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The Loschmidt echo is a popular quantity that allows making predictions about the stability
of quantum states under time evolution. In our work, we present an approach that allows us
to find a differential equation that can be used to compute the Loschmidt echo. This approach,
while in essence perturbative, has the advantage that it converges at finite order. We demonstrate
that the approach for generically chosen matrix Hamiltonians often offers advantages over Taylor
and cumulant expansions even when we truncate at finite order. We then apply the approach
to two ordinary band Hamiltonians (multi-Weyl semimetals and AB bilayer graphene) to obtain
the Loschmidt echo after a quench for an arbitrary starting state and find that the results readily
generalize to find transmission amplitudes and specific contributions to the partition function, too.
We then test our methods on many body spin and fermionic Hamiltonians and find that while the
approach still offers advantages, more care has to be taken than in a generic case.

I. INTRODUCTION

With current rapid developments in quantum comput-
ing, it has increasingly become more crucial to make ac-
curate predictions about the stability of quantum states.
For instance, it is beneficial to predict the stability of
quantum bits [1–3] because it ensures the reliability of
quantum computations. The stability of the underlying
ground state that plays host to quantum bits is also es-
sential because it ensures that quantum bits can properly
be generated [4]. One measure of state stability is the
so-called Loschmidt echo[5, 6], which measures the over-
lap between states at different times in their evolution.
However, it cannot be overstated that the utility of this
quantity reaches far beyond this application. Indeed, it
has been found that it can be used to define the term of
a dynamical phase transition [6, 7] using its discontinu-
ities.
While computing the overlap between two states seems
conceptually trivial, it is essential to notice that it is
plagued by the difficulty that time evolution involves a
matrix exponential of the Hamiltonian - such a quantity
is generally difficult to compute when matrices grow in
size[8]. On the face of it, it may seem odd that computing
a scalar quantity’s time evolution like the Loschmidt echo
involves working with a high dimensional Hilbert space.
One may wonder why, so far, it is not possible just to
identify initial conditions and then evolve the Loschmidt
echo according to those initial conditions without ever
making further reference to a large Hilbert space. This
work aims to achieve the goal of finding both appropriate
initial conditions and the corresponding evolution equa-
tions.

To achieve this goal, we structured our work as fol-
lows. In Sec. II, we summarize the more typical ap-
proximate approaches to compute the Loschmidt echo.
Sec. III demonstrates how differential equations for the
Loschmidt echo can be found. In Sec. IV, we then ana-
lyze the properties and shortcomings of the approach.
The section begins by testing the approach on thou-

sands of randomly chosen matrix Hamiltonians, which
permits us to understand the generic properties of the
approach. We test the approach on two band Hamilto-
nians where we obtain readily generalizable expressions
for the Loschmidt echo of a multi-Weyl semi-metal and
AB bilayer graphene. Lastly, we test the approach on
two common many-body toy models (a spin model and
a fermionic model) and find that the approach offers ad-
vantages over standard approximation methods. How-
ever, proper care has to be taken. Finally, in Sec. V, we
draw conclusions and state what follow-up work might
be interesting.

II. LOSCHMIDT AMPLITUDE AND COMMON
COMPUTATIONAL SCHEMES

We begin our discussion by noting that any quantum
state |ψ(t)⟩ evolved by some Hamiltonian Ĥ will start to
deviate from its original state |ψ0⟩. This deviation can
be quantified by the so-called Loschmidt amplitude [6]

G(t) = ⟨ψ0 | ψ(t)⟩ =
〈
ψ0

∣∣e−iHt
∣∣ψ0

〉
, (1)

which, as noted by Heyl [6, 9] carries strong formal simi-
larities to the partition function in statistical mechanics
(one does a Wick-rotation t → −iβ and replaces the
expectation value by a trace ⟨ψ0|. . . |ψ0⟩ → tr(. . . )).
Because of this similarity, it is commonly used to
diagnose dynamical phase transitions [6, 9]. In addition
to its utility for dynamical phase transitions, it also has
proven its usefulness in our understanding of stability in
quantum computing, where it is closely related to the
fidelity of a quantum state[10, 11].

Now typically, as we can see from our expression
(1) computations of the Loschmidt amplitude often re-
quire being able to i) determine operator exponentials
exp(−iHt) and ii) compute their expectation values.
Such operator exponentials are often difficult to ob-
tain - especially in the many-body context, such as
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for fermionic interacting model and spin Hamiltonians,
where the Hilbert space can be excessively large. More-
over, even the expectation value for a generic state ψ0

can also be cumbersome to compute. A typical simplis-
tic approach to side-step this problem is to work with a
series expansion that is valid for small times

G(t) ≈
n∗∑
n=0

(−it)n

n!
⟨ψ0 |Hn|ψ0⟩ , (2)

where n∗ is some cut-off order. This approach, of course,
has the drawback that tn

∗
will grow without bounds, lim-

iting the range of validity of the approach. Moreover,
computing ⟨ψ0 |Hn|ψ0⟩ becomes exceedingly difficult as
n grows.
The first issue of boundless growth can be addressed

by the more clever idea of a cumulant expansion, where
one takes

G(t) ≈ exp

(
n∗∑
n=1

(−it)n

n!
Cn(H)

)
, (3)

and Cn(H) refers to the n-th cummulant or connected
average of H (i.e. C1(H) = ⟨ψ0 |H|ψ0⟩ and C2(H) =〈
ψ0

∣∣H2
∣∣ψ0

〉
− ⟨ψ0 |H|ψ0⟩2 etc.). Here, the boundless

growth is prevented by the exponential form.
Of course, as we will see later in both cases, it is very

difficult to obtain results that are valid for a very long
time, and we want to improve upon this issue in certain
cases.

