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Quantum scattering is used ubiquitously in both experimental and theoretical physics across a wide range of
disciplines, from high-energy physics to mesoscopic physics. In this work, we uncover universal relations for
the energy fluctuations of a quantum system scattering inelastically with a particle at arbitrary kinetic energies.
In particular, we prove a fluctuation relation describing an asymmetry between energy absorbing and releasing
processes which relies on the non-unital nature of the underlying quantum map. This allows us to derive a bound
on the average energy exchanged. We find that energy releasing processes are dominant when the kinetic energy
of the particle is comparable to the system energies, but are forbidden at very high kinetic energies where well
known fluctuation relations are recovered. Our work provides a unified view of energy fluctuations when the
source driving the system is not macroscopic but rather an auxiliary quantum particle in a scattering process.

Introduction. — Scattering is a mechanism of interaction
between physical systems that is pervasive across nature and
experiment, from low to high energies [1, 2]. It is an essen-
tial tool in the characterization of materials and quantum phe-
nomena in condensed matter [3, 4], in describing the transport
properties of quantum systems [5–10] and the properties of
ultracold gases [11–19]. Quantum scattering theory describes
how two (or more) quantum systems change their state after
they collide, which entails an energy exchange between them
when the scattering process is inelastic [1–3]. Such energy ex-
changes have been recently analysed from a thermodynamic
viewpoint [20–24], but a more general scattering treatment at
the level of energy fluctuations is still not available.

In thermodynamics, energy fluctuations are usually stud-
ied for small – classical or quantum – systems interacting
with macroscopic sources. The assumption of a macroscopic
source allows us to define some Hamiltonian for the system
with time dependent parameter that we imagine is operated
in a classical way [25]. Within this paradigm, some of the
most famous results of stochastic thermodynamics have been
derived, for example the so-called fluctuation relations [26–
31]. As an example, consider a system of any size prepared
in thermal equilibrium with its environment characterized by
β = 1/kBT , where kB is the Boltzmann constant and T is the
temperature. When the system is driven out of equilibrium by
a macroscopic source in a cyclic fashion (so that the system
Hamiltonian is the same before and after the interaction), then
the fluctuation relation reads e−βW pW = p̃−W , where pW is
the probability distribution for an energy change W during the
process and p̃−W is the probability distribution for an energy
change −W in the time-reversed process [29, 30]. Jarzynski’s
equality ⟨e−βW⟩ = 1 [32] follows by a simple average over W
which, through Jensen’s inequality, implies (on average) the
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impossibility of energy extraction in a cyclic process ⟨W⟩ ≥ 0.
Since the macroscopic source is considered to behave deter-
ministically, i.e. as a work source, the energy consumed is
interpreted as work done on the system. Through the use of
the two-point measurement scheme, fluctuation relations have
been extended to closed quantum systems [33–38], derived for
macroscopic heat sources [29, 39] and experimentally verified
across different platforms [40–44].

A valid framework to go beyond the macroscopic source
paradigm is that of open quantum systems [45, 46], where the
system dynamics is described by a dynamical map [47–50]
obtained after the interaction with another quantum system of
arbitrary size. It is known that fluctuation relations can be
derived within the two-point measurement scheme when the
map is unital, i.e. if the maximally-mixed state is an invari-
ant state [41, 51, 52]. If the map is not unital, it has been
shown that Jarzynski’s equality is modified to ⟨e−βW⟩ = 1 + η,
where η can be positive or negative [53–55]; similar mod-
ifications have been found when studying fluctuations with
generalized measurements [56] and in the presence of feed-
back control [57, 58]. Since Jensen’s inequality then implies
⟨W⟩ ≥ − log(1 + η), this suggests that η > 0 allows for en-
ergy releasing processes. However, the physical significance
of non-unital maps remains poorly understood and appreci-
ated. Quantum scattering theory, by being realistic and treat-
ing the interacting systems as quantum systems in their own
right, could provide a unified view of energy fluctuations be-
yond the macroscopic source limit.

In this Letter, we provide such a unified view on energy
fluctuations by studying a quantum system scattering inelas-
tically with a particle at an arbitrary kinetic energy. We
show that the dynamical map for the system naturally encodes
its energy fluctuations without relying on any measurement
scheme. Our main result [Eq. (8)] describes a universal fluctu-
ation relation obeyed for a system driven out of equilibrium by
the colliding particle and reflects the non-unital nature of the
scattering process. From this result, we derive an exact bound
for the energy exchanged [Eqs. (10) and (11)] as a function of
the particle’s kinetic energy. We show that non-unitality dom-

ar
X

iv
:2

40
4.

04
92

3v
1 

 [
qu

an
t-

ph
] 

 7
 A

pr
 2

02
4

mailto:sajacob@tcd.ie
mailto:gooldj@tcd.ie
mailto:fbarra@dfi.uchile.cl 
mailto:gabriel.landi@rochester.edu


2

inates when the particle’s kinetic energy is comparable to the
energy gaps of the system, allowing energy extraction from
the system; while at very high kinetic energies we recover
unitality and the standard fluctuation relation.

