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Non-Hermitian (NH) photonic systems leverage gain and loss to open new directions for nanopho-
tonic technologies. However, the quantum and thermal noise intrinsically associated with gain/loss
affects the eigenvalue/eigenvector structure of NH systems, as well as its practical noise performance.
Here, we present a comparative analysis of the impact of different gain and loss mechanisms on the
noise generated in gain-loss compensated NH waveguide systems. Our results highlight important
differences in the eigenvalue/eigenvector structure, noise power, photon statistics and squeezing.
At the same time, we identify some universal properties such as gain-loss compensation, broken to
unbroken phase transitions, coalesce of pairs of eigenvectors, and linear scaling of the noise with the
length of the waveguide. We believe that these results provide a more global understanding on the
impact of the gain/loss mechanism on the noise generated in NH systems.

I. INTRODUCTION

Non-Hermitian (NH) systems are ubiquitous among
real physical systems since describing a system as an iso-
lated entity is often impossible or inaccurate [1]. Since
any external environment can either pump into or re-
tract energy from a system, NH systems are usually as-
sociated with gain, loss, or a combination of both [2].
In addition, Hermitian operators have real eigenvalues,
while the eigenvalues of NH operators are generally com-
plex numbers. However, a reduced group of NH opera-
tors satisfying a weaker constraint than Hermiticity can
still have a real spectrum in a given region in parameter
space. These systems exhibit PT-symmetry [3, 4], or in

other words, their Hamiltonian (Ĥ) commutes with the

joint operation of Parity (P̂ ) and Time Reversal (T̂ ).
Photonics have been an instrumental platform in

the demonstration of PT-symmetric systems, given the
equivalence between the Schrödinger equation and the
paraxial wave approximation of Helmholtz equation,
where the complex refractive index plays the role of the
complex potential in the NH Hamiltonian [5–7]. There-
fore, by engineering the refractive index through the ap-
propriate combination of gain and loss, it is possible to
create the real even and imaginary odd refractive index
profiles characteristic of PT-symmetric systems. The
transition between the regions where PT-symmetry is
conserved, or unbroken phase, and the broken phase usu-
ally feature spectral degeneracies known as Exceptional
Points (EPs) [7, 8]. At these transition points, the eigen-
values coalesce, and so do the eigenvectors; thus the
eigenspace is skewed. EP degeneracies have also been
studied in the context of Liouvillian operators, scatter-
ing matrix approaches or using coupled mode theory [2].
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PT-symmetry and EP degeneracies endow physical
systems with intriguing non-trivial properties inacces-
sible to Hermitian systems, thus motivating intense re-
search on the field in the last few years [2, 5, 8–12]. Ex-
amples of such counterintuitive effects include unidirec-
tional reflectionless light propagation, and therefore, uni-
directional invisibility [13–15], non-reciprocal light prop-
agation [16, 17], loss-induced transparency [18, 19] and
lasing [20], PT-symmetric lasers [21, 22] and CPA-lasers
[23, 24], and chiral mode switching [25], to name a few.
EPs have also been proposed to enhance the performance
of sensors [26]. Although the noise performance of EP
sensors is the subject of current debate [27, 28].

In the quantum optics realm, systems featuring PT-
symmetry and EPs have been reported to influence quan-
tum interference [29–31], entanglement [32, 33], and de-
coherence [34, 35]. At the same time, it has been
claimed that obtaining PT symmetry in quantum pho-
tonics systems combining loss and gain is not possible
[36] due to the additional noise contribution of gain at
the quantum level, which changes the underlying eigen-
value structure. However, this study only considered
models for linear gain and loss mechanisms. Different
alternatives have been explored in studies on quantum
PT-symmetry and EPs trying to overcome the noise is-
sues associated to linear or phase-insensitive amplifica-
tion, most of them either rely on passive implementations
or consider a non-Hermitian subsystem embedded in a
large Hermitian system [6, 29]. Recently, the potential
of phase-sensitive amplification and deamplification have
been showcased [6, 28], demonstrating quadrature-PT
symmetry and squeezing, what suggests that the model
of gain and losses employed plays a critical role.

In this work, we present a general study on how the
different quantum models of gain and loss impact the
performance of Non-Hermitian photonic systems, and
affect their underlying eigenvalue/eigenvector structure.
To this end, we propose a theoretical framework to com-
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pute the quantum eigenmodes of the spatial evolution of
coupled waveguides, which applies to different models of
gain and loss, as well as all their possible combinations.
We also clarify how such algebraic quantum eigenmodes
can be measured with conventional measurement setups
at the output of the waveguides. Our results provide a
global perspective into how the nature of gain and loss
mechanisms define the nature of Non-Hermitian phase
transitions, including their eigenvalue/eigenvector struc-
ture, the potential existence of EPs, the unusal scaling of
quantum noise generation with the length of the waveg-
uide, and the generation of squeezing in non-Hermitian
systems. Our results also contribute to understanding
the noise generated in gain-loss compensation systems,
as a function of the models of gain and loss.

II. THEORETICAL FRAMEWORK

In this section we introduce a theoretical framework
to model how the presence of gain and loss and their lin-
ear or parametric nature influence the evolution of quan-
tum light states in photonic systems characterized by
modes propagating along a given distance while exchang-
ing excitations between them. For instance, that might
be the case of a finite number of coupled waveguides or
resonators. This framework not only provides an ana-
lytical solution to the evolution equation of the coupled
modes, allowing for the computation of photon statistics,
but also addresses intuitively the question of how to de-
sign the measurement setup to characterized the singular
eigenvector/eigenvalue properties of non-Hermitian sys-
tems.

A. Spatial evolution in coupled non-Hermitian
waveguides

As schematically depicted in Fig. (1), let us start by
mathematically modeling a photonic system where a fi-
nite set of photonic quantum modes evolve along a given
distance and might couple with each other while propa-
gating. Provided that the systems considered are in gen-
eral non-Hermitian, they might exhibit gain and losses,
either linear or parametric. The propagation or spatial
evolution of the modes in these photonic systems can be
described through the differential equation

∂zâ (z) = Mâ (z) + F̂ (z) (1)

where â (z) =
[
â1 (z) , . . . , âN (z) , â†1 (z) , . . . , â

†
N (z)

]T
is the column vector of the photonic annihilation
(âm (z)) and creation (â†m (z)) operators satisfying
bosonic commutation relations ([âm (z) , ân (z

′)] = 0

and
[
âm (z) , â†n (z

′)
]
= δ (z − z′) δmn), while F̂ (z) =[

F̂1 (z) , . . . , F̂N (z) , F̂ †
1 (z) , . . . , F̂ †

N (z)
]T

contains oper-

ators representing Langevin noise sources [37, 38], and

M ∈ C2N×2N is the spatial evolution matrix. It is im-
portant to point out that, according to our notation,
M = −iH with respect to the Hamiltonian description
of NH waveguides, with the corresponding consequences
in the physical interpretation of real and complex eigen-
values.
The structure of the noise vector F̂ (z) in (1) will de-

pend on the system under study: if there is gain or loss
associated with the corresponding photonic mode and
its linear or parametric nature. On the one hand, de-
scribing gain and losses through linear models involves
the presence of thermal noise sources that can be rep-

resented through bosonic creation (f̂†n (z)) or destruc-

tion (f̂n (z)) noise operators, respectively, with their as-
sociated commutator

[
fm (z) , f†n (z

′)
]
= δ (z − z′) δmn.

