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The Grassmann time-evolving matrix product operator (GTEMPO) method has proven to be an accurate and
efficient numerical method for the real-time dynamics of quantum impurity problems. Whereas its applica-
tion for imaginary-time calculations is much less competitive compared to well-established methods such as
the continuous-time quantum Monte Carlo (CTQMC). In this work, we unleash the full power of GTEMPO
for zero-temperature imaginary-time calculations: the multi-time impurity state is time-translationally invariant
with infinite boundary condition, therefore it can be represented as an infinite Grassmann matrix product state
(GMPS) with nontrivial unit cell in a single time step, instead of an open boundary GMPS spanning the whole
imaginary-time axis. We devise a very efficient infinite GTEMPO algorithm targeted at zero-temperature equi-
librium quantum impurity problems, which is known to be a hard regime for quantum Monte Carlo methods. To
demonstrate the performance of our method, we benchmark it against exact solutions in the noninteracting limit,
and against CTQMC calculations in the Anderson impurity models with up to two orbitals, where we show that
the required bond dimension of the infinite GMPS is much smaller than its finite-temperature counterpart.

I. INTRODUCTION

The quantum impurity problem (QIP) considers a small im-
purity consisting of a few energy levels which is coupled to a
continuous bath of free oscillators. QIP plays a fundamen-
tal role in quantum physics for studying non-Markovian open
quantum effects [1] and strongly correlated effects [2]. It is
also a building block for quantum embedding methods such
as the dynamical mean field theory [3]. Mathematically, the
QIPs are described by a very special type of sparse Hamil-
tonian in which the integrability is only broken by the pres-
ence of interaction inside the impurity. Despite this formal
simplicity, accurate numerical solutions to QIPs are generally
challenging and there is a continuing effort to develop efficient
impurity solvers due to their profound importance.

The focus of this work is on the numerically exact solu-
tions to the fermionic QIPs, primarily the Anderson impu-
rity models (AIMs) [4], but the method developed in this
work can also be straightforwardly generalized to the bosonic
QIPs. For AIMs, the class of observables of vital interest is
the spectral function, which is the imaginary part of the re-
tarded Green’s function defined in the real-frequency axis. In
practice, the calculation of the spectral function is often mit-
igated to calculating the Matsubara Green’s function defined
in the imaginary-frequency axis, since the latter can gener-
ally be calculated more efficiently, and the spectral function
can be obtained from the Matsubara Green’s function via an-
alytical continuation in principle. A number of computational
techniques have been developed for the imaginary-time cal-
culations, such as the continuous-time quantum Monte Carlo
(CTQMC) method which is based on the perturbative expan-
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sion of the Matsubara Green’s function [5–11], and the wave-
function based methods which explicitly discretize the bath
and then perform imaginary-time evolution for the impurity-
bath wave function, including exact diagonalization [12–19],
the numeric renormalization group [20–28], and matrix prod-
uct state (MPS) based methods [29–39]. For general equilib-
rium AIMs, currently the CTQMC methods are the method of
choice due to their well-balanced accuracy and computational
efficiency, despite the sign problem [40] and the unavoidable
sampling noises. In comparison, for practical applications the
wave-function based methods could often suffer from inaccu-
racy or scalability issues resulting from the bath discretization.

The time-evolving matrix product operator (TEMPO)
method is a recently emerged non-wave-function based ap-
proach, which makes use of the analytical solution of the
Feynman-Vernon influence functional (IF) [41] to integrate
out the bath exactly, and then represents the multi-time im-
purity state as a matrix product state (MPS) [42]. TEMPO
is originally developed for bosonic QIPs [42–49] and re-
cently extended to AIMs by us under the name of Grassmann
TEMPO (GTEMPO), since Grassmann MPS (GMPS) is used
to deal with the Grassmann path integral (PI) for fermionic
QIPs [50–52]. For AIMs a tensor network IF method is also
developed recently which makes use of the MPS representa-
tion of the Feynman-Vernon IF in the Fock state basis [53–
55]. To date, the (G)TEMPO methods have established them-
selves as one of the most competitive methods for studying
the real-time dynamics of QIPs, most prominently the non-
equilibrium quantum transport [49, 50]. However, when ap-
plied for equilibrium AIMs, it has been observed for both
the GTEMPO [51] and the tensor network IF [56] methods
that the required number of states needs to be kept (e.g., the
bond dimension) in the MPS grows much faster (close to lin-
ear scaling against inverse temperature β) than in the real-
time evolution. This observation contradicts with almost all
the previous methods, where it has been well-established that
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imaginary-time calculations are generally more efficient than
real-time calculations. The origin of this counter-intuitive re-
sult is two-fold [51]: (1) the hybridization function in the ex-
ponent of the IF contains a growing contribution for finite-
temperature equilibrium AIMs; (2) the imaginary-time PI is
time-translationally invariant (TTI) with anti-periodic bound-
ary condition, but is represented as an open boundary MPS in
existing GTEMPO or tensor network IF studies.

