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Significance Statement 
Modern materials are often synthesized or operated in complex chemical environments, where there 
can be numerous elemental species, competing phases, and reaction pathways. When analyzing 
reactions using the Gibbs free energy, which has a natural variable of composition, it is often 
cumbersome to solve for the equilibrium states of a complicated heterogeneous mixture of phases. 
However, if one is interested only in the stability of a single target material, it may be easier to reframe 
the boundary conditions around only the target material-of-interest, with boundary conditions open to 
chemical exchange with an external reservoir. The corresponding phase diagram would thus have a 
chemical potential axis for the open volatile species, rather than a composition axis. Here we discuss 
how to derive, compute, and interpret phase diagrams with chemical potential axes, which are dual to 
the more common composition phase diagram.  

Abstract 

In our ambition to construct high-dimensional phase diagrams featuring any thermodynamic variable 
on its axes, here we examine the duality between extensive and intensive conjugate variables in 
equilibrium thermodynamics. This duality manifests in multiple forms, from the distinction between 
closed and open boundary conditions of a thermodynamic system, to the relationship between the 
Internal Energy and its Legendre transformations, to the point-line duality in calculating convex hulls 
versus half-space intersections. As a representative example, here we derive the duality relationships 
for chemical work with extensive composition variables, N, and intensive chemical potentials, μ. In 
particular, we discuss mixed composition-chemical potential diagrams, where some species are volatile 
while others are not; for oxynitride synthesis, lithium-ion cathode stability, and oxide scale formation 
on compositionally-complex alloys. We further illustrate how chemical potential diagrams directly 
connect to materials kinetics, revealing the thermodynamic driving forces for non-equilibrium growth 
and dissolution processes. 
 
 
 
 
 



 Duality is a profound and powerful concept in mathematical physics. As described by Michael 
Atiyah,1 duality gives two different points of view of looking at the same object. For example, a periodic 
function can be decomposed into a Fourier series—an infinite sum of sines and cosines; or be 
represented by its dual the Fourier spectrum—a vector of coefficients for each sine or cosine term. In 
solid-state physics, Gibbs used duality to invent the concept of the ‘reciprocal lattice’,2,3 which is dual 
to the real-space crystalline lattice—a foundational principle in X-ray diffraction, Bloch wavefunctions, 
and Ewald summations. A dual representation does not produce any essentially new information, rather, 
it offers a new perspective to analyze and interpret a physical scenario.  

 In thermodynamics, there is a duality in how one can ascribe boundary conditions to a 
thermodynamic system. For a system containing two or more phases coexisting in equilibrium, we can 
either frame closed boundary conditions around this heterogeneous mixture of equilibrium phases; or 
if we are interested in the stability of only a single target phase, we could alternatively frame open 
boundary conditions around only that material, where extensive quantities (heat, volume, mass, etc.) 
are exchangeable with an external reservoir with applied intensive conditions (temperature, pressure, 
chemical potential, etc.). With closed boundary conditions, the relevant phase diagram has the 
corresponding extensive variable on the axis; whereas for open boundary conditions the relevant phase 
diagram would have an intensive variable axis. To construct the relevant thermodynamic potential for 
a phase diagram with natural intensive variables, one uses the Legendre transformation, Φi = U – ΣiXiYi, 
to change the natural variable of a thermodynamic potential from extensive in U(Xi) to a new potential 
with the conjugate intensive natural variable, Φ(Yi).   

 Previously in Part I of this three-part series on high-dimensional phase diagrams, we showed 
that Gibbs’ physical arguments for heterogeneous equilibrium correspond to the lower convex hulls on 
the Internal Energy surface, U(S,Xi) of the various possible phases. However, due to Gibbs’ stability 
criterion that ∂2U/∂Xi

2 > 0, convex hulls can only calculate heterogeneous equilibrium on 
thermodynamic axes of extensive variables. In many experimental contexts, the control variables are 
intensive, like temperature or pressure, which motivates the use of Legendre transformations from 
U(S,V,N) to the Gibbs free energy G(T,P,N) = U – (-PV) – TS. In our ambition to construct generalized 
high-dimensional phase diagrams with any intensive or extensive thermodynamic variable on the axis, 
here we discuss the physical interpretation, geometric principles, and computational approaches 
needed to examine the duality between closed and open thermodynamic systems.  

