t2 for two specified t⊥ values, 0t0 (solid line) and 6t0
(dotted line), where t1/t0 = 0 and U = 6t0 are adopted. (d)
The evolution of band gaps with interlayer nearest-neighbor
hopping t⊥ when t1 = 5t0 and U = 6t0 (solid line) as well
as when t2 = 5t0 and U = 6t0 (dotted line). The green di-
amonds and malachite green squares represent two distinct
site-selective phases. The pink pentagram, cyan triangle, and
orange ball denote the band insulating, Mott insulating, and
metallic phases, respectively.
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FIG. 4. The double occupancies on different sublattices as
functions of various interlayer hoppings. (a) The double occu-
pancies on different sublattices varies with interlayer nearest-
neighbor hopping t⊥ when t1/t0 = t2/t0 = 0 and U = 6t0. (b)
The double occupancies on different sublattices as functions
of t⊥ when t2/t0 = 5, t1/t0 = 0, and U = 6t0. (c) The dou-
ble occupancies on different sublattices varies with interlayer
next-nearest-neighbor hopping t2 when t⊥/t0 = t1/t0 = 0 and
U = 6t0. (d) The double occupancies on different sublattices
as functions of t2 when t⊥/t0 = 6, t1/t0 = 0, and U = 6t0.
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FIG. 5. The upper panel [(a)-(e)] depicts the DOS at various parameter points, where ρO(ω) (pink shadow) and ρN (ω) (blue
shadow) represent the DOS at each site in regions O and N of the supercell, respectively. The middle panel [(f)-(j)] displays the
imaginary part of self-energies under various parameter points, where Im(ΣO) (red line) and Im(ΣN) (blue line) describe the
imaginary part of self-energy at each site in regions O and N, respectively. The lower panel [(k)-(o)] shows the DOS at Fermi
level varied with the Lorentzian broadening factor η under various parameter points, where ρO(Ef ) (red line) and ρN (Ef ) (blue
line) separately denote the DOS at Fermi level of each site in regions O and N. Specifically, (a), (f), and (k) correspond to a
Mott insulating phase, where U = 6t0, t⊥ = t0, and t1/t0 = t2/t0 = 0. (b), (g), (l) (U = 6t0, t⊥ = 6t0, and t1/t0 = t2/t0 = 0)
as well as (c), (h), (m) (U = 6t0, t2 = 6t0, and t1/t0 = t⊥/t0 = 0) depict two distinct site-selective insulating phases. (d), (i),
and (n) characterize a band insulating phase when U = 6t0, t2 = t⊥ = 6t0, and t1/t0 = 0. (e), (j), and (o) describe a metallic
phase under the parameters of U = 6t0, t⊥ = 3t0, and t1/t0 = t2/t0 = 0. A Lorentzian broadening factor of η = 0.01t0 is used
in the upper and middle panels. As the MI+BI and BI in the t1/t0 − t⊥/t0 plane are the same as those in the t2/t0 − t⊥/t0
plane, we only present the corresponding physical quantities for the MI+BI and BI in the latter here.

by the following facts: the band gaps of two insulat-
ing phases observed in the U/t0 − t⊥/t0 plane gradually
vanish as t1 or t2 is increased, indicating their disap-
pearances, meanwhile, the gaps reopen and increase for
strong values of both t1 and t2, implying the occurrence
of additional insulating phases which are confirmed by
Fig.3(d) as two new insulating phases.

Besides the behavior of the band gap, we further con-
firm the presence of four distinct insulating phases by
analyzing the double occupancy. Fig.4 demonstrates the
double occupancies on inequivalent sites of four line slices
within the phase diagram plane presented in Fig.2(c)
which includes all the phases discovered. As can be seen,
in the insulating phase located at the region where both
t⊥ and t2 are weak, all double occupancies are suppressed
to small values [MI region in Fig.4(a) and Fig.4(c)]. For
this insulating phase, increasing either t⊥ or t2 will cause
an increase in double occupancies on corresponding sites
due to the formation of interlayer singlets there, whereas
the double occupancies on the other sites remain nearly

unchanged. This ultimately results in the emergence of
two distinct insulating phases characterized by the co-
existence of both small and large double occupancies
[BI+MI region in Fig.4(a) and MI+BI region in Fig.4(c)].
Besides, all double occupancies exhibit relatively large
values in the insulating phase where both t⊥ and t2 are
strong [BI region in Fig.4(b) and Fig.4(d)]. Therefore,
based on the behavior of the band gap and double occu-
pancy, four distinct insulating phases are identified.