In this work we unleash the full power of the GTEMPO
method for zero-temperature equilibrium AIMs by exploring
its TTI property: the underlying multi-time impurity state can
be naturally represented as an infinite GMPS where only the
site tensors in a single time step are independent. More-
over, in this case the hybridization function only contains
decaying contributions, which promises an efficient GMPS
representation of the IF (referred to as MPS-IF afterwards)
with much lower bond dimension compared to the finite-
temperature case. Correspondingly, we will refer to this ap-
proach as the infinite GTEMPO (iGTEMPO) method through-
out this work. We numerically confirm the small bond dimen-
sion of the zero-temperature MPS-IF for the commonly used
semi-circular bath spectrum density, and we also demonstrate
the accuracy and flexibility of the iGTEMPO method against
the low-temperature CTQMC calculations for AIMs with up
to two orbitals. Our results show that the iGTEMPO method
could be highly competitive for zero temperature imaginary-
time calculations, which is a hard regime for CTQMC.

II. THE IMAGINARY-TIME PATH INTEGRAL
FORMALISM

The Hamiltonian of the multi-orbital Anderson impurity
model can be generally written as Ĥ = Ĥimp+Ĥbath+Ĥhyb,
with Ĥimp =

∑
p,q tp,qâ

†
pâq +

∑
p,q,r,s vp,q,r,sâ

†
pâ

†
qârâs the

impurity Hamiltonian, Ĥbath =
∑

p,k εp,k ĉ
†
p,k ĉp,k the bath

Hamiltonian and Ĥhyb =
∑

p,k Vp,k(â
†
pĉp,k + ĉ†p,kâp) the hy-

bridization Hamiltonian coupling the impurity to the bath. In
our notation â and â† are the fermionic annihilation and cre-
ation operators, p, q, r, s are fermion flavor indices of the im-
purity which contain both the spin and orbital indices, k is the
momentum index of the itinerant fermions, εp,k denotes the
band energy and Vp,k is the hybridization strength. The nonin-
teracting bath and the form of linear coupling in Ĥhyb ensure
that the analytical expression of the Feynman Vernon IF (thus
the GTEMPO method) can be applied. For notational conve-
nience we assume Ĥbath and Ĥhyb to be flavor-independent
in the following, namely εp,k = εk and Vp,k = Vk.

For equilibrium AIMs with inverse temperature β, the im-
purity partition function Zimp

def
= Tr e−βĤ/Tr e−βĤbath can

be written as a path integral [57, 58]:

Zimp =

∫
D[ā,a]K[ā,a]

∑

p

Ip[āp,ap], (1)

where āp = {āp(τ)} and ap = {ap(τ)} are Grassmann tra-
jectories for flavor p over the continuous imaginary-time inter-

val [0, β], ā = {āp, āq, · · · } and a = {ap,aq, · · · } are ab-
breviations for Grassmann trajectories of all flavors. The mea-
sure is defined as D[ā,a] =

∏
p,τ dāp(τ)dap(τ)e

−āp(τ)ap(τ).
The bare impurity dynamics is encoded in K, determined only
by Ĥimp. The influence of the bath on the impurity is encoded
in the IF Ip for each flavor, which can be written as

Ip[āp,ap] = e−
∫ β
0

dτ
∫ β
0

dτ ′āp(τ)∆(τ,τ ′)ap(τ
′). (2)

