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The incommensurate charge density wave states (CDWs) can exhibit steady motion in the flow
limit after depinning, behaving as a nonequilibrium system with time-dependent states. Since the
moving CDW, like an electric current, breaks both time-reversal and inversion symmetries, one
may speculate the emergence of nonreciprocal nonlinear responses from such motion. However, the
moving CDW order parameter is intrinsically time-dependent in the lab frame, and it is known to
be challenging to evaluate the responses of such a time-varying system. In this work, following the
principle of Galilean relativity, we resolve this time-dependent hard problem in the lab frame by
mapping the system to the comoving frame with static CDW states through the Galilean trans-
formation. We explicitly show that the nonreciprocal nonlinear responses would be generated by
the movement of CDW states through violating Galilean relativity. Our work demonstrates not
only nonreciprocal nonlinear responses in nonequilibrium states but also the application of Galilean
transformation in simplifying time-dependent problems.

Introduction.— Nonreciprocal nonlinear responses can
manifest when inversion symmetry (and time-reversal
symmetry in many cases) is broken [1, 2]. These phe-
nomena have garnered significant theoretical and exper-
imental attention in recent years, notably in phenomena
such as nonlinear Hall effects [3, 4] and nonreciprocal
superconducting effects [2, 5–7]. However, while much
focus has been near the equilibrium states, nonrecipro-
cal nonlinear responses in nonequilibrium systems with
time-dependent states remain largely unexplored. Theo-
retical investigation of such responses in nonequilibrium
states is challenging due to the inherent time dependence
and dynamic nature of these systems.

In condensed matter physics, current-driven systems
can exhibit nonequilibrium behavior and intrinsic time-
dependence. For example, certain symmetry-breaking
orders would undergo motion once they surpass impurity-
pinning effects under an electric field beyond the thresh-
old. A notable example is the incommensurate charge
density wave (CDW), where intriguing dynamical prop-
erties emerge upon depinning [8–12]. In the limit of large
current, these CDW states flow steadily, representing a
nonequilibrium steady state.

A CDW motion breaks both inversion and time-
reversal symmetries (see illustrations in Figs. 1 (a) and
(c)), as implied in the seminar work by Allender, Bray,
and Bardeen [13]. One may naturally ask whether there
are any finite nonreciprocal nonlinear responses induced
by the current-driven motion [Fig. 1(a)]. However, di-
rectly addressing this problem is challenging due to the
intrinsic time dependence of a moving CDW in the lab
frame.

On the other hand, in classical physics, we know that
the principle of relativity is often powerful in simplify-
ing a problem by changing inertial frames. Following
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this principle, the moving CDW problem can be recon-
sidered in the comoving frame, where the CDW state
becomes static. In contrast to the lab frame, the asym-
metry induced by the external current appears to van-
ish in the comoving frame as illustrated in Figs. 1 (b)
and (d). As a result, one may expect that nonreciprocal
nonlinear responses vanish in the comoving frame. Look-
ing at the nonreciprocal nonlinear responses for moving
states within both the lab and comoving frame is indeed
puzzling but important in this field [12–14].
Motivated by exploring nonreciprocal nonlinear re-

sponses in nonequilibrium systems with time-dependent
state and the aforementioned puzzle, we explicitly study
nonreciprocal nonlinear responses in moving CDW states
in this work. We begin with a simple one-dimensional
(1D) CDW model, where the CDW order parameter
moves spatially at a constant velocity. Using the field
theory approach, we identify that the moving CDW state
can be mapped to a static one through the Galilean
transformation. The transformation is identical to the
change of inertial frames from the lab frame to the co-
moving frame with the CDW. We also argue that the
Galilean transformation dictates the invariance of the fi-
nite conductivity in the lab and comoving frames, facil-
itating the straightforward solution of optical responses
in the comoving frame. Based on this understanding,
we show that the nonreciprocal nonlinear responses are
absent with Galilean relativity, where the single-particle
dispersion is simply quadratic and thus Galilean invari-
ant. By introducing a quartic term to violate Galilean
relativity, we explicitly show that nonreciprocal nonlin-
ear responses would appear. Our work thus paves a way
to study nonreciprocal nonlinear responses in nonequilib-
rium states through Galilean transformation and resolve
the aforementioned important puzzle.
A moving CDW model and Galilean transformation.—

Let us first illustrate how we can map a time-dependent
problem in the lab frame onto a time-independent prob-
lem in the comoving using the principle of relativity. We
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FIG. 1. Illustration of the CDW states in the comoving
frame and the lab frame. (a) and (b) schematically show
the CDW order parameter in the comoving and lab frame,
respectively. The black arrow in (a) represents the CDW mo-
tion. The possible nonreciprocal nonlinear responses induced
by the moving CDW states are highlighted as the second har-
monic generation. (c) shows the moving CDW states in the
lab frame, where the Fermi momentum is shifted to ±kF +mv
and the CDW gap opens near these shifted Fermi momenta,
while (d) shows the CDW states in the comoving frame, where
the CDW gap opens at ±kF . Note that (c) cannot be sim-
ply regarded as the real energy dispersion due to the generic
time-dependent feature in the lab frame.

start with the simplest 1D continuum model with a mov-
ing CDW, which has been widely used to study the dy-
namics of a CDW [12, 13, 15]:

L = iψ†∂tψ − 1

2m
∂xψ

†∂xψ − ψ†V (x− vt)ψ, (1)

where ∂x denotes ∂
∂x , ψ(x, t) is a field operator for elec-

trons, m is an effective mass, and we set ℏ = 1 in the
main text. The CDW order parameter is

V (x− vt) = 2∆cos(2kF (x− vt)) (2)

with v the drift velocity of the CDW. The wave vector
of the CDW is denoted as 2kF , where kF =

√
2mϵF is

the Fermi wave vector at the Fermi energy ϵF . The elec-
tronic energy dispersion acquires an energy gap ∆ at the
Fermi level, corresponding to the CDW order parameter.
Such CDW states emerge in quasi-1D systems [12]. The
Lagrangian density L describes the dynamics of quasi-
1D CDW states driven by an electric current in the flow
region [12, 13, 15]. We shall assume disorder effects are
negligible in the flow region.