Setup and energy fluctuations. — We consider a quantum
scattering process between a system S and a particle P. In
a reference frame co-moving with the center of mass, only
the reduced mass plays a role, but we simplify the treatment
by fixing the position of system S and consider the parti-
cle P to be travelling in one direction with associated mo-
mentum p̂ and position x̂ operators. The total Hamiltonian
is Ĥ = Ĥ0 + V̂(x̂) where Ĥ0 = ĤS ⊗ ÎP + ÎS ⊗ p̂2/2m is
the bare Hamiltonian. The energy of the system is defined
by ĤS | j⟩ = e j | j⟩, where {| j⟩} is a basis of eigenvectors as-
sociated to its discrete energy spectrum {e j}. The energy of
the particle is described by p̂2/2m |p⟩ = Ep |p⟩, where {|p⟩}
are improper (non-normalizable) eigenvectors whose position
representation are plane waves ⟨x|p⟩ = exp(ipx/ℏ)/

√
2πℏ and

Ep = p2/2m ≥ 0 is the kinetic energy. The interaction op-
erator V̂(x̂) is assumed to vanish sufficiently far away from
the scattering region where the system is located, so that the
unitary scattering operator Ŝ = limt→+∞ e

it
ℏ Ĥ0 e−

i2t
ℏ Ĥe

it
ℏ Ĥ0 exists

and satisfies energy conservation [Ŝ , Ĥ0] = 0 [1, 2]. Consid-
ering the initial state of the system ρ̂S and particle ρ̂P to be
uncorrelated before the collision, the state of the system after
the collision is

Φ(ρ̂S ) = TrP[Ŝ (ρ̂S ⊗ ρ̂P)Ŝ †] , (1)

where TrP is the partial trace over the particle and Φ is a com-
pletely positive and trace preserving map [45–48, 50].

The explicit evaluation of Eq. (1) can be performed in the
following kinetic energy eigenstates |Eαp⟩ ≡

√
m/|p| |p⟩, where

α = sign(p) accounts for the initial direction of the incom-
ing particle, which can be travelling to the left (α = +)
or right (α = −). First, we need the representation of the
scattering operator in this basis which reads ⟨Eα

′

p′ |Ŝ |E
α
p⟩ =∑

j′, j | j′⟩ ⟨ j| ⟨Eα
′

p′ , j′|Ŝ |Eαp , j⟩ where |Eαp , j⟩ is the eigenbasis of
Ĥ0 and ⟨Eα

′

p′ , j′|Ŝ |Eαp , j⟩ = δ(Ep′ + e j′ − Ep − e j)sα
′α

j′ j (Ep + e j).
In the last expression, the δ function ensures energy conser-
vation for the collision and sα

′α
j′ j (E) is the scattering matrix

encoding the transition amplitudes from |Eαp , j⟩ → |Eα
′

p′ , j′⟩
at total energy E = Ep + e j [1, 2]. Rewriting the sum over
j′, j as a sum over energy differences ∆ then yields simply
⟨Eα

′

p′ |Ŝ |E
α
p⟩ =

∑
∆ δ(Ep′ − Ep + ∆)Ŝ α

′α
∆

(Ep) where

Ŝ α
′α
∆ (Ep) =

∑
j′, j:

e j′−e j=∆

sα
′α

j′ j (Ep + e j) | j′⟩ ⟨ j| , (2)

are eigenoperators of ĤS and thus obey [ĤS , Ŝ α
′α
∆

(Ep)] =
∆Ŝ α

′α
∆

(Ep). Second, we need the representation of the par-
ticle’s state in the same basis ραβP (Ep, Eq) ≡ ⟨Eαp |ρ̂P|E

β
q⟩ and

we can carry out the trace in Eq. (1). After integrating the δ
functions, we find that the particle’s state becomes dependent
on the energy differences as ραβP (Ep, Ep − ∆ + ∆

′) (see Ap-
pendix B for more details). However, as shown in Ref. [20],

if the particle has a well-defined direction before the collision
and is sufficiently narrow in kinetic energy with respect to the
energy differences, then we can write

ρ
αβ
P (Ep, Ep − ∆ + ∆

′) ≃ δαβδ∆,∆′ ραP(Ep) , (3)

where ραP(Ep) ≡ ρααP (Ep, Ep) is the kinetic energy distribution
for a particle travelling with direction α. In this case, Eq. (1)
can be written as

Φ(ρ̂S ) =
∫

dEp

∑
α=±

ραP(Ep) Φα(Ep)(ρ̂S ) , (4)

where Φα(Ep) is a completely positive and trace preserving
map conditioned on the particle’s kinetic energy Ep and di-
rection α given by

Φα(Ep)(·) =
∫

dW Φα(Ep,W)(·) (5)

Φα(Ep,W)(·) =
∑
∆

δ(W − ∆)
∑
α′

Ŝ α
′α
∆ (Ep) · Ŝ α

′α
∆ (Ep)† . (6)

Eqs. (4), (5) and (6) define the dynamical map. Note that the
Kraus operators in Eq. (6) are system eigenoperators due to
condition (3), inducing a transition with energy change ∆. In-
deed, assuming that ĤS has a non-degenerate spectrum, it is
easy to see that the quantum operation in Eq. (6) defines a
probability distribution for the energy changes through

Pα(Ep,W) = TrS
[
Φα(Ep,W)(ρ̂S )

]
=

∑
j′, j

δ(W − e j′ + e j)Pαj′ j(Ep + e j)p j , (7)

where p j ≡ ⟨ j|ρ̂S | j⟩ and Pαj′ j(Ep + e j) =
∑
α′ |sα

′α
j′ j (Ep + e j)|2 is

the transition probability. Note that Eq. (7) has the same form
as the distribution for energy changes induced by a unitary
operator U on the system in a two-point measurement scheme
[29, 30, 33, 34, 36], with two crucial differences. First, there
is no need for a two-point measurement scheme as a conse-
quence of condition (3): a particle with a well-defined kinetic
energy effectively measures the energy changes in the sys-
tem [23]. Second, the transition probabilities are dictated by
Pαj′ j(Ep + e j) instead of | ⟨| j′|U | j⟩ |2, thus becoming dependent
on both the system and the particle’s energy. The normaliza-
tion

∫
P(Ep,W)dW =

∑
j′, j Pαj′ j(Ep+e j)p j = 1 holds since the

map in Eq. (5) is trace preserving by construction. Indeed, the
property

∑
j′ Pαj′ j(Ep + e j) = 1 can be proven independently

from the unitarity of the scattering operator and holds for any
fixed total energy E (see Appendix C).