The hybridization function ∆(τ, τ ′) in the double integral of
Eq.(2) full characterizes the bath effects, which is defined as

∆(τ, τ ′) =
∫

dε J(ε)Dε(τ, τ
′), (3)

with J(ε) the bath spectrum density. Dε(τ, τ
′) is the free bath

Matsubara Green’s function, defined as

Dε(τ, τ
′)

def
= − ⟨Tτ ĉε(τ)ĉ

†
ε(τ

′)⟩0
=− [Θ(τ − τ ′)− nF (ε)]e

−ε(τ−τ ′), (4)

where Θ is the Heaviside step function, and nF (ε) = (eβε +
1)−1 is the Fermi-Dirac distribution. For finite β, the first
term on the second line of Eq.(4) is nonzero for any value of
ε, while the exponent of the second term, −ε(τ − τ ′), can be
both positive and negative, therefore Dε(τ, τ

′) contains both
exponentially decaying and growing contributions. However,
in the zero-temperature limit, Dε(τ, τ

′) can be written as

Dε(τ, τ
′)|β=∞ =





−e−ε(τ−τ ′), if ε > 0, τ ≥ τ ′;

0, if ε > 0, τ < τ ′;

0, if ε < 0, τ ≥ τ ′;

e−ε(τ−τ ′), if ε < 0, τ < τ ′,

(5)

where the only two nonvanishing terms on the rhs are purely
decaying, as their exponents are both negative.

III. METHOD DESCRIPTION

A. The time-translational invariance of the imaginary-time PI

The integrand of the PI in Eq.(1), denoted as

A[ā,a]
def
= K[ā,a]

∑

p

Ip[āp,ap], (6)

represents the multi-time impurity state, which is referred to
as the augmented density tensor (ADT). In GTEMPO, one
first represents each K and Ip as an open boundary GMPS,
and then multiplies them together to obtain A as an open
boundary GMPS (the multiplication is performed on the fly
using a zipup algorithm for efficiency [50]). With A, any
multi-time correlation function of the impurity can be cal-
culated straightforwardly following the standard path inte-
gral formalism. However, the strategy used in the existing
imaginary-time GTEMPO method is inefficient, as the prob-
lem is TTI with anti-periodic boundary condition but open
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· · ·· · ·· · ·· · · UUUUUUU

I =
∏

p Ip(β = ∞, µ) · · ·· · ·· · ·· · ·

FIG. 1. Schematic illustration of the time-translational invariance
of the path integral for the zero-temperature impurity partition func-
tion. After integrating out the bath degrees of freedom using the
Feynman-Vernon influence functional, only the multi-time impurity
state in the temporal domain is left, which is naturally an infinite
Grassmann MPS whose unit cell is indicated by the green box. Here
U = e−Ĥimpδτ is the discrete bare impurity propagator with δτ the
imaginary-time step size. Here β = ∞ is the infinite inverse temper-
ature and µ is the chemical potential.

boundary GMPSs are used, and it has been observed that large
bond dimensions of the open boundary GMPSs are required,
especially for low temperature [51].

In fact, the equilibrium QIPs are naturally defined on a
torus, where the time axis is in the radial direction and the
space axis is in the axial direction (which is infinite since the
bath is infinite). This symmetry has been explored in wave-
function based MPS methods [59]. In GTEMPO, the spatial
direction is integrated out by the Feynman-Vernon IF, and we
are left with a one-dimension circle in the time direction only.
The time-translational invariance can also be observed from
the PI. K is time-translationally invariant (TTI) since it only
depends on Ĥimp which is assumed to be time-independent.
Ip is also TTI since the double integral in its exponent is in-
variant under any shift of the time indices. The latter property
is guaranteed because the hybridization function ∆(τ, τ ′) in
Eq.(3) is actually a function of the imaginary-time difference
only, e.g., ∆(τ, τ ′) = η(τ − τ ′) for some single-variate func-
tion η. The time-translational invariance of the PI is schemat-
ically illustrated in Fig. 1.