Therefore, for a photonic mode m experiencing lin-
ear losses α, we can define the Langevin noise vec-

tor component F̂m in terms of a bosonic noise opera-

tor: F̂m (z) =
√
2α f̂m (z), with commutation relations[

F̂m (z) , F̂ †
n (z′)

]
= 2α δ (z − z′) δmn [37, 39]. Similarly,

F̂m (z) =
√
2g f̂†m (z) for a mode subject to amplifica-

tion with linear gain g, and the associated commutator is

given by
[
F̂m (z) , F̂ †

n (z′)
]
= −2g δ (z − z′) δmn [37, 39].

On the other hand, gain and loss can also arise from
nonlinear or parametric phenomena leading to squeez-
ing transformations and mixing creation and destruction
photonic operators. Modeling both phenomena through
the same process is not an arbitrary decision; it is jus-
tified because a parametric gain can also be regarded as
a parametric loss mechanism, depending on the quadra-
ture component we observe, as one of them is amplified
while the other is attenuated given the phase-sensitive
nature of the process [37]. No additional noise sources
are required for parametric gain/loss, and their behavior
is fully contained within the matrix M.

B. Eigenoperators of spatial evolution

In general, calculating photon statistics at the output
of the waveguides can be a complicated task. However,
the analysis simplifies for specific linear combinations of
the waveguide modes for which their spatial evolution de-
couple. Importantly, such modes can be identified even
for non-diagonalizable evolution matrices M, as is typi-
cally the situation at the phase transition of NH systems,
where eigenvectors coalesce. To show how this is the case,
we introduce a new operator given by a linear combina-

tion of waveguide mode operators Ψ̂n (z) =
2N∑
m=1

cmâm (z).

Following Eq. (1), the spatial evolution of Ψ̂n (z) is given
by

∂zΨ̂n =

2N∑
n=1

(
2N∑
m=1

cmMmn

)
ân (z)+

2N∑
m=1

cmF̂m (z) (2)
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FIG. 1. Shematic depiction of N interacting photonic waveguides with different classes of gain and loss. At the output of the
waveguides, a unitary transformation induces a change of basis of the photonic modes. Finally, homodyne detection enables
the characterization of the photon statistics of the eigenoperators of the waveguide system.

From Eq. (2) it is apparent that if such a linear combi-
nation corresponds to a left eigenvector of the dynamic

matrix M, i.e.,
2N∑
m=1

cmMmn = λncn, then

∂zΨ̂n (z) = λnΨ̂n (z) + ζ̂n (z) (3)

where ζ̂n (z) =
2N∑
m=1

cmF̂m (z), and we can clearly dis-

tinguish that the evolution of the eigenoperators defined
through the left eigenvectors of the dynamic matrix M
is not interacting, and can be computed independently.
Accordingly, it is possible to obtain the eigenoperator at
the output of the waveguide upon direct integration:

Ψ̂n (L) = Ψ̂n (0) e
λnL + eλnL

∫ L

0

dz′e−λnz
′
ζ̂n (z

′) (4)

Equation (4) states that the eigenoperator at any given
distance L on the waveguide can be computed from the
knowledge of the eigenoperator at the start of the waveg-
uide, i.e., at z = 0 and its associated noise component.
The most appealing reading of this result is that for

any given photonic quantum system, if we perform a uni-
tary transformation that creates adequate linear combi-
nations of the original bosonic modes, the associated evo-
lution would be easily computed from the knowledge of
the initial conditions in the system. We note that even
if the matrix M is not diagonalizable, and their eigen-
vectors do not span the complete C2N space, individ-
ual eigenmodes can nevertheless be physically separated
with a unitary matrix V that does span the complete
C2N space, and contains the eigenmode as a member of
its basis. Therefore, the photon statistics of individual
eigenoperators can be measured in practice even at the

degeneracy points of NH systems. As previously pointed
out, we must compute the left eigenvectors of the evolu-
tion matrix M, or, equivalently, the right eigenvectors of
the transposed evolution matrix MT .

C. Diagonalizable evolution matrices

Naturally, the result showcased in Eq. (4) can be more
easily obtained for the particular case that the evolution
matrix is diagonalizable, i.e. M = V−1DV, where V
is an invertible matrix whose columns are eigenvectors
of the system and constitute a complete basis of C2N ,
while the diagonal entries in the diagonal matrix D cor-
responds to the associated eigenvalues λn. In this case,
one can simply change the basis of the photonic and noise

operatores to Ψ̂ (z) = Vâ (z) and ζ̂ (z) = VF̂ (z), respec-
tively, so that their evolution can be described through
a diagonal matrix

∂zΨ̂ (z) = DΨ̂ (z) + ζ̂ (z) (5)

Therefore, the photon statistics of the eigenopera-
tors associated with left eigenstates of the system can
be easily computed by separating such eigenoperators
through an optical network implementing the matrix V
(see Fig. 1). The crucial difference between diagonal-
izable and non-diagonalizable evolution matrices is that
when M is non-diagonalizable, as it is common in NH
systems, not all the light exiting the waveguides can
be described via the eigenoperators, since the associated
eigenvectors do not span the entire C2N space. Despite
this fact, the light and quantum noise associated with
individual eigenoperators can be separated via unitary
transformations, so that such algebraic singular eigen-
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vectors/eigenvalues correspond with measurable photon
statistics.

D. Symmetries of the eigenvalues, eigenvectors and
eigenoperators

Next we discuss the symmetries of the eigenvectors
of the matrix M, which further clarify how to measure
individual eigenoperators. To this end, let us start by

defining vn =
[
x y∗]T as the eigenvectors of MT , i.e.,

MTv = λv, so that the associated eigenoperator is

Ψ̂n (z) =

N∑
m=1

xnmâm (z) +

N∑
m=1

y∗nmâ
†
m (z) (6)

and, analogously, the associated noise operator is given
by

ζ̂n (z) =

N∑
m=1

xnmF̂m (z) +

N∑
m=1

y∗nmF̂
†
m (z) (7)

Additionally, given the structure of â (z) in (1), it is al-
ways possible to write the evolution matrix M as a block
matrix whose elements are the matrices P, characterizing
linear phenomena and coupling between modes, and Q
accounting for nonlinear effects mixing annihilation and
creation operators:

M =

[
P Q
Q∗ P∗

]
(8)

Therefore, the eigenvalue problem for the transpose of
the evolution matrix reduces to the following conditions:

PTx+Q†y∗ = λx (9)

QTx+P†y∗ = λy∗ (10)

It is crucial to distinguish two cases in the structure of
eigenvectors and, consequently, that of their associated
operators, depending on whether the eigenvalues are real
or complex numbers, i.e., depending on whether we are
at the broken or unbroken phase of a NH system.