To eliminate the time dependence of the CDW or-
der parameter, we introduce the comoving frame by per-
forming the Galilean transformation on the coordinates
x′ = x − vt, t′ = t, ∂t = ∂′t − v∂x′ , ∂x = ∂x′ . The field
operator transforms as ψ = eiη(x,t)ψ′ with the phase fac-
tor η(x, t) = mvx− 1

2mv
2t; see Supplementary Material

(SM) Sec. I [16] for details. After this transformation,
the Lagrangian in the moving frame reads

L′ = iψ′†∂t′ψ
′ − 1

2m
∂x′ψ′†∂x′ψ′ − ψ′†V (x′)ψ′ (3)

with V (x′) = 2∆cos(2kFx
′). Comparing Eq. (1) with

Eq. (3), we can see that the exact Galilean invariance
does not exist due to the CDW order parameter. How-
ever, the problem in the lab frame with the moving po-
tential V (x − vt) is mapped to the one in the comov-
ing frame with the static potential V (x′). As there are
no extra new terms after Galilean transformation, we
would call the system exhibits Galilean relativity in this
case. Because of this Galilean relativity, the nonlinear
responses would not appear since the energy dispersion
is simply quadratic in the comoving frame without time
dependence. Note that the uniform electric field remains
unchanged during the Galilean transformation.
In general, there is no exact Galilean relativity in

solids. In this work, we invoke a violation of Galilean
relativity by introducing a quartic term:

δL = −λ∂2xψ†∂2xψ, (4)

which is allowed by any symmetries. In this case, the to-
tal Lagrangian is Lt = L+ δL. After the Galilean trans-
formation, it is straightforward to show the Lagrangian
in the comoving frame becomes L′

t = L′+δL′, where δL′

represents the quartic term in the comoving frame:

δL′ = −λψ′†∂4x′ψ′ − λm4v4ψ′†ψ′ + 4iλm3v3ψ′†∂x′ψ′

+6λm2v2ψ′†∂2x′ψ′ − 4iλmvψ′†∂3x′ψ′. (5)

It can be seen that when we consider a more general
dispersion, beyond the simplistic quadratic band, resid-
ual terms emerge in the Lagrangian, which cannot be
eliminated in the comoving frame. It is also interest-
ing to note that the terms that are odd in momentum
in Eq. (5) break inversion and time-reversal symmetries,
which is expected for moving CDWs but forbidden by
Galilean relativity previously. As we will see later, the
cubic-momentum term, i.e., the last term in Eq. (5), re-
sults in nonreciprocal nonlinear responses.
It is worth noting that we can map the Lagrangian to

be time-independent for the moving CDW model even
with the quartic term via Galilean transformation. This
allows us to evaluate some interesting effects that pre-
viously were hard to demonstrate in a time-dependent
system. To be specific, we shall focus on the nonrecipro-
cal nonlinear responses next.
The invariance of finite frequency responses under

Galilean transformation.— We next show that the non-
reciprocal nonlinear responses can be equivalently calcu-
lated in the comoving frame. The conductivity of nonlin-
ear responses is defined by expanding the current density
in the powers of external fields. For example, the n-th
order harmonic generation in the lab frame is obtained
from Jx(nω) = σxx(nω)E

n
x (ω), where n is a positive in-

teger and ω is the incident photon energy (ℏ = 1), Ex
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denotes the electric field along x-direction. Note that we
have simplified subscript in the conductivity; for exam-
ple, the second-order conductivity tensor σxxx(2ω) would
be simply labeled with σxx(2ω) or σ(2ω) below.

Now we show how the optical conductivity transforms
upon a Galilean transformation by using the Galilean
transformation relation of the electric field and current.
According to the minimal coupling principle, an elec-
tromagnetic field would appear in the Lagrangian by
replacing the ∂iψ in Eq. (1) as (∂i + ieAi)ψ, ∂iψ

† as
(∂i − ieAi)ψ

† [17]. Then the current-density operator
is jx = ∂Lt

∂Ax
|Ax=0. Upon the Galilean transformation

ψ = eiη(x,t)ψ′, we find that the current-density operators
in the lab and comoving frames satisfy

ĵ′x = ĵx + evψ′†ψ′, (6)

where ĵ′x is the current operator deduced from the La-
grangian L′

t. See the explicit derivations in SM Sec. III.
Note that Eq. (6) holds even with the quartic term. Sand-
wiching the current operator with the ground state, we
obtain the well-known Galilean transformation for the
current

J ′
x(t) = Jx(t) + evN, (7)

where t′ = t is used and the total electron number
N =

∫
dx′ ⟨ψ′†ψ′⟩ , where ⟨⟩ denotes the average over

the ground states. The form of Eq. (7) is consistent with
the one obtained from the relativity theory in classical
electrodynamics (SM Sec. II). Moreover, as shown in SM
Sec.III, we argue that Eq. (7) holds for a generic energy
dispersion by performing Galilean transformation in the
momentum space, where the group velocity of each elec-
tron is uniformly shifted by v. Operating

∫
dte−inωt on

both sides, we find J ′
x(nω) = Jx(nω) for ω ̸= 0. Here

we consider a finite frequency response because the DC
conductivity with ω = 0 is divergent without impurities.
Note that the current evN in Eq. (7) does not contribute
to the finite frequency response as N is time-independent
due to the conservation of total electron number in the
system. On the other hand, the electric fields of light
in the two frames are the same E′ = E when there
are no external magnetic fields [16, 18], resulting in
Ex(nω) = E′

x(nω). Using σ′
xx(nω) = J ′

x(nω)/E
′n
x (ω),

we find that the optical conductivity in the lab frame
and comoving frame are equal:

σxx(nω) = σ′
xx(nω). (8)

Hence, the finite frequency conductivity in the lab frame
and in the comoving frame related by a Galilean trans-
formation are equal.

The absence of nonreciprocal nonlinear responses in the
Galilean relativity limit.— For the simplest case, there is
no quartic term (λ = 0), so that the system exhibits
Galilean relativity. In this case, there is no inversion
symmetry breaking in the comoving frame even with a
moving CDW state. As a result, there are no nonrecip-
rocal nonlinear responses.

To further highlight that the k2 dispersion is special,
we now study the nonlinear transport for the energy dis-

persion ϵkx
=

k2
x

2m + λk4x in the absent of the CDW order
parameter. We shall consider a DC plus a small AC com-
ponent of the electric current: J(t) = J0 + Jac cos(ωt).
The DC component is to break the inversion symmetry.
It would be expected that the cubic nonlinear responses
V3 = R3J

3 (V3 is the voltage, R3 is the resistance) would
give rise to a 2ω-signal: V2ω = 3R3J0J

2
ac.