We note that, of course, in cases where the Hamil-
tonian H = H0 + V with a perturbation V that can be
considered as small andH0 that has an easily computable
exponential e−iH0t one can improve on these approaches
- for instance by use of an interaction picture [10] and
obtain results valid for long times. However, we aim to
address the generic case where this is not always possible.
An improvement on typical techniques in the interaction
picture can be the topic of future work.

III. PROPOSED SCHEME

Our goal is to derive approximate linear differential
equations for the Loschmidt amplitude G(t) that lead to
approximate results that improve on the common meth-
ods discussed earlier without adding more complications.
Finding differential equations for G(t) by itself is chal-
lenging. For instance, we may start with the Schrödinger
equation i∂t|ψ(t)⟩ = H|ψ(t)⟩ and multiply on the right
with ⟨ψ0| to obtain

i∂tG(t) = ⟨ψ0|H|ψ(t)⟩, (4)

which however involves not just G(t) but also the matrix
element ⟨ψ0|H|ψ(t)⟩. This matrix element is difficult to
relate to derivatives ∂nt G(t) in a useful fashion. Indeed,
even if we use the identity

⟨ψ0|Hn|ψ(t)⟩ = in∂nt G(t) (5)

for the only easily applicable case n = 1 we end with
a trivial tautology i∂tG(t) = i∂tG(t), which is not use-
ful. However, it can be noted that a linear function x
on a finite interval [a, b] can be approximated as x ≈
c0 + c2x

2 + c3x
3 + c4x

4 + . . . to arbitrary precision if we
choose appropriate constants ci. The same, of course,
would be true for a bounded Hamiltonian that could be
approximated as

H ≈ Happrox = c01 +

n∗∑
n=2

cnH
n.

This expression leads to improved approximations as the
cutoff order n∗ increases. Evidently, this series is con-
trolled if H is small (or equivalently, the time evolution
is for short times) - similar to the two other approximate
series we introduced and will use as a benchmark. The
difference here is that we will introduce differential equa-
tions that decide on the form of the Loschmidt ampli-
tude G(t) instead of making an apriori assumption (bare
power series or power series inside of an exponential). In
such a case, one would find a differential equation for the
Loschmidt amplitude

i∂tG(t) = c0G(t) +

n∗∑
n=2

incn∂
n
t G(t), (6)

which for a cut-off n∗ requires n∗ − 1 initial conditions{
G(0), ∂tG(t)|t=0 , . . . , ∂

n∗−1
t G(t)

∣∣∣
t=0

}
(7)

with

∂nt G(t)|t=0 = ⟨ψ0 |Hn|ψ0⟩ . (8)

It is noteworthy that this scheme does not pose major
additional complications over the expansions previously
discussed. Once we have obtained constants cn, the main
complication comes from setting up the initial conditions,
which correspond to the same expectation values that are
needed in the other two schemes.

Therefore, methods to obtain the constants cn remain
to be determined.

We expect the most reliable approach for obtaining
the constants cn is via a variational principle with a cost
function. The most obvious such cost function, which is
also easiest to work with because it is quadratic in cn, is

C = ∥Happrox. −H∥2F = tr[(Happrox. −H)2], (9)

which measures how closely the Hamiltonian is approxi-
mated.

That is, one has to solve the following set of equations

c0tr(H
m) +

n∗∑
n=2

cntr(H
n+m)− tr(Hm+1) = 0 (10)
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for ci, where m ∈ {0, 2, 3 . . . , n∗}.
It is important to note that the involved traces often
do not lead to any considerable complications because
computing traces of operators is often considerably easier
than computing expectation values. For instance in the
case of spin operators Sx

i , S
y
i and Sz

i one has

tr(
∏
i

Ski
i ) = 0 (11)

such that only spin matrices that multiply to be propor-
tional to an identity contribute to a trace. This obser-
vation makes it possible to compute traces even in cases
far beyond the reach of exact diagonalization algorithms.
An interesting but obvious thing to note about this ap-
proach is that for a Hamiltonian of dimension n, a cutoff
of n∗ = n − 1 already gives an exact result in a generic
case. This observation is seen most readily because a
Hamiltonian in its diagonal basis only has n entries that
the variational principle must match. In a typical generic
case, n∗ = n−1 means that we have n constants to match
and, therefore, can match every single eigenvalue in the
trace.
It is now clear that the approach, unlike the case for a
cumulant expansion or a Taylor series, becomes exact at
finite order. We will see in numerical experiments that
it is an improvement on those approaches also at small
orders.

