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Abstract— This paper proposes a novel semantics-aware
autonomous exploration model to handle the long-standing
issue: the mainstream RRT (Rapid-exploration Random Tree)
based exploration models usually make the mobile robot switch
frequently between different regions, leading to the excessively-
repeated explorations for the same region. Our proposed
semantics-aware model encourages a mobile robot to fully
explore the current region before moving to the next region,
which is able to avoid excessively-repeated explorations and
make the exploration faster. The core idea of semantics-aware
autonomous exploration model is optimizing the sampling point
selection mechanism and frontier point evaluation function
by considering the semantic information of regions. In addi-
tion, compared with existing autonomous exploration methods
that usually construct the single-type or 2-3 types of maps,
our model allows to construct four kinds of maps including
point cloud map, occupancy grid map, topological map, and
semantic map. To test the performance of our model, we
conducted experiments in three simulated environments. The
experiment results demonstrate that compared to Improved
RRT, our model achieved 33.0% exploration time reduction
and 39.3% exploration trajectory length reduction when main-
taining >98% exploration rate.

I. INTRODUCTION

Map construction via autonomous exploration is a task
that a robot moves in an unknown environment and syn-
chronously construct the map of the environment, which is
significant for robotic systems. The widely-used exploration
strategy adopts the frontier-based mechanism [1], [2], [3]. In
the seminal work of the frontier-based methods [1], a robot
firstly detects the frontier between the unknown region (the
region that has not been explored) and the known region (i.e.,
the region that has been explored) using the laser scanner.
Then, some candidate frontier points are generated based
on the frontier. Subsequently, the nearest frontier point is
selected robot’s moving goal. The above steps are repeated
to finally realize the exploration of the whole environment.
Based on the frontier-based mechanism, the NBV (Next-
Best-View) based exploration mechanism optimizes the can-
didate frontier points evaluation function to determine the
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Fig. 1: Four kinds of maps constructed by our semantics-
aware autonomous exploration model. (1) 2D occupancy grid
map, (2) topological map, (3) 3D point cloud map, and (4)
semantic map.

robot’s next viewpoint goal, by considering the information
gain [4], path cost [5], and other factors [6] of frontier points.
Apart from the above exploration mechanics, some methods
[7], [8], [9], [10], [11] propose the sample-based mechanism
to perform the exploration.

These methods have largely pushed forward the research
of autonomous exploration, but present two insufficiencies.
1) Existing autonomous exploration methods do not simulta-
neously generate the rich types of maps. Some works only
generate single-type map like 2D occupancy grid maps [1],
[11] or 3D point cloud maps [12]. Some works attempt
to construct multi-type maps via autonomous exploration.
For example, the methods of [13], [14], [15] generate 2D
occupancy grid map and topological map; The work [16]
generates 3D point cloud map, topological map and semantic
information. However, the types of maps are still incomplete.
The potential reason is that generating more types of maps
needs to consider many factors such as the coordinate
consistency and the computation conflict.

2) Existing autonomous exploration methods usually ex-
ecute the excessively-repeated explorations for the same
region. When reproducting existing methods, we find it is
a common case that a robot moves to the next region when
the current region has not been fully explored, which easily
generates repeated exploration trajectories and significantly
affects the exploration efficiency. We analyze the two-fold
reasons with RRT-based exploration. First, due to the ran-
domness of sample point generation, it is difficult to stably
guarantee that the best next viewpoint is always inside the
current region before it is fully explored. Second, the frontier
point evaluation function does not consider the semantic
region information of environment when determining the
next best viewpoint, so it is easy to select the frontier point
(closer to other bigger unknown space) as the best viewpoint.

To handle the above two insufficiencies, this paper pro-
poses a semantics-aware autonomous exploration model,
which encourages a mobile robot to fully explore the current
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region before moving to the next region. The proposed model
is able to achieve faster speed by avoiding a robot to come
back again to the current region to explore the previously-
unexplored space, which is implemented by proposing a
new frontier point generation mechanism and a new eval-
uation function that take the semantic region information of
environments into consideration. In addition, the proposed
autonomous exploration model could generate four types of
maps (including 2D occupancy grid map, 3D point cloud
map, topological map, and semantic map, as shown in Fig. 1)
while maintaining the real-time exploration at the same time.