1. Real eigenvalues

If λ ∈ R, by complex conjugating Eq. (10), we ob-
tain Q†x∗ +PTy = λy, and, by comparing with Eq. (9)
we can establish that y∗ = x∗. Therefore, the eigenvec-
tors associated with real eigenvalues exhibit the general

structure v =
[
x x∗]T , leading to the eigenoperators:

Ψ̂n (z) = ψ̂n(z) + ψ̂†
n(z) (11)

where Ψ̂n (z) is explicitely written as a Hermitian oper-

ator with ψ̂n(z) =
N∑

m=1
xnmâm(z) being a linear com-

bination of physical waveguide mode operators. Then,
the spatial evolution of this operator can be computed
following Eq. (4).
Furthermore, Eq. (11) reveals that the eigenoperators

Ψ̂n (z), associated with real eigenvalues, correspond to a

quadrature operators in the basis of the operators ψ̂n(z).
Thus, this notation reveals that the photon statistics of
such eigenoperator can be measured with conventional
techniques consisting of: 1) a unitary transformation
that changes the basis to another one in which a se-
lected eigenmode of MT is a member of the basis, and
2) homodyne detectors to extract the associated photon
statistics, as eigenoperators of real eigenvalues represent
quadrature components in this new basis (see Fig. 1).

2. Complex eigenvalues

A different eigenvector/eigenvalue structure arises
when λ ∈ C. After complex conjugation of Eq. (9) and
Eq. (10) it can be concluded that if λ is an eigenvalue

with eigenvector v =
[
x y∗]T , then w =

[
y x∗]T is

also an eigenvector with eigenvalue λ∗. For each pair of
complex eigenvalues, the eigenoperator associated with
the eigenvalue λ is given by

Ψ̂n (z) = ψ̂nx(z) + ψ̂†
ny(z) (12)

where ψ̂nx(z) =
N∑

m=1
xnmâm(z) and ψ̂ny(z) = ynmâm(z),

and the eigenoperator associated with λ∗ is given by

Ψ̂ †
n (z). In this case, Ψ̂n (z) is not a Hermitian opera-

tor. However, its linear combinations Ψ̂ †
n (z)+ Ψ̂n (z) and

i
(
Ψ̂ †
n (z)− Ψ̂n (z)

)
are Hermitian operators that could

be characterized with the measurement setup depicted
in Fig. 1.

III. QUANTUM GAIN AND LOSS MODELS IN
COUPLED WAVEGUIDE SYSTEMS

Next, we use the described theoretical framework for
the analysis of photonic systems composed of two coupled
waveguides, one amplifying and one lossy waveguide. We
aim to show how the linear or parametric nature of the
gain and loss mechanisms influences the behavior of the
eigenvalues, the evolution of the eigenoperators, and the
photon statistics of the noise generated by the quantum
system.

To this end, we consider four different scenarios, which
are schematically depicted in Fig. 2: both gain and losses
modeled through linear processes, both modeled through
a parametric process, and the two possible combinations
of linear and parametric mechanisms. It is important to
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note that in the figure, linear losses are showcased as aris-
ing from waveguide bending for a comprehensible graphi-
cal representation. However, the analysis proposed in the
manuscript is not specific or restricted to them. Addi-
tionally, parametric gain and losses are indistinguishable
in the depicted waveguides, as the mechanism underlying
both phenomena is the same.

A. Linear gain-Linear loss

As depicted in Figure 2(a), we start by analyzing a
linear amplifying waveguide with gain factor g, coupled
with strength κ to a linear lossy waveguide with loss fac-
tor α. The spatial evolution of the photonics modes in
the system is described through the following coupled
differential equations:

∂zâ1 (z) = gâ1 (z) + iκâ2 (z) +
√

2gf̂†1 (z) (13)

∂zâ2 (z) = −αâ2 (z) + iκâ1 (z) +
√
2αf̂2 (z) (14)

where the bosonic noise operators and their associated
coefficients are responsible for maintaining the commu-
tation relations. Equivalently, the system’s spatial evolu-
tion can be compactly written as in Eq. (1) , from where
we can straightforwardly identify the matrices P and Q
in the block matrix M:

P =

[
g iκ
iκ −α

]
Q =

[
0 0
0 0

]
(15)

As mentioned, linear phenomena do not involve mix-
ing of creation and annihilation operators, and, there-
fore, Q = 0. In addition, MT = M, since the coupling
between the waveguides is reciprocal. Next, comput-
ing eigenvalues and eigenvectors of this system implies
to solve Eq. (9) and Eq. (10), which upon substitution
of the symmetric matrix P and Q reduce to Px = λx
and P∗y∗ = λy∗, respectively. From these relations,
we can predict that if the matrix P has eigenvalue λ
with eigenvector x, then the matrix M would share the

same eigenvalue λ with eigenvector
[
x 0

]T
, and also one

eigenvalue λ∗ with eigenvector
[
0 x∗]T , confirming that

complex eigenvalues appear on complex conjugate pairs.
At the same time, we find that real eigenvalues appear
with duplicity 2. Therefore, the N -dimensional eigen-
vectors of the matrix P will define the 2N -dimensional
eigenvectors of the matrix M. For the sake of simplicity
and to compare to the classical analogue of two coupled
waveguides with balanced gain and loss, we consider the
particular case where g = α. Therefore, we obtain two
pairs of degenerated eigenvalues (four eigenvalues):

λ1,2± = ±
√
α2 − κ2 (16)

In the notation adopted, the ± sign refers to the pos-
itive or negative square root, while the sub-index 1 (2)

refers to eigenvalues or eigenvectors resulting from solu-
tions to Eq. (9) (Eq. (10)) in the reduced form described
above. Therefore, we have eigenvalues λ1± from Eq. (9)
and λ2± from Eq. (10). The associated normalized eigen-
vectors are given by

v1± =
1√

1 + |β±|2
[
1 iβ± 0 0

]T
(17)

v2± =
1√

1 + |β±|2
[
0 0 1 −iβ±

]T
(18)

where β± = − 1
κ

(
−α±

√
α2 − κ2

)
.

As noticed from (16), the eigenvalues will be real or
complex numbers depending on the interplay between
the coupling coefficient κ and the loss (gain) coefficient
α. It is clear from Figure 3(a) that there is a phase tran-
sition point in the parameter space, determined by the
coupling to loss ratio κ/α = 1, where all the eigenval-
ues coalesce and vanish, i.e., λ1,2± = 0, establishing the
transition from a phase with real eigenvalues to another
phase where all the eigenvalues are complex numbers. At
this transition point β± = 1 and the space expanded by
the eigenvectors shrinks because they coalesce in pairs,

with v1± = 1√
2

[
1 i 0 0

]T
and v2± = 1√

2

[
0 0 1 −i

]T
.