Under the framework of the GTEMPO method, the TTI
property of the IF has been explored in the context of non-
equilibrium real-time dynamics to efficiently construct the
MPS-IF using essentially a constant number of GMPS mul-
tiplications [60]. When focusing on the steady state in the
infinite-time limit, K also becomes TTI and thus the whole
ADT can be represented as an infinite GMPS, which has
been explored to greatly accelerate the calculation [61]. For
zero-temperature imaginary-time calculations considered in
the work, the PI naturally enjoys a similar symmetry: the
whole ADT is TTI and thus can be represented as an infinite
GMPS. In the following we will show how to construct K and
Ip (thus A) as infinite GMPSs, and then how to compute the
multi-time correlations of the impurity based on A.

B. The infinite GTEMPO method

The starting point of the GTEMPO method is to discretize
the path integral (here we note a recent development of the
tensor network IF method which used a continuous MPS rep-

(a)

K ··· ··· ··· ···a ā a ā a ā a ā

(b)

eF/2m ··· ···a ā

··· ···a ā

eF/2m−1

copy ··· ···a ā

FIG. 2. (a) Constructing the infinite Grassmann MPS representation
of the bare impurity dynamics K, where the dashed rectangle marks
the unit cell. (b) Constructing the infinite GMPS representation of
the influence functional I, where m infinite GMPS multiplications
is used (only the first step is shown, the remaining steps simply re-
peat the first step) and the error clearly decreases exponentially fast
with m by design. We have used the noninteracting Toulouse model
for this schematic demonstration, for which there is only one flavor
(therefore the flavor indices are omitted), and the unit cell size is 2.

resentation of the Feynman-Vernon IF to reduce the time dis-
cretization error [62]). Ip can be discretized using the quasi-
adiabatic propagator path integral (QuaPI) method [63, 64],
which results in

Ip ≈ e−
∑N

j,k=1 āp,j∆j,kap,k , (7)

where N = β/δτ with δτ the imaginary-time step size,
∆j,k =

∫ (j+1)δτ

jδτ
dτ

∫ (k+1)δτ

kδτ
dτ ′∆(τ, τ ′) is the discretized

hybridization function. The bare impurity dynamics K can be
discretized as

K = ⟨−a,1|Ûimp|a,N ⟩ · · · ⟨a,3|Ûimp|a,2⟩ ⟨a,2|Ûimp|a,1⟩ ,
(8)

where a,k = {ap,k, aq,k, · · · } denotes the set of Grassmann
variables (GVs) at time step k for all flavors and Ûimp =

e−Ĥimpδτ is the discrete bare impurity propagator. We note
the first term on the rhs of Eq.(8) which connects a,1 and
a,N and encodes the anti-periodic boundary condition. In the
zero-temperature limit, we have N = ∞, thus a,1 and a,N

will never be actually connected. Moreover, since the the bulk
terms ⟨a,j+1|Ûimp|a,j⟩ are all the same, one could represent
K as an infinite GMPS, such that only the site tensors in a
single time step need to be stored and manipulated. This strat-
egy to build K as an infinite GMPS is schematically shown
in Fig. 2(a), which is in parallel with the finite case but the
operations only need to be performed on one unit cell.

The strategy to build each Ip as an infinite GMPS is
more involved, but mostly follows the procedures described
in the non-equilibrium setup [60], except that here we use
infinite GMPSs instead of open boundary GMPSs. In the
following we will sketch the major ideas of these proce-
dures, while the details of each operation can be found in
Ref. [60]. We denote the exponent of the discretized IF as
Fp = −∑∞

j,k āp,j∆j,kap,k. First, we expand ηx (the dis-
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cretized version of η(τ − τ ′)) into the summation of n expo-
nential functions as

ηx ≈
n∑

l=1

αlλ
|x|
l (9)

using the Prony algorithm [65], for both x > 0 and x < 0.
With the optimal values of αl and λl determined, we can con-
struct Fp as a GMPS with bond dimension 2n + 2, based on
which one can further construct a first-order GMPS approxi-
mation of eFp/2

m

with bond dimension 2n+1 using the WI or
WII methods (or higher-order methods based on them) [66],
where m is an integer parameter to control the precision of
this first-order approximation (we note that the first-order ap-
proximation here is not related to the time discretization error
in Eq.(7)). Finally, we can obtain the infinite GMPS represen-
tation of Ip = eFp using m infinite GMPS multiplications: in
the ith step one multiplies eFp/2

m−i+1

with itself. This strat-
egy to build Ip as an infinite GMPS is schematically illus-
trated in Fig. 2(b).