For the moment, we consider the electronic system
without CDW but with finite relaxation. From the Boltz-
mann transport equation (see SM Sec. V), we can de-
rive that the 2ω-component of conductivity given by the
third-order nonlinear response is

σ(3)(2ω) =
e4Γ(ω, τ)

4

∫
dkx
2π

f (0)∂3kx
v(kx) = 6e4λnΓ(ω, τ),

(9)

where the factor Γ(ω, τ) = 1
(2iω+τ−1)2(iω+τ−1) +

τ
(2iω+τ−1)(iω+τ−1)+

1
(2iω+τ−1)(iω+τ−1)2 , τ is the scattering

time, f (0) is the Fermi distribution function, the elec-

tron velocity v(kx) = ∂ϵ(kx)
∂kx

, and the electron density

n =
∫

dkx

2π f
(0)(ϵ(kx) − ϵF ). From the Eq. (9), it can be

seen that the nonreciprocal nonlinear responses giving
σ(2ω) signal are absent in the simplest quadratic band
dispersion (λ = 0). It becomes finite when the quartic
term is introduced.
The nonreciprocal nonlinear responses in the moving

CDW states.— Now we are ready to unveil the non-
reciprocal nonlinear responses within an intrinsic time-
dependent system: the moving CDW states described
by the Lagrangian Lt . As demonstrated earlier, the fi-
nite frequency conductivity remains unchanged under the
Galilean transformation. Consequently, we can address
this challenging problem in the comoving frame using the
Lagrangian L′

t

To calculate the nonreciprocal nonlinear responses, we
first deduce the low-energy Hamiltonian given by L′

t. Ac-

cording to Eq. (5) and using ψ′
k′
x
=

∫
dx′e−ik′

xxψ′(x′), the

energy dispersion in the comoving frame becomes

ϵk′
x
=
k′2x
2m

+ 4λm3v3k′x + 6λm2v2k′2x + 4λmvk′3x + λk′4x .

(10)
Then we can expand the momentum of the states near

the Fermi momentum (k′x = k̃x+skF with s = ± branch)
and consider the CDWs would couple these two branches.
The resulting low-energy Hamiltonian (up to the second

order in k̃x) in the comoving frame is given by

H0(k̃x) =

(
ϵ̃+,k̃x

∆

∆ ϵ̃−,k̃x

)
(11)

where

ϵ̃s,k̃x
= (sṽF + δvF )k̃x + (sβ̃ + δβ)k̃2x + sα̃, (12)
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FIG. 2. The second harmonic optical absorptions charac-

terized by Im[σ(2ω)] (in units of β̃e3

2ω2 ) versus the photon fre-
quency ω, where γ/∆ = 0.01. The blue and back dashed lines
respectively represent the case with CDW motion (v ̸= 0) and
without CDW motion (v = 0). The inset schematically shows
the optical excitation processes of the CDW folded bands in
the comoving frame.

Here, the coefficients are ṽF = vF + 12λm2v2kF +
4λk3F , δvF = 4λm3v3 + 12λmvk2F , δβ = 1

2m + 6λm2v2 +

6λk2F , α̃ = 4λmvkF (k
2
F +m2v2), β̃ = 12λmvkF . Impor-

tantly, when λ ̸= 0, the sβ̃k̃2x term that breaks the in-
version symmetry is finite, which would be essential for
the second-order nonlinear optical responses as we would
show next.

Inserting the Hamiltonian H0(k̃x) into the formula of
nonlinear optical responses [19] (see SM VI for details),
we find that the second-order nonlinear optical conduc-
tivity is given by

σ(2ω) =
β̃e3

2ω2
[2F (

ω + iγ

∆
) + F (

2ω + iγ

∆
)]. (13)

Here, ω is the photon frequency, γ is a small
damping parameter, the function F (a) =
1
2π [

π
a + 8

a
√
a2−4

(arctanh( a√
a2−4

) − arctanh( a−2√
a2−4

))],

and F (ω+iγ
∆ ), F ( 2ω+iγ

∆ ) arise from one-photon and
two-photon processes, respectively.

The imaginary part of σ(2ω) representing the second
harmonic absorption is plotted in Fig. 2. Note that the
real part of σ(2ω) is directly related to Im[σ(2ω)] ac-
cording to the Kramers–Kronig relations [20]. The one-
photon and two-photon absorption peaks near ω = 2∆
and ω = ∆ can be clearly seen. It is worth noting that
σ(2ω) ∝ β̃ ∝ λmv, while β̃ arises from the cubic term in
Eq. (10) induced by the additional quartic term in the
lab frame. Moreover, as expected, the second-order non-
reciprocal nonlinear responses are finite only when the
CDW states are moving, i.e. v ̸= 0 so that β̃ ̸= 0. There-
fore, we have explicitly demonstrated the nonreciprocal
nonlinear responses in the moving CDW states through
the Galilean transformation.

It is important to note that with an external excita-
tion at optical frequencies above the CDW energy gap,

VVc

(a)

σ 
(2

ω
)

Vc

(b)

σ 
(2

ω
)

(c)Transport limit
ω << Δ

Optical limit
ω~ Δ

Pinned

Creep

Flow

0

without GR

with  GR

V Vc V

I

FIG. 3. Schematics of nonlinear responses in moving CDW
states. (a) Nonlinear voltage (V )- current (I) relation to high-
light the pinned, creep, and flow region respectively. (b) and
(c) schematically depict second-order nonlinear response char-
acterized by σ(2ω) under the electric field in the transport
limit (ω ≪ ∆) and the optical limit (ω ∼ ∆). The σ(2ω) of
the flow region in the optical limit with and without Galilean
relativity (GR) are highlighted as solid blue lines, where our
theory applies.

the quasi-particle effects that we have discussed are dom-
inant. It should be distinguished from the transport re-
gion, where the interaction between impurities and collec-
tive modes of the CDW should dominate finite frequency
responses [11, 12]. As shown in Fig. 3(a), in general,
the current-driven CDW states exhibit three distinct re-
gions: the pinned, creep, and flow regions according to
the strength of the electric field. The pinned region may
exhibit nonlinear responses due to the distortion of the
CDW, while the nonlinear responses are expected to peak
around the creep region where the depinning motion of
CDW is strongest. Our speculation for the nonlinear re-
sponses in the transport region (ω ≪ ∆) is shown in
Fig. 3(b), where the nonlinear responses mostly stem
from the creep motion of the sliding density wave. In
the optical limit (ω ∼ ∆), the quasiparticle effects would
be more crucial, which fits our interest in this work. In
this case, our results imply that the second-order nonlin-
ear conductivity within the flow region linearly increases
with the current in the case without emergent Galilean
relativity [see the solid blue lines in Fig. 3(c)].