Main result. — We now take our system to be in a ther-
mal state ρ̂S = e−βĤS /Z where Z = TrS [e−βĤS ] is the par-
tition function [59]. Using the property of the eigenoper-
ators Ŝ α

′α
∆

(Ep)e−βĤS = eβ∆e−βĤS Ŝ α
′α
∆

(Ep), it is easy to see
that the quantum operation satisfies e−βWΦα(Ep,W)(ρ̂S ) =
ρ̂SΦ

α(Ep,W)(ÎS ) and thus the distribution in Eq. (7) obeys

e−βW Pα(Ep,W) = Pα(Ep,−W) , (8)
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where Pα(Ep,−W) is dual probability distribution given by

Pα(Ep,−W) = TrS
[
Φα(Ep,W)†(ρ̂S )

]
=

∑
j′, j

δ(−W − e j + e j′ )p j′Pαj′ j(Ep + e j) , (9)

with the dual operation defined by TrS
[
ρ̂SΦ

α(Ep,W)(ÎS )
]
=

TrS
[
Φα(Ep,W)†(ρ̂S )

]
. Eq. (9) has the same form as the dis-

tribution for energy changes induced by a time-reversed uni-
tary operator U† = ΘUΘ† on the system in a two-point mea-
surement scheme, where Θ is the (anti-unitary) time rever-
sal operator [29, 30, 33, 34, 36]. In this sense, the dual op-
eration Φα(Ep,W)† reverses the energy change induced by
Φα(Ep,W) [60]. However, a crucial point is that the dual
distribution in Eq. (9) is generally not normalized γα(Ep) ≡∫
Pα(Ep,−W)dW =

∑
j′, j p j′Pαj′ j(Ep+e j) , 1. This reflects the

fact that the map in Eq. (5) is non-unital, or equivalently that
its dual is not trace preserving [51–53, 55]; unitality would
require

∑
j Pαj′ j(Ep + e j) = 1 which is generally not obeyed in

quantum scattering theory. Below, we show that both non-
unitality and unitality are general features of the scattering
process and discuss the physical conditions where each arises.

From our main result in Eq. (8) we can obtain an inte-
gral fluctuation relation

∫
e−βW Pα(Ep,W)dW = γα(Ep) and,

through Jensen’s inequality, derive the following lower bound
for the average energy change

⟨W⟩α(Ep) ≥ −β−1 log[1 + ηα(Ep)] , (10)

where ⟨W⟩α(Ep) ≡
∫

WPα(Ep,W)dW and ηα(Ep) ≡ γα(Ep) −
1. When ηα(Ep) > 0 the lower bound in Eq. (10) becomes
negative and an initially thermal system can release energy
in the collision; while when ηα(Ep) ≤ 0 it is impossible to
extract energy from the system, with the equality holding for
unital dynamics. We show in Appendix F that ηα(Ep) can be
written in the exact form

ηα(Ep) =
∑
∆>0

tanh
(
β∆

2

) ∑
j′, j:

e j′−e j=∆

(
Z j′ j

Z

)

× [Pαj j′ (Ep + e j′ ) − Pαj′ j(Ep + e j)] . (11)

The first sum in the last expression is over all the energy gaps
of the system. For a given energy gap ∆ > 0, the second sum is
over all pairs of energy levels whose difference is ∆ and Z j′ j =

e−βe j′ + e−βe j is the partition function of one of these pairs.
The last term describes the imbalance between relaxation and
excitation probabilities of the pair, being positive (negative)
when the former are higher (lower) than the latter.

Discussion and example. — In general, it is difficult to pre-
dict the behaviour of ⟨W⟩α(Ep) and ηα(Ep), since they de-
pends strongly on the scattering matrix, which in turns de-
pends on the system Hamiltonian ĤS and scattering poten-
tial V̂(x̂). However, we can study their behaviour based on
universal scattering features in two regimes: when the ki-
netic energy is comparable to the minimum energy gap of
the system or when it is much larger than the maximum en-
ergy gap. As an example, consider a particle colliding with

a two-level system with energy gap ∆ > 0. For simplicity,
we consider a spatially symmetric potential V̂(x̂) = V(−x̂) in
which case the scattering process is independent of the initial
direction of the particle α [2, 20] and we omit this label. The
relevant quantities in Eq. (10) then read exactly ⟨W⟩(Ep) =
(∆/2) cosh−1(β∆/2)[P10(Ep + e0)eβ∆/2 − P01(Ep + e1)e−β∆/2]
and η(Ep) = tanh(β∆/2)[P01(Ep + e1) − P10(Ep + e0)], where
|1⟩ and |0⟩ are the excited and ground state.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.10

−0.05

0.00

0.05

0.10

0.15
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⟨W ⟩(Ep)

−β−1 log[1 + η(Ep)]

100 200 300 400 500 600 700 800 900 1,000
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⟨W ⟩(Ep)

−β−1 log[1 + η(Ep)]

FIG. 1. Average system energy change and lower bound in Eq. (10)
at low and high kinetic energies (upper and lower panel, respec-
tively). We consider a two-level system ĤS = (∆/2)σ̂z and scattering
potential V̂(x̂) = (V0π/2)σ̂x ⊗ cos(πx̂/a), where ∆ is the energy gap,
σ̂z,x are Pauli matrices and V0, a are the energy and length of the po-
tential. The scattering matrix is found by solving numerically the
multichannel scattering equations [20, 61]. The parameters shown
are ∆ = m = a = β = 1, V0 = 100 and the vertical dashed line in the
upper panel indicates Ep = ∆ = 1.