 In particular, this work focuses on the duality between closed and open chemical systems, 
where the extensive variable N is mass and the conjugate intensive variable μ is chemical potential. 
Although chemical potential diagrams have been previously made in the literature,4-13 we believe they 
are underutilized, which we attribute to a lack of literature that describes how to meaningfully interpret 
chemical potential diagrams. First, we derive how the duality between convex hulls and half-space 
intersections offer a computational foundation to connect composition phase diagrams to chemical 
potential diagrams. We then explore how chemical potential diagrams offer a pathway to connect 
equilibrium thermodynamics to non-equilibrium materials kinetics––as the equations of diffusion, 
nucleation, growth, and dissolution, all have terms for chemical potential in their constituent equations.  

 



 Finally, we will discuss the limitations of phase diagrams with either all composition axes or 
all chemical potential axes—as there are many physical scenarios where a system is closed in some 
elements while being open to others. We advocate for the construction of mixed composition-chemical 
potential phase diagrams, with chemical potential axes for the volatile species and composition axes 
for the closed species.  We examine three case studies of mixed intensive-extensive phase diagrams to 
interpret the synthesis, operational stability, and growth of: 1) the oxynitride TaON, 2) the lithium-ion 
battery cathode material LiMn2O4, and 3) oxidation of the medium-entropy alloy CrCoNiOx. To 
construct these mixed composition-chemical potential diagrams, we combine thermodynamic 
calculations from both convex hull and half-space intersection algorithms, and discuss the geometry 
of phase coexistence regions in these mixed diagrams.  

 More generally, our approach to duality here serves as a general blueprint to Legendre 
transform the U(S,Xi) convex hull to any high-dimensional phase diagram, either with axes of all 
intensive variables (such as elastic stress, electric field, magnetic field, surface area to volume ratio, 
and others), or some mixture of intensive and extensive variables.  

The duality between open and closed thermodynamic systems 

 It is not meaningful to construct or interpret phase diagrams before establishing the boundary 
conditions for the thermodynamic system being analyzed. For a material that can undergo chemical 
reactions, there are two ways to frame boundary conditions, as illustrated in Figure 1. When using the 
Gibbs free energy, which has a natural extensive variable of composition, one frames a closed 
thermodynamic system where the total composition within a reactor is fixed. Inside these closed 
boundary conditions, an initial non-equilibrium set of reactants will evolve to a final equilibrium phase 
or a heterogeneous mixture of phases, depending on the ratio of elements in the total reaction vessel. 
For thermodynamic systems with many phases and chemical species, the resulting network of 
stoichiometrically-balanced chemical reactions can become very complicated to navigate.1415  

 

Figure 1. The duality between closed and open thermodynamic systems; shown in (a, b) with corresponding free 
energy surfaces (c,d), solved with convex hulls on extensive axes, or half-space intersections on intensive axes.  



 From a materials engineering perspective, our interest may instead only be with regard to a 
single target phase––for example, to predict optimal synthesis conditions, or to evaluate operational 
stability in complex chemical environments. In such cases, we may not need to (or care to) fully 
characterize all the possible reactions within a closed chemical system. Instead, we could frame the 
thermodynamic boundaries around only the material-of-interest, which we treat as open to an external 
chemical reservoir that has a propensity to deposit mass onto, or dissolve mass away from, our 
material-of-interest. The thermodynamic propensity to flux mass onto or away from the target material 
is given by the chemical potential difference between the reservoir and the material.  

 A few examples where a thermodynamic system might better be described with open instead 
of closed boundary conditions include the following: In gas-phase deposition, such as chemical vapor 
deposition or molecular beam epitaxy, one does not usually control the composition of the volatile 
species; one controls partial pressure, temperature, and flow-rate, which is better described by chemical 
potential.16,17 During precipitation or dissolution from an aqueous electrochemical solution, one usually 
cares about the material being formed or dissolved, rather than all the various chemical reactions that 
are possible in H2O.18,19 In heterogeneous solid-state systems, such as the [cathode | electrolyte | anode] 
system of an all-solid-state battery, one could examine heterogeneous equilibrium in the convex hull 
isopleth connecting the cathode and anode;18 or equivalently one could consider the chemical potential 
differences at the interfaces between the various electrodes in the battery.20 Likewise, one can make 
similar arguments during solid-state synthesis, as one can examine reactions with composition fixed 
natural variables,13 or equivalently one could examine the chemical potential differences at the 
interfaces between reactants and products.11  

The decision to either model chemical reactions in a closed heterogeneous system, or a 
collection of subsystems open to each other via chemical exchange, is an arbitrary decision for a human 
scientist. Nature will evolve the chemical system all the same—but for our conceptual benefit, we 
should choose our boundary conditions based on whatever considerations are convenient or important 
to us. To anthropomorphize the target material, it does not ‘know’ the composition of the reaction 
vessel—it will simply undergo reactions with the chemical reservoir at its physics interfaces. These 
reactions proceed until the chemical potentials inside the material are equivalent to the chemical 
potentials with the reservoir at its interface, such that equilibrium is reached.   