IV. RESULTS AND PROPERTIES

A. Generic properties

As a first example to test our theory, we begin by con-
sidering randomly chosen hermitian matrices and ran-
domly chosen evolved vectors. Here, one should keep in
mind that we want to compare results for similar lev-
els of difficulty in computation. That means we want to
compare results that involve the same order of n of expec-
tation value ⟨Hn⟩. We will both compare the Loschmidt
echo

L(t) = |G(t)|2 (12)

directly to the different approximations, and we will also
look at plots of the relative approximation error

∆Lrel(t) =

∣∣∣∣L(t)− Lapprox(t)

L(t)

∣∣∣∣ , (13)

which measures the relative error between exact
Loschmidt echo L(t) and approximate Loschmidt echo
Lapprox(t).
Below in Fig. 1 we compare various results for ran-

domly chosen 3 × 3 Hamiltonians H. As mentioned in
the previous section, for 3× 3 Hamiltonians, one expects
order 2 results from the differential equation approach to
give exact results, and this is indeed the case as one can

instantly see from our plots (Fig.1(b,c,e,f,h,i)). Indeed,
as expected, this is generically the case even for 1000s
of randomly chosen Hamiltonians(Fig.1(h,i)). Another
thing to notice from our computations is that unlike the
Taylor series and the cumulant expansion, our differen-
tial equation approach can sometimes capture qualitative
features of the Loschmidt echo even at order 1.

A relatively natural next question is whether or not
the approximation stays reliable if the dimension of the
Hilbert space is increased. To understand this, we have
generated various plots that visualize approximation er-
rors as a function of Hilbert space dimension, which can
be seen in Fig.2 From the plots in Fig. 2, it becomes
clear that the validity of the various approximations does
not crucially depend on the size of the Hilbert space. If
anything, one might see a slight improvement in approx-
imation error in larger matrix sizes. This statement can
be confirmed at different approximation orders (the dif-
ferent rows of the figure) and at different points in time
(the different columns). We also notice that in virtually
all cases, the approximation in the differential equation
approach we advocate here is several orders of magni-
tude more reliable than the usual cumulant expansion or
Taylor series approaches.

Of course, it is interesting to see how this looks in detail
for relatively large Hamiltonians of size 200× 200, which
we show below in Fig. 3. From Fig. 3 in the upper row
(subfigures (a-c)), it becomes clear that the differential
equation approach is much better than both Cumulant
and Taylor series expansions at capturing partial revivals.
Furthermore, in the bottom two rows, we see that the dif-
ferential equation approach advocated here often is valid
for up to twice as long dimensionless times t∥H∥.
Last, we are interested to learn more generally about

convergence properties of the different series, which can
be understood from Fig. 4 From Fig. 4, we see that all
different approximations roughly converge exponentially
fast (almost straight line in a logarithmic plot). How-
ever, the differential equation approach is several orders
of magnitude more reliable and seems to converge with a
larger exponent. The results for the Cumulant expansion
and Taylor series, on the other hand, do not qualitatively
differ from one another.

B. Behaviour for examples from condensed matter
theory

Understanding which approximations are valid in a
generic setting is essential. However, as physicists, we are
most interested in understanding whether an approxima-
tion case can fruitfully be applied to the types of Hamilto-
nians that appear in physics. We have chosen to restrict
our discussion to some types of Hamiltonians relevant to
condensed matter theory.
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FIG. 1: In this figure, we present plots of the Loschmidt echo for different realizations of 3× 3 Hamiltonians. In
the first row (subfigures (a-c)), we see representative example plots of the Loschmidt echo L(t). In the second row
(subfigures (d-f)), we see representative example plots of the relative error for Loschmidt echo ∆Lrel(t). We plotted
the relative error that was averaged over 1000 realizations in the last row. The first column (a,d,g) corresponds to
approximations of order 1, the second column (b,e,h) to approximations of order 2, and the last column (c,f,i) to
approximations of order 10. All subfigure plots are a function of dimensionless time t∥H∥ to ensure an easy way to
compare different Hamiltonians H, where the spectral radius norm is used. In all plots, the exact result (1) is in
black, the Taylor series result (Eq. (2)) in red, the result from a cumulant series (Eq. (3)) in orange and the result
from the differential equation approach (Eq. (6)) in green.

1. Band Hamiltonians and exactly solvable cases

Relatively typical Hamiltonians that in the condensed
matter context come to mind first are band Hamiltonians
such as they appear in the context of graphene systems
[12–14] or for semi-metals [15–21]. Since those types of
Hamiltonians typically break into momentum sectors of
finite - often small - dimension, we know that the differen-
tial equation approach to the Loschmidt amplitude given
in this work can produce exact results even at low orders.
For instance, this would be the case for the Hamiltonian
of a multi-Weyl semi-metal[20]

H = (akn+ + bkn−)σ+ + h.c.+ λkzσz + E01. (14)

Here, each k-value has a block that is only 2× 2 ( with a
vector (1, 0) corresponding to a valence band and (0, 1)
to a conduction band state). The matrices σ± and σz
are typical Pauli matrices and a, b, λ numerical constants.
The parameter n ∈ N characterizes the type of multi-
Weyl semi-metal(the order of band touchings). For the
full class of such Hamiltonians, the first-order expansion

would already give exact results for the Loschmidt am-
plitude. Since it is instructive, we will go through the
example. First, one notices from equation (10) that fit
parameters when we express the Hamiltonian in a form
c11 + c2H

2 are given as

c1 = −
∣∣akn+ + bkn−

∣∣2 − E2
0 + λ2k2z

2E0
; c2 =

1

2E0
. (15)