Conclusions and Discussions.— In summary, we have
demonstrated the nonreciprocal nonlinear responses in
a nonequilibrium system with time-dependent states—
moving CDW states through Galilean transformation.
Our work not only opens a new avenue in studying non-
reciprocal nonlinear responses in nonequilibrium systems
but also introduces a new technique Galilean transforma-
tion in resolving finite frequency responses of nonequilib-
rium steady states. Looking ahead, we encourage experi-
mentalists to revisit the quasi-1D CDW materials such as
TaS3, NbSe3, etc. [12], and explore their nonreciprocal
nonlinear optical responses above the gap using advanced
terahertz light measurements. A comparative analysis of
experimental results with our theoretical insights would
be intriguing. Furthermore, we note that the nonrecipro-
cal nonlinear responses would also appear in some other
current-driven systems, such as superconductors [21–23],
Weyl materials [24]. However, it is worth pointing out
that there is no clear intrinsic time dependence in the
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lab frame for these systems, which is in contrast with
the moving CDW states. Nevertheless, it would be inter-
esting to revisit the nonlinear nonreciprocal responses in
current-driven superconductors or topological materials
in the comoving frame with our theoretical framework
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I. GALILEAN TRANSFORMATION ON THE
FIELD OPERATOR

The simplest Lagrangian we are dealing with in this
work carries the following form:

L = iψ†∂tψ − 1

2m
∂iψ

†∂iψ − ψ†V (x, t)ψ. (S1)

Let us perform the Galilean transformation: x′ = x− vt,

t′ = t, ∂
∂t = ∂

∂t′ +
∂x′

∂t
∂

∂x′ = ∂
∂t′ − v ∂

∂x′ ,
∂
∂x = ∂

∂x′ . To
compensate for the coordinate changes, the field operator
should also been transformed

ψ = eiη(x
′,t′)ψ′. (S2)

After the transformation, the Lagrangian becomes

L′ = iψ′†∂t′ψ
′ − [∂t′η − v∂x′η +

1

2m
(∂x′η)2]ψ′†ψ′

−ivψ′†∂x′ψ′ − i

2m
(∂x′η)[(∂x′ψ†)ψ′ − ψ†∂x′ψ]

− 1

2m
∂x′ψ′†∂x′ψ′ − ψ′†V ′(x′, t′)ψ′. (S3)

To cancel the term in ψ′†∂x′ψ′,

−iv + i

m
∂x′η = 0. (S4)

Then it requires

∂x′η = mv (S5)

We can further fix the form of η by considering the
system is Galilean invariant in the case without spatial
dependent potential V ′(x′, t′) = V (x, t) = 0. In this case,
the Lagrangian would exhibit the same form in the lab
frame and moving frame if

∂t′η − v∂x′η +
1

2m
(∂x′η)2 = 0. (S6)

Now we obtain the phase factor on the field operator
under Galilean transformation is given by

η = mvx′ +
1

2
mv2t′ = mvx− 1

2
mv2t. (S7)

In the case of moving CDW, the potential V (x, t) =
V (x − vt) is mapped to V (x′) in the comoving frame
after the Galilean transformation.

In a broader context, we aim to execute a gauge trans-
formation, denoted as ψ = eiη(x,t)ψ′, to convert a time-
dependent problem into a time-independent one. Since

this transformation merely alters the phase of the field
operator, the physical outcomes remain unaffected by the
specific choice of η(x, t). In essence, we can endeavor
to apply an appropriate gauge transformation to a more
generic Lagrangian, thereby transitioning from a time-
dependent scenario to a stationary one.

II. TRANSFORMATION OF
ELECTROMAGNETIC FIELDS AND CURRENT

FROM SPECIAL RELATIVITY

To make the work self-content, let us summarize the
transformation of electromagnetic fields and current from
special relativity here [18], which has been used in the
main text in understanding the optical responses of the
moving CDW states.
The antisymmetric field-strength tensor is

Fαβ =

 0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (S8)

Here, Ei and Bi denote the electric and magnetic field,
respectively, along i-direction. Under the Lorentz trans-
formation,

F ′αβ =
∂x′α

∂xγ
∂x′β

∂xδ
F γδ. (S9)

where the four vector xα = (ct, x, y, z), and c is the speed
of light. The Galilean transformation is recovered by
taking the small velocity limit v ≪ c. Let us simply
take the transformation along x-direction, then the boost
matrix is simplified as

A =

 γ −v
cγ 0 0

−v
cγ γ 0 0
0 0 1 0
0 0 0 1

 . (S10)

Here, γ =
√

1− v2/c2 is the Lorentz factor. In this case,
the Lorentz transformation of the field-strength tensor
can be represented in a matrix form:

F ′ = AFAT . (S11)

According to this transformation, in the low-velocity
limit, the electromagnetic fields transform can be de-
duced as

E′ = E +
v

c
×B (S12)

B′ = B − v

c
×E (S13)
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The four vector Jα = (cρ,J). Under the Lorentz trans-
formation,

J ′α =
∂x′α

∂xβ
Jβ (S14)

or in the matrix representation

J ′ = AJ. (S15)

Then the charge and current transform as.

ρ′ = ρ− v · J
c2

≈ ρ, J ′ = J − vρ (S16)

For the electrons, the Galilean transformation of current
is thus given by

J ′ = J +Nev. (S17)

Here, N is the number of eletrons.

III. THE CURRENT RELATION BETWEEN
THE LAB AND COMOVING FRAME UNDER

THE GALILEAN TRANSFORMATION

A. The current relation under the Galilean
transformation up to quartic term in real-space

To derive the current operator, we consider the La-
grangian in the presence electromagnetic fields as

L[Ai] = iψ†∂tψ − 1

2m
(∂iψ

† − ieAiψ
†)(∂i + ieAi)ψ

−ψ†V (x− vt)ψ + δL[Ai], (S18)

δL = −λ(∂i − ieAi)
2ψ†(∂i + ieAi)

2ψ. (S19)

Here, we set i = x without loss of generality. To make
the derivation more general, the quartic term δL is also
included. As we would show later, the quartic term plays
a crucial role in affecting the nonlinear nonreciprocal re-
sponses.