The multiplication of two infinite GMPSs can be done
in the same way as the multiplication of two open bound-
ary GMPSs [50], but only need to be performed for a sin-
gle unit cell. For two infinite GMPSs with bond dimensions
χ1 and χ2, the resulting infinite GMPS will have a bond di-
mension χ1χ2, which needs to be compressed into a new
infinite GMPS with some fixed bond dimension χ (other-
wise the computational cost will grow exponentially). Impor-
tantly, the compression of infinite GMPS can be performed
efficiently and stably due to the existence of exact canoni-
cal form [67]. In this work we use the infinite density ma-
trix renormalization group (IDMRG) [68] method to itera-
tively compress the infinite GMPS, following the implemen-
tation in the package MPSKit.jl [69] (the IDMRG algorithm
for infinite GMPS compression is also used in the real-time
case [61]). In addition, the hybridization function only con-
tains decaying contributions in the zero-temperature limit as
analyzed in Sec. II, namely |λl| < 1, which indicates that the
bond dimension of the infinite GMPS could be much smaller
than its finite-temperature counterpart. Thus for zero temper-
ature both problems encountered in previous GTEMPO study
of finite-temperature equilibrium AIMs: the growing contri-
bution in the hybridization function and the artificial open
boundary condition of the GMPS [51], can be avoided simul-
taneously. This algorithm is referred to as iGTEMPO as infi-
nite GMPSs are used.

There are several sources of error that could affect the accu-
racy of iGTEMPO: (1) the time discretization error in Eq.(7),
which can be suppressed by using a smaller δτ ; (2) the MPS
bond truncation error during compression, which can be well
controlled in infinite MPS algorithms [70, 71]; (3) the error
occurred in the Prony algorithm, characterized by the mean
square error

ςp =
∑

x

(ηx −
n∑

l=1

αlλ
x
l )

2, (10)

can be suppressed by using a larger n in principle and it has
been shown that one could often find very good approxima-

(a) ⟨vl| = ⟨vl|λmax, |vr⟩ = λmax |vr⟩

⟨aiāj⟩ =
⟨vl| ··· ··· ··· |vr⟩ai āi aj āj

(b)
⟨vl| ··· ··· ··· |vr⟩ai āi aj āj

FIG. 3. Algorithm to calculate the Matsubara Green’s function based
on the infinite GMPS representation of the augmented density tensor
at zero temperature, which can be divided into two steps: (a) Com-
puting the transfer matrix by integrating the two conjugate Grass-
mann variables in a unit cell, and then calculating the left and right
dominant eigenvectors of it; (b) Identifying a finite window from
the infinite ADT depending on the Green’s function to be calculated,
and then evaluating the Green’s function similar to the finite case, but
with nontrivial left and right boundary vectors obtained from step (a).
We have used the noninteracting Toulouse model for this schematic
illustration for briefness. The red line means a product operator cor-
responding to the Grassmann tensor aiāj which acts on the ADT.

tions with a logarithmically scaling n [72–75]; (4) the hyper-
parameter m used to control the precision of the first-order
infinite GMPS approximation of eFp/2

m

, the error of which
clearly decreases exponentially fast with m by design.

C. Calculating multi-time impurity correlations

Once the infinite GMPS representation of A has been ob-
tained, one can easily calculate any multi-time correlations of
the impurity. For example, the Matsubara Green’s function
can be calculated as

−Gj
def
= ⟨ejδτĤ âe−jδτĤ â†⟩ =

∫
D[ā,a]aj ā0A[ā,a]

Zimp
. (11)