In order to clarify the natures of the aforementioned
four insulating phases, we select one parameter point
within each insulating phase [The parameter points are
indicated above Fig.5(a)-5(d), where the unspecified pa-
rameters are all set to 0.] to calculate the correspond-
ing DOS, imaginary part of self-energy, and Lorentzian
broadening factor η dependence of DOS at the Fermi
level, as shown in Fig.5, where the imaginary part of
self-energy is used to identify the Mott and band insu-
lating states while the DOS serves to distinguish the in-
sulating phases from a metallic phase. Obviously, the



6

opening of the band gap within the DOS in Figs. 5(a)-
5(d) and the disappearance of both ρO(Ef ) and ρN (Ef )
as η approaches zero in Figs. 5(k)-5(n) further confirm
the insulating behaviors of these phases.

We now focus on the imaginary part of their self-
energies. It is apparent from Fig.5(f) that both Im(ΣO)
and Im(ΣN) diverge proximity to zero frequency, which
is a typical character of a Mott insulating phase15,73. In
contrast, both Im(ΣO) and Im(ΣN) vanish at ω = 0 in
Fig.5(i), clearly indicating the occurrence of a band insu-
lating phase. Surprisingly, Im(ΣO) and Im(ΣN) exhibit
distinct behaviors at zero frequency for both Fig.5(g) and
Fig.5(h), where Im(ΣN) diverges but Im(ΣO) vanishes
in Fig.5(g) while Im(ΣN) vanishes but Im(ΣO) diverges
in Fig.5(h), suggesting the presence of two distinct site-
selective phases with the coexistence of band and Mott
insulating states in the system.

For comparison, we also calculate the same physical
quantities for a metallic phase. Apparently, the clo-
sure of the gap in the DOS [5(e)] and the finite val-
ues of both ρO(Ef ) and ρN (Ef ) as η approaches zero
[5(o)] are key features of a metallic phase. It is neces-
sary to mention that the nonzero imaginary part of the
self-energy at ω = 0 [5(j)] is attributed to the failure of
the CPA to reproduce a Fermi-liquid state74. However,
this does not affect its conclusion regarding the metallic
phase. Therefore, by conducting comprehensive analyses
of the band gap, double occupancy, DOS, imaginary part
of self-energies, as well as Lorentzian broadening factor
dependence of DOS at the Fermi level, we distinguish a
Mott insulating phase, a band insulating phase, two dis-
tinct site-selective phases, and a metallic phase within
the paramagnetic phase diagrams of this twisted system,
which have been summarized in Fig.2.

Finally, we will examine the effect of an on-site po-
tential difference on the stability of the site-selective in-
sulating phases. As we know, the Mott insulating state
has already been pointed out to be unstable to the ionic
potential in the ionic Hubbard model75. In the twisted
system we studied, due to the emergence of two types
of inequivalent sites, it also possesses two distinct on-site
potentials including ∆O and ∆N which are analogous
to the ionic potentials. Thus, it is necessary to study
whether the site-selective insulating phases (the Mott in-
sulating state present at some sites) disappear as long
as there is an on-site potential difference. In Fig. 6, we
demonstrate the DOS and the imaginary part of the self-
energy for the site-selective insulating phases (at three
parameter points) under the effect of a moderate on-site
potential difference with ∆O −∆N = 1.25t0. It is clear
from Fig. 6(a)-6(c) that, although the on-site potential
difference breaks the particle-hole symmetry, the band
gap still preserves, indicating the system in certain insu-
lating phases. By further examining the imaginary parts
of the self-energies of these insulating phases, we discover
that Im(ΣN) in Fig. 6(d) as well as Im(ΣO) in both Fig.
6(e) and Fig. 6(f) exhibit a divergent behavior within the
band gap at a nonzero frequency. It has been pointed out