The current operator is given by

ĵi =
∂L
∂Ai

|Ai=0 =
ie

2m
(ψ†∂iψ − ∂iψ

†ψ) + δĵi,(S20)

δĵi = 2ieλ(∂iψ
†∂2i ψ − ∂2i ψ

†∂iψ). (S21)

Here, δĵi arises from the quartic term.
To obtain the current operator in the comoving frame,

we can first write down the Lagrangian in the comoving
frame as

L′ = iψ′†∂t′ψ
′− 1

2m
∂x′ψ†∂x′ψ−ψ′†V (x′)ψ′+δL′. (S22)

Here,

δL′ = −λeiη(x
′,t′)ψ′†∂4x′ [e−iη(x′,t′)ψ′]

= −λm4v4ψ′†ψ′ + 4iλm3v3ψ′†∂x′ψ′ + 6λm2v2ψ′†∂2x′ψ′

−4iλmvψ′†∂3x′ψ′ − λψ′†∂4x′ψ′. (S23)

Similarly, the current-density operator in the comoving
frame given by the Lagrangian is

ĵ′x =
ie

2m
(ψ′†∂x′ψ′ − ∂x′ψ′†ψ′) + 4eλm3v3ψ′†ψ′

+6ieλm2v2(ψ′†∂x′ψ′ − ∂x′ψ′†ψ′) + 12λemvψ′†∂2x′ψ′

+2ieλ(∂x′ψ†∂2x′ψ′ − ∂2x′ψ′†∂x′ψ′). (S24)

To see the relation between ĵ′x and ĵx, we can express

ĵx in the comoving frame. Using ψ = eiηψ′ and Eq. (S21)
and (S21), we deduce that

ĵx =
ie

2m
(ψ′†∂′iψ − ∂′iψ

′†ψ′)− evψ′†ψ′ + 4eλm3v3ψ′†ψ′

+6ieλm2v2(ψ′†∂iψ
′ − ∂iψ

′†ψ′) + 12eλmevψ′†∂2i ψ
′

+2ieλ(∂iψ
′†∂2i ψ

′ − ∂2i ψ
′†∂iψ

′).

(S25)

By comparing Eqs. (S24) and (S25), we find

ĵ′x = ĵx + evψ′†ψ′ (S26)

Let us denote the ground state in the lab frame as

|G⟩ = ΠN
j=1

∫
dxψ†

j (x, t) |0⟩ (S27)

Then, the ground state in the comoving frame reads

|G′⟩ = ΠN
j=1

∫
dx′ψ′†

j (x
′, t′) |0⟩

= ΠN
j=1

∫
dxeiη(x,t)ψ†

j (x, t) |0⟩ (S28)

It can be seen that

⟨G′|ĵ′x|G′⟩ = ⟨G|e−iη ĵxe
iη|G⟩+ ev ⟨G′|ψ′†ψ|G′⟩

= ⟨G|ĵx|G⟩+ evN. (S29)

Therefore, we have demonstrated the current relation un-
der Galilean transformation still holds for the Lagrangian
even with quartic term:

J ′
x(t

′) = Jx(t) + evN. (S30)

Here, we define J ′
x(t

′) = ⟨G′|ĵ′x|G′⟩, and Jx(t) =

⟨G|ĵx|G⟩. Next, let us try to argue the above relation
still holds for a generic energy dispersion through the
Galilean transformation in the momentum space.

B. The current relation with a generic dispersion
through the Galilean transformation in the

momentum space

The Lagrangian of the comoving frame in the momen-
tum space reads

L′ = i
∑
k′

ψ′†
k′∂t′ψk′ − ϵ(k′)ψ′†

k′ψ
′
k′ + LCDW (S31)



3

As the CDW is a potential term, it would affect the
ground states but not affect the current operator. So we
next derive the current operator using the Lagrangian

L′
0 = i

∑
k′

ψ′†
k′∂t′ψk′ − ϵ(k′)ψ′†

k′ψ
′
k′ . (S32)

Then the current operator in the comoving frame reads

Ĵ ′ = e
∑
k′

∂ϵ(k′)

∂k′
ψ′†
k′ψ

′
k′ . (S33)

The field operators in the two frames are related through

ψk(t) =
∫
dxe−ikxψ(x, t) = e−i(kv− 1

2mv2)t′ψ′
k−mv(t

′), or
equivalently

ψ′
k′(t′) = ei(k

′v+ 1
2mv2)tψk′+mv(t). (S34)

Let us define k = k′ + mv, and after this Galilean
transformation in the momentum space, we find that the
Lagrangian in the lab frame is given by

L0 = i
∑
k

ψ†
k∂tψk−[ϵ(k−mv)+kv− 1

2
mv2]ψ†

kψk. (S35)

The current operator in the lab frame is given by

Ĵ = e
∑
k

(
ϵ(k −mv)

∂k
+ v)ψ†

kψk. (S36)

Let us denote the ground states in the presence of ex-
ternal fields and CDW as |G′⟩ (|G⟩) in the comoving (lab)
frame. Then the current in comoving frame is

J ′(t) = e
∑
k′

∂ϵ(k′)

∂k′
⟨G′|ψ′†

k′ψ
′
k′ |G′⟩ (S37)

while the current in the lab frame is

J ′(t) = e
∑
k

(
ϵ(k −mv)

∂k
+ v) ⟨G|ψ†

kψk|G⟩ (S38)

Here, we have considered that the number of electrons
does not change in the ground states upon Galilean trans-
formation. It can be seen that the group velocity of each
electron is uniformly shifted by v. As a result, we finally
obtain the relation:

J ′(t) = J(t) + evN (S39)

where the total number of electrons N =∑
k′ ⟨G′|ψ†

k′ψk′ |G′⟩.