Based on the infinite GMPS representation of A, Gj can be
computed in two steps (which is the same as the real-time
case [61]): (1) Obtaining the transfer matrix by integrating
out all the conjugate pairs of GVs in one unit cell, and then
calculating the dominant left and right eigenvectors of it, de-
noted as ⟨vl| and |vr⟩ respectively, with dominant eigenvalue
denoted as λmax; (2) Identifying a finite window from the in-
finite GMPS representation of A, and then evaluating the ex-
pectation value similar to the finite case, but using ⟨vl| and
|vr⟩ as left and right boundaries instead of trivial boundaries
(Grassmann vacuum 1). These two steps are schematically
shown in Fig. 3(a,b) respectively. Implementation-wise, this
operation boils down to contracting a quasi-2D tensor network
of size (2M + 1) × 4M for M orbitals [51] (since we have
2M MPS-IFs plus one infinite GMPS for K, and the unit cell
size is 4M ) with open boundary condition, the cost of which
roughly scales as O(χ2M ).

IV. NUMERICAL RESULTS

To demonstrate the effectiveness and flexibility of the
iGTEMPO method, we apply it to study AIMs with increas-
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FIG. 4. Zero-temperature Matsubara Green’s function G(τ) as a
function of the imaginary time τ for the Toulouse model for (a)
εd = 0 and (b) εd = 0.5. The gray solid lines are the exact di-
agonalization results. The red dashed lines are the iGTEMPO results
calculated with δτ = 0.1. The insets show the errors of two sets of
iGTEMPO results, calculated with δτ = 0.1 (red dashed line) and
δτ = 0.05 (blue dashed line) respectively, against the ED results.
We have used χ = 60 in all these iGTEMPO calculations.

ing complexity, including the noninteracting Toulouse model
with a single flavor, the single-orbital AIM with two flavors
(spin up and down), and a two-orbital AIM with four flavors.
We benchmark our iGTEMPO results against exact solutions
in the noninteracting case and against the low-temperature
CTQMC calculations in the interacting case. The orderings
of the GVs within one unit cell are chosen as aā, a↑ā↑a↓ā↓
and a1↑ā1↑a1↓ā1↓a2↑ā2↑a2↓ā2↓ for these three cases respec-
tively, where the time step indices are omitted due to the time-
translational invariance. In all the numerical experiments of
this work, we will use a semi-circular bath spectrum density

J(ε) =
1

π
D
√

1− (ε/D)2, (12)

with D = 1 (D is used as the unit). The default values of the
two hyperparameters, ςp and m, involved in constructing the
TTI MPS-IF, are set as ςp = 10−4 (we choose a large enough
n such that the error occurred in the Prony algorithm is less
than ςp) and m = 6 unless particularly specified (one can also
see Ref. [60] for the effect of these two hyperparameters on
the accuracy of real-time GTEMPO calculations). We typi-
cally use 20000 single-site IDMRG sweeps to compress the
infinite GMPS for the numerical simulations in this work.

A. Toulouse model

We first demonstrate the validity of our method by applying
it to study the noninteracting Toulouse model [2], for which
the impurity Hamiltonian can be written as Ĥimp = εdâ

†â
with εd the on-site energy. In the noninteracting limit, one
could easily perform exact diagonalization (ED) to obtain nu-
merically exact solutions. In Fig. 4(a,b), we plot the zero-
temperature equilibrium Matsubara Green’s function of the
Toulouse model calculated by iGTEMPO for εd = 0 and
εd = 0.5 respectively, where we have also shown the ED re-
sults as comparison. For ED we have discretized the bath into
equal-distant modes with δω/D = 0.0002 and checked that

the results have well converged with δω (the bath discretiza-
tion error is the only source of error in ED). In iGTEMPO we
have used Dδτ = 0.1 and χ = 60. We can see that for both
values of εd our iGTEMPO results agree fairly well with ED.
Specifically, the errors are mostly concentrated at the first few
steps, which is similar to the finite GTEMPO calculations [51]
and is likely due to the first-order time discretization error of
the IF. However, compared to the finite case, the boundary er-
rors in iGTEMPO seem to be larger. In the insets, we show the
differences between two sets of iGTEMPO results, calculated
with Dδτ = 0.1, 0.05 respectively (we set χ = 60 in both
cases), and ED results. We can see that the errors can indeed
be suppressed by decreasing δτ .