At low kinetic energies 0 ≤ Ep < ∆ we see that Eq. (10)
allows for energy extraction from the system (Fig. 1, upper
panel). This is because system excitation is forbidden when
the particle has an initial kinetic energy lower than the gap:
the excitation channel is closed, i.e. P10(Ep + e0) = 0 for
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0 ≤ Ep < ∆. In contrast, a system initially at finite tem-
perature has a non-zero probability to be excited and then re-
lax in the collision: the relaxation channel is always open i.e.
P01(Ep + e1) ≥ 0 for Ep ≥ 0. In this regime, we can then write
⟨W⟩(Ep) = −∆ f (β∆)P01(Ep + e1) ≤ 0 where f (x) = (1+ ex)−1

is the Fermi function and η(Ep) = tanh(β∆/2)P01(Ep+e1) ≥ 0.
Thus, the maximum energy that can be extracted from a two-
level system in any scattering process is ⟨W⟩max

ext = ∆ f (β∆).
Note when both channels are open, energy can still be ex-
tracted in the range ∆ ≤ Ep ≤ Emax

p where Emax
p is implicitly

defined by ⟨W⟩(Emax
p ) = 0. Similar conclusions can be drawn

for an N-level system at low kinetic energies, with different
expressions for ⟨W⟩(Ep) and η(Ep), provided that we consider
the minimum energy gap of the system. These were confirmed
numerically, but a systematic study of energy extraction for
larger systems is left for future work.

At high kinetic energies Ep ≫ ∆ energy extraction be-
comes impossible and we recover unital dynamics (Fig. 1,
lower panel). Since in this regime η(Ep) → 0, the signa-
ture of unital dynamics is P01(Ep + e1) = P10(Ep + e0) and
we can write ⟨W⟩(Ep) = ∆ tanh(β∆/2)P10(Ep + e0) ≥ 0. The
maximum energy consumed by the two-level system in any
scattering process can never exceed ⟨W⟩max

cons = ∆ tanh(β∆/2).
In fact, the convergence towards unitality at high kinetic ener-
gies is a universal feature of the scattering process, where the
behaviour of the scattering matrix is mainly determined by the
kinetic energy and depends weakly on the system energy gaps
P10(Ep+e0) = P10(Ep+e1−∆) ≃ P10(Ep+e1) = P01(Ep+e1),
where the last equality follows from the time-reversal symme-
try of the scattering matrix [2, 20, 23] (see also Appendix C).
Similar conclusions hold for an N-level system, with a dif-
ferent expression for ⟨W⟩(Ep), provided that kinetic energy is
much larger than the maximum energy gap. These conclu-
sions also hold for non-symmetric potentials, since at suffi-
ciently high kinetic energies the precise shape of the potential
V̂(x̂) is not captured by the scattering matrix [21]. We con-
firmed numerically these predictions for non-symmetric po-
tentials and larger systems sizes.

Note that for a two-level system, the maximum energy that
can be extracted ⟨W⟩max

ext = ∆ f (β∆) is maximal ∆/2 at β = 0
(infinite temperature) and decreases monotonically to zero as
β → ∞ (zero temperature), while the maximum energy con-
sumed ⟨W⟩max

cons = ∆ tanh(β∆/2) is zero at β = 0 and in-
creases monotonically to ∆ at β → ∞. Curiously, there is a
temperature above which extraction supersedes consumption
0 ≤ β ≤ β0, where β0 = ∆

−1 log(2) is determined by the in-
tersection of both functions. At this threshold temperature we
have ⟨W⟩max

ext = ⟨W⟩
max
cons = ∆/3.

Conclusions. — We have shown how energy fluctuations
of a quantum system can be studied within scattering theory
beyond the macroscopic source limit. When a collision with a
particle pushes the system away from thermal equilibrium, the
probability distribution for the energy changes obeys a univer-
sal fluctuation relation (8) which allows for energy releasing
processes as dictated by non-unital dynamics. Such processes
are particularly important if the kinetic energy of the parti-
cle is of the order of the energy fluctuations, highlighting the
importance of non-unital maps in describing interactions with

microscopic sources. At high kinetic energies, unitality is re-
covered, together with the standard fluctuation theorems for
unital dynamics.

Our results may surprise readers familiar with the second
law of thermodynamics. As stated by Thomson and Planck:
”There is no physical process whose sole effect is energy ex-
traction from a thermal bath.” However, we have to note that
the state of the particle – generally described by a wavepacket
– will be distorted in the scattering process [20, 23]. In this
regard, we show in Appendix E that the entropy production,
defined as the average log-ratio of the probability for the for-
ward process and the backward process, is always positive –
even at low kinetic energies, where energy extraction from a
thermal system is possible. In Appendices H and I we prove
that heat fluctuation theorems also follow from (8) when the
kinetic energy of the particle is thermally distributed. Our
work provides a unifying perspective on thermodynamics of
quantum systems within a realistic scattering setup.

Appendix A: Fluctuations for quantum maps

We review here, in full generality, how to define energy
fluctuations for dynamical maps, highlighting the importance
of non-unital and unital maps.