The duality between convex hulls and half-space intersections 

Chemical potential diagrams have previously been calculated, most notably by Yokokawa4, 
and have been applied to study solid-oxide fuel cells,5 hydrogen storage materials,6 surface 
adsorption,7,8,9 defects,9,11 and materials synthesis.11,13 In our overarching ambition to calculate high-
dimensional phase diagrams, it is important to use computational phase diagram approaches that are 
scalable to many dimensions. Published algorithms for computing chemical potential diagrams, from 
our perspective, rely on inelegant approaches, often involving for loops or inefficient optimization 
approaches, and do not scale well to high-component chemical spaces. In addition, published chemical 
potential diagrams only depict equilibrium situations, while here we derive chemical potential 
diagrams that can represent non-equilibrium scenarios like crystal growth and dissolution. 

Our derivation of the chemical potential diagram below is inspired by the discussions in 
Callen21, Zia22, and Yokokawa4, but it is derived in a way specifically to leverage the duality between 
convex hulls and half-space intersections, which are computational optimization algorithms that 
readily scale to higher dimensions. First, we will connect the Legendre transformation to Point-Line 
Duality. Then we will use Point-Line Duality to connect convex hulls to half-space intersections. From 
our perspective, these ideas appear in the literature in scattered form, which our goal here is to unify 
under one physical, mathematical and computational perspective. For the sake of completeness, we 
present a full derivation in the SI1-SI3. A brief summary of the derivation follows:  

 For phase diagrams with extensive variables, the equilibrium state is solved by convex hulls, 
and each state of a phase is given by a vertex on the convex hull. We then leverage a concept from 
projective geometry named Point-Line Duality. Briefly summarized: for a line of the form y = ax – b, 
it is usually customary to treat x and y as the axes, and a and b as parameters for the line. However, 
since a and b provide all the information needed to define this line, we could equivalently represent 
this line as a point (a,b) in a–b space. Symmetrically, one can swap a,b and x,y to arrive at a similar 
relationship between lines in a–b space and points in x–y space. If the line is provided as an inequality, 
y ≤ ax – b, one can show that the lower convex hull for a collection of points is equivalent to the lower 

half-space intersection for its dual representation of lines. 

 In mathematics, the Legendre transformation is a method to relate a convex function to its 
envelope of tangent lines. Because the tangent line to a U(Xi) surface, ∂U/∂Xi, gives the intensive 
variable Yi; the Legendre transformation is a natural implementation of Point-Line duality. For a natural 
intensive variable of chemical potential, the Legendre transformation can be used to construct a new 
thermodynamic grand potential, ϕ = G – μN. For composition axes, it is customary to transform the 
number of mols, N, to mol fraction, x, by the affine relationship Σixi = 1, where xi = Ni / ΣiNi. This 
changes the intensive variable μ from the slope ∂G/∂N, to the intercept rule (derivation in SI3.2), where 
μi = G – (1–xi)ꞏ[dG/dxi]. Graphically, μi can be solved by a tangent line of the convex hull, extended to 
the vertical G axis at the elemental end-point compositions, as later illustrated in Figure 2a. Hence, 
the chemical potential denoted as μ in this context represents the relative chemical potential to a 
standard reference state. In some published papers, it is expressed as Δμ(μ-μo).  

  



 The 𝜙 μ) space is dual to the G(x) space. Each phase, which was a vertex in G(x) space, 
becomes a line in the dual 𝜙 μ) space. More generally, in higher dimensions, each phase becomes a 
hyperplane by the equation 𝜙 = G – Σμixi, which corresponds directly to y = Σiaixi – b. The equilibrium 
state in G(x) was solved using a bounding lower-convex hull of vertices, which in dual 𝜙 μ) space, 
corresponds to a bounding upper half-space intersection of hyperplanes. A mathematical proof of this 
duality is provided in SI2. 