In the experiments, our model is compared with original
RRT [10], TOPO [15], Improved RRT and MMPF (proposed
in [17]) in three simulated environments. Compared to Im-
proved RRT, our model achieved 33.0% exploration time
reduction and 39.3% exploration trajectory length reduction
when maintaining >98% exploration rate. We also compared
the map types with the existing methods and analyzed the
storage sizes and update time of different kinds of maps.

The contributions of this paper are as follows:
• this paper proposes a semantics-aware autonomous ex-

ploration model, which is able to avoid excessively-
repeated explorations for the same region.

• the proposed autonomous exploration model allows to
simultaneously construct four kinds of maps in un-
known indoor environments.

II. RELATED WORK

A. Autonomous Exploration Strategy

The widely-used exploration strategy for robots include
the frontier-based mechanism [1], [2], [3] and the NBV-
based mechanism [4], [5], [6]. The frontier-based mech-
anism guides the robot greedily towards unknown areas
that may provide new information [1], while in NBV-based
exploration, candidate frontier points are considered in more
detail for determining the next viewpoint goal. In the work
[4], the evaluation of frontier points takes into account the
information gain while reducing the uncertainty in the robot’s
closed-loop actions. In addition to incorporating information
gain, path cost is also considered in NBV evaluation [5].

The sample-based exploration mechanism, with the typical
representative being the RRT family [7], [8], [9], [10],
[11] is suitable for navigation in complex or large-scale
environments. In the work [7], to improve the sampling
efficiency of the original RRT, the idea of a disjointed tree
was proposed. RRT continuously selects random points on
the map as the target points for the growth of each branch,
and frontier points are generated when the branch reaches
the frontier [10].

Although the RRT-based exploration has a high explo-
ration rate in the exploration of complex environments, it can
lead to the problem of excessive repetition in exploration due
to the randomness of sample point selection. By combining
the semantic map, we also consider the semantic region
information in addition to information gain and path cost in
the frontier point evaluation function, which greatly improves
the exploration efficiency.

B. Hybrid Mapping System

In order to provide as comprehensive information as
possible for robot tasks, hybrid mapping systems have been
extensively studied. In this section, the related work is
classified according to the structures created for hybrid
mapping. The first group pertains to works that generated 2D
occupancy grid and topological map [13], [14]. In Zhang’s
work [14], the idea of Voronoi diagrams was utilized to
construct a topological map after building a metric map.
In [13], metric and topological maps were constructed in
real time, and priority values were assigned to topological
nodes according to their environment regions, so as to realize
the graph exploration algorithm based on the priority of
topological nodes.

The second group consists of a hybrid map composed
of 3D point clouds and topological maps [18], [19]. In
the work [18], a topological representation of free space
maps to navigation graphs and convex voxel clusters was
proposed. To improve the efficiency of global path planning,
[19] built the topological map using both map points and
trajectories of visual SLAM. The first two groups share a
common problem: these hybrid maps cannot help the robot
understand the environment like humans. If the target is
obstructed by obstacles, the robot may not realize it even
when it is close to the target. Adding semantic information
to the region can avoid this problem. Following this, the
third group aims to add semantic information to the hybrid
map. The third group added semantic information to the
hybrid metric and topological maps [16], [20], [21], [22],
[23]. In [23], each node of the topological map contains a
set of images from the region as semantic information, along
with added metric information. In [16], the topological global
representation and 3D dense submaps were maintained as a
hybrid global map, which could be built by using a standard
CPU, reducing the computational resources required. In [21],
both unoccupied and occupied areas were characterized by
voronoi diagrams, with recognized and classified objects
from camera views placed in the topological nodes.

Although hybrid map systems have been studied exten-
sively before, the types of maps that can be constructed si-
multaneously via mobile robots has not been comprehensive
enough. Thus this work aims to fill this gap.

III. METHOD

A. Preliminaries: RRT-Based Exploration

RRT-based exploration [10] is a classical autonomous
exploration method. An environment is classified as known
space (Sknow) which has been explored and unknown space
(Sunkn) which has not been explored. Sknow is classified as
obstacle space (Sobs) where the robot can not move due
to the existing obstacles and unoccupied free space (Sfree).
The goal of autonomous exploration is to explore Sunkn. To
this end, the model firstly generates random points (Pr, as
grey points in Fig. 3). Then, based on the robot’s initial
location (Linit, as red points in Fig. 3) and Pr, a tree structure
originating from Linit is growing to cover Pr. Frontier points
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Fig. 2: The overview of our semantics-aware autonomous exploration model. The semantics-aware parts are shaded in green.