At the eigenvalue/eigenvector level, the linear gain / lin-
ear loss configuration has the clearest connection with
the classical description of the system. From a classi-
cal perspective, this phase transition point corresponds
to an exceptional point (EP), where all eigenvalues and
eigenvectors coalesce [2]. From the quantum optics per-
spective, the distinction between creation and destruc-
tion operators, doubles the eigenspace dimension, and
not all eigenvectors coalesce due to complex conjugation.
In addition, the inclusion of noise terms also distinguishes
the quantum approach [36].

1. Eigenvectors and eigenoperators for real eigenvalues

Our analysis focuses on the case of real eigenvalues of
M leading to amplification and attenuation effects, and
how they converge to the phase transition, also leading to
gain-loss compensation. As anticipated by Eq. (16) and
Figure 3(a), if α > κ we have that all eigenvalues are real
and the eigenvectors can be compactly written as in (17)
and (18) ignoring the module operation since β± would
only take real values. We can verify that in the limit
κ → 0, the eigenvalues become λ1,2± = ±

√
α2 − κ2 ≃

±α. Additionally, β+ = 0 and β− → ∞, and therefore,
we recover the limit case of two uncoupled amplifying
and lossy waveguides.
As previously explained, eigenvectors associated with

real eigenvalues can be represented in a way that leads to
Hermitian eigenoperators describing the system’s modes.
As the + and − eigenvectors have the same eigenvalue
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FIG. 2. Sketch of coupled waveguides with amplification and losses modeled through a combination of linear and parametric
phenomena.

with multiplicity two, it is possible to write a differ-
ent basis that complies with the required structure v =[
x x∗]T by defining two quadratures:

vX± =
1

2
(v1± + v2±) =

1

2
√
1 + β2

±

[
1 iβ± 1 −iβ±

]T
(19)

vY± =
i

2
(v2± − v1±) =

1

2
√
1 + β2

±

[
−1 −iβ± 1 −iβ±

]T
(20)

Therefore, the associated Hermitian eigenoperators
can be defined as follows:

Ψ̂X±(L) =
1

2

(
â±(0) + â†±(0)

)
eλ±L

+
√
2α eλ±L

∫ L

0

dz′
1

2

(
f̂±(z

′) + f̂†±(z
′)
)
e−λ±z′

(21)

Ψ̂Y±(L) =
i

2

(
â†±(0)− â±(0)

)
eλ±L

+
√
2α eλ±L

∫ L

0

dz′
i

2

(
f̂†±(z

′)− f̂±(z
′)
)
e−λ±z′

(22)

where â±(0) = â1(0)+iβ±â2(0)√
1+β2

±
and f̂±(z

′) =

f̂1(z
′)+iβ±f̂2(z

′)√
1+β2

±
.

2. Eigenoperators variance

Next we study the noise properties in the system by
computing the variance for each quadrature eigenopera-
tor:

(∆Ψn(L))
2
=
〈
Ψ̂2
n(L)

〉
−
〈
Ψ̂n(L)

〉2
(23)

where the angle brackets ⟨⟩ denote expectations val-
ues referred to the quantum state of the system, at
the beginning of the waveguide. We are interested in
the noise inherent to the device, due to the nature of
the gain and loss mechanisms and the thermal condi-
tions in the system. Therefore, in all the systems an-
alyzed in this manuscript, the expectation values com-
puted refer to the joint state describing input vacuum
states in both waveguides and also the waveguides at
a given temperature T . Such conditions can be de-
scribed through the joint density matrix ρ̂ = ρ̂1⊗ ρ̂2 with
ρ̂1,2 =

(
1− e−ℏω/kBT1,2

) ∑
nf1

e−nf1,2ℏω/kBT1,2 |nf1,2⟩ ⟨nf1,2|,

where ℏ is the reduced Planck constant, kB is the Boltz-
mann constant and nfn represents the number of thermal
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FIG. 3. Real (solid lines) and imaginary parts (dashed lines) of the eigenvalues in coupled waveguides with balanced gain and
loss modeled through a combination of linear and parametric phenomena.

photons in mode n. Here, it is important to remark that
if the linear loss of the waveguide correspond to dissipa-
tion loss, then the temperature T physically corresponds
to the temperature of the system. However, for scattering
and/or radiation loss, then the temperature T physically
corresponds to an effective temperature describing the
external background noise coupled to the waveguide.

As the eigenoperators involved only contain linear
combinations of annihilation and creation operators, the
expectation values of the individual operators vanish, and
the contribution to the variance is only due to the squared

operator expectation value, i.e., (∆Ψn(L))
2
=
〈
Ψ̂2
n(L)

〉
.

Additionally, it is easy to verify that the + and − eigen-
operators in both quadratures present the same statistics
(∆ΨY±(L))

2
= (∆ΨX±(L))

2
, which is reasonable consid-

ering the absence of phase-sensitive gain or loss mecha-
nisms that influence differently each quadrature in the
system, as it is the case in a parametric process repre-
sented through a squeezing transformation. Therefore,
we have

(∆ΨX,Y±(L))
2
=

1

4
e2λ±L

+
α
(
e2λ±L − 1

)
4
(
1 + β2

±
)
λ±

(
2 ⟨n̂f1⟩+ 2β2

± ⟨n̂f2⟩+ 1 + β2
±
)
(24)

where n̂fn = f̂†n(0) f̂n(0) represents the number opera-
tor for thermal photons in mode n. The mean number
of photons in a thermal state [40] is given by ⟨n̂⟩T =

1

e
ℏω/kBT−1

. It is easy to distinguish that the first term in

Eq. (24) corresponds to the contribution from the pho-
tonic part in the eigenoperator, while the second term is
contributed by the noise.
It is interesting to analyze some limit cases. For in-

stance, in the zero temperature limit, T = 0, the variance
reduces to

(∆ΨX,Y±(L))
2
T0 =

1

4
e2λ±L +

α

4λ±

(
e2λ±L − 1

)
(25)

These results are plotted in Figure 4(a), as a func-
tion of the coupling to loss ratio (κ/α) for a given αL.
As expected, in the limit κ → 0, where λ± → ±α, we
recover the variances associated with uncoupled waveg-
uides, i.e., (∆ΨX,Y+(L))

2
= 1

4

{
2e2αL − 1

}
for a waveg-

uide with linear gain and (∆ΨX,Y−(L))
2
= 1

4 for the
lossy waveguide. When we move away from this limit,
a stronger coupling between photons in different waveg-
uide modes causes the variance of the amplified modes to
decrease, while the lossy modes increase their variance,
until they balance (∆ΨX,Y±(L))

2
κ=α = 1

4 + 1
2αL at the

phase transition point where the eigenvalues vanish. At
the phase transition, linear gain and loss are perfectly
balanced and classical signals are neither amplified nor
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FIG. 4. Eigenoperators variance as a function of the coupling-to-loss (or gain) ratio, considering input vacuum states and
waveguides at temperature T = 0. The plots correspond to the case when αL = 0.2.

attenuated. However, it is found that the system in-
troduces additional noise that increases the variance in
both quadratures. The larger the loss compensation, the
stronger the noise. Remarkably, the generated noise at
the phase transition only scales linearly with the length
of the waveguide, a much slower trend that the exponen-
tial scaling of uncoupled (κ → 0) waveguides. In fact, it
can be demonstrated that the variance at the phase tran-
sition corresponds to the geometric mean of the variances
of the uncoupled waveguides for sufficiently small values
of αL. In other words, even if the waveguides are elec-
trically large, the variance of the generated noise at the
phase transition corresponds to taking the Taylor series
of the geometric mean of the variances of the noise in the
uncoupled waveguides, and keeping only the first order
approximation. Therefore, although noise is unavoidably
generated at the gain-loss compensation phase transition
point, its scaling is much slower than that exhibited by
uncoupled (κ→ 0) lossy and gain waveguides.