To this end, we discuss an important difference between
GTEMPO and iGTEMPO in the choice of δτ . In GTEMPO,
we generally tend to choose a large δτ as long as the accu-
racy is not significantly affected, since the computational cost
scales linearly with N = β/δτ . While in iGTEMPO, the
computational cost to build the MPS-IFs is essentially inde-
pendent of N , therefore one would like to choose a smaller δτ
in this case (meanwhile, a common observation in TEMPO
and GTEMPO is that the required bond dimension is smaller
for smaller δτ [42, 51]), the only price to pay is that the cost
of computing Green’s functions between two times may grow
since their distance becomes effectively larger. Despite con-
siderations on the computational cost and the time discretiza-
tion error, there is another important advantage of using a
smaller δτ : one could directly calculate the Green’s func-
tions on the imaginary-frequency axis instead, which can be
expressed as a TTI operator acting on the infinite GMPS rep-
resentations of the ADT (this calculation can be done for any
δτ , but for large δτ the error would be huge since we are
essentially performing the Fourier transformation of G(τ)).
However, in our current implementation of the Prony algo-
rithm [60], the coefficients are exactly determined by the first
2n values of ηx, and if we choose a very small δτ , this algo-
rithm will either focus too much on details of the short-time
behavior of η(τ) or need to use a very large n for the expan-
sion in Eq.(9). This implementation-wise issue may be solved
in the future using an over-determined version of the Prony
algorithm instead [65], and in this work we will still stick to a
relatively large δτ similar to GTEMPO.

In Fig. 5, we further study the errors in the iGTEMPO
calculations against the two hyperparameters χ and m, for
εd = 0 and εd = 0.5 respectively. We use the average er-
ror, defined as

E(x⃗, y⃗) =
√

||x⃗− y⃗||2
L

(13)

to quantify the differences between two vectors x⃗ and y⃗ of
common length L. Interestingly, from Fig. 5(a, b) we can
see that the average errors between the iGTEMPO results and
the ED results decrease and saturate very rapidly against χ:
with χ = 30 the errors stop decreasing anymore. This is in
contrast with the finite GTEMPO calculations under the same
bath spectrum density, where it is found that the required bond
dimension is already larger than 100 at β = 40 and keeps
growing with the β [51]. These results also well agree with
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FIG. 5. (a, c) The average error between the zero-temperature Mat-
subara Green’s function calculated by iGTEMPO and that calculated
by ED for the Toulouse model with εd = 0, against (a) the bond
dimension χ and (c) the number of infinite Grassmann MPS multi-
plications, m, used in building the MPS-IF. (b, d) the same plots as in
(a, c) but for εd = 0.5. In (a, b) we have fixed m = 6, while in (c, d)
we have fixed χ = 60. We have used δτ = 0.1 in these simulations.

the intuition that the purely decaying hybridization function at
zero temperature would lead to a much lower bond dimension
of the underlying infinite GMPS compared to finite tempera-
ture. Therefore, although the zero-temperature limit is a hard
regime for the CTQMC methods, it could be an easy regime
for the iGTEMPO method. In Fig. 5(c, d), we can see that the
average errors decrease with larger m, which is expected since
the first-order discretization error in approximating e−F/2m

decreases with larger m. Meanwhile, the decrease of error
against m is not significant, which means that we can already
obtain accurate results with a very small value of m.

B. Single-orbital Anderson impurity model

Now we proceed to study the single-orbital AIM with

Ĥimp = εd
∑

σ

â†σâσ + Uâ†↑â
†
↓â↓â↑, (14)

where U is the Coulomb interaction and σ ∈ {↑, ↓} is the
electron spin index. We focus on the half-filling scenario with
εd = −U/2.

