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Two-photon interference (TPI) is a fundamental phenomenon in quantum optics and plays a
crucial role in quantum information science and technology. TPI is commonly considered as quantum
interference with an upper bound of 100% for both the TPI visibility and the beat visibility in
contrast to its classical counterpart with a maximum visibility of 50%. However, this is not always
the case. Here we report a simultaneous observation of quantum and classical TPI of single photons
with ultralong coherence time which is longer than the photon correlation time by five orders of
magnitude. We observe a TPI visibility of 94.3% ± 0.2% but a beat visibility of 50%. Besides
an anti-bunching central dip due to single-photon statistics, we observe two bunching side peaks
in cross-correlation curves for indistinguishable photons. Using either classical wave superposition
theory or quantum field approach, we derive the same expressions for the cross-correlation functions
which reproduce and explain the experiments well. We conclude that quantum TPI with a stream of
single photons is equivalent to classical TPI, both of which are the fourth-order interference arising
from the second-order interference occurring on the time scale of photon coherence time.

I. INTRODUCTION

When two identical photons are simultaneously inci-
dent on a 50/50 beam splitter from two input ports,
they will always bind together and leave the beam split-
ter from the same output port. This phenomenon is
called two-photon interference (TPI) - a fundamental ef-
fect in quantum optics which was discovered in 1987 by
Hong, Ou, and Mandel (HOM) [1]. Since its discov-
ery, TPI has been considered as quantum interference
with no analogue in classical physics [2, 3], and widely
applied in quantum information science and technology,
e.g., measuring photon’s bandwidth and timing[1], test-
ing the degree of photon indistinguishability [4, 5], Bell-
state analysis/measurement [6] and entanglement swap-
ping/generation [7] for quantum communications and
networks [8–11], quantum information processing [12–14]
and quantum metrology [15, 16].
Recently there has been great interest in the fourth-

order interference between two weak lasers (it is also
called the HOM interference, or classical TPI by some au-
thors) for practical implementations of the measurement-
device-independent quantum key distribution (MDI-
QKD) [17–19] which uses TPI to post-select entangled
states as a time-reversed version of entanglement-based
QKD [20]. The HOM interference between two lasers or
classical light is usually interpreted as classical interfer-
ence with a visibility less than 50% [21, 22] in contrast to
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TPI with a maximum visibility of 100% when two pho-
tons are indistinguishable [1, 2, 5]. This visibility differ-
ence usually serves as a criterion to distinguish between
quantum TPI and classical TPI. It is well known that all
photons in laser light are identical, thus the interference
visibility with an upper bound of 50% underestimates the
degree of photon indistinguishability of a laser. There-
fore it is natural to ask: What’s the relationship between
the quantum TPI of two photons and the HOM classical
interference of two lasers? And how to characterize the
genuine photon indistinguishability of a laser?