A quantum (or dynamical) map Λ is a completely positive
and trace preserving map, taking quantum states to quantum
states ρ̂′ = Λ(ρ̂) [47–50]. The dual (or adjoint) map Λ† as-
sociated to Λ is defined through Tr[ÔΛ(ρ̂)] = Tr[Λ†(Ô)ρ̂],
where Ô is an arbitrary linear operator. When Ô = Î we get
Tr

[
Λ(ρ̂)

]
= Tr

[
Λ†(Î)ρ̂

]
= Tr[ρ̂] which follows from the fact

that Λ is trace preserving. Thus, we conclude that Λ is trace
preserving if and only if its dual is a unital map Λ†(Î) = Î, i.e.
if its dual preserves the identity. However, note that Λ itself
is generally non-unital which means that its dual is not trace
preserving: Tr[Λ†(ρ̂)] = Tr[Λ(Î)ρ̂] , Tr[ρ̂].

A dynamical map represents the most general type of evo-
lution for an open quantum system [45, 46]. The map Λ and
its dual Λ† can always be written as

Λ(·) =
∑

l

K̂l · K̂
†

l (A1)

Λ†(·) =
∑

l

K̂†l · K̂l (A2)

where {K̂l} are called Kraus operators and the trace preserv-
ing property reads Λ†(Î) =

∑
l K̂†l K̂l = Î. In order to de-

fine energy fluctuations for a general dynamical map, we con-
sider two (non-degenerate) Hamiltonians Ĥ =

∑
n EnΠ̂n and

Ĥ′ =
∑

m E′mΠ̂
′
m describing the energy of the quantum sys-

tem before and after the open system evolution induced by
Eq. (A1), with Π̂n = |En⟩ ⟨En| and Π̂′m = |E

′
m⟩ ⟨E

′
m| being pro-

jectors onto the energy eigenbasis. According to the two-point
measurement scheme [29, 30, 36], we measure the energy of
the system before and after the evolution. We can then define
the following probability distribution for the energy changes
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[52, 53, 55]

P(W) =
∑
l,m,n

δ(W − E′m + En)Tr[Π̂′mK̂lΠ̂nρ̂Π̂nK̂†l Π̂
′
m]

=
∑
l,m,n

δ(W − E′m + En)| ⟨E′m|Kl|En⟩ |
2 pn , (A3)

where ρ is the initial quantum state of the system and
pn ≡ ⟨En|ρ|En⟩. Since the dynamical map is trace preserv-
ing, this distribution can be easily shown to be normalized∫

P(W)dW = Tr[
∑

l K̂†l K̂lρ̂] = 1. Consider now that the sys-
tem is in a thermal state with respect to the initial Hamilto-
nian ρ = e−βH/Z where Z = Tr[e−βH] is the partition func-
tion of the initial Hamiltonian. Then pn = (pn/p′m)p′m =
eβ(E

′
m−En)e−β∆F p′m, where p′m ≡ ⟨E

′
m|ρ
′|E′m⟩ and ρ′ = e−βH

′

/Z′

is the thermal state with respect to the final Hamiltonian,
Z′ = Tr[e−βH

′

] is the associated partition function and ∆F =
−β−1 log(Z′/Z) is the free energy difference between the two
thermal states. Using this in Eq. (A3) leads immediately to
the relation

e−βW P(W) = e−β∆FP(−W) , (A4)

where the dual distribution is defined by

P(−W) =
∑
l,m,n

δ(−W − En + E′m)Tr[Π̂nK̂†l Π̂
′
mρ̂
′Π̂′mK̂lΠ̂n]

=
∑
l,m,n

δ(−W − En + E′m)p′m| ⟨E
′
m|Kl|En⟩ |

2 . (A5)

Note that this distribution encodes the energy changes in the
reverse process, where the evolution is now induced by the
dual map. However, the dual distribution is not normalized∫
P(−W)dW = Tr[

∑
l K̂lK̂

†

l ρ̂
′] = Tr[Λ†(ρ̂′)] ≡ γ , 1 since the

dynamical map is not unital. Integrating Eq. (A4) leads to the
modified Jarzynski equality [55]∫

e−βW P(W)dW = e−β[∆F−β−1 log γ] . (A6)

An application of Jensen’s inequality for exponential func-
tions ⟨e−X⟩ ≥ e−⟨X⟩, where ⟨·⟩ denotes the average with respect
to some probability distribution, leads to the bound

⟨W⟩ ≥ ∆F − β−1 log γ . (A7)

Note that in a cyclic process, the initial and final Hamiltonians
are the same and thus ∆F = 0. The scattering process studied
here constitutes a cyclic process.

Appendix B: Explicit form of Eq. 1

The explicit evaluation of Eq. (1) is best performed by
changing from momentum eigenstates to kinetic energy eigen-
states. We can do this through the resolution of identity in the
Hilbert space of the particle

ÎP =

∫ +∞

−∞

dp |p⟩ ⟨p| =
∫ +∞

0
dEp

∑
α=±

|Eαp⟩ ⟨E
α
p | , (B1)

where we separated the integral in momentum into its positive
(α = +) and negative (α = −) contributions and then changed
variables from momentum to kinetic energy. The kinetic en-
ergy eigenstates are then defined by |Eαp⟩ ≡

√
|dp/dEp| |α|p|⟩

where |p| =
√

2mEp and |dp/dEp| =
√

m/|p|. They are or-
thogonal and obey ⟨Eαp |E

β
q⟩ = δαβδ(Ep − Eq). Using these

eigenstates, the map in Eq. (1) can be written explicitly

Φ(ρ̂S ) =
∫

dEp

∫
dEq

∫
dEq′

∑
β,β′

⟨Eβq |ρ̂P|E
β′

q′ ⟩∑
α

⟨Eαp |Ŝ |E
β
q⟩ ρ̂S ⟨Eαp |Ŝ |E

β′

q′ ⟩
†
, (B2)

where we omit the integration limits and summation values
for simplicity. The scattering operator in this representation
can now be written as