In Fig. 6, we plot the Matsubara Green’s function of the
single-orbital AIM calculated by iGTEMPO for U/D =
1, 2, 4, 8 respectively, with Dδτ = 0.1 (blue dashed lines)
and Dδτ = 0.05 (red dashed lines), and χ = 60 in both cases.
The CTQMC results for β = 100, 200 are also shown as com-
parisons (for CTQMC calculations we have used 8 Markov
chains and generated 107 samples per chain). We can see that
for all different Us the iGTEMPO results generally agree well
with the CTQMC results: the errors in the bulk are less than
1%, while for the few initial points the errors are around 5% or
less (again this is likely due to the first-order time discretiza-
tion error of the IF). In the insets we show the zoom of the
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FIG. 6. Zero-temperature Matsubara Green’s function G(τ) as a
function of the imaginary time τ for the single-orbital Anderson im-
purity model. The four panels show the results for (a) U/D = 1,
(b) U/D = 2, (c) U/D = 4 and (d) U/D = 8 respectively. The
blue and red dashed lines are the iGTEMPO results calculated with
δτ = 0.1 and δτ = 0.05 respectively (we have used χ = 60 in
both cases). The gray and black solid lines are CTQMC results for
β = 100, 200 respectively. The insets show the zooms for small τ .

initial imaginary-time steps, where we can clearly see that the
errors of iGTEMPO can indeed be suppressed with a smaller
δτ . Interestingly, the iGTEMPO results for U/D = 8 agree
best with the CTQMC results, which is similar to the observa-
tions in the finite-temperature case that the GTEMPO calcu-
lations are more accurate for larger U [51].

C. Two-orbital Anderson impurity model

Finally, we study the multiple-orbital AIM with impurity
Hamiltonian

Ĥimp =εd
∑

x,σ

â†x,σâx,σ + U
∑

x

â†x,↑â
†
x,↓âx,↓âx,↑

+ (U − 2J)
∑

x ̸=y

â†x,↑â
†
y,↓ây,↓âx,↑

+ (U − 3J)
∑

x>y,σ

â†x,σâ
†
y,σây,σâx,σ

− J
∑

x ̸=y

(â†x,↑â
†
x,↓ây,↑ây,↓ + â†x,↑â

†
y,↓ây,↑âx,↓),

(15)

where the additional parameter J is the Hund’s coupling
strength, and we have used x, y to label the orbitals. We fo-
cus on the two-orbital case with half filling, under parameters
U = 2, J = 0.5 and εd = −(3U − 5J)/2 [76]. The previous
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GTEMPO calculations for this model are limited to the high-
temperature regimes, that is, β = 10 for 2 orbitals and β = 2
for 3 orbitals, due to the fast growing bond dimensions of the
MPS-IFs with β [51]. In Fig. 7, we show our iGTEMPO cal-
culations using Dδτ = 0.1 and χ = 30, with comparisons
to the CTQMC results calculated with β = 100, 200. We
see very good match between the iGTEMPO results and the
CTQMC results, except for the initial points where the error
is around 5%, similar to the single-orbital and noninteracting
cases. Importantly, the iGTEMPO results are obtained using
a very small bond dimension 30 only (it can be seen from
Fig. 5(a,b) that the iGTEMPO results have indeed converged
at this bond dimension), which is in sharp contrast with pre-

vious GTEMPO calculations at finite temperature. Taken into
consideration the O(χ2M ) scaling of the computational cost
of iGTEMPO for M -orbital AIMs, it would be promising to
extend iGTEMPO to at least the M = 3 case.

V. SUMMARY

In summary, we have proposed an infinite GTEMPO
(iGTEMPO) method to solve zero-temperature equilibrium
quantum impurity problems. The iGTEMPO method explores
the time-translational invariance of the path integral for quan-
tum impurity problems and represents the multi-time impurity
state as an infinite Grassmann MPS, which thus benefits from
both the GTEMPO method and the infinite MPS algorithm: it
is free of the sampling noises and the bath discretization er-
ror (while time discretization error still exists), it is free of the
sign problem, and its computational cost is independent of β
as it directly works in the zero-temperature limit. Most impor-
tantly, due to the purely decaying hybridization function, the
required bond dimension of the infinite GMPS is expected to
be much smaller compared to the finite-temperature counter-
part, which is confirmed in our numerical simulations. With a
small bond dimension χ and the O(χ2M ) scaling of the com-
putational cost of iGTEMPO for M -orbital Anderson impu-
rity models, it is promising to use this method as an efficient
imaginary-time impurity solver to complement the CTQMC
solvers in the zero-temperature regime.
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