In this work, we answer the above questions by per-
forming time-resolved TPI experiments in an asymmetric
Mach-Zehnder interferometer (AMZI) using single pho-
tons with ultralong coherence time. In most TPI exper-
iments reported so far, single photons have short coher-
ence time limited by the single-photon correlation time
or twice the emitter’s radiative lifetime. As a result,
TPI and the HOM classical interference mix up with the
single-photon statistics and it is hard to distinguish be-
tween them. In this work we coherently convert laser
light into single photons using a single quantum dot (QD)
coupling to a doubled-sided optical microcavity in the
Purcell regime. Such single photons inherit the incident
laser’s ultralong coherence (> 10 µs) which is five orders
of magnitude longer than the photon correlation time,
so allow us to discriminate quantum and classical effects
in TPI and related interference beat. We observe a TPI
visibility of 94.3% ± 0.2% but a beat visibility of 50%,
indicating the coexistence of quantum and classical TPI.
Besides an anti-bunching central dip due to single-photon
statistics, we observe two bunching side peaks in cross-
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correlation curves for indistinguishable photons. We find
these intricate phenomena are linked to each other. Us-
ing either classical wave superposition theory or quantum
field theory, we derive the same expressions for the cross-
correlation functions which reproduce and explain the ex-
periments well. Based on these results, we conclude that
quantum TPI with a stream of single photons is equiva-
lent to classical TPI, both of which are the fourth-order
interference arising from the second-order interference oc-
curring on the time scale of photon coherence time.
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FIG. 1. (color online) Experimental setup for TPI measure-
ment using a modified AMZI where two cascaded AOM fre-
quency shifters are placed in one arm to make tunable fre-
quency shifts. Either fibre or free-space delays are used to
vary the time difference ∆t between two AMZI arms. Time-
resolved correlation measurements are performed with an 8-
channel time-correlated single photon counter with a time jit-
ter of 3 ps. Single photons with ultralong coherence time are
generated by a single QD in an optical microcavity placed
inside a closed-cycle cryostat. BS, BSA and BSB: beam split-
ters, FS: AOM frequency shifter, LP1 and LP2: linear po-
larizers, HWP: half-wave plate, SNSPD1 and SNSPD2: su-
perconducting nano-wire single-photon detectors with a time
resolution of 20 ps.

II. GENERATION OF SINGLE PHOTONS

WITH ULTRALONG COHERENCE TIME

We designed and fabricated a pillar microcavity con-
taining a single self-assembled In(Ga)As QD resonantly
coupling to the fundamental cavity mode with the co-
operativity parameter C = 2g2/(κγ⊥) ≫ 1 and critical
photon number n0 = γ⊥γ‖/(4g

2) ≪ 1, where g is the
QD-cavity interaction strength, κ is the cavity photon
decay rate, γ‖ is the QD spontaneous emission rate into
leaky modes, γ⊥ = γ‖/2+γ∗ is the QD polarization decay
rate, and γ∗ is the QD pure dephasing rate. Such design
allows the incident laser light interacts with the QD de-
terministically, cavity-enhanced coherent scattering and
strong nonlinearity at the single-QD and single-photon
level. The cavity is defined by two mirrors made up of
18 and 30 pairs of GaAs/Al0.9Ga0.1As distributed Bragg

reflectors (DBRs), respectively. The two DBR mirrors
are made asymmetric in the realistic devices such that
the leakage rate from the top mirror can balance the to-
tal leakage rates from the bottom mirror, cavity side and
background absorption resided in materials. This cav-
ity structure mimics a double-sided cavity with zero re-
flectivity at the center of the fundamental cavity mode.
The details for sample growth and device fabrication can
be found in our recent work [24]. The cavity quantum
electrodynamics(CQED) parameters for the sample used
in this work are g/2π = 4.7 GHz, κ/2π = 36.8 GHz,
γ‖/2π = 0.35 GHz and γ∗/2π ≃ 0 GHz. So the coop-
erativity parameter is C = 6.9 and the critical photon
number is n0 = 6.9× 10−4.

The sample was placed inside a closed-cycle cryostat
(see Fig. 1) and the QD transition was in resonance with
the cavity mode by temperature tuning. A cw tunable
Ti:saphhire laser with the linewidth < 100 kHz was used
to drive the cavity. We monitor the intensity or correla-
tion of the reflected light. Fig. 2(a) presents the coherent
reflection spectra measured by scanning the laser’s wave-
length. We get nearly zero reflectivity (R = 0.89%) at
the center frequency of cavity mode at higher laser pow-
ers when the QD saturates. The QD transition induces
a sharp reflection peak (R = 46.6%) inside the cavity-
mode resonance [Fig. 2(a), red solid line] at lower laser
powers.