 Phase diagrams are constructed by projecting the lowest free-energy phases onto the 
thermodynamic axes, thus eliminating the energy axis. For example, a T–P phase diagram is 
constructed by projecting the half space intersection of G = H + PV – TS onto the T and P axes. 
Likewise, a composition phase diagram is a projection of the G(x) convex hull onto the composition 
axes; and a chemical potential diagram is a projection of the lower half-space envelope of 𝜙 surfaces 
onto chemical potential axes (Figure 2b). The stability region of a phase on a chemical potential 
diagram shows chemical potential values where its grand potential is lower than that of any other phase.  

Table 1. Dual representation of physical aspects in closed system (the convex hull) and open system 
(chemical potential diagram). 

Physical Aspects Dual Representation 
System Boundary Condition Closed to mass transfer Open to mass transfer 

Thermodynamic 
Aspects 

Thermodynamic 
Potential 

Gibbs potential Grand potential 

Euler form G = U + pV – TS  Φ = G – μN 
Differential Form dG = –SdT + vdP + μdN dΦ = –SdT + vdP – Ndμ 
Natural Variables T, P, N T, P, μ 
Heterogeneous 
Equilibrium 

Coexistence region Phase boundary 

Metastability Energy above the hull Growth 
Instability Decomposition energy Dissolution 

Geometric aspects 
Phase Point Hyperplane 
Equilibrium state Convex Hull Half-space intersection 

 

In this work, we will present chemical potential diagrams for a variety of systems. All the 
thermochemical data for these diagrams are from the Materials Project database23, which is a database 
of high-throughput DFT-calculated enthalpies of ordered crystalline phases. As is common in the 
computational materials science community, we assume that vibrational entropy is negligible in solids, 
so that we can approximate Gsolid = ESolid,DFT

24. The Materials Project only contains ordered crystalline 
phases, so we do not consider the solid-solution phases, although they are certainly relevant in real 
materials. Finally, DFT has known errors in formation energy25 ,26 , but the Materials Project has 
implemented a series of energetic corrections27,28,29 which we adopt here without further scrutiny. For 
a thorough analysis of the actual chemical systems presented here, it would be appropriate to 
recalculate the thermochemical data without these assumptions—however this work primarily 
emphasizes the formalism, geometry and interpretation of chemical potential diagrams, so we use the 
unaltered Materials Project data for our visualizations.  



Equilibrium and non-equilibrium regions on a chemical potential diagram 

When analyzing the stability of a material under open boundary conditions, one should 
distinguish in the mind between the internal intensive variable of a substance, Yi, versus the external 
intensive variable of the reservoir Yexternal. If the Yinternal ≠ Yexternal, then the conjugate extensive quantity 
X will flow through the boundary until Yinternal = Yexternal, after which entropy will be maximized and 
equilibrium is reached. For example, if 50°C water is exposed to an external temperature reservoir of 
10°C, heat will flow out of water into the reservoir, and the entropy of water will be reduced 
correspondingly. Water has a continuous span of entropies in this temperature range, so it can change 
its internal extensive entropic state to equilibrate with an external intensive temperature reservoir. 

Likewise, for chemical work, to equilibrate the internal chemical potential of a material with 
the external chemical potential of the reservoir, mass can be transferred across the boundaries. At 
equilibrium, the externally applied chemical potential reservoir will be exactly equal to the internal 
chemical potential of a material; μmaterial = μreservoir, such that there is no driving force to transfer mass 
to or from the reservoir. For a non-equilibrium situation, if external chemical potentials are different 
than the internal chemical potentials of a material, mass will have a propensity to flux from high μ to 
low μ; where a material will grow if μreservoir > μmaterial, or it will dissolve or corrode if μreservoir < μmaterial. 
Because growth and dissolution are fundamental aspects of materials kinetics, chemical potential 
diagrams offer a direct link between non-equilibrium thermodynamics and kinetics of transport.  

The internal chemical potential of the material derives from the energies of its quantum-
chemical and electrostatic bonds—which determines its scalar formation energy. Figure 2a visualizes 
the formation energies of phases from the Mn-O system with its interpretation for equilibrium and non-
equilibrium scenarios from the perspective of a convex hull. The corresponding chemical potentials 
can be interpreted from the intercept rule—where μMn or μO are the intercept of the tangent lines of the 
convex hull with the vertical energy axis at the elemental end-point compositions.  