that this divergence means the infinite values of both the
scattering rate and the effective mass of quasiparticles,
namely, the Mott physics at corresponding sites induced
by strong electronic correlation69. Conversely, Im(ΣO)
in Fig. 6(d) as well as Im(ΣN) in both Fig. 6(e) and Fig.
6(f) are negligibly small near the Fermi level, an indica-
tion of a band insulating state at related sites. Therefore,
these two site-selective insulating phases are still stable
even in the presence of a moderate on-site potential dif-
ference.
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FIG. 6. The upper panel [(a)-(c)] illustrates the DOS at vari-
ous parameter points, where ρO(ω) (pink shadow) and ρN (ω)
(blue shadow) denote the DOS at each site in region O and
region N of the supercell, respectively. The lower panel [(d)-
(f)] presents the imaginary part of self-energies at various pa-
rameter points, where Im(ΣO) (red line) and Im(ΣN) (blue
line) describe separately the imaginary part of self-energy at
each site in region O and region N. (a) and (d) adopt the
parameters of U = 6t0, t⊥ = 6t0, t1/t0 = t2/t0 = 0, and
∆O−∆N = 1.25t0. U = 6t0, t1 = 6t0, t⊥/t0 = t2/t0 = 0, and
∆O −∆N = 1.25t0 are used in (b) and (e). U = 6t0, t2 = 6t0,
t⊥/t0 = t1/t0 = 0, and ∆O − ∆N = 1.25t0 are employed in
(c) and (f).

IV. DISCUSSION

In this paper, we have demonstrated the presence of
site-selective insulating phases in the half-filled Hubbard
model on a twisted bilayer square lattice using the CPA.
While the CPA provides a critical on-site Coulomb in-
teraction of Uc ≈ W/2 = 4t0 (W is the Bloch band-
width) for the metal-Mott insulator transition in the
monolayer square lattice, which differs slightly from other
methods39,72 (consistent with Ref.71), previous research
indicates that the critical Uc is quite complicated and
depends strongly on the Hubbard model under investi-
gation and the methods employed76. Regardless of the
specific critical phase transition point, the CPA remains
a reliable approach capable of handling phase transitions
among band insulating, Mott insulating, and metallic
states57–59,69,70. Therefore, our discovery of the site-
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selective insulating phases is qualitatively reliable, as
the site-selective insulating phases we found are merely
composed of a band insulating state and a Mott in-
sulating state. Noticeably, the CPA ignores the spa-
tial fluctuations of the effective medium (the self-energy
is momentum-independent), it is interesting to employ
other methods like CDMFT77 to precisely determine the
detailed phase boundaries when taking into account the
effects of short-range spatial correlations.

As we know, as long as a weak on-site Coulomb inter-
action is present, an antiferromagnetic insulating phase
emerges in the region of weak interlayer hopping within
the magnetic phase diagram for the Hubbard model on
untwisted bilayer square lattice, which is attributed to
the perfect nesting property of the Fermi surface within
the noninteracting system38,39. However, when the twist
is employed between two layers, the perfect nesting prop-
erty of the Fermi surface is destroyed by the hoppings
between two relatively twisted layers, which may have a
significant impact on its phase diagram. Besides, we ob-
serve the site-selective phases even in the paramagnetic
phase diagrams. Therefore, it is foreseeable that there
will be various fascinating phases in the magnetic phase
diagram of twisted bilayer square lattices.

Twist and pressure can manipulate interlayer hoppings
and thereby induce novel phases in the layered systems,
for example, the interlayer ferromagnetic and interlayer
antiferromagnetic states can coexist in bilayer CrI3 when
twisting two layers with an angle of θ ≤ 3◦78, the phase
transition from a nonmagnetic state to a ferromagnetic
state emerges in twisted bilayer graphene when apply-
ing pressure perpendicular to the layers79. We have
demonstrated that the site-selective phases depend on
the detailed values of interlayer hoppings. Therefore, it
is quite intriguing to consider whether more complicated
site-selective phases exist at different twisted angles or if
phase transitions from the site-selective insulating phases
to other phases occur under pressure.