IV. OPTICAL RESPONSES FORMALISM

In this section, we present the detailed derivations
of the linear and second-harmonic optical conductivity.
Note that to make the unit of conductance clear, we
would keep the ℏ below (which was set to be 1 in the

main text). The linear optical conductivity is given by
the bubble diagram [19],

σµα(ω;ω) =
ie2

ℏω
∑
a̸=b

∫
ddk

(2π)d
fabv

α
abv

µ
ba

ω − ϵba
. (S40)

where d is the spatial dimension, the sandwich of ve-
locity operator between interband vαab = ⟨a|∂kαH(k)|b⟩,
the energy and Fermi distribution difference between
the band ϵa and ϵb are represented as ϵba = ϵb − ϵa,
fab = f(ϵa)− f(ϵb), respectively.
The Hamiltonian we are dealing with generally takes

the following form:

H(k) =

(
ξ+(k) ∆
∆ ξ−(k)

)
. (S41)

It is easy to show that the eigenvalues of

H ′(k) is given by E± = ξ+(k)+ξ−(k)
2 ± ϵ(k)

with ϵ(k) =
√

(ξ+(k)−ξ−(k))2

4 +∆2, the eigenfunc-

tions are |E+⟩ = (cos θk
2 , sin

θk
2 )T , and |E−⟩ =

(− sin θk
2 , cos

θk
2 )T with sin θk = ∆/ϵ(k). As a result,

vx+−(k) = ⟨E+|∂kx
H|E−⟩ = 1

2 sin θk(∂kx
ξ− − ∂kx

ξ+) =
∆

2ϵ(k) (∂kx
ξ− − ∂kx

ξ+).

In the main text, the focus is the nonlinear responses.
Here, let us try to show that the linear optical response
also satisfies Galilean relativity. For simplicity, we set
λ = 0 as the finite linear responses do not have to involve
the quartic term. In this case, in the comoving frame, the
Hamiltonian reads,

H ′(k) =

(
vF kx ∆
∆ −vF kx

)
(S42)

In contrast, the Hamiltonian in the lab frame is written
as

H(k, t) =

(
vF+kx ∆e−iω0t

∆eiω0t −vF−kx

)
. (S43)

In general, it is difficult to obtain the optical conductiv-
ity in the lab frame due to the time dependence. But
in the low drift velocity limit, ℏω0 ≈ v

vF
EF ≪ ∆, we

may replace the time-dependent phase change ω0t with
a constant phase to study the optical responses using

H0(k) =

(
vF+k ∆
∆ −vF−k

)
. (S44)

Note that a constant phase on ∆ can always be gauged
out. It is worth noting that in the small drift velocity
approximation, inversion and time-reversal symmetries
are still broken in the lab frame, different from the case
of the co-moving frame.
Now let us replace the Hamiltnoian H(k) with H0(k).

Note that the linear optical responses are dominant by
the linearized Hamiltonian, while higher-order terms can
be neglected. It can be seen that

vx+− = −∆(vF+ + vF−)

ω
. (S45)
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The linear optical conductivity at zero-temperature
limit given by the two-band model H0(k) is

σxx
R (ω;ω) =

e2

ℏω
∑
a̸=b

∫
[dk]fabv

x
abv

x
baδ(ω − Eba)

=
e2

ℏω

∫
dkx
2π

(f− − f+)|vx+−|2δ(ω − 2ϵ(kx))

=
e2

ℏω
|vx+−(kx0)|2

|∂kx0ϵ(kx0)|
with 2ϵ(kx0) = ω. (S46)

Inserting Eq. (S45) and using |∂kx0
ϵ(kx0)|−1 =

ω√
ω2/4−∆2(vF++vF−)

, we find that

σxx
R (ω;ω) =

4e2∆2(vF,+ + vF,−)

ℏω2
√
ω2 − 4∆2

. (S47)

For the Hamiltonian H ′(k) in the comoving frame, we
can simply replace vF± as vF in the optical conductiv-
ity. It can be seen that the linear optical conductivity
is the same in the comoving frame and lab frame, being
consistent with our argument from Galilean relativity.

Next, we present the formulism for the second-order
optical responses. The optical conductivity for the
second-harmonic generation can be rewritten as [19]

σµαβ(2ω;ω, ω) = σµαβ
I (2ω;ω, ω) + σµαβ

II (2ω;ω, ω), (S48)

σµαβ
I = − e3

2ℏ2ω2

∑
a ̸=b

∫
[dk]fab

vαabv
µβ
ba + vβabv

µα
ba

ω − ϵab

+fab
vαβab v

µ
ba

2ω − ϵab
, (S49)

σµαβ
II = − e3

2ℏ2ω2

∑
a ̸=b̸=c

∫
[dk]

(vαabv
β
bc + vβabv

α
bc)v

µ
ca

ϵab + ϵcb
(

2fac
2ω − ϵca

+
fcb

ω − ϵcb
+

fba
ω − ϵba

). (S50)

where 2ω and ω in Eqs. (S49) and (S50) character-
ize the contributions from two-photon and one-photon
processes, respectively. The second-order derivation of

Hamiltonian vµβba = ⟨bk|∂kµ
∂kβ

H(k)|ak⟩. The contribu-
tion that involves two (three) different bands is labeled as

σµαβ
I (σµαβ

II ), respectively. For the compact of notations,
in the following, we label the second-harmonic generation
response tensor σxxx(2ω;ω, ω) ≡ σxxx(2ω).

V. NONLINEAR TRANSPORT INDUCED BY
THE QUARTIC TERM IN THE LAB FRAME

For a current-driven system, the time-reversal and in-
version symmetry are broken so one may expect non-
reciprocal nonlinear transport. But as we discussed
Galilean relativity would constrain the nonlinear re-
sponses. If we break Galilean relativity, such as with
some higher momentum terms, the non-reciprocal non-
linear responses could be back. As an illustration, we

now present the study of nonlinear transport with a more
generic band dispersion:

ϵ(kx) =
k2x
2m

+ λk4x, (S51)

where the higher-order term (the second term) breaks the
Galilean relativity. Note that our discussion in this sec-
tion does not involve the CDW order, but focuses on the
nonlinear transport given by the simple band ϵ(kx). In
the below, we show that the nonlinear transport is only
contributed by this higher-order term using the Boltz-
mann transport theory.
As we mentioned in the main text, to extract the

second-harmonic nonlinear responses, the experiment
can replace the current with a DC one plus a small AC
component: J(t) = J0 + Jac cos(ωt). The DC compo-
nent is to break the inversion symmetry. It would be
expected that the cubic nonlinear responses V3 = R3J

3

(V3 is the voltage, R3 is the resistance) would give rise to
a 2ω-signal: V2ω = 3R3J0J

2
ac. So next, we would evalu-

ate the nonlinear conductivity σ(2ω) for the third-order
nonlinear responses.
The transport current in the semi-classical approach is

given by

j = −e
∑
n

∫
dk

(2π)d

∑
n

fnvn, (S52)

Here, n is the band index, f is the Fermi-distribution
function. The group velocity is given by

vn(k) =
1

ℏ
∂ϵn
∂k

− e

ℏ
E ×Ωn, (S53)

where E is the electric field, Ωn is the Berry curvature of
the n-th band. For our single-band consideration (n = 1),
the group velocity is reduced to vn(k) =

1
ℏ
∂ϵn
∂k .