Moreover, plotting (25) as a function of the waveguide
length L for a given coupling to loss ratio within the lim-
its for real eigenvalues (κ/α = 0.5) as in Figure 6(a), con-
firms that increasing L leads to higher variance values.
However, as we can deduce from Eq. (25), eigenmodes
associated with different eigenvalues are influenced dif-
ferently; therefore, one pair experiences an evident expo-
nential growth in the fluctuations, while the other pair is

almost unaffected.
On the other hand, assuming that both waveguides are

at the same temperature T ̸= 0, the variance is given by

(∆ΨX,Y±(L))
2
T =

1

4
e2λ±L

+
α

4λ±

(
e2λ±L − 1

)
(2 ⟨n̂f ⟩+ 1) (26)

where we can straightforwardly identify the thermal noise
contribution, as (∆ΨX,Y±(L))

2
T = (∆ΨX,Y±(L))

2
T0 +

α(e2λ±L−1)
2λ±

⟨n̂f ⟩. Figure 5 (a) depicts the new results

for one thermal photon ⟨n̂f ⟩ = 1 in each waveguide. We
observe a significant increase of the fluctuations in both
modes even for a single thermal photon.
It is important to recall that if α = κ we obtain

that all the four eigenvalues vanish λ1,2± = 0. Ad-
ditionally, β± = 1 and there is a coalescence in pairs

of the eigenvectors with vX± = 1
2
√
2

[
1 i 1 −i

]T
and

vY± = 1
2
√
2

[
−1 −i 1 −i

]T
. Computing the variance

on the quadrature basis leads to (∆ΨX,Y±(L))
2
κ=α =

1
4 +

1
2αL (⟨n̂f1⟩+ ⟨n̂f2⟩+ 1), which is the same result we

recover from Eq. (24) in the limit λ± → 0, pointing to-
wards continuity at the phase transition point. There-
fore, both thermal and quantum noise scale linearly with
the length of the waveguide at the phase transition point.
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FIG. 5. Eigenoperators variance as a function of the coupling-to-loss (or gain) ratio, considering input vacuum states and one
thermal photon in each waveguide. The plots correspond to the case when αL = 0.2.

B. Parametric gain-Parametric loss

The next waveguide system under analysis consist also
in one amplifying and one lossy waveguides coupled with
strength κ, as represented in Figure 2 (b). Gain and
losses are modeled through the same parametric process:
a squeezing transformation with squeezing parameter ξ ∈
R, which is considered a real quantity for simplicity. For
this configuration, the spatial evolution of the photonics
modes in the system is given by [40]:

∂zâ1 (z) = ξâ†1 (z) + iκâ2 (z) (27)

∂zâ2 (z) = ξâ†2 (z) + iκâ1 (z) (28)

Again, the system can be equivalently described as in
Eq. (1), with P and Q matrices:

P =

[
0 iκ
iκ 0

]
, Q =

[
ξ 0
0 ξ

]
(29)

Using a common mechanism for both gain and loss
makes it possible to interchange the role of the amplify-
ing and lossy waveguides, endowing the system with an
inherent symmetry. Therefore, a natural basis to analyze

the system is the use of symmetric, vs =
[
x x y∗ y∗

]T
,

and anti-symmetric, va =
[
x −x y∗ −y∗

]T
, eigenvec-

tors. Then, substituting these constraints into Eq. (9)
and Eq. (10) we find that both symmetric and anti-
symmetric eigenvectors share the same pair of eigenvalues

λs,a± = ±
√
ξ2 − κ2 (30)

which can be real or complex numbers depending on the
interplay between squeezing and coupling parameters. A
phase transition occurs at κ/ξ = 1, where all eigenval-
ues simultaneously coalesce and vanish λs,a± = 0, as
depicted in Figure 3 (b). It is clear from Eq. (30) and
Figure 3 (b) that the eigenvalues behave exactly the same
as in the linear gain - linear loss case, with the squeezing
parameter ξ playing the role of the loss (gain) coefficient
α in (16). At the same time, the eigenvectors and the
generated noise have very different properties.

1. Eigenvectors and eigenoperators for real eigenvalues

Hereafter, we will focus on the regime where the de-
generate eigenvalues are real numbers, i.e. ξ ≥ κ. For
real eigenvalues, the eigenvectors take the form

vs± =
1

2
ei

φs±/2
[
e−iφs±/2 e−iφs±/2 eiφs±/2 eiφs±/2

]T
(31)
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FIG. 6. Dependence of the eigenoperators variance on the waveguide length, considering input vacuum states and waveguides
at temperature T = 0. The coupling-to-loss (or gain) ratio has been set equal to 0.5

va± =
1

2
ei

φa±/2
[
e−iφa±/2 −e−iφa±/2 eiφa±/2 −eiφa±/2

]T
(32)

where eiφs± =
±
√

ξ2−κ2−iκ

ξ and eiφa± =
±
√

ξ2−κ2+iκ

ξ ,

and therefore, φa± = arctan κ

±
√

ξ2−κ2
and φs± =

arctan −κ

±
√

ξ2−κ2
. The ± sign in the phase angle repre-

sents the positive or negative square root in the eigen-
value computation. The extracted common phase-factors
ensures that excluding this global phase, the eigenvectors
take the predicted form for real eigenvalues, leading to
Hermitian operators. At the eigenvalues phase-transition
point κ/ξ = 1, we have that eiφs± = −i and eiφa± = i, and
the eigenvectors associated to the + and − eigenvalues
in each mode coalesce. Therefore, at the phase transi-
tion point where the four eigenvalues vanish λs,a± = 0,
the eigenvectors only coalesce in pairs. In this case, the
phase sensitivity of the system precludes the existence of
a EP where all eigenvalues and eigenvectors coalesce.

Finally, the eigenoperators at a distance L on the
waveguides are given by

Ψ̂s±(L) =
1

2
ei

φs±/2
[
âs(0) + â†s(0)

]
eλs,a±L (33)

Ψ̂a±(L) =
1

2
ei

φa±/2
[
âa(0) + â†a(0)

]
eλs,a±L (34)

where âs(0) = e−iφs±/2 â1(0)+â2(0)√
2

and âa =

e−iφa±/2 â1(0)−â2(0)√
2

.