Our discovery of the site-selective insulating phases in
twisted bilayer square lattice suggests twist as an effective
approach to access a site-selective phase in the strongly
correlated system. While our proposal remains a theo-
retical prediction, it may still stimulate tremendous re-
search interest for the following reasons. Firstly, one may
be interested in exploring whether a site-selective super-
conducting phase, where certain sites exhibit a supercon-
ducting state while the others are in a normal state, exists
in twisted layered superconducting materials since there
are currently mature experimental techniques for synthe-
sizing monolayer superconducting material80,81 and con-

structing two superconducting crystals along the c axis
with a twist (c-axis twisted Josephson junctions)82–88.
Secondly, while we predict the site-selective phase in a
square lattice, it is possible that a site-selective phase
may also be present in twisted systems with other lattice
structures, making it intriguing to explore a site-selective
insulating phase with the coexistence of band and Mott
insulating states in twisted layered strongly correlated
materials, not limited to square lattice materials. Finally,
the nature of the Mott insulator observed in magic-angle
twisted bilayer graphene1 is worth reexamining since the
DOS of the flat bands is primarily contributed by the
atoms located at the AA-stacking zone89. Considering
that, in the absence of Coulomb interactions, atoms in
the AB-stacking zone lack electrons near the Fermi level,
it is likely that this observed insulating phase (induced
by the interaction) is a site-selective phase, where the
atoms located at the AA-stacking zone exhibit a Mott
insulating state while others maintain a band insulating
state.

V. CONCLUSION

In conclusion, we systematically investigate the param-
agnetic phase diagrams of the half-filled Hubbard model
on a twisted bilayer square lattice by employing the CPA.
The site-selective insulating phases are discovered, char-
acterized by the coexistence of band insulating states at
some sites while Mott insulating states at the remain-
ings, in addition to the pure metallic, band insulating,
and Mott insulating phases in the whole lattice. We at-
tribute the appearance of site-selective insulating phases
to the differentiation of interlayer hoppings in different
regions with the help of strong on-site Coulomb repul-
sions. We find that the site-selective insulating phases are
stable even in the presence of a moderate site-dependent
on-site potential. Our findings not only demonstrate a
fascinating phenomenon that a band insulating state can
coexist with a Mott insulating state in strongly correlated
systems but also suggest that varieties of site-selective
phases might be realized by applying twist to layered
materials.
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Appendix A: The mapping of models from a disordered alloy to an effective medium within the framework of
the CPA

To derive the mapping from model (3) to model (4) within the framework of the CPA, we start by calculating the
single-particle Green’s function of the effective medium. Based on model (4), the corresponding Hamiltonian of the



8

effective medium in momentum space reads

Heff =
∑
k,σ

∣∣ψk,σ

〉
M̂(k)

〈
ψk,σ

∣∣, (A1)

where

M̂(k) =



∆O−µ+ΣA1 −t0 −t0e−ikx −t0e
−i(kx+ky) −t0e

−iky −t⊥ 0 0 0 0

−t0 ∆N−µ+ΣB1 −t0 −t0e
−iky −t0 0 −t2 0 0 −t1

−t0eikx −t0 ∆N−µ+ΣC1 −t0 −t0eikx 0 0 0 −t1 −t2

−t0e
i(kx+ky) −t0e

iky −t0 ∆N−µ+ΣD1 −t0 0 0 −t1 −t2 0

−t0e
iky −t0 −t0e−ikx −t0 ∆N−µ+ΣE1 0 −t1 −t2 0 0

−t⊥ 0 0 0 0 ∆O−µ+ΣA2 −t0 −t0e
−iky −t0e

−i(kx+ky) −t0e−ikx

0 −t2 0 0 −t1 −t0 ∆N−µ+ΣB2 −t0 −t0e−ikx −t0

0 0 0 −t1 −t2 −t0e
iky −t0 ∆N−µ+ΣC2 −t0 −t0e

iky

0 0 −t1 −t2 0 −t0e
i(kx+ky) −t0eikx −t0 ∆N−µ+ΣD2 −t0

0 −t1 −t2 0 0 −t0eikx −t0 −t0e
−iky −t0 ∆N−µ+ΣE2


(A2)

and ∣∣ψk,σ

〉
=

(
C†

kA1σ, C
†
kB1σ, C

†
kC1σ, C

†
kD1σ, C

†
kE1σ, C

†
kA2σ, C

†
kB2σ, C

†
kC2σ, C

†
kD2σ, C

†
kE2σ

)
(A3)