Pi (as green points in Fig. 3) are computed based on the tree
branches and unknown space. Coarsely, Pi are points on the
tree branches, and Pi are in Sunkn, thus Pi are the guidance
of the moving direction of the robot. Finally, the next-to-
move point is selected from Pi according to the evaluation
function to guide the autonomous exploration of the robot.

B. Overview

Taking 2D laser scan, IMU data, and point cloud data
as input, the model outputs four kinds of maps through
two key modules, namely the semantic-aware autonomous
navigation module and multi-type map construction mod-
ule. In the semantic-aware autonomous navigation module,
frontier point generation mechanism outputs frontier points
Pi based on the 2D occupancy grid map Mocc and the
robot position L. Frontier points Pi are then provided to the
frontier point evaluation function, which outputs the robot’s
next best viewpoint goal Pnbv. Path planning is conducted in
Mocc based on Pnbv and L, to guide the robot to move to
Pnbv. In the multi-type map construction module, four kinds
of maps are constructed and updated.

C. Semantics-Aware Autonomous Navigation

Frontier points locate near to Sunkn, thus they are important
signals to guide the robot to explore Sunkn. Since frontier
point generation in RRT-based exploration relies on random
sampling, the robot’s exploration behavior easily result in
excessively-repeated explorations for the same region. To
address this issue, we propose a semantic-aware frontier
point generation mechanism and semantic-aware frontier
evaluation function.

1) Semantic-aware frontier point generation: As shown in
Fig. 3, since the original frontier point generation mechanism
does not consider regional semantics, the frontier point near
to the bigger unknown space is easily selected as the next-
to-move point, leading to that the robot needs to come back
again to explore the smaller unknown space in the current re-
gion. In big and complex environments, excessively-repeated
explorations occur frequently.

To alleviate the excessively-repeated explorations, we
firstly introduce the semantic-aware point Ps (as yellow point

in Fig. 3), which meet the condition that Ps are within the
current semantic region, and Ps is on the frontier, and Ps

is the closest to the robot. In conventional methods, the
tree structure is growing based on random points Pr. In
our method, the tree structure is growing based on both
Pr and Ps. We propose a dynamic probability mechanism
to select the sampling point (denoted as Psam), and Psam

further control the growing trend of tree structure, which is
formulated as follow.

p(Psam = Pr) =
1

1 + k · t

p(Psam = Ps) =
k · t

1 + k · t

(1)

where p(Psam = Pr) denotes the probability that Pr is
selected as Psam, p(Psam = Ps) denotes the probability that
Ps is selected as Psam, t is a dynamic value signalling the
exploration time in the current semantic region, and k is a
fixed parameter. We can observe that, with the increasing of
t, p(Psam = Ps) becomes larger, which encourages the tree
to grow to the unknown space in the current semantic region
(as yellow point in Fig. 3).

Other RegionCurrent Region

Robot Random point

Branch Frontier

Semantic-aware point

Sknow

Frontier point

Sunkn Sunkn

Other RegionCurrent Region

SknowSunkn Sunkn

Fig. 3: Comparison of original frontier point generation (left)
and semantic-aware frontier point generation (right).

The tree structure is determined based on Psam. Given the
tree structure and unknown space Sunkn, a set of frontier
points F are generated by judging whether the tree structure
crosses with Sunkn:

F = {Pi | i = 1, 2, ..., n} (2)

We note that the selection of Ps is based on semantic
map, as the green feedback line in Fig. 2. The process of



generating the semantic map will be detailed in the multi-
type map construction section.

2) Semantic-aware frontier evaluation function: After ob-
taining a set of frontier points, conventional methods evaluate
each frontier point to determine the best viewpoint goal
Pnbv, by considering the information gain G(Pi) and path
cost C(Pi). Differently, we propose the semantic-aware
frontier evaluation function that also takes the semantic
region information into consideration.

G(Pi) assesses the areas of unknown and known regions
in a square surrounding frontier point Pi, which is defined
as follow.