2. Eigenoperators variance

Computing the variance of the eigenoperators consid-
ering vacuum states in both waveguides and both at the
same temperature T reveals important aspects of the
fluctuations in the coupled system:

(∆Ψs,a±(L))
2
T =

1

4
e2λs,a±L (35)

First, as expected from the absence of noise sources in
the evolution equations, there is no thermal noise con-
tribution to the system variance; therefore, the system
is only affected by the unavoidable quantum noise that
results from vacuum fluctuations. Second, for both the
symmetric and anti-symmetric modes, the variance be-
haves similarly to the variance in a squeezing transforma-
tion. The difference is that instead of twice the squeez-
ing amplitude in the exponential (±2ξ) we now have this

term replaced by 2λ±L = ±2
√
ξ2 − κ2 L, which can be

interpreted as a modified squeezing amplitude. It sug-
gests that increasing the coupling strength between the
waveguides decreases the degree of squeezing we can ob-
tain, while a larger interaction length would have the
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opposite effect. At the uncoupled waveguides limit, i.e.
κ → 0, the variance reduces to (∆Ψs,a±(L))

2
= 1

4e
±2ξL.

Figure 4 confirms that a pair of eigenmodes exhibit a
squeezed variance with a minimum value when κ → 0,
which increases with the coupling-to-loss ratio κ/ξ but re-
mains squeezed until it reaches the vacuum fluctuation
limit 1/4 at the critical phase-transition point. As for
the anti-squeezed modes, their variance reduces from its
maximum value for the uncoupled waveguides limit un-
til it also converges to the vacuum fluctuation limit 1/4
at the phase-transition point. As explained, the evolu-
tion of the eigenmodes and their variance are not affected
by the temperature of the device, as shown in Figure 5
(b), that coincides with Figure 4(b). At the transition
point gain and loss are perfectly compensated, and their
squeezing is nil. At the same time, such gain loss com-
pensation occurs without any noise amplification. Thus,
the variance experienced by the photonic modes at the
phase transition point correspond to unamplified vacuum
fluctuations.

Regarding the dependence of the eigenoperator’s vari-
ance on the waveguide length L, as anticipated from Eq.
(35) and depicted in Figure 6 (b), we observe an exponen-
tial reduction of the fluctuations in the squeezed modes
and a faster exponential increase in the anti-squeezed
modes, both starting from the vacuum value at the in-
finitesimal waveguide limit.

C. Parametric gain-Linear loss

After analyzing systems of two coupled waveguides ex-
hibiting both linear gain and loss or both parametric gain
and loss, a natural question arises about the effect of
combining linear and nonlinear phenomena. Therefore,
we study a system composed by an amplifying waveg-
uide, with parametric gain modeled through a squeezing
transformation with squeezing parameter ξ, coupled with
strength κ to a linear lossy waveguide with loss factor α,
as depicted in Figure 2 (c). The spatial evolution of the
photonic modes in the system can be written as follows:

∂zâ1 (z) = ξâ†1 (z) + iκâ2 (z) (36)

∂zâ2 (z) = −αâ2 (z) + iκâ1 (z) +
√
2αf̂2 (z) (37)

or, equivalently

P =

[
0 iκ
iκ −α

]
Q =

[
ξ 0
0 0

]
(38)

and upon substitution into Eq. (9) and Eq. (10), we com-
pute the eigenvalues for the system with balanced gain
and loss α = ξ:

λ1,2 = −α± iκ (39)

λ3,4 = ±
√
α2 − κ2 (40)

From the computed eigenvalues and their dependence
on the coupling-to-loss ratio depicted in Figure 3 (c),
we note that real-valued λ1,2 will not occur for the bal-
anced system under analysis; otherwise, there should be
no coupling between waveguides. In fact, the eigenval-
ues in (39) coincide with those in a linear loss-loss con-
figuration. The other pair of eigenvalues λ3,4 coincides
with the eigenvalues for the cases of linear gain - lin-
ear loss and parametric gain - parametric loss previously
addressed. Therefore, λ3,4 might take real or complex
values depending on the interplay between loss (or gain)
and coupling strength, with λ3,4 ∈ C for α < κ, while
λ3,4 ∈ R for α ≥ κ, being α = κ the phase-transition
point (λ3,4 = 0). Thus, we find that different classes of
gain and loss can compensate each other, and they follow
the same eigenvalue structure.

1. Eigenvectors and eigenoperators for real eigenvalues

As we are interested in gain-loss configurations, we fo-
cus on the pair of eigenvalues λ3,4. The associated nor-
malized eigenvectors for α > κ can be compactly written
as follows:

v3,4 =
1√

1 +A2
3,4

[
−iA3,4, 1, iA3,4, 1

]T
(41)

with A3,4 = α±
√
α2−κ2

k . At the eigenvalues’ phase-
transition point we have that A3 = A4 and then both
eigenvectors coalesce. The associated eigenoperators are

Ψ̂3,4 (L) =
1

2

(
â3,4(0) + â†3,4(0)

)
eλ3,4L+

√
2α√

1 +A2
3,4

eλ3,4L

∫ L

0

dz′e−λ3,4z
′ 1

2

(
f̂2(z

′) + f̂†2 (z
′)
)
(42)

where â3,4(0) =
−iA3,4â1(0)+â2(0)√

1+A2
3,4

.

2. Eigenoperators variance

The variance characterizing the modes in the output
of the waveguides can be computed as follows

(∆Ψ3,4(L))
2
T =

1

4
e2λ3,4L+

1(
1 +A2

3,4

) α

4λ3,4

(
e2λ3,4L − 1

)
(1 + ⟨n̂f2⟩) (43)

from which it is clear that the fluctuations in the sys-
tem would be the result of the combined action of quan-
tum and thermal noise, the latter contributed by the lin-
ear lossy waveguide. In the limit case of waveguides
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at zero temperature T = 0, where no thermal pho-
tons populate the waveguides and therefore their expec-
tation value vanish ⟨n̂f2⟩ = 0, the variance reduce to

(∆Ψ3,4(L))
2
T0 = 1

4e
2λ3,4L + 1

(1+A2
3,4)

α
4λ3,4

(
e2λ3,4L − 1

)
.

Again, in the uncoupled waveguides limit κ → 0, where
λ3,4 → ±α, we recover the signature variances: i)

(∆Ψ3(L))
2
= 1

4e
2αL for the waveguide with parametric

gain and ii) (∆Ψ4(L))
2
= 1

4 for a linear lossy waveguide.
Figure 4 (c) confirms that at T = 0 none of the Hermi-
tian eigenoperators exhibits a variance squeezed below
the vacuum limit 1

4 , independently of the coupling-to-loss
(gain) ratio. As expected, the maximum and minimum
fluctuations corresponds to the uncoupled case.