Fixing the laser frequency on the QD resonance, we
measure the second-order autocorrelation function of re-
flected light and achieve g(2)(0) = 0.030± 0.002 [see Fig.
2(b)]. High single-photon purity is observed at low driv-
ing fields with the saturation parameter S < 1. The
reflected light consists of a superposition of the driving
field and the cavity output field. The driving laser field
shows Poissonian statistics while the cavity output field
exhibits super-bunching [24] due to photon-induced tun-
neling [25, 26] and multi-photon scattering [27], so the
common picture that a single QD can only scatter (or
absorb and emit) single photons cannot be applied at
low driving fields. We identify that fully destructive in-
terference between the driving field and the cavity out-
put field erases the two-photon probability amplitude in
reflected light and converts the driving laser light into
single photons [24], affirming the interference picture on
antibunching in resonance fluorescence proposed 40 years
ago [28].

At low driving fields with S < 1, the cavity output
intensity is much weaker than the driving field, so the
first-order coherence of converted single photons is simply
determined by the driving field. Fig. 2(c) presents the
degree of first-order coherence g(1)(τ) of reflected light
versus time delay measured with a Michelson interferom-
eter at different driving powers. There are two coherence
times observed, τc1 ≃ 115 ps and τc2 > 24.5 ns which is
limited by the longest path delay of interferometer. The
short 115-ps coherence time which is twice the QD ra-
diative lifetime 57 ps stems from the incoherent cavity
output field due to quantum fluctuations, while the long
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FIG. 2. (color online) Generation and characterization of single photons with ultralong coherence time (> 10 µs). (a) Reflection
spectra measured by scanning the laser’s wavelength. The QD-cavity coupled system (i.e., hot cavity) behaves like a cold or

empty cavity at high laser powers when the QD gets saturated by excitation. (b) Measured second-order autocorrelation g(2)(τ )

of reflected light with the laser frequency fixed at the QD resonance. g(2)(0) = 0.030 ± 0.002 is achieved. (c) Measured degree

of first-order coherence |g(1)(τ )| versus time delay at different driving powers with a Michelson interferometer. The solid curves
are calculations using the master equation[24]. We choose a low driving power with S = 0.01 for TPI experiments in this work.
(d) Cross-correlation measurements for cross polarizations (blue dash) and parallel polarizations (red solid) at ∆t = 2.1 ns and
Ω/2π = 0 kHz. The experiment time is more than half an hour. (e) Calculated cross-correlation functions for cross polarizations
(blue dash) and parallel polarizations (red solid) at ∆t = 2.1 ns and Ω/2π = 0. (f) TPI visibility versus the time delay τ at
∆t = 2.1 ns and Ω/2π = 0. The visibility peak with VHOM(0) = 94.3% ± 0.2% is accompanied by a 50% background.

coherence time comes from the driving field with ultra-
long coherence time (> 10 µs). The incoherent cavity
output reduces the degree of first-order coherence by its
intensity fraction in reflected light, however, this reduc-
tion becomes less significant at low driving fields.

III. TWO-PHOTON INTERFERENCE IN AMZI

Next we perform TPI experiments in a modified AMZI
(see Fig. 1) where two cascaded acousto-optical modula-
tion (AOM) frequency shifters are placed in one arm to
make tunable frequency shift. The device works at a low
driving field with the saturation parameter S = 0.01 in
the Heitler regime. The reflected single photons have a
high degree of first-order coherence with |g(1)(τ)| > 95%
[see Fig. 2(c)] for τ less than the coherence time. Fig.
2(d) presents the measured cross-correlation functions

g
(2)
⊥ (τ) and g

(2)
‖ (τ) between two detectors in cross- and

parallel-polarization configurations at ∆t = 2.1ns and
Ω/2π = 0.
In cross-polarization configuration, interference phe-

nomena are not expected and we observe three anti-
bunching dips at τ = 0,±∆t with a correlation time of
115 ps which is twice the QD radiative lifetime. The cen-
tral dip and two side dips arise from the single-photon
correlations with a depth of 0.5 and 0.25, respectively.