At this point, one may be worried about the appearance
of E0 in the denominator in case E0 → 0 might be badly
behaved. This worry, however, is not an actual problem,
as we will see.
Of course, one next ends up with the differential equation

i∂tG(t) = c1G(t)− c2∂
2
tG(t)

G(0) = ⟨H0⟩ = 1; i∂tG(0) = ⟨H1⟩,
(16)
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𝑡 𝐻 = 1 𝑡 𝐻 = 3 𝑡 𝐻 =5

FIG. 2: Here, we present plots of the relative approximation error for the Loschmidt echo ∆Lrel as a function of
Hilbert space dimension. The different rows are associated with different approximation orders, with the first row
(subfigures (a-c)) corresponding to order 2, the second row (subfigures (d-f)) to order 5, and the last row (subfigures
(g-i)) to order 10. The different columns correspond to different slices of dimensionless time t∥H∥ with left column
t∥H∥ = 1, middle column t∥H∥ = 3 and the right column t∥H∥ = 5. Furthermore, every data point is averaged over
200 realizations to ensure that results are as generic as possible. The Taylor series result (Eq. (2)) is plotted in red,
the result from a cumulant series (Eq. (3)) in orange, and the result from the differential equation approach (Eq.
(6)) in green. To guide the reader’s vision, we have included slightly darker color solid lines that were obtained by a
Gaussian process.

which has a simple solution

G(t) = e−
it

2c2

[
⟨H0⟩

(
cos(ωt) +

i sin(ωt)

2c2ω

)
− i⟨H1⟩ sin(ωt)

ω

]
ω =

√
1− 4c1c2
2c2

.

(17)
Now, as we have claimed previously, the case of E0 → 0
is not a problem, and we obtain

G(t) = G0 cos(ω0t)− i
⟨H⟩ sin(ω0t)

ω0
, (18)

where we have used that in this limit c−1
2 → 0 and ω →

ω0 =

√
λ2k2z +

∣∣akn+ + bkn−
∣∣2.

It is important to stress that the approach advocated
in this paper makes it easier to separate the equation
into short pieces and makes it very clear where ⟨H⟩ =
⟨ψ|H |ψ⟩ enters the expression - as an initial condition.
Blindly taking a matrix exponential followed by an ex-
pectation value leaves this less apparent. It is interesting

to note that the equation we derived can also be used
to compute transition amplitudes between two states ϕ
and ψ if we replace ⟨Hn⟩ → ⟨ϕ|Hn |ψ⟩. Moreover, af-
ter a Wick-Rotation and replacing ⟨Hn⟩ → tr(Hn), it
can also be employed to compute the single-particle fixed
momentum contribution to the partition function (for a
full many-body Hamiltonian similar replacements can be
made to find the full partition function).
Another simple example is AB stacked n-layer

graphene, which we describe by a 2n × 2n Hamiltonian
such that the 2n− 1th order of the differential equation
approach gives exact results. Here, we consider the ex-
ample of the Hamiltonian for AB bilayer graphene, which
is given below[13]

H = v(1⊗σxkx+1⊗σyky)+
t

2
(σx⊗σx−σy⊗σy)+E01,

(19)
where σi are Pauli matrices, the first term in each Kro-
necker product corresponds to a layer degree of freedom
and the second term to a sublattice degree of freedom.
The constant v is the Fermi velocity, and t is the hop-
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FIG. 3: In this figure, we present plots of the Loschmidt echo for different realizations of 200× 200 HamiltoniansIn
the first row (subfigures (a-c)), we see representative example plots of the Loschmidt echo L(t). In the second row
(subfigures (d-f)), we see representative example plots of the relative error for Loschmidt echo ∆Lrel(t). We plotted
the relative error, which was averaged over 1000 realizations in the last row. The first column (a,d,g) corresponds to
approximations of order 1, the second column (b,e,h) to approximations of order 2, and the last column (c,f,i) to
approximations of order 10. All subfigure plots are a function of dimensionless time t∥H∥ to ensure an easy way to
compare different Hamiltonians H, where the spectral radius norm is used. In all plots, the exact result (1) is
plotted in black, the Taylor series result (Eq. (2)) in red, the result from a cumulant series (Eq. (3)) in orange and
the result from the differential equation approach (Eq. (6)) in green.

ping amplitude for interlayer hopping. Here, it is also
straightforward to find a differential equation. In the
limit E0 → 0, we find

G(t) + q1∂
2
tG(t)− q2∂

4
tG(t) = 0

∂tG(0) = G0 = 1; ∂nt G(0) = (−i)n⟨Hn⟩

q1 =
t2 + 2p2v2

p4v4
; q2 =

1

p4v4

, (20)

which can be solved relatively easily to obtain

G(t) =G0

(
1− q1ω

2
+

)
cos(ω−t) + cos(ω+t)

λω2
+

− i⟨H⟩
(
ω+ − q1ω

3
+

)
sin(ω−t) + ω− sin(ω+t)

λω−ω3
+

− ⟨H2⟩q2
cos(ω+t)− cos(ω−t)

λ

+ i⟨H3⟩q2
ω− sin(ω+t)− ω+ sin(ω−t)

λω−ω+

,

(21)

where we made use of shorthand notations

ω± =

√
q1 ∓ λ√
2
√
q2

; λ =
√
q21 − 4q2. (22)

It has to be stressed that by the obvious replacements

G0 → ⟨ψ|ϕ⟩; ⟨Hn⟩ → ⟨ψ|Hn|ϕ⟩ (23)

one obtains transition amplitudes between states ϕ and
ψ.
In summary, this section of the paper lucidly demon-
strates how the differential equations for the Loschmidt
echo have value not just as an approximate numerical
method but can also be used to obtain relatively com-
pact closed-form analytical results in various cases.