⟨Eαp |Ŝ |E
β
q⟩ =

∑
j′, j

| j′⟩ ⟨ j| ⟨Eαp , j′|Ŝ |Eβq , j⟩

=
∑
j′, j

| j′⟩ ⟨ j| δ(Ep + e j′ − Eq − e j)sαβj′ j(Eq + e j)

=
∑
∆

δ(Ep − Eq + ∆)
∑
j′, j:

e j′−e j=∆

sαβj′ j(Eq + e j) | j′⟩ ⟨ j|

=
∑
∆

δ(Ep − Eq + ∆)Ŝ αβ
∆

(Eq) . (B3)

In the first line, we inserted two resolutions of identity in the
Hilbert space of the system ÎS =

∑
j | j⟩ ⟨ j|; in the second line,

we used the representation of the scattering operator in the
eigenbasis of Ĥ0 [1, 2]; in the third line, we split the sum
over system eigenstates into energy differences; in the last
line, we defined the eigenoperators of the system which ap-
pear in Eq. (2). Plugging this representation into Eq. (B2) and
performing the integrals over Ep and Eq′ yields

Φ(ρ̂S ) =
∫

dEq

∑
β,β′

∑
∆,∆′

ρ
ββ′

P (Eq, Eq + ∆
′ − ∆)∑

α

Ŝ αβ
∆

(Eq)ρ̂S Ŝ αβ
′

∆′
(Eq + ∆

′ − ∆)† , (B4)

where we used the notation ραβP (Ep, Eq) ≡ ⟨Eαp |ρ̂P|E
β
q⟩ for the

state of the particle. If this state obeys condition (3), i.e.
ρ
ββ′

P (Eq, Eq − ∆ + ∆
′) ≃ δββ′δ∆,∆′ ρ

β
P(Eq), where ρβP(Eq) ≡

ρ
ββ
P (Eq, Eq) is the kinetic energy distribution for a particle trav-

eling with direction β, then the map simplifies to

Φ(ρ̂S ) =
∫

dEq

∑
β

ρ
β
P(Eq)

∑
α,∆

Ŝ αβ
∆

(Eq)ρ̂S Ŝ αβ
∆

(Eq)† , (B5)

which is equivalent to Eq. (4). Eqs. (5) and (6) are easily
obtained by introducing a new integration over a continuous
variable W with the help of a δ function.
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Appendix C: Properties of the scattering matrix

1. Unitarity

The unitarity of the scattering operator Ŝ †Ŝ = Ŝ Ŝ † = Î,
where Î = ÎS ⊗ ÎP, enforces two properties on the scattering
matrix which we now briefly review, but can be consulted in
more detail elsewhere [1, 2, 20]. The two properties can be
obtained through the expressions

⟨Eα
′

p′ , j′|Ŝ †Ŝ |Eαp , j⟩ = δαα′δ j′ jδ(Ep − Ep′ ) (C1)

⟨Eα
′

p′ , j′|Ŝ Ŝ †|Eαp , j⟩ = δαα′δ j′ jδ(Ep − Ep′ ) . (C2)

By inserting resolutions of identity in the full Hilbert space be-
tween the two operators, using the representation of the scat-
tering operator ⟨Eα

′

p′ , j′|Ŝ |Eαp , j⟩ = δ(Ep′+e j′−Ep−e j)sα
′α

j′ j (Ep+

e j) and integrating out one of the δ functions, we find that the
scattering matrix obeys∑

β,k

[sβα
′

k j′ (E)]∗sβαk j (E) = δαα′δ j′ j (C3)∑
β,k

sα
′β

j′k (E)[sαβjk (E)]∗ = δαα′δ j′ j , (C4)

where E = Ep + e j is the total energy. These are the most
important properties of the scattering matrix holding for any
fixed total energy E. The transition probability Pα

′α
j′ j (E) ≡

|sα
′α

j′ j (E)|2 then obeys
∑

j′,α′ Pα
′α

j′ j (E) =
∑

j,α Pα
′α

j′ j (E) = 1. Thus
Pα

′α
j′ j (E) is a bistochastic matrix at any fixed total energy E.

2. Time-reversal symmetry

Another important property of the scattering matrix is time-
reversal symmetry. Namely, if H and Ĥ0 commute with the
time-reversal operator Θ, then scattering is invariant under
time-reversal and the scattering matrix obeys

sα
′α

j′ j (E) = s−α−α
′

j j′ (E) , (C5)

where we assume for simplicity of notation that the eigen-
states of ĤS are time-reversal invariant Θ | j⟩ = | j⟩ [1, 2, 20].
As a consequence of this symmetry the transition probabilities
obey Pα

′α
j′ j (E) = P−α−α

′

j j′ (E).