In parallel-polarization configuration, besides the cen-
tral dip at τ = 0, we observe two bunching side peaks
at τ = ±∆t which have not been reported before
[29, 30]. The HOM (or TPI) visibility is usually defined

as VHOM (τ) = [g
(2)
⊥ (τ) − g

(2)
‖ (τ)]/g

(2)
⊥ (τ). From it, we

get the TPI visibility VHOM (0) = 94.3% ± 0.2% [Fig.
2(f)] which is well above the 0.5 classical limit, indicat-
ing quantum nature of TPI. The TPI visibility peak sits
on a VHOM (τ) = 0.5 background which also stems from
TPI as discussed later. For this reason, we normalize

g
(2)
‖ (τ) to 0.5 in Fig. 2(d).

The bunching side peaks persist with increasing the
fibre delays up to 5 km (i.e., ∆t < 25 µs) and then turn
to antibunching dips when the fibre delays are longer
than 5 km (i.e., ∆t ≥ 25 µs) as shown in Fig. 3.
If keeping the fibre delay to 1 km (i.e., ∆t = 5 µs) but

varying the AOM frequency shifts, we observe periodic
changeover between bunching side peaks and antibunch-
ing side dips. For example, the bunching side peaks for
Ω = 0 [see Fig. 3(b)] turn to anti-bunching side dips
inside the interference beat for Ω/2π = 48.0 kHz [Fig.
4(a)], Ω/2π = 101.6 kHz [Fig. 4(b)], Ω/2π = 147.1 kHz
[Fig. 4(c)], Ω/2π = 246.0 kHz [Fig. 4(e)], but turn back
to bunching side peaks for Ω/2π = 194.7 kHz [Fig. 4(d)].
In order to understand the above results, we adopt a

general wave superposition theory (see the Supplemental
Material [23]) to calculate the cross-correlation functions
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for a general light field in the modified AMZI (see Fig. 1) in cross-polarization configuration

g
(2)
⊥ (τ) =

1

N

{

(R2
A + T 2

A)RBTBg
(2)(τ) +RATAR

2
Bg

(2)(τ +∆t) +RATAT
2
Bg

(2)(τ −∆t)

}

, (1)

and in parallel-polarization configuration

g
(2)
‖ (τ) =

1

N

{

(R2
A + T 2

A)RBTBg
(2)(τ) +RATAR

2
Bg

(2)(τ +∆t) +RATAT
2
Bg

(2)(τ −∆t)

− 2RATARBTBV0|g
(1)(τ)|2 cosΩτ

√

g(2)(τ −∆t)g(2)(τ +∆t)

}

,

(2)

where N = (R2
A + T 2

A)RBTB + (R2
B + T 2

B)RATA is the
normalization factor. RA.B and TA,B are the reflection
and transmission intensity coefficients of the beam split-
ters BSA and BSB with nominal values RA = TA = 50%
and RB = TB = 50%. The parameter V0 is introduced
to consider the mode overlap on BSB (see the Supple-
mental Material [23]). g(1)(τ) and g(2)(τ) are the first-
and second-order auto-correlation functions of the input
light. Ω/2π is the AOM frequency shift. Note that Eqs.
(1) and (2) are suitable for general light including single
photons, laser light and thermal light. In case of single
photons, Eqs. (1) and (2) are also obtained in framework
of quantum field theory (see the Supplemental Material
[23]).
A coincident event involves two photons detected by

each of two detectors. The first term in Eqs. (1) and (2)
comes from the coincidence events for two photons travel-
ing through the same AMZI arm. The second and third
terms count in the coincidence events for two photons
going through different arms. The fourth term in Eq.
(2) is due to the fourth-order interference of two pho-
tons which essentially originates from the second-order

interference occurring on the time scale of photon co-
herence time (see Supplemental Material [23]). This is
the only interference term in Eq. (2), so TPI and the
HOM classical interference are the same interference. In
parallel-polarization configuration, single-photon correla-
tion contributes to the antibunching central dip with a
depth of 0.5 and a small width of 115 ps, while TPI (i.e.,
the HOM classical interference) leads to a broad back-
ground (i.e., the HOM dip) with a depth of 0.5 and a
width of the photon coherence time (> 10 µs). That is

why we normalize g
(2)
‖ (τ) to 0.5 when ∆t ≪ τc [see Fig.