2. Fermion Hamiltonian

As a next step, we would like to demonstrate the use-
fulness of this approach for many-body problems. Here,
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Taylor series

Cumulant series

Diff. eq.

0 5 10 15 20

10-8

10-4

1

FIG. 4: Here we present plots of the relative
approximation error for the Loschmidt echo ∆Lrel as a
function of approximation order n. Because results, as
previously seen, should be relatively independent of
Hilbert space dimensionality, we consider here the case
of 200× 200 Hamiltonians; the plot is taken at a
dimensionless time t∥H∥ = 5. The Taylor series result
(Eq. (2)) is plotted in red, the result from a cumulant
series (Eq. (3)) in orange, and the result from the
differential equation approach (Eq. (6)) in green. To
guide the reader’s vision, we have included solid lines in
slightly darker colors that were obtained by a Gaussian
process. We note that every data point has been
averaged over 100 realizations of the Hamiltonian.

we first consider the case of an interacting fermionic sys-
tem. We first consider one of the most popular toy prob-
lems - the spin-less 1D Fermi-Hubbard chain model. This
problem includes a nearest neighbor density interaction
and is given below [22]

H = γ

L∑
i=1

(c†i ci+1 + c†i ci−1) + U

L∑
i=1

c†i cic
†
i+1ci+1, (24)

where γ is the hopping strength of nearest neighbor hop-
pings, U is the strength of interaction between electrons
on neighboring lattice sites, and L is the number of chain
sites. Furthermore, we will assume periodic boundary
conditions.

Of course, the most important quantity to compute for
setting up our differential equation approach is finding
expressions for tr(Hn). To facilitate the computation,
we make note of the following identity

tr

 L∏
j=1

(c†j)
Mjc

Nj

j

 =

L∏
j=1

δNj ,Mj (δNj ,0 + δNj ,1)2
δNj,0 ,

(25)
which allows us to compute the traces. Appendix A
shows how this identity was derived. It is then easy to
see (since we deal with sums) that, generally, the trace

will have the form

tr(Hn) = 2L−2n
n∑

j=1

n∑
k=0

njkγ
kUn−kLj , (26)

where njk ∈ Z are integers. Explicit equations for powers
of n = 1 . . . 8 are given in appendix A.
Next, we want to demonstrate what happens when we
apply our method to this specific kind of Hamiltonian.
For this demonstration, we will compute the Loschmidt
echo for the ground state ψ0 of a Bogoliubov Hamiltonian
[23]

HB = γ0

L∑
i=1

(c†i ci+1 + c†i ci−1) + b
∑
i

(c†i c
†
i+1 + ci+1 + ci),

(27)
where b is a Bogoliubov coupling. We introduced this
coupling to ensure that the ground state has contri-
butions from different particle number sectors of the
fermionic Hilbert space. It ensures that our evolution
has to perform well on the full Hilbert space - not just
on a specific particle number sector - if we are to obtain
a reliable result for the Loschmidt echo. It, therefore,
ensures more stringent test criteria.

In the following, we will see that our method cannot be
applied blindly - even our previous generic results might
leave that impression - but one has to use some insight.
To demonstrate this point best, we will first focus on a
case where our approach could be better - in that one
has to go to relatively large orders (order six or more)
to benefit from it. The results from a simple quench can
be seen in Fig. 5 From this plot, we observe that at low
orders, both the cumulant expansion and Taylor expan-
sion are much more reliable than the result from our new
method. Regrettably, one has to go to a relatively high
order of 6 (not part of the plot) and above to get a result
where our method offers benefits, like in the case of order
10. This observation could be seen as a partial failure of
the method if we did not obtain a better understanding.
Indeed, our approach tries to approximate the Hamilto-
nian by a linear combination of its higher powers. This
approach, of course, only offers significant benefits if
pieces of the Hamiltonian have a structure that repeats
as we take them to higher powers. Fermionic operators
with c2i = 0 are a poor choice for such an approach since
they generically do not have a repeating structure as we
take higher powers (they square to zero). This property
makes them the worst-case scenario for studying blindly.
However, we can analyze in which cases we expect our

approach to offer advantages. For our specific Hamilto-
nian (24), the term proportional to γ is causing the issue

because (c†i ci+1)
2 = 0 - it does not repeat easily. The

second term (c†i cic
†
i+1ci+1)

2 = c†i cic
†
i+1ci+1 has nicely re-

peating structure and is therefore unproblematic. This
property suggests that we expect the approach to behave
well if t≪ U . This case is studied in Fig. 6.
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FIG. 5: In this figure, we present plots of the Loschmidt echo for a quench in a fermionic system. The starting
point is the ground state of the Bogoliubov Hamiltonian HB in Eq. (27) with γ0 = b = 1. The lattice is taken to be
a 10-site lattice to have a compromise between numerical speed, interesting features, and the size of Hilbert space.
At time t = 0, the Hamiltonian is quenched to the Fermi-Hubbard model in Eq. (24) with γ = 1 and U = 3. The
upper row (a-c) shows the Loschmidt as a function of dimensionless time t∥H∥, and the lower row shows the relative
mismatch between the exact result and various approximations. In all plots, the exact result (1) is plotted in black,
the Taylor series result (Eq. (2)) in red, the result from a cumulant series (Eq. (3)) in orange and the result from
the differential equation approach (Eq. (6)) in green. We note that exact numeric results for the exact
diagonalization portion were computed in the Python package QuSpin [24, 25].