The equilibrium chemical potential window of the single phase Mn3O4 is bound between the 
cotangent lines of Mn2O3/Mn3O4 and Mn3O4/MnO, where these cotangent lines indicate the chemical 
potentials where Mn3O4 can coexist in equilibrium with Mn2O3 or Mn3O4. Figure 2b shows the 
corresponding chemical potential windows of each MnxOy phase, indicated by the vertical line 
segments at a given composition. Because phases on the convex hull are points, the Legendre 
transformation of these phases form the grand potential surfaces, whose half-space intersection is 
shown Figure 2d. The condition where the externally applied chemical potentials are equal to the 
internal chemical potential of a material can be written as:  

𝜙 = [G]internal – [Σiμixi]external = 0. 

Therefore, the conditions of equilibrium on a chemical potential diagram correspond to a slice of grand 
potential surfaces where 𝜙 0 , accentuated by the darker lines on Figure 2d. We call this the 
equilibrium envelope of the chemical potential diagram. All regions in chemical potential diagrams 
display the external chemical potential applied by the reservoir, but darker lines additionally represent 
the situation where internal chemical potential of each material on the convex hull is equal to the 
external chemical potential from the reservoir. The lines formed by the equilibrium envelope (𝜙 = 0) 
are consistent with the vertical segments formed by intercept rule as illustrated in Figure 2b. 



 

Figure 2. Duality between convex hulls and chemical potential diagrams in the binary Mn-O system. (a) Tangent lines 
to the convex hull, and their intercepts with the energy axes, show the elemental chemical potential window for Mn3O4. 
(b) Chemical potential windows for μMn and μO various MnOx phases indicated by vertical segments. (c) Grand potential 
hyperplanes for the Mn-O chemical potential diagram. The equilibrium envelope is emphasized by a dark line at ϕ = 0 
(d) Dissolution and growth regimes on the chemical potential diagram and (e) their dual relationship with the convex 
hull. (f) Ternary chemical potential diagram, with the growth and dissolution regimes for LiMn2O4 and LiMnO2 illustrated 
as extending in and out of the stability regions on the equilibrium envelope.   



The equilibrium envelope further separates a chemical potential diagram into non-equilibrium 
regions of growth and dissolution. For example suppose Mn3O4 is placed in contact with an external 
chemical reservoir where the boundary conditions are (μMn, μO)external = (–2, –1), indicated by the red 
label A in Figure 2d. These chemical potentials are higher than the internal μMn and μO in Mn3O4, so 
Mn and O will flux from the external chemical reservoir onto Mn3O4, leading to crystal growth. On 
the convex hull in Figure 2e, the dual representation to this point on the chemical potential diagram 
corresponds to the line A* on the convex hull. Likewise, if Mn3O4 is exposed to low (μMn, μO)external = 
(–3, –3), shown as point B in Figure 2d and the line B* in Figure 2e, Mn and O will flux out of Mn3O4 
into the reservoir, leading to dissolution of Mn3O4. The precise chemical or structural nature of the 
external chemical reservoirs are irrelevant, only their μMn and μO chemical potentials matters.  

The chemical potential diagram can also show conditions for solid-solid phase transformation 
from a metastable solid to an equilibrium phase. If a different MnOx phase, for example Mn2O3, were 
exposed to an external chemical potential such as point A or B, which is in the non-equilibrium region 
corresponding to Mn3O4, there would first be a thermodynamic driving force for phase transformation 
from Mn2O3 to Mn3O4, followed by subsequent growth or dissolution of Mn3O4. In the convex hull of 
Figure 2e, the phase transformation that originates from Mn3O4 has the largest energy drop from line 
A* compared to all other MnOx phases. Nucleation and diffusion kinetics aside, the bulk driving force 
preferences the transformation and further growth of Mn3O4. Additionally, because Mn3O4 has the 
shallowest energy drop to B*, any other MnOx composition exposed to this external chemical reservoir 
can first reduce its free energy by transforming to Mn3O4, and then dissolving mass out to the reservoir.  