2(d) and Fig. 3]. For the same reason, the TPI visibil-
ity peak is observed on a VHOM (τ) = 0.5 background in
Fig. 2(f). Taking RA = TA = 50%, RB = TB = 50%,
g(2)(0) = 0.03 and |g(1)(τ)| = exp (−|τ |/τc) where τc is
the photon coherence time (> 10 µs), Eqs. (1) and (2)

well reproduce the measured g
(2)
⊥ (τ) and g

(2)
‖ (τ) in Fig.

2(d) with the calculated results plotted in Fig. 2(e).
To explain the bunching side peaks at τ = ±∆t, we

rewrite Eq. (2) as

g
(2)
‖ (τ) =

1

N

{

(R2
A + T 2

A)RBTBg
(2)(τ)

+RATARB

√

g(2)(τ +∆t)

(

RB

√

g(2)(τ +∆t)− TBV0|g
(1)(τ)|2 cosΩτ

√

g(2)(τ −∆t)

)

+RATATB

√

g(2)(τ −∆t)

(

TB

√

g(2)(τ −∆t)−RBV0|g
(1)(τ)|2 cosΩτ

√

g(2)(τ +∆t)

)}

.

(3)

At first we discuss the Ω = 0 case. If TB

√

g(2)(0) <

RBV0|g
(1)(∆t)|2 [refer to the third term of Eq.(3)], i.e.,

∆t <
τc
2
ln

[

RBV0

TBg(2)(0)

]

, (4)

a side peak at τ = ∆t is expected, and otherwise we
would observe a side dip at τ = ∆t. Here we take g(2)(τ+
∆t) = 1 at τ = ∆t as ∆t is much larger than the photon
correlation time (115 ps).

If RB

√

g(2)(0) < TBV0|g
(1)(∆t)|2 [refer to the second
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term of Eq.(3)], i.e.,

∆t <
τc
2
ln

[

TBV0

RBg(2)(0)

]

, (5)

a side peak at τ = −∆t is expected, and otherwise we
would see a side dip at τ = −∆t. Here we take g(2)(τ −
∆t) = 1 at τ = −∆t.
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FIG. 3. (color online) Cross-correlation measurements in
parallel-polarization configuration at different AMZI delays:
(a) 0.12 km; (b) 1 km; (c) 2 km; (d) 8 km. The AOM
frequency shift is set to zero. The driving field is kept at
S = 0.01. The measurement time for each curve is several
hours.

If taking RB = TB = 50%, V0 = 100%, and g(2)(0) =
0.03, the above inequalities (4) and (5) reduce to ∆t <
1.8τc. Assuming τc = 10 µs, we would observe two bunch-
ing side peaks at τ = ±∆t if the AMZI fibre delays are
less than 3.6 km (i.e., ∆t < 18 µs), or two anti-bunching
side dips if fibre delays are longer than 3.6 km (i.e.,
∆t > 18 µs), in agreement with the observations in Fig. 3
where the anti-bunching side peaks turn to dips when the
fibre length increases beyond 5 km. When ∆t ≫ 1.8τc,
the interference effect cannot reach the side dips at

τ = ±∆t as g(1)(∆t) ≈ 0, so g
(2)
‖ (τ) around τ = ±∆t

is normalized to one in Fig. 3(d). The small asymme-
try between the two bunching side peaks is caused by
the slight difference between RB and TB, or different
detection efficiencies. In previous work [29, 30], single
photons generated by the QD spontaneous emission have
very short coherence time limited by twice the QD ra-
diative lifetime. As a result, ∆t > τc

2 ln
[

V0/g
(2)(0)

]

is
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FIG. 4. (color online) Cross-correlation measurements with
single photons in parallel-polarization configuration at differ-
ent AOM frequency shifts: (a) Ω/2π = 48.0 kHz; (b) Ω/2π =
101.6 kHz; (c) Ω/2π = 147.1 kHz; (d) Ω/2π = 194.7 kHz;
(e) Ω/2π = 246.0 kHz. The fibre length is fixed to 1 km,
corresponding to a time delay ∆t = 5 µs. The driving field is
kept at S = 0.01. Same measurement with the driving laser
is plotted in (f) for comparison.

always met, so only antibunching side dips were observed
in their experiments.