We can expand the Fermi-distribution function order
by order in terms of E. To obtain the third-order non-
linear responses, we expand the current up to the third-
order:

j(1) = −e
∫

dk

(2π)d

∑
n

f (1)n vn, (S54)

j(2) = −e
∫

dk

(2π)d

∑
n

f (2)n vn, (S55)

j(3) = −e
∫

dk

(2π)d

∑
n

f (3)n vn. (S56)

The Fermi-distribution correction can be determined
through the Boltzmann equation:

∂tf − eE(t)

ℏ
· ∇kf + v∇rf = I(f). (S57)

Here, I(f) is the collision function, r is the position vec-
tor. To drive the DC plus AC current, the applied electric
field can be denoted as

E(t) = E0 +Re[Eeiωt]. (S58)
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Using the scattering time approximation, I(f) = − f−f0
τ ,

and assume f is uniform, it yields

∂tf − eE(t)

ℏ
· ∇kf = −f − f0

τ
. (S59)

Let us expand, f(k, t) = f0 + f (1)(k, t) + f (2)(k, t) +
f (3)(k, t), and solve the equation iteratively. Here, the
order is characterized by the electric field E. The Boltz-
mann equation for the first-order response is then given
by

∂tf
(1) − eE(t)

ℏ
· ∇kf

(0) = −f
(1)

τ
. (S60)

Perform Fourier transformation on both sides with f (1) =∑
p f

(1)
p eipωt (p are integers), we find

f (1)n (t) =
eE0aτ

ℏ
∂ka

f (0)n +
e

2ℏ
[
Ea∂ka

f
(0)
n

iω + τ−1
eiωt

+
Ea∂kaf

(0)
n

−iω + τ−1
e−iωt]. (S61)

Similarly, the Boltzmann equation to the higher order
reads

∂tf
(k+1) − eEa(t)

ℏ
∂ka

f (n) = −f
(k+1)

τ
. (S62)

In the frequency space, we obtain

f (k+1)
n (mω) =

eEa(m1ω)

ℏ(imω + τ−1)
∂kaf

(k)
n (m2ω)δm1+m2,m.

(S63)
Here, m and mi are integers. Inserting Eq. (S61) into the
iteration equation Eq. (S63), we obtain the second-order
correction of Fermi distribution

f (2)n = f (2)n (0) +
∑
±
f (2)n (±ω)e±iωt + f (2)n (±2ω)e±i2ωt.

(S64)
Here,

f (2)n (0) =
τ2e2E0aE0b

ℏ2
∂ka

∂kb
f (0)n , (S65)

f (2)n (±ω) =
τe2EaE0b∂ka∂kb

f
(0)
n

2ℏ2(±iω + τ−1)
+
e2E0aEb∂ka∂kb

f
(0)
n

2ℏ2(±iω + τ−1)2
,

(S66)

f (2)n (±2ω) =
e2

4ℏ2
EaEb∂ka∂kbf

(0)
n

(±2iω + τ−1)(±iω + τ−1)
. (S67)

Inserting f
(2)
n into the iteration equation Eq. (S63)

again, we find the third-order correction on the Fermi-
distribution function reads

f (3)n = f (3)n (0) +
∑
±
f (3)n (±ω)e±iωt +

∑
±
f (3)n (±2ω)e±2iωt

+
∑
±
f (3)n (±3ω)e±3iωt. (S68)

The specific form of 2ω component is written as

f (3)n (±2ω) =
eE0c∂kc

f
(2)
n (2ω)

ℏ(2iω + τ−1)
+
eEc∂kc

f
(2)
n (ω)

2ℏ(i2ω + τ−1)
,

=
3e3E0aEbEcΓ(ω, τ)∂ka

∂kb
∂kc

f
(0)
n

4ℏ3
(S69)

where

Γ(ω, τ) =
1

(2iω + τ−1)2(iω + τ−1)
+

τ

(2iω + τ−1)(iω + τ−1)

+
1

(2iω + τ−1)(iω + τ−1)2
. (S70)

Inserting Eq. (S69) back to Eq. (S56) term, the 2ω-
component of conductivity given by the third-order non-
linear response is

σ
(3)
abc(2ω) =

e4Γ(ω, τ)

4ℏ3

∫
dk

(2π)d
f (0)n ∂ka

∂kb
∂kc

vn(k).

(S71)

Here, we have performed integration by parts to put the
Fermi distribution function ahead.
For the dispersion ϵ(kx) =

k2
x

2m+λk4x, the group velocity

v(kx) =
kx

m + 4λk3x. Then we obtain

σ(3)
xxx(2ω) =

e4Γ(ω, τ)

4ℏ3

∫
dkx
2π

f (0)∂3kx
v(kx),

=
6e4λnΓ(ω, τ)

ℏ3
. (S72)

Here, the electron density n =
∫

dkx

2π f
(0)(ϵ(kx)− ϵF ). In-

terestingly, we can see that the nonlinear transport would
be finite only when the higher order term is there (λ ̸= 0).

VI. NONLINEAR RESPONSES INDUCED BY
THE QUARTIC TERM STUDIED IN THE

COMOVING FRAME

In the previous section, we have introduced a quartic
term into the Hamiltonian in the lab frame, i.e.,

δH = λψ†∂4xψ (S73)

It turns out that this term plays a crucial role in affecting
the nonlinear transport in the lab. The natural question
is how it would modify the nonlinear responses in the
comoving frame. Here, the comoving frame is the frame
in which the CDW order parameter is static.
To address this question, we can perform the Galilean

transformation is

ψ = eiη(x
′,t′)ψ′ (S74)

with η(x′, t′) = mvx′ + 1
2mv

2t′. Here, we perform such
a gauge transformation in order to make the CDW order
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parameter static. In the comoving frame, the quartic
Hamiltonian becomes

δH = λe−iη(x′,t′)ψ′†∂4x′ [eiη(x
′,t′)ψ′]

= λm4v4ψ′†ψ′ − 4iλm3v3ψ′†∂x′ψ′ − 6λm2v2ψ′†∂2x′ψ′

+4iλmvψ′†∂3x′ψ′ + λψ′†∂4x′ψ′. (S75)

It can be seen that there are residual higher order terms
in the comoving frame that break the explicit Galilean

relativity. Using ψ′
k̃x

=
∫
dx′e−ik̃xx

′
ψ′(x′), we find that

in the comoving frame, the energy dispersion including
both the original quadratic term and the higher order
term becomes

ϵk′
x
=
k′2x
2m

+ 4λm3v3k′x + 6λm2v2k′2x + 4λmvk′3x + λk′4x .