Additionally, chemical potential diagrams can be employed to illustrate solid-state reactions. 
In Figure 2e, the green dashed line, denoted as C*, represents the reaction between MnO2 and MnO. 
By Point-Line duality, this corresponds to point C in the chemical potential diagram (Figure 2d), which 
is the intersect between the extension of the equilibrium envelope lines for MnO2 and MnO. The 
reaction driving force is the distance from point C to the Mn3O4 equilibrium envelope along the  
μO: μMn = 1 direction. This reaction energy on the chemical potential diagram is equal to the distance 
between C* and Mn3O4 on the convex hull.  

 Our geometric interpretation of the binary convex hull and chemical potential diagram can be 
readily extended to higher component systems. Figure 2f illustrates a ternary μLi-μMn-μO chemical 
potential diagram. The chemical potential diagram exists in 3 dimensions, since one can vary all three 
chemical potentials independently for non-equilibrium scenarios. However, the equilibrium envelope 
is still a 2-dimensional manifold, due to the special constraint that 𝜙 = [G]internal – [Σixiμi]external = 0. 
Nonetheless, one can see that the non-equilibrium regions similarly extend into and out of the 
equilibrium manifold, for example as highlighted for LiMn2O4 (yellow) and LiMnO2 (red). All other 
arguments of growth and dissolution can be applied to this ternary chemical potential diagram.  

  



Mixed Composition-Chemical Potential Diagrams 

There are many physical situations where a chemical system is open to some elements, but are 
closed in others. For example, in the stability of metal oxynitrides, oxygen and nitrogen can be volatile, 
whereas the metal(s) usually are not. In such cases, pure chemical potential diagrams or pure 
compositional phase diagrams may not be the most useful. Here we advocate for the construction of 
mixed composition and chemical potential phase diagrams, interpreting three representative case 
studies for oxynitride stability, lithium-ion cathode stability, and oxidation of multicomponent alloys.  

Although mixed composition-chemical potential diagrams can be interpreted from the 
geometry of the intercept rule, they are not straightforward to calculate, as they require using convex 
hulls in the composition axes, and then half-space intersections for the chemical potential axes. We 
present a method where equilibrium is calculated both with convex hulls and half-space intersections, 
then the coordinates of each phase are mixed-and-matched depending on if the desired axis is 
composition or chemical potential. Details of this computational implementation are discussed in SI4.  

Metal oxynitrides 

Oxynitrides are a class of mixed-anion materials with applications for semiconductors and 
optoelectronics, 30  water-reduction photocatalysts, 31  electrocatalytic nitrogen reduction, 32  hard 
coating,33 energy storage,34,35 etc. Introducing additional anions with different sizes, electronegativities, 
and charges can effectively modulate the physical properties of oxide-based compounds36,37. However, 
oxynitrides are difficult to synthesize, and if synthesized, do not always retain operational stability (for 
example during catalysis in harsh electrochemical environments). Here, we examine the boundary 
conditions and relevant phase diagram in evaluating the stability of tantalum oxynitride, TaON.  

It is not straightforward to experimentally control the oxygen and nitrogen composition in a 
reaction vessel, as oxygen and nitrogen are gases at standard state and at elevated temperatures. For 
this reason, it is not very convenient to examine oxynitride stability on phase diagrams with oxygen 
and nitrogen composition axes. If we are only concerned about the stability of the oxynitride, we can 
instead frame our thermodynamic system around just the oxynitride itself, with boundary conditions 
open to oxygen and nitrogen transfer, while closed in the non-volatile metal species. The corresponding 
phase diagram should therefore be a mixed xmetal-μO-μN diagram.  

In Figure 3a, we illustrate the geometric connection between an all-extensive xmetal-xO-xN 

convex hull with its mixed xmetal-μO-μN phase diagram. For a target TaON phase, the blue triangle 
indicates the tangent plane to the TaON vertex. The intercept of this tangent plane with the energy axes 
at the pure elemental compositions corresponds to the elemental chemical potentials. Tilting this 
tangent plane about the TaON vertex maps out μO and μN chemical potentials where TaON is a stable 
equilibrium phase. This tangent plane tilting process is similar to retrieving the temperature and 
pressure of a phase on the Maxwell U-S-V surface, except that on the Maxwell surface the slope of the 
tangent plane ∂U/∂X directly gives the intensive variable Y, whereas in affine composition axes (where 
x1 = 1 – x2 – x3), the conjugate intensive chemical potential variable is given by the intercept rule.  