Appendix D: Properties of the Kraus operators

1. Eigenoperators

As we have discussed in the main text, the Kraus opera-
tors in Eq. (6) are eigenoperators of the system. Using their

definition in Eq. (2), it is easy to see that they obey

Ŝ α
′α
∆ (Ep)†Ŝ α

′α
∆ (Ep)

=
∑
k, j, j′:

ek−e j′=ek−e j=∆

| j′⟩ ⟨ j| [sα
′α

k j′ (Ep + e j′ )]∗sα
′α

k j (Ep + e j) (D1)

Ŝ α
′α
∆ (Ep)Ŝ α

′α
∆ (Ep)†

=
∑

k′,k, j:
ek′−e j=ek−e j=∆

|k′⟩ ⟨k| sα
′α

k′ j (Ep + e j)[sα
′α

k j (Ep + e j)]∗ . (D2)

However, assuming that ĤS is non-degenerate, we have ek −

e j′ = ek − e j ⇔ e j′ = e j ⇒ j = j′. Therefore (D1) and (D2)
become

Ŝ α
′α
∆ (Ep)†Ŝ α

′α
∆ (Ep) =

∑
k, j:

ek−e j=∆

Pα
′α

k j (Ep + e j) | j⟩ ⟨ j| (D3)

Ŝ α
′α
∆ (Ep)Ŝ α

′α
∆ (Ep)† =

∑
k, j:

ek−e j=∆

|k⟩ ⟨k| Pα
′α

k j (Ep + e j) . (D4)

These last two expressions are diagonal in the eigenbasis of
ĤS . When they are used to compute the probability distribu-
tion and its dual [Eqs. (7) and (9)], they imply that only on
the populations of the system are relevant. Summing over all
energy differences and final particle directions α′ yields∑
∆,α′

Ŝ α
′α
∆ (Ep)†Ŝ α

′α
∆ (Ep) = IS , (D5)∑

∆,α′

Ŝ α
′α
∆ (Ep)Ŝ α

′α
∆ (Ep)† =

∑
k

|k⟩ ⟨k|
∑
j,α′

Pα
′α

k j (Ep + e j) . (D6)

The first line expression follows from the properties of the
scattering matrix in Eqs. (C3) and (C4) and expresses the trace
preserving property of the dynamical map. The second line
cannot be further simplified since in general

∑
j,α′ Pα

′α
k j (Ep +

e j) , 1 [see discussion below Eqs. (C3) and (C4)]. Therefore,
the dynamical map is generally non-unital.

2. Time-reversal symmetry

In addition, the time-reversal symmetry of scattering ma-
trix enforces a time-reversal symmetry of the eigenoperators.
Using Eq. (C5) in Eq. (2) immediately leads to

Ŝ α
′α
∆ (Ep)† = Ŝ −α−α

′

−∆ (Ep − ∆) . (D7)

The physical interpretation is clear: the operator Ŝ α
′α
∆

(Ep) in-
duces a transition in the system with energy ∆ – the parti-
cle having initial kinetic energy Ep and direction α, and fi-
nal kinetic energy Ep − ∆ and direction α′ – while its adjoint
Ŝ α

′α
∆

(Ep)† induces the time-reversed transition – the particle
having initial kinetic energy Ep − ∆ and direction −α′, and
final kinetic energy Ep and direction −α. Note that the ini-
tial kinetic of the time-reversed process Ep − ∆ depends on
the energy jump ∆ induced in the forward process. Although
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our main results presented in the paper do not require (C5) or
(D7), we show in Appendix G that they shed light on the con-
nection between the dual map and time-reversibility when our
scattering setup is microscopically reversible.

Appendix E: Entropy production

The inequality in Eq. (10) can be interpreted as an expres-
sion of the entropy production for the scattering process. In-
deed, we can write

β⟨W⟩α(Ep) =
∫
βWPα(Ep,W)dW

=

∫
log

[
Pα(Ep,W)
Pα(Ep,−W)

]
Pα(Ep,W)dW

=

∫
log

[
Pα(Ep,W)

P̃α(Ep,−W)

]
Pα(Ep,W)dW

− log γα(Ep) , (E1)

where in the last line we introduced the normalized dual dis-
tribution P̃α(Ep,−W) ≡ Pα(Ep,−W)/γα(Ep) and used the nor-
malization of Pα(Ep). Therefore we conclude

Σα(Ep) =
∫

log
[

Pα(Ep,W)

P̃α(Ep,−W)

]
Pα(Ep,W)dW

= β⟨W⟩α(Ep) + log γα(Ep) ≥ 0 . (E2)

The entropy production is a relative entropy [49] between two
distributions: the energy distribution induced by the map and
the (normalized) energy distribution induced by the dual map.

Appendix F: Derivation of Eq. 11

In order to derive Eq. (11), we start from its definition

ηα(Ep) = γα(Ep) − 1 =
∫
Pα(Ep,−W)dW − 1

=
∑
j′, j

e−βe j′

Z
Pαj′ j(Ep + e j) − 1 . (F1)

Expressing unity as 1 =
∑

j′ j Pαj′ j(Ep+e j)e−βe j Z−1 and splitting
the sum into energy changes yields

ηα(Ep) =
1
Z

∑
∆

∑
j′, j:

e j′−e j=∆

Pαj′ j(Ep + e j)(e−βe j′ − e−βe j )

= −
2
Z

∑
∆

∑
j′, j:

e j′−e j=∆

e−β∆/2 sinh
(
β∆

2

)
Pαj′ j(Ep + e j)e−βe j .

In the last expression we expressed the difference in exponen-
tials as a hyperbolic sine function. Now we split the sum over
energy differences ∆ into positive and negative contributions,

corresponding to system excitation and relaxation, rewriting
the expression as

ηα(Ep) = −
2
Z

∑
∆>0

sinh
(
β∆

2

)
×

[ ∑
j′, j:

e j′−e j=∆

e−β∆/2Pαj′ j(Ep + e j)e−βe j

−
∑
j′, j:

e j′−e j=−∆

eβ∆/2Pαj′ j(Ep + e j)e−βe j

]
.

The first sum is now over energy gaps (positive by definition),
the first term in parenthesis corresponding to excitation and
the last one to relaxation. Permuting the labels in the last ex-
pression, it can be further is simplified to

ηα(Ep) =
2
Z

∑
∆>0

sinh
(
β∆

2

) ∑
j′, j:

e j′−e j=∆

[Pαj j′ (Ep + e j′ )e−βe j′ eβ∆/2 − Pαj′ j(Ep + e j)e−βe j e−β∆/2] .