These values are modified by the coupling strength
between the waveguides until they balance at the cor-
responding phase-transition point, i.e., (∆Ψ3,4(L))

2
= 1

4 +
1
4αL. Similar to the linear loss-linear gain case, it is found
that the scaling of the noise variance is linear with the
length of the waveguide αL, which is a much slower scal-
ing that the exponential trend of the uncoupled waveg-
uides. Therefore, this property is found to be insensitive
to the specific gain/loss model. Moreover, at the phase
transition point, it is found again that such linear scaling
correspond to the first-order Taylor series approximation
of the geometric mean of the variances for the uncoupled
waveguides. Finally, we note that this value is smaller
than the linear gain/linear loss system, demonstrating
that parametric amplification can compensate linear loss
with a smaller noise production, albeit at the cost of be-
ing phase sensitive.

In the presence of thermal photons, as depicted in Fig-
ure 5 (c) for the case of one thermal photon ⟨n̂f2⟩ = 1
in the system, we observe that one of the modes is more
sensitive to the change, increasing its variance, while the
other is almost unaffected, still the overall behavior is
similar to the already described for T = 0.
As for the variance dependence on the waveguide

length (see Figure 6), no squeezing is observed indepen-
dently of the value of L. In the limit L → 0, we recover

the characteristic vacuum fluctuations
(
∆Ψ̂n(0)

)2
T0

= 1
4 .

Therefore, for the balanced system squeezing can not be
measured, although it is possible in non-balanced config-
urations where the eigenoperators associated to the other
pair of eigenvalues are allowed to take real values.

D. Linear gain-Parametric loss

Finally, we study the remaining configuration combin-
ing linear and parametric gain and loss models, depicted
in Figure 2 (d). The system consists of a linear amplify-
ing waveguide with gain g, coupled with strength κ to a
lossy waveguide with parametric loss modeled through a
squeezing transformation with squeezing parameter ξ, as
described by the coupled evolution equations:

∂zâ1 (z) = gâ1 (z) + iκâ2 (z) +
√
2gf̂†1 (z) (44)

∂zâ2 (z) = ξâ†2 (z) + iκâ1 (z) (45)

or, equivalently

P =

[
g iκ
iκ 0

]
Q =

[
0 0
0 ξ

]
(46)

The eigenvalues for the specific case of balanced gain
and loss g = ξ are given by

λ1,2 = g ± iκ (47)

λ3,4 = ±
√
g2 − κ2 (48)

Comparing with the eigenvalues in the combined para-
metric gain - linear loss system, we observe a clear anal-
ogy, where g plays the role of −α in (40). Therefore,
a similar analysis and conclusions apply. For example,
balanced gain and loss g = ξ forbids the occurrence of
real-valued λ1,2 except for uncoupled waveguides, a situ-
ation that is not relevant to this study. Also, the pair of
eigenvalues λ3,4 exhibits a phase transition point in pa-
rameter space at κ/g = 1, changing from real to complex
values, as depicted in Figure 3 (d).

1. Eigenvectors and eigenoperators for real eigenvalues

The associated eigenvectors in the g ≥ κ regime are
given by

v3,4 =
1√

A2
3,4 + 1

[
iA3,4, 1,−iA3,4, 1

]T
(49)

where A3,4 = κ

−g±
√

g2−κ2
. Again, at the eigenvalues’

phase-transition point the eigenvectors coalesce, with
A3 = A4. The Hermitian eigenoperators derived from
the eigenvectors in (49) can be written as

Ψ̂3,4 (L) =
1

2

(
â3,4(0) + â†3,4(0)

)
eλnL+

√
2g

2
√
A2

3,4 + 1
eλ3,4L

∫ L

0

dz′e−λ3,4z
′
(
A3,4f̂1(z

′) +A∗
3,4f̂

†
1 (z

′)
)
(50)

where â3,4(0) =
iA3,4â1(0)+â2(0)√

1+A2
3,4

.

2. Eigenoperators variance

The variance that results from the real eigenvalues can
be computed as follows:

(∆Ψ3,4(L))
2
T =

1

4
e2λ3,4L+

A2
3,4

1 +A2
3,4

g

4λn

(
e2λ3,4L − 1

)
(1 + ⟨n̂f1⟩) (51)
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where as in all the previous configurations with linear
processes involved, the fluctuations in the system re-
sult from the combined action of quantum and ther-
mal noise. As expected, the thermal noise contribu-
tion originates from the linear amplifying waveguide.
In the absence of thermal photons, i.e., ⟨n̂f1⟩ = 0 for

T = 0, the variance reduce to
(
∆Ψ̂3,4(L)

)2
T0

= 1
4e

2λ3,4L+

A2
3,4

(1+A2
3,4)

g
4λ3,4

(
e2λ3,4L − 1

)
. From Figure 4 (d) we can ob-

serve that at T = 0 one of the eigenmodes exhibits fluc-
tuations squeezed below the vacuum fluctuations limit.
These results can be explained considering the maximum
and minimum variances that can be obtained, and that
corresponds to the limit κ→ 0 of uncoupled waveguides,
where λ3,4 → ±g. The maximum value of the fluctua-

tions corresponds to (∆Ψ3(L))
2
= 1

4

(
2e2gL − 1

)
charac-

teristic of waveguide with linear gain, while the minimum
is (∆ΨX,Y+(L))

2
= 1

4e
−2gL signature of the squeezed

quadrature in a waveguide with parametric loss.
The most obvious difference with a system where both

gain and losses are described through squeezing transfor-
mation is that squeezing is not preserved in the whole
region where the eigenvalues are real. Therefore, at the
phase transition point, where squeezed and anti-squeezed
variances converge, we have that (∆Ψ3,4(L))

2
= 1

4 + 1
4αL

and the fluctuations are above the quantum vacuum limit
1/4. This can be understood by considering that to ob-
tain a target amplification level, linear gain introduces
more noise than its parametric counterpart; therefore,
at the compensation point, the fluctuations for the con-
figuration under study exceed those for coupled waveg-
uides featuring parametric gain and loss. As in the previ-
ous configuration, at the compensation point, the scaling
of the fluctuations is linear with αL, with the associ-
ated potential benefits. Again, we observe that gain and
loss mechanisms of different nature can compensate each
other. Also, at the compensation point, coinciding with
the phase transition, the variances equal the geometric
mean of those at the κ → 0 limit for sufficiently small
values of αL, showing that these conclusions are insensi-
tive with respect to the model of gain/loss. It is impor-
tant to highlight that, different from the parametric gain
- linear loss case, we do get squeezed fluctuations for the
system with balanced gain and losses. For thermal pop-
ulation, as depicted in Figure 5 (d) for the specific case
of one thermal photon in the system, i.e. ⟨n̂f1⟩ = 1, we
observe that the coupling-to-gain (loss) ratio κ/g where
the squeezed mode crosses the vacuum fluctuation limit is
slightly reduced. The influence on the anti-squeezed vari-
ance is more evident, considering its value in the limit of
infinitesimal waveguides.