And we see that even for a first-order approximation,
our approach offers a much better approximation than
the more standard Cumulant and Taylor expansions.

3. Spin Hamiltonian

Next, we want to demonstrate the usefulness of this
approach for a many-body spin problem. We consider
another very popular toy problem - the Heisenberg model
with Dzyaloshinskii–Moriya (DM) interaction -i.e., anti-
symmetric exchange. This problem includes a nearest
neighbor Heisenberg term with strength J and a nearest
neighbor antisymmetric exchange term with strength D
as given in the Hamiltonian below [26]

H = J

L∑
i=1

σiσi+1 +D

L∑
i=1

(σx
i σ

y
i+1 − σy

i σ
x
i+1), (28)

where the so-called anisotropy vector of the DM interac-
tion is along the z- direction for concreteness. Further-
more, L is the number of chain sites in the expression,
and we will assume periodic boundary conditions. To
obtain the traces tr(Hn) necessary to set up differential
equations, it is convenient to make use of the following

identity

tr

 L∏
j=1

(σx
j )

Kj (σy
j )

Mj (σz
j )

Nj

 =

L∏
i=1

(2δKimod2+Mimod2+Nimod2,0

+ 2iδKimod2+Mimod2+Nimod2,3)

, (29)

which is proved in appendix B. It is relatively easy to see
that traces will typically have the form

tr(Hn) =

n/2∑
j=1

n∑
k=1

njkJ
kDn−kLj , (30)

where njk are integers. In the same appendix B we also
provide expressions for tr(Hn) with n = 1, . . . , 8.
We need to prepare a state to evolve to test our ap-

proach with the spin Hamiltonian. For this, we choose
the ground state of an anti-ferromagnetic Ising model
that is given as

HIsing =
∑
i

(
σz
i σ

z
i+1 − 0.1(−1)iσz

i

)
, (31)

A small staggered magnetic field was added as a second
term to ensure that ground state degeneracy is broken so
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a) b) c)

d) e) f)

FIG. 6: In this figure, we present plots of the Loschmidt echo for a quench in a fermionic system. The starting
point is the ground state of the Bogoliubov Hamiltonian HB in Eq. (27) with γ0 = b = 1. The lattice is taken to be
a 10-site lattice to have a compromise between numerical speed, interesting features, and the size of Hilbert space.
At time t = 0, the Hamiltonian is quenched to the Fermi-Hubbard model in Eq. (24) with γ = 0.1 and U = 3. The
upper row (a-c) shows the Loschmidt as a function of dimensionless time t∥H∥, and the lower row shows the relative
mismatch between the exact result and various approximations. In all plots, the exact result (1) is plotted in black,
the Taylor series result (Eq. (2)) in red, the result from a cumulant series (Eq. (3)) in orange and the result from
the differential equation approach (Eq. (6)) in green. We note that exact numeric results for the exact
diagonalization portion were computed in the Python package QuSpin [24, 25].

that one can choose one consistent ground state. Fig. 7
presents a representative plot for how different approxi-
mations do. Our approximation scheme offers the advan-
tage of capturing a revival that appears at dimensionless
time t∥H∥ ≈ 11. This feature is completely missed by
the cumulant and Taylor series expansions. Regrettably,
one has to go to relatively high orders to capture it.

V. CONCLUSION

To summarize, we have developed a new approxima-
tion method that permits us to compute the Loschmidt
echo using an approximate differential equation ap-
proach. The method is convergent at finite order and,
even before it converges, often offers advantages over the
more standard Taylor series and cumulant series. In par-
ticular, the method can capture revivals in the Loschmidt
echo, a critical feature missed by both the Taylor and cu-
mulant expansion. We have also applied the method to
some simple band models where obtaining exact results
offers some advantages over more straightforward compu-
tations - like finding formulas that are easy to generalize
for arbitrary starting vectors or transmission amplitudes.

Of course, like with any new approach, there are some
drawbacks - some of them might be remedied later. For
instance, in some cases, one needs to go to relatively high

approximate orders to reap the approach’s benefits - is
there a way to accelerate convergence? Moreover, addi-
tional progress is needed in developing a clearer under-
standing of the circumstances when the method breaks
down in the sense that the cumulant expansion outper-
forms it - is there a way to avoid this? Moreover, obtain-
ing estimates for the time frame until which results are
reliable is an outstanding question that seems difficult to
answer.
Other interesting possible future directions to explore

are i) generalizing the approach to obtain differential
equations for the partition function ii), Lindblad master
equation approaches to the fidelity, which could provide
fascinating insights into the stability of qubits iii) there
are reasons to believe the approach could be employed
in the context of high energy physics to obtain improved
scattering matrix elements (interaction strength taking
the role of time).
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a) b) c)

d) e) f)