(S76)
The constant term in Eq. (S75) is dropped, which is sim-
ply shifted the chemical potential. Next, let us see how
the cubic term in ϵk′ would give rise to the second har-
monic generation in the comoving frame.

We expand the states near the Fermi momenta (k′x =

k̃x + skF ) with s = ± up to k̃2x term:

ϵ̃s,k̃x
≈ (sṽF + δvF )k̃x + (sβ̃ + δβ)k̃2x + sα̃, (S77)

with

ṽF = vF + 12λm2v2kF + 4λk3F , (S78)

δvF = 4λm3v3 + 12λmvk2F , (S79)

β̃ = 12λmvkF , (S80)

δβ =
1

2m
+ 6λm2v2 + 6λk2F , (S81)

α̃ = 4λmvkF (k
2
F +m2v2) (S82)

Here β̃ arises from the cubic term in Eq. (S76) that breaks
the inversion symmetry, which would be essential for the
second-order nonlinear optical responses as we would see
later.

The low-energy Hamiltonian for the CDW state is
given by

H0(k̃x) =

(
ϵ̃+,k̃x

∆

∆ ϵ̃−,k̃x

)
(S83)

The focus here would be the nonlinear responses. Still

only the two-band process σµαβ
I is finite. We assume

the higher order term is small so that ṽF ≫ δvF , β̃, δβ
so that the eigenstates are approximately given by the
lowest order. On the other hand, the interband matrix
element for the second-order derivative of Hamiltonian
(see Sec. IV) is

vxx+− ≈ −β̃ sin θk̃x
. (S84)

where sin θk̃x
≈ ∆

ϵ(k̃x)
, with ϵ(k̃x) =

√
ṽ2F k̃

2
x +∆2. Note

that the terms in Eq. (S83) with identity matrix does

not contribute as the eigen wavefunctions of two different
bands are orthogonal. Similar to the previous section, we
can easily find

vx+− ≈ −∆ṽF

ϵ(k̃x)
= −ṽF sin θk̃x

. (S85)

.
The second-harmonic generation (only two-band pro-

cess contributes) at zero-temperature limit is given by

σxxx
I (2ω) =

e3

2ℏ2ω2

∫
dk̃x
2π

[
2vx+−v

xx
−+

ω + iγ − ϵ+−
+

vxx+−v
x
−+

2ω + iγ − ϵ+−
].

(S86)

Here, ϵ+− = 2ϵ(k̃x) = 2
√
ṽ2F k̃

2
x +∆2 , γ is a small quan-

tity due to possible dissipation. The second-order non-
linear optical conductivity is given by

σxxx
I (2ω) =

β̃e3

2ℏ2ω2

∫
dk̃x
2π

[
2ṽF sin2 θk̃x

ω + iγ − 2ϵ(k̃x)

+
ṽF sin2 θk̃x

2ω + iγ − 2ϵ(k̃x)
] (S87)

The one-photon process is related to the function∫ +∞

−∞

dk̃x
2π

ṽF∆
2

(ṽ2F k̃
2
x +∆2)[ω + iγ − 2

√
ṽ2F k̃

2
x +∆2]

=
1

2π

∫ +∞

−∞
dt

1

(t2 + 1)[ ω∆ + i γ∆ − 2
√
t2 + 1]

=
1

2π
[
π

a
+

8

a
√
a2 − 4

(arctanh(
a√

a2 − 4
)

−arctanh(
a− 2√
a2 − 4

))]

≡ F (a =
ω + iγ

∆
) (S88)

with t = ṽF k̃x

∆ , and a = ω+iγ
∆ . Similarly, the two-photon

process is related to

F (b =
2ω + iγ

∆
) =

1

2π
[
π

b
+

8

b
√
b2 − 4

(arctanh(
b√

b2 − 4
)

−arctanh(
b− 2√
b2 − 4

))]. (S89)

with b = 2ω+iγ
∆ . Finally, we find that the second-order

nonlinear optical conductivity is given by

σxxx
I (2ω) =

β̃e3

2ℏ2ω2
[2F (

ω + iγ

∆
) + F (

2ω + iγ

∆
)]. (S90)

Next, let us study the nonlinear transport using the
dispersion ϵk′ in the comoving frame. To support the
responses in the transport regime, we set the CDW gap
to be zero for simplify. Then, we ask what the second-
order nonlinear conductivity from the Boltzmann equa-
tion is. To avoid the impurities problem in the comoving
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frame, we consider the dissipationless limit (τ → ∞).
The Boltzmann equation in the comoving frame is given
by

∂t′f − eE(t′)

ℏ
· ∇kf = 0. (S91)

As t = t′, the formalism would be consistent with what
we have derived in the Sec.IV. Moreover, the inversion
symmetry in ϵk′ is broken so we do not have to introduce
the DC current and the second-order nonlinear conduc-
tivity with 2ω-component can be obtained from f

(2)
n (see

Eqs. (S55) and Eqs. (S67)), which is given by

σxxx(2ω) =
e3

4ℏ2

∫
dk′

2π

f0∂2k′v(k′)

2ω2
,

= −3e3λmvn

ℏ2ω2
=

β̃e3n

4kFℏ2ω2
. (S92)

where the the electron density n =
∫

dk′

2π f
(0)(ϵ(k′)− ϵF ).

Similar to the second-harmonic generation in optical
conductivity, the second-order nonlinear transport con-
ductivity σxxx(2ω) is finite due to the cubic term in
Eq. (S76).

In summary, we find that the presence of higher-order
term δH = λψ†∂4xψ would enable the dispersion in the
comoving frame to pick up the effects of inversion sym-
metry breaking driven by currents. Specifically, it would
result in a term that is cubic with respect to the momen-
tum and gives finite second-order nonreciprocal nonlinear
responses in the comoving frame.
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