G(Pi) = fs(gunkn)− fs(gknow),

gunkn ∈ Sunkn , gknow ∈ Sknow
(3)

where gunkn denotes the unknown region in the square and
gknow denotes the area of known region in the square, and
fs() is the function to compute the areas of gunkn and gknow.
C(Pi) evaluates the distance between L and Pi:

C(Pi) = ∥Pi −L∥ (4)

In our proposed semantic-aware frontier evaluation func-
tion, the semantic region information is also considered.
If Pi and the robot are located in the same region (i.e.,
flag=1), a positive reward A(Pi) is added to the evaluation
function. Otherwise, a negative reward A(Pi) is added to the
evaluation function, which is formulated as follow.

S (Pi) =

{
3 ·G(Pi)−C(Pi) +A(Pi) , flag = 1

3 ·G(Pi)−C(Pi)−A(Pi) , flag = 0
(5)

where A(Pi) is set as an experimental value, S (Pi) denotes
the score of Pi. The frontier point with the highest score
is selected as the next best viewpoint goal Pnbv to perform
autonomous navigation. Our semantic-aware frontier evalua-
tion function encourages the robot to fully explore the current
region before moving to the other region.

D. Multi-Type Map Construction

When a mobile robot is performing autonomous naviga-
tion, multi-type maps are constructed at the same time. The
main challenge of multi-type maps construction is aligning
the coordinate of multi-type maps and coordinating the
computation threads of multi-type map construction.

2D occupancy grid map Mocc is constructed by Car-
tographer SLAM [24] using laser scan and IMU data. To
guarantee the coordinate consistency of maps, we construct
other kinds of maps using the reference frame in Mocc.

Topological map and semantic map generation are based
on the occupancy grid map image, which is converted from
Mocc using Algorithm 1. The first step is to create a matrix
Mimg. Next, the grids in Mocc are traversed to judge whether
they belong to Sunkn, Sfree or Sobs. The corresponding pixels
in Mimg are then respectively set to grey, white, and black.

In topological map construction, to reduce measurement
noise, we firstly apply binarization and morphological open-
ing to filter out noise points. Then, the skeleton of topological
map is extracted by thinning Mimg [25] in a traversing

manner with 3×3 matrix. The extracted skeleton elements
are set to 1, and other elements are set to 0.

Algorithm 1: Occupancy grid to image map
Input: Mocc

Output: Mimg

1 Create a matrix Mimg ← height(Mocc), width(Mocc)
2 for i=1 to height(Mocc) do
3 for j=1 to width(Mocc) do
4 g(i, j) ← Mocc(i, j)
5 if g(i, j) ∈ Sunkn then
6 Mimg(i, j) ← grey;
7 end
8 if g(i, j) ∈ Sfree then
9 Mimg(i, j) ← white;

10 end
11 if g(i, j) ∈ Sobs then
12 Mimg(i, j) ← black;
13 end
14 end
15 end

(a) Small Environment (b) Medium Environment

(c) Large Environment (d) Simulation Robot

Fig. 4: Simulation environment and simulation robot.

In semantic map construction, referring to the processing
of ROSE2 [26], the construction procedure consists of the
following steps. Firstly, structural features and wall lines of
the environment are extracted from Mimg. Secondly, based on
the structural features and wall lines, the geometric shapes of
different regions are reconstructed. Finally, different regions
are assigned with different semantic numbers and colors.
The semantic region information is feed back to the module
of semantic-aware autonomous navigation to support the
generation of Ps and the evaluation of Pi.

3D point cloud map is constructed using IMU data and
point cloud data through LIO-SAM [27].

IV. EXPERIMENT
A. Settings

1) Simulation environments and robot: We set up three
simulation environments using Gazebo [28], including a
small house (187m2), a medium house (450m2), and a large



Fig. 5: Growing trend of exploration rate corresponding to the increasing exploration trajectory length.

(a) RRT (b) Improved RRT (c) MMPF (d) TOPO (e) Our method

Fig. 6: Comparison of exploration trajectories. Red boxes indicate repeated exploration region.

office (1160m2), as shown in Fig. 4. The Turtlebot3 Burger
robot is used as the simulation robot, which is equipped with
a 360o laser scanner and a velodyne VLP-16 Lidar.