FIG. 7: In this figure, we present plots of the Loschmidt echo for a quench in a spin system. The starting point is
the ground state of the anti-ferromagnetic Ising chain HIsing in Eq. (31). The lattice is taken to be a 10-site lattice
to have a compromise between numerical speed, interesting features, and the size of Hilbert space. At time t = 0,
the Hamiltonian is quenched to the Heisenberg chain with DM interaction in Eq. (28) with J = 0.3 and D = 1. The
upper row (a-c) shows the Loschmidt as a function of dimensionless time t∥H∥, and the lower row shows the relative
mismatch between the exact result and various approximations. In all plots, the exact result (1) is plotted in black,
the Taylor series result (Eq. (2)) in red, the result from a cumulant series (Eq. (3)) in orange and the result from
the differential equation approach (Eq. (6)) in green. We note that exact numeric results for the exact
diagonalization portion were computed in the Python package QuSpin [24, 25].
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Appendix A: Trace identities for fermions

In this section, we will compute some of the trace iden-
tities that are quoted in the main text. We first start with
the following trace

T = tr

 L∏
j=1

(c†j)
Mjc

Nj

j

 (A1)

whereMj , Nk ∈ N0. We may now use the Jordan-Wigner
transform for a lattice with L sites in a tensor product
form[27]

c†j =

j−1⊗
k=1

σ(k)
z ⊗ σ

(j)
+

L⊗
l=j+1

1(l)
2 , (A2)

where we put superscripts in parentheses that denote lat-
tice sites. We find

T = tr

 L∏
j=1

j−1⊗
k=1

1(k)
2 ⊗ (σ

(j)
+ )Mj (σ

(j)
− )Nj

L⊗
l=j+1

1(k)
2

 ,

(A3)
We may simplify the product further to obtain

T = tr

 L⊗
j=1

(σ
(j)
+ )Mj (σ

(j)
− )Nj

 . (A4)

The trace of a tensor product can now be factorized as

T =

L∏
j=1

tr
(
(σ

(j)
+ )Mj (σ

(j)
− )Nj

)
. (A5)

Now it is important to note that each of the traces is only
non-zero if Mj = Nj such that we find

T =

L∏
j=1

δNj ,Mj
tr
(
(σ

(j)
+ )Mj (σ

(j)
− )Mj

)
(A6)

Next, we note that

tr
(
σM
+ σM

−
)
=


2; M = 0

1; M = 1

0; otherwise

, (A7)

which allows us to find

T =

L∏
j=1

δNj ,Mj
(δNj ,0 + δNj ,1)2

δNj,0 . (A8)

This type of expression may now be used to compute
traces tr(Hn). Here, it is useful to start with smaller
system sizes and take note that

tr(Hn)/(2L−2n) =

n∑
j,k=1

njkγ
kUn−kLj , (A9)

where njk are integers. This equation also implies that
if U, γ are chosen as integers, the coefficients in front of
Lj are integers. That is, for U, γ ∈ N we have

tr(Hn)/(2L−2n) =

n∑
j,k=1

Nj(γ ∈ Z, U ∈ Z)Lj , (A10)

where Nj(γ ∈ Z, U ∈ Z) ∈ Z.
For each pair of (γ, U) one then needs only to match

n coefficients - that is consider n different lattice size
results - to obtain a general expression valid for arbitrary
lattice size L - a least square-fit can do this. One should
note that at order n, one has to consider lattice sizes
of L = n + 1 and larger to avoid debilitating finite size
effects.
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To then obtain the γ and U dependence one then has
to find n non-trivial combinations of (γ, U) and fit the

njk such that

Nj =
∑
k

njkγ
kUn−k. (A11)

Using this approach, we found the following identities
below

tr(H0) = 2L; tr(H1) = 2L−2LU (A12)

tr(H2) = 2L−4
[
L
(
8γ2 + 5U2

)
+ L2U2

]
(A13)

tr(H3) =2L−6
[
L
(
24U3 − 24γ2U

)
+ L2

(
24γ2U + 15U3

)
+ L3U3

]
(A14)

tr(H4) =2L−8
[
L
(
62U4 − 192γ4 − 448γ2U2

)
+ L2

(
192γ4 + 144γ2U2 + 171U4

)
+ L3

(
48γ2U2 + 30U4

)
+ L4U4

]
(A15)

tr(H5) =2L−10
[
L
(
3840γ4U − 3360γ2U3 − 960U5

)
+ L2

(
−2880γ4U − 1520γ2U3 + 1510U5

)
+L3

(
960γ4U + 960γ2U3 + 615U5

)
+ L4

(
80γ2U3 + 50U5

)
+ L5U5

] (A16)

tr(H6) =2L−12
[
L
(
20480γ6 + 90240γ4U2 + 24192γ2U4 − 22960U6

)
+L2

(
4650U6 − 23040γ6 − 39360γ4U2 − 57840γ2U4

)
+ L3

(
7680γ6 + 6600γ2U4 + 10005U6

)
+L4

(
2880γ4U2 + 3120γ2U4 + 1605U6

)
+ L5

(
120γ2U4 + 75U6

)
+ L6U6

] (A17)

tr(H7) =2L−14
[
L
(
1436288γ2U5 − 1182720γ6U + 297472γ4U3 − 233856U7

)
+L2

(
949760γ6U + 685440γ4U3 − 773136γ2U5 − 209440U7

)
+L3

(
115710U7 − 322560γ6U − 396480γ4U3 − 195720γ2U5

)
+L4

(
53760γ6U + 53760γ4U3 + 62440γ2U5 + 40495U7

)
+L5

(
6720γ4U3 + 7560γ2U5 + 3465U7

)
+ L6

(
168γ2U5 + 105U7

)
+ L7U7

]
(A18)

tr(H8) =2L−16
[
L
(
1736432U8 − 4874240γ8 − 28442624γ6U2 − 41072640γ4U4 + 26372096γ2U6