The last step involves noting that we can write the quan-
tity Z j′ j = e−βe j′ + e−βe j in two equivalent ways, namely
Z j′ j = 2 cosh(β∆/2)e−βe j e−β∆/2 = 2 cosh(β∆/2)e−βe j′ eβ∆/2

which leads directly to Eq. (11).

Appendix G: Microscopic reversibility

The results presented in the main text are independent of
whether or not our scattering setup is microscopically re-
versible; nevertheless, we show here the impact of micro-
scopic reversibility on our results. In addition to the scatter-
ing matrix obeying time-reversal symmetry in Eq. (C5), mi-
croscopic reversibility holds when the potential is spatially
symmetric or when the particle approaches the scattering re-
gion from the left or right with equal probability [20]. We
will assume the latter, which amounts to considering that the
distribution of the particle introduced in Eq. (3) is given by
ραP(Ep) = ρP(Ep)/2. The map in Eq. (4) then reads simply
Φ(ρ̂S ) =

∫
dEp ρP(Ep) Φ(Ep)(ρ̂S ), where Φ(Ep) is now only

conditioned on the kinetic energy of the particle. It can be
expressed as an integral over quantum operations, just like in
Eq. (5), with the expression

Φ(Ep,W)(·) =
∑
∆

δ(W − ∆)
1
2

∑
α′,α

Ŝ α
′α
∆ (Ep) · Ŝ α

′α
∆ (Ep)†

(G1)

and Eq. (7) now becomes

P(Ep,W) = TrS
[
Φ(Ep,W)(ρ̂S )

]
=

∑
j′, j

δ(W − e j′ + e j)P j′ j(Ep + e j)p j , (G2)
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where P j′ j(Ep + e j) = 1/2
∑
α,α′ |sα

′α
j′ j (Ep + e j)|2 are the transi-

tion probabilities. On the other hand, using Eq. (D7) the dual
quantum operation can now be written as

Φ(Ep,W)†(·) =
∑
∆

δ(W − ∆)
1
2

∑
α′,α

Ŝ α
′α
∆ (Ep)† · Ŝ α

′α
∆ (Ep)

=
∑
∆

δ(W − ∆)
1
2

∑
α′,α

Ŝ α
′α
−∆ (Ep − ∆) · Ŝ α

′α
−∆ (Ep − ∆)†

= Φ(Ep −W,−W)(·) . (G3)

We see that if our setup is microscopically reversible, the dual
operation Φ(Ep,W)† is given by Φ(Ep − W,−W), where the
kinetic energy in the argument is now conditioned on the en-
ergy change W [see discussion below Eq. (D7)]. The dual
distribution in Eq. (9) now becomes

P(Ep −W,−W) = TrS
[
Φ(Ep −W,−W)(ρ̂S )

]
=

∑
j′, j

δ(−W − e j′ + e j)P j′ j(Ep + e j −W)p j ,

(G4)

and our main result in Eq. (8) takes the form

e−βW P(Ep,W) = P(Ep −W,−W) . (G5)

In this microscopically reversible formulation, it is clear that
the map becomes unital when Φ(Ep −W,−W) ≃ Φ(Ep,−W).
As we have already discussed, a sufficient condition for this to
happen is that the scattering matrix depends very weakly on
the energy gaps of the quantum system as is the case at very
high kinetic energies.

Appendix H: The unconditioned map

The map in Eq. (4) can also be written as Φ(ρ̂S ) =∫
dWΦ(W)(ρ̂S ) where

Φ(W)(ρ̂S ) =
∫

dEp

∑
α

ραP(Ep) Φα(Ep,W)(ρ̂S ) (H1)

is the quantum operation in Eq. (6) integrated over the initial
state of the particle. It gives rise to an unconditioned form of

the distribution in Eq. (7) reading

P(W) = TrS
[
Φ(W)(ρ̂S )

]
=

∑
j′, j

δ(W − e j′ + e j)S j′ j p j , (H2)

where

S j′ j =

∫
dEp

∑
α

Pαj′ j(Ep + ei)ραP(Ep) (H3)

is a stochastic matrix ruling the transition probabilities for the
system. For an initially thermal system, the fluctuation rela-
tion in Eq. (8) now reads

e−βW P(W) = P(−W) (H4)
where P(−W) = TrS

[
Φ(W)†(ρ̂S )

]
=

∑
j′, j δ(−W − e j +

e j′ )p j′S j′ j is the dual distribution integrated over the initial
state of the particle. From this relation, we can derive an
inequality analogous to (10) but unconditioned on the initial
state of the particle. In summary, our results carry over for the
unconditioned map in Eq. (5).

Appendix I: Heat fluctuation theorems

The properties of the stochastic matrix S j′ j in Eq. (H3) have
been studied in Ref. [20] in the context of thermalization.
Namely, it was shown if the kinetic energy of the particle is
thermally distributed ραP(Ep) ∼ e−β̃Ep with inverse temperature
β̃, then detailed balance

S j′ j = e−β̃(e j′−e j)S j j′ (I1)

holds, provided the scattering setup is microscopically re-
versible (see Appendix G). In this case, applying detailed bal-
ance to Eq. (H2) now yields

P(W) = e−β̃WP(W) . (I2)

This new result expresses a detailed balance symmetry be-
tween the energy distribution and its dual, being independent
of the state of the system. However, when the system is ther-
mal then Eqs. (H4) and (I2) together imply

e−(β−β̃)W P(W) = P(−W) , (I3)

which are the heat exchange fluctuation theorems [39].
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