2) Metrics: The performance of an autonomous explo-
ration model is evaluated by three metrics, including ex-
ploration time (i.e., the time consumption for exploring
the whole environment), exploration trajectory length (i.e.,
the length of exploration trajectory for exploring the whole
environment), and exploration rate (the ratio of the explored
region to the whole environment).

3) Baselines: Four baseline methods, includes original
RRT [10], TOPO [15], improved RRT and MMPF ( proposed
in [17] ), are used in the experiments. RRT based methods
are classical and commonly-used in autonomous exploration.
MMPF [17], and TOPO [15] are recently-proposed methods
with publicly-available codes.

TABLE I: Exploration time and trajectory length comparison.
T: Exploration time (s), L: Trajectory length (m). The best
result is in bold.

Methods
Small Medium Large

T L T L T L

RRT [10] 171 31 593 131 1838 375
Improved RRT [17] 162 27 436 112 1282 306
MMPF [17] 125 28 350 87 1267 338
TOPO [15] 118 33 414 119 1054 329
Ours 126 25 292 68 1018 283

B. Autonomous Exploration Comparison and Analysis

1) Exploration rate and trajectory length analysis: Fig. 5
shows the growing trend of exploration rate corresponding to
the increasing exploration trajectory length in small, medium,
and large environments. We define that if exploration rate
reaches 98%, an environment is supposed to be fully ex-
plored. We can observe from Fig. 5 that all models can fully
explore the environment if exploration trajectory length is not

limited. However, other models ask for longer exploration
trajectory to achieve full environment exploration, especially
in medium and large environments that are bigger and
more complex. In addition, when other models are exploring
the medium and large environment, there exist cases that
exploration rate is not changing even though the length
of the trajectory is increasing, implying that the robot is
repeatedly moving in the previously-explored region. Instead,
these cases are not frequently happened for our model.

2) Exploration time and trajectory length analysis: We
conducted the experiments to compare the exploration time
and trajectory length of our model and baselines, and results
in small, medium, and large environments are reported in
Tab. I. Our model asks for the least exploration time and the
shortest exploration trajectory length in both medium and
large environments. For example, compared with the second
best result, our model achieves 16.6% exploration time
reduction and 21.8% exploration trajectory length reduction
in medium environment.

The superiority of our model is attributed to the pro-
posed semantic-aware frontier point selection mechanism and
frontier point evaluation function to avoid the excessively-
repeated explorations for the same region. For further anal-
ysis, as shown in Fig. 6, we illustrated the exploration
trajectories of different models in the medium environment.
In the figure, the repeatly-explored regions are denoted by
the red boxes. We can observe that other model make the
robot enter and exit the same region more than one time
to achieve the full exploration, while our model only asks
for the robot to explore a region once, which significantly
reduces the exploration time and trajectory length.

C. Muti-Type Map Construction Comparison and Analysis

Richer types of maps could support wider range of down-
stream tasks and applications. For example, the occupancy
grid map and topological map are important for the path
planning task [30], the point cloud map is essential for
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Fig. 7: Four kinds of maps constructed by our semantics-aware autonomous exploration model.

TABLE II: The types of maps constructed by previous
models and our model. M1-M4 represents different types
of maps. M1: 2D Occupancy grid map, M2: 3D Point cloud
map, M3: Topological map, M4: Semantic map.

Methods M1 M2 M3 M4

Blochliger et al. [18]ICRA’2018 ✓ ✓

Gomez et al. [16]ICRA’2020 ✓ ✓

Datta et al. [13]IROS’2021 ✓ ✓

Wang et al. [6]RAL’2021 ✓ ✓

Liu et al. [20]IROS’2022 ✓ ✓ ✓

Zhang et al. [15]RAL’2022 ✓ ✓

Ishikawa et al. [29]SMC’2023 ✓ ✓

Ours ✓ ✓ ✓ ✓

the robot localization and 3D detection [31] tasks, and the
semantic map could support various human-robot-interaction
applications that ask for semantic-level scene understanding.
However, after reviewing the existing works in recent years,
we find two or three kinds of maps are constructed, as sum-
marized in Tab. II. As far as we know, our model is the first
one to simultaneously construct four kinds of maps. Fig. 7
illustrates the muti-map construction results of our model in
three environments. It is not challenging to simultaneously
construct many types of maps. Why do previous works only
construct two or three kinds of maps? With the increasing of
map types, many factors (e.g., computation thread conflict,
map coordinate alignment, map storage, and map updating
frequency) need to be taken into consideration. Computation
thread conflict and map coordinate alignment have been well
handled in our method. In the following, we analyze the
update time and storage size of maps.