)
+L2

(
5877760γ8 + 14479360γ6U2 + 36300544γ4U4 + 4564224γ2U6 − 6240948U8

)
+L3

(
99260U8 − 2580480γ8 − 931840γ6U2 − 6518400γ4U4 − 8495424γ2U6

)
+L4

(
430080γ8 − 860160γ6U2 − 846720γ4U4 + 285600γ2U6 + 807345U8

)
+L5

(
215040γ6U2 + 282240γ4U4 + 260960γ2U6 + 124040U8

)
+L6

(
13440γ4U4 + 15456γ2U6 + 6594U8

)
+ L7

(
224γ2U6 + 140U8

)
+ L8U8

]
(A19)

It is important to stress that the results for tr(Hn) are
exactly valid for chains of an arbitrary number of sites
L > n. They are not valid for L < n + 1 because the
periodic boundary conditions spoil the result for a smaller
number of sites L.

Appendix B: Trace identities for spins

In this section, we will compute some trace identities
for spin Hamiltonians that are just quoted in the main
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text. First, we compute the following useful general trace

T = tr

 L∏
j=1

(σx
j )

Kj (σy
j )

Mj (σz
j )

Nj

 , (B1)

where Kj ,Mj , Nj ∈ Z. Making use of the fact that the
spin operators can be rewritten as tensor product [27]

σx,y,z
j =

j−1⊗
k=1

1(k)
2 ⊗ σ(j)

x,y,z

L⊗
l=j+1

1(l)
2 . (B2)

For clarity, we introduced a site label in parentheses. We
then obtain

T = tr

(
L⊗

i=1

[
(σx

i )
Ki(σy

i )
Mi(σz

i )
Ni
](i))

(B3)

Now, using the trace of a tensor product factories, we
find that

T =

L∏
i=1

tr
(
(σx

i )
Ki(σy

i )
Mi(σz

i )
Ni
)

(B4)

The result can be simplified further by making use of the
fact that Pauli matrices square to the identity matrix to
obtain

T =

L∏
i=1

tr
(
(σx

i )
Kimod2(σy

i )
Mimod2(σz

i )
Nimod2

)
(B5)

Now, there is only two combinations of exponents
that lead to a non-zero trace Kimod2 = Mimod2 =
Nimod2 = 1 and Kimod2 = Mimod2 = Nimod2 = 0.
Taking these cases into consideration, one obtains

T =

L∏
i=1

(2δKimod2+Mimod2+Nimod2,0

+ 2iδKimod2+Mimod2+Nimod2,3)

. (B6)

It is now straightforward to compute traces tr(Hn) of
the spin Hamiltonian (28). Especially if we note that the
general form the result we will obtain in this particular
case has the general form

tr(Hn) =

n/2∑
j=1

n∑
k=1

njkJ
kDn−kLj , (B7)

where njk ∈ Z
Results for the first few orders are given below

tr(H) = 0; tr(H2) = 2LL
(
2D2 + 3J2

)
; tr(H3) = −2LL

(
6D2J + 6J3

)
(B8)

tr(H4) = 2L
[
L2
(
12D4 + 36D2J2 + 27J4

)
− L

(
12D4 + 40D2J2 + 30J4

)]
(B9)

tr(H5) = 15 2L+2
[
L
(
4D4J + 10D2J3 + 6J5

)
− L2

(
2D4J + 5D2J3 + 3J5

)]
(B10)

tr(H6) =2L
[
L3
(
120D6 + 540D4J2 + 810D2J4 + 405J6

)
+L2

(
−360D6 − 1380D4J2 − 1980D2J4 − 990J6

)
+L

(
320D6 + 840D4J2 + 1008D2J4 + 504J6

)] (B11)

tr(H7) =2L+1
[
L2
(
6300D6J + 25620D4J3 + 33810D2J5 + 14490J7

)
−L

(
9240D6J + 38584D4J3 + 51352D2J5 + 22008J7

)
−L3

(
1260D6J + 5040D4J3 + 6615D2J5 + 2835J7

)] (B12)

tr(H8) =2L
[
L4
(
1680D8 + 10080D6J2 + 22680D4J4 + 22680D2J6 + 8505J8

)
−L3

(
10080D8 + 43680D6J2 + 78120D4J4 + 70560D2J6 + 26460J8

)
+L2

(
22960D8 + 26880D6J2 − 74032D4J4 − 125664D2J6 − 47124J8

)
+L

(
204048J8 − 19040D8 + 88704D6J2 + 447552D4J4 + 544128D2J6

)]
,

(B13)

where much like the fermionic case our expressions for tr(Hn) are valid for arbitrary number of sites L > n. The
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boundary conditions spoil the case for a smaller number of sites.
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