In the case of Ω 6= 0, the interference term in Eqs. (2)
or (3) modulated by cosΩτ generates an interference beat

in g
(2)
‖ (τ) curves (see Fig. 4). If cos(Ω∆t) = −1 or 0, we

would always observe anti-bunching side dips at τ = ±∆t
no matter what the fibre length is. This can be easily seen
from Eq. (3). If cos(Ω∆t) = 1, whether side peaks or dips
are observed depends on the fibre length in the same way
as the Ω = 0 case. This explains the periodic changeover
between side peaks and dips at τ = ±∆t when the AOM
frequency shift is tuned (see Fig. 4). Note that similar
classical interference beat is also observed for the driving
laser light, but no sharp dips or peaks are observed [see
Fig. 4(f)].

The beat visibility of 0.5 in Figs. 4(a)-4(d) and the
TPI visibility background of 0.5 in Fig. 2(f) both re-
flect the classical effect in TPI, while the TPI visibility
of 94.3% ± 0.2% in Fig. 2(f) shows the quantum effect
in TPI. All these phenomena can be well explained by
Eq. (2). Taking RA = TA = 50% and RB = TB =
50%, Eq.(2) yields VHOM (0) = V0/[1 + g(2)(0)], spe-
cially VHOM (0) = V0 for a stream of single photons
with g(2)(0) = 0, VHOM (0) = V0/2 for a stream of un-
correlated photons (e.g., laser light) with g(2)(0) = 1
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and VHOM (0) = V0/3 for thermal light with g(2)(0) =
2. Therefore, V0 = VHOM (0)[1 + g(2)(0)] rather than
VHOM (0) alone measure the true photon indistinguisha-
bility of laser light, in accord with Mandel’s insight that
indistinguishability equals coherence [31].

IV. DISCUSSION

To summarize, we have demonstrated a simultaneous
observation of quantum and classical two-photon inter-
ference of single photons with ultralong coherence time
which is five orders of magnitude longer than the photon
correlation time. We coherently convert laser light into
single photons using a single QD coupling to a double-
sided optical microcavity in the Purcell regime. We ob-
serve a TPI visibility of 94.3% ± 0.2% but a beat visi-
bility of 50%. Besides the anti-bunching central dip due
to single-photon statistics, we also observe two bunching
side peaks in cross-correlation curves for indistinguish-
able photons due to second-order interference and intri-
cate photon correlations. We reproduce the experimental
results using either classical wave superposition theory or
quantum field approach. We conclude that quantum TPI

with a stream of single photons is equivalent to classical
TPI, both of which are the fourth-order interference aris-
ing from the second-order interference occurring on the
time scale of photon coherence time. Our work sheds new
light on the nature of TPI.
Moreover, we point out that the technique to convert

laser light into single photons can be utilized to measure
the genuine photon indistinguishability of lasers, which
is not accessible before. Inheriting the laser’s first-order
coherence time and robust photon indistinguishability,
laser-converted single photons [24] could be a key re-
source for interference-based quantum information tech-
nologies, e.g., to establish high-quality TPI between re-
mote quantum memories [32] or to realize long-distance
TPI [33], an important step towards quantum internet
[9–11].
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oucef, Y. H. Huo, S. Höfling, Q. Zhang, C.-Y. Lu, and J.-
W. Pan, Quantum interference with independent single-
photon sources over 300 km fiber. Adv. Photonics 4,

066003(2022).

http://arxiv.org/abs/2403.17253