Tab. III reports the detailed update time and storage size of
each kind of map in three environments. Average update time
for 2D occupancy grid map and topology map stays around
1s even in different simulation environments. The 3D point

cloud map has the shortest update time, which fluctuates
around 0.2s to quickly match the point cloud in consecutive
frames. The semantic map requires longer update time (2.2s
to 3.1s) in bigger environment. In practice, the exploration
procedure is real-time under these update time conditions, the
robot did not stop to wait the update of the certain map and
the constructed maps are not deformed. For the map storage,
we use different file formats to save the different types of
maps: 2D occupancy grid map (PGM), 3D point cloud map
(PCD), topological map (JPG), and semantic map (PNG).
After the full exploration, the storage space of all maps
is approximately 3.1MB for the small environment, 7.5MB
for the medium environment, and 17.4MB for the large
environment, respectively. Standard industrial computers can
fulfill these storage needs.

TABLE III: Storage size and update time of multi-type maps.
S : storage size (KB), U : update time (s).

Map types
Small Medium Large

S U S U S U

2D Occupancy grid 509.7 0.9 707.0 0.9 798.7 1.0
3D Point cloud 2604.3 0.2 6867.3 0.2 16862.5 0.2
Topological 23.5 1.1 52.1 1.0 136.4 1.0
Semantic 6.1 2.2 8.6 2.6 18.3 3.1

V. CONCLUSION

In this paper, we propose a semantics-aware autonomous
exploration model, which is able to avoid excessively-
repeated explorations for the same region. The multi-type
map construction method allows to simultaneously construct
four kinds of maps in unknown indoor environments. Ex-
perimental results demonstrate that our system not only
improves exploration efficiency but also provide multi-type
map construction. In the future, we plan to extend our model
to outdoor scenarios.
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[23] F. Üzer, H. Korrapati, E. Royer, Y. Mezouar, and S. Lee, “Vision-based
hybrid map building for mobile robot navigation,” in Proceedings of
the Intelligent Autonomous Systems (IAS), 2016, pp. 135–146.

[24] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2016, pp. 1271–1278.

[25] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning
digital patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236–
239, 1984.

[26] M. Luperto, T. P. Kucner, A. Tassi, M. Magnusson, and F. Amigoni,
“Robust structure identification and room segmentation of cluttered
indoor environments from occupancy grid maps,” IEEE Robotics and
Automation Letters (RA-L), vol. 7, no. 3, pp. 7974–7981, 2022.

[27] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020, pp. 5135–5142.

[28] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2004, pp. 2149–2154.

[29] T. Ishikawa, A. Taniguchi, Y. Hagiwara, and T. Taniguchi, “Active
semantic mapping for household robots: rapid indoor adaptation and
reduced user burden,” in Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2023, pp. 3116–
3123.

[30] X. Wang, K. Tang, X. Dai, J. Xu, Q. Du, R. Ai, Y. Wang, and
W. Gu, “S 4 tp: Social-suitable and safety-sensitive trajectory planning
for autonomous vehicles,” IEEE Transactions on Intelligent Vehicles
(TIV), 2023.

[31] Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu, and
W. Ding, “Acf-net: Asymmetric cascade fusion for 3d detection with
lidar point clouds and images,” IEEE Transactions on Intelligent
Vehicles (TIV), pp. 1–12, 2023.


	Introduction
	Related Work
	 Autonomous Exploration Strategy 
	 Hybrid Mapping System

	Method
	Preliminaries: RRT-Based Exploration 
	Overview
	Semantics-Aware Autonomous Navigation
	Semantic-aware frontier point generation
	Semantic-aware frontier evaluation function

	Multi-Type Map Construction

	 Experiment 
	Settings
	Simulation environments and robot
	Metrics
	Baselines

	Autonomous Exploration Comparison and Analysis
	Exploration rate and trajectory length analysis
	Exploration time and trajectory length analysis

	Muti-Type Map Construction Comparison and Analysis

	 Conclusion 
	References