Analyzed in terms of its dependence on the waveguide
length L (see Figure 6 (d)), we observe that for every
value of L the squeezed fluctuations in one mode pre-

vails, exhibiting and exponential decay as predicted by
the analytical result in (51) and being in theory infinites-
imal for sufficiently large waveguides. As expected, the
other mode showcases an exponential scaling in the fluc-
tuations. Again, in the limit L → 0, we recover the
characteristic vacuum fluctuations (∆Ψ3,4(0))

2
T0 = 1

4 .

IV. CONCLUSIONS

We discussed how different gain and loss mechanisms
influence the noise produced in gain-loss compensated
coupled photonic waveguides. Our results highlight uni-
versal properties independent of the gain and loss model,
such as a phase transition in the eigenvalue structure,
where all eigenvalues vanish and eigenvectors only coa-
lesce in pairs. Simultaneously, some particularities arise.
For instance, when only linear effects are present, the
phase transition point corresponds to an exceptional
point (EP) in a classical Non-Hermitian (NH) system.
However, a quantum treatment prevents the coalescence
of all eigenvectors as the eigenspace dimension doubles
and noise terms are included. On the other hand, when
only parametric phenomena are considered, the system’s
phase sensitivity impedes the existence of EPs. Our anal-
ysis also reveals that gain and loss mechanisms of dif-
ferent nature can compensate each other, inheriting the
phase sensitivity of the fluctuations in the parametric
process and leading to squeezed fluctuations when the
parametric loss is compensated through linear amplifica-
tion. When linear phenomena are involved, the fluctua-
tions result from combined thermal and quantum noise,
unlike when only parametric effects are present, and thus,
the noise generated is exclusively quantum and corre-
sponds to unamplified vacuum fluctuations. The gain-
loss compensation and the phase transition points co-
incide for every analyzed waveguide configuration. In-
terestingly, although noise is unavoidably generated at
these phase transition points, its scaling is linear with
the waveguide length and outperforms the exponential
scaling exhibited by uncoupled waveguides.
We believe these results contribute to deepening our

understanding of NH quantum systems and the nontriv-
ial properties at their phase transition points, with im-
pact on fundamental research and potential applications
in gain-loss compensation systems and electrically large
photonic networks with reduced fluctuations.
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[9] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–
time symmetry and exceptional points in photonics, Na-
ture Materials 18, 783 (2019).

[10] M. Parto, Y. G. Liu, B. Bahari, M. Khajavikhan, and
D. N. Christodoulides, Non-Hermitian and topological
photonics: optics at an exceptional point, Nanophotonics
10, 403 (2020).

[11] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nature Physics 14,
11 (2018).

[12] A. Li, H. Wei, M. Cotrufo, W. Chen, S. Mann, X. Ni,
B. Xu, J. Chen, J. Wang, S. Fan, et al., Exceptional
points and non-Hermitian photonics at the nanoscale,
Nature Nanotechnology 18, 706 (2023).

[13] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,
and D. N. Christodoulides, Unidirectional invisibility in-
duced by PT-symmetric periodic structures, Physical Re-
view Letters 106, 213901 (2011).

[14] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer,
Experimental demonstration of a unidirectional reflec-
tionless parity-time metamaterial at optical frequencies,
Nature Materials 12, 108 (2013).

[15] Y. Huang, Y. Shen, C. Min, S. Fan, and G. Veronis, Uni-
directional reflectionless light propagation at exceptional
points, Nanophotonics 6, 977 (2017).
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A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moi-
seyev, and S. Rotter, Dynamically encircling an excep-
tional point for asymmetric mode switching, Nature 537,
76 (2016).

[26] M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. Stone,
and L. Jiang, Quantum noise theory of exceptional point
amplifying sensors, Physical Review Letters 123, 180501
(2019).

[27] H. A. Loughlin and V. Sudhir, Exceptional-point sensors
offer no fundamental signal-to-noise ratio enhancement,
arXiv preprint arXiv:2401.04825 (2024).

[28] A. Roy, S. Jahani, Q. Guo, A. Dutt, S. Fan, M.-A. Miri,
and A. Marandi, Nondissipative non-Hermitian dynam-
ics and exceptional points in coupled optical parametric
oscillators, Optica 8, 415 (2021).

[29] F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich,
S. Scheel, and A. Szameit, Observation of PT-symmetric
quantum interference, Nature Photonics 13, 883 (2019).

[30] J. Zhou, Characterization of PT-symmetric quantum in-
terference based on the coupled mode theory, Optics Ex-
press 30, 23600 (2022).

[31] S. Longhi, Quantum statistical signature of PT symme-
try breaking, Optics Letters 45, 1591 (2020).

[32] S. Chakraborty and A. K. Sarma, Delayed sudden death
of entanglement at exceptional points, Physical Review
A 100, 063846 (2019).

[33] D. A. Antonosyan, A. S. Solntsev, and A. A. Sukho-
rukov, Photon-pair generation in a quadratically nonlin-
ear parity-time symmetric coupler, Photonics Research
6, A6 (2018).

[34] B. Gardas, S. Deffner, and A. Saxena, PT-symmetric
slowing down of decoherence, Physical Review A 94,
040101 (2016).

[35] S. Dey, A. Raj, and S. K. Goyal, Controlling decoher-
ence via PT-symmetric non-Hermitian open quantum
systems, Physics Letters A 383, 125931 (2019).

[36] S. Scheel and A. Szameit, PT-symmetric photonic quan-
tum systems with gain and loss do not exist, Europhysics
Letters 122, 34001 (2018).

[37] C. Gardiner and P. Zoller, Quantum noise: a handbook of



15

Markovian and non-Markovian quantum stochastic meth-
ods with applications to quantum optics (Springer Science
& Business Media, 2004).

[38] S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, Quan-
tum optics of lossy beam splitters, Physical Review A 57,
2134 (1998).

[39] H. A. Haus, Electromagnetic noise and quantum opti-
cal measurements (Springer Science & Business Media,
2012).

[40] R. Loudon, The Quantum Theory of Light (OUP Oxford,
2000).


	Quantum and thermal noise in coupled non-Hermitian waveguide systems with different models of gain and loss
	Abstract
	Introduction
	Theoretical framework
	Spatial evolution in coupled non-Hermitian waveguides
	Eigenoperators of spatial evolution
	Diagonalizable evolution matrices
	Symmetries of the eigenvalues, eigenvectors and eigenoperators
	Real eigenvalues
	Complex eigenvalues


	Quantum gain and loss models in coupled waveguide systems
	Linear gain-Linear loss
	Eigenvectors and eigenoperators for real eigenvalues
	Eigenoperators variance

	Parametric gain-Parametric loss
	Eigenvectors and eigenoperators for real eigenvalues
	Eigenoperators variance

	Parametric gain-Linear loss
	Eigenvectors and eigenoperators for real eigenvalues 
	Eigenoperators variance

	Linear gain-Parametric loss
	Eigenvectors and eigenoperators for real eigenvalues
	Eigenoperators variance


	Conclusions
	Acknowledgments
	References