Here, all of these self-energies ΣA1, · · · ,ΣE2 are both complex and energy-dependent. Noticeably, the Hamiltonian

matrix M̂(k) omits the spin indices as we are interested in the paramagnetic phase. Thus, Green’s function of the
effective medium in momentum space can be readily calculated as

Geff (k, ω) =
1

ω − M̂(k) + iη
, (A4)

where η stands for the Lorentzian broadening factor. Using Green’s function in momentum space, the corresponding
Green’s function of the effective medium in real space reads

Geff
ism,ism(ω) =

1

ΩBZ

∫
ΩBZ

Geff
sm,sm(k, ω)dk, (A5)

where the integral is over the first Brillouin zone of the system. Then, the cavity Green’s function Gism(ω) can be
obtained through the Dyson equation

G−1
ism(ω) =

[
Geff

ism,ism(ω)
]−1

+Σsm(ω) (A6)

for a given s sublattice at m layer of ith supercell, which describes a medium with removed self-energy at a chosen
site. It is necessary to mention that the self-energies of the effective medium arise from the disordered potentials of
the disordered alloy within the framework of the CPA, suggesting that the cavity Green’s function for a given site
of the effective medium is equal to that of the disordered alloy. Therefore, the cavity can now be filled by a real
“impurity” with disorder potential, resulting in an impurity Green’s function of the disordered alloy

Gism(ω) =
1

G−1
ism(ω)− Eism

(A7)

with impurity configurations of {
Eism = 0, P0 = 1− ⟨nismσ̄⟩
Eism = U, PU = ⟨nismσ̄⟩

. (A8)

Then, the average Green’s function of the disordered alloy can be calculated by summing all the impurity Green’s
functions with corresponding probability weights, namely

⟨Gism(ω)⟩ = P0

G−1
ism(ω)− 0

+
PU

G−1
ism(ω)− U

, (A9)

Once the average Green’s function of the disordered alloy and the Green’s function of the effective medium satisfies

⟨Gism(ω)⟩ = Geff
ism,ism(ω), (A10)
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the model (3) can be successfully mapped into model (4). Noticeably, since we focus on the case at half filling, the
extra condition must be satisfied ∑

sm

⟨nismσ⟩ = 5 (A11)

where

⟨nismσ⟩ = − 1

π

∫ 0

−∞
Im

[
Geff

ism,ism(ω)
]
dω. (A12)

These calculated average occupation number need to be applied to compute new probability of impurities (A8).
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Physical Review B 102, 201104 (2020).

26 Alexander Wietek, Jie Wang, Jiawei Zang, Jennifer Cano,
Antoine Georges, and Andrew Millis, “Tunable stripe or-
der and weak superconductivity in the Moiré Hubbard
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perfluidity and density order in a bilayer extended Hub-
bard model,” Physical Review B 91, 144510 (2015).

49 Hyowon Park, Andrew J Millis, and Chris A Marianetti,
“Site-selective Mott transition in rare-earth-element nick-
elates,” Physical review letters 109, 156402 (2012).

50 Yasuhiro Shimizu, Satoshi Aoyama, Takaaki Jinno,
Masayuki Itoh, and Yutaka Ueda, “Site-Selective Mott
Transition in a Quasi-One-Dimensional Vanadate V6O13,”
Physical Review Letters 114, 166403 (2015).

51 Xiang-Long Yu, Da-Yong Liu, Ya-Min Quan, Ting Jia,
Hai-Qing Lin, and Liang-Jian Zou, “A site-selective
antiferromagnetic ground state in layered pnictide-oxide
BaTi2As2O,” Journal of Applied Physics 115 (2014).

52 John Hubbard, “Electron correlations in narrow energy
bands,” Proceedings of the Royal Society of London. Se-
ries A. Mathematical and Physical Sciences 276, 238–257
(1963).

53 Paul Soven, “Coherent-potential model of substitutional
disordered alloys,” Physical Review 156, 809 (1967).
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