 

Figure 3. a) Ternary xTa-xN-xO convex hull. Blue triangle represents tangent plane to the TaON vertex, whose intercepts 
with the energy axis provides the corresponding elemental chemical potentials. b) Mixed xTa-μO-μN phase diagram. c) 
The chemical potential of a diatomic gas like O2 or N2, as a function of temperature and partial pressure. Iso-μ lines are 
marked from -9 to 0.5 eV/atom. d) μO-μN projection of the mixed xTa-μO-μN diagram. e) Gas conditions for N2 and O2 
where TaON is stable, marked with yellow star. f) Lines on the μO-μN projected diagram corresponding to gases at 
various partial pressures, where we fixed logPN2 = 5, and then show isolines corresponding to μO and μN at various 
logPO2 and temperature.  



The xTa-μO-μN phase diagram is shown in Figure 3b, where single-phase regions correspond to 
horizontal polygons with black borders parallel to the μO and μN axis. 2-phase coexistence regions are 
formed by the vertical rectangles connecting two single-phase polygons parallel to the xTa direction, 
The 3-phase coexistence regions are given by the vertical red lines that connect two 2-phase 
coexistence regions. The xTa axis shows how changing μO and μN can control the Ta molar fraction. 
However, this 3-dimensional diagram can also be projected onto just the μO-μN axes, as in Figure 3d.   

The chemical potential of a gaseous phase is given by μgas = μ0 + RTln[Pgas] – TSgas, where μ0 
is the standard state chemical potential, Pgas is the partial pressure, and Sgas is its entropy. N2(g) and 
O2(g) are the equilibrium elemental phases at standard state, so for both oxygen and nitrogen, μ0 = 0 at 
298K and P = 1 atm. The dependence of μgas on temperature and partial pressure is schematized in 
Figure 3c, which provides an experimental reference guide that can be used together with the xmetal-
μO-μN. The combination of Figures 3b, c, d provides theoretical utility similar to the Ellingham 
diagram, however the Ellingham diagram cannot examine materials stability with two independent 
volatile gaseous species, whereas the chemical potential diagram construction can.   

Although TaON is on the Ta-O-N convex hull, and is therefore a thermodynamically stable 
phase, its stability window is very narrow in the μO-μN diagram, meaning that the conditions to stabilize 
TaON may need to be very precise. In particular, μN should be much greater than μO for TaON to be 
stable. In Figure 3f, we place a yellow star in the TaON stability window at (μO, μN) = (-4 eV, -0.9 eV). 
By referencing the diagram in Figure 3e, we can determine the O2 and N2 gas conditions that 
correspond to this TaON stability point.  

For an oxynitride exposed O2(g) and N2(g), the temperatures of the two gases will be the 
same—however, their relative partial pressures can be varied independently. On Figure 3e, we should 
search for a temperature (a vertical line) that intersects iso-μ lines of -0.9 eV for N2, and -4 eV for O2. 
One such condition is at 1000K, with logPN2 = 5 and logPO2 = -10. In Figure 3f, we use a series of 
dotted lines to represent different temperatures and different logPO2, with each line having a fixed 
logPN2 = 5. For most conditions, these lines fall in Ta2O5 region, showing that TaON is unstable with 
respect to Ta2O5 under most conditions in air. However, for the line logPO2 = -10, we can intersect the 
TaON region at 1000K.  

Although we conducted our stability analyses with respect to O2 and N2 gas, we can use other 
nitrogen or oxygen precursors to shift the μN and μO chemical potentials. For example, to overcome the 
triple bond in the N2 molecule, nitrides are usually much more readily synthesized with activated 
nitrogen precursors, such as ammonia where the half reaction μN  = μNH3 – 3/2 μH2  yields μN = 0.4 eV 
at standard state; and plasma-cracked atomic nitrogen has been benchmarked to μN  = 1 eV/N.38,39 

These chemical potentials are equivalent to N2(g) partial pressures of 1016 atm and 1040 atm, 
respectively. A low oxygen chemical potential can also be obtained by reducing agents, for example, 
reduction with carbon monoxide yields an equilibrium chemical potential of μO = μCO2 - μCO = –2.6 
eV/atom at STP, equivalent to an O2(g) partial pressure of 10-104 atm (assuming the reaction is not 
kinetically-limited).  Similar analyses can be done to obtain the effective chemical potential of 
chemical species in various other states, including solvated aqueous ions, or atoms in other solids.  

 



The xTa-μO-μN chemical potential diagram can also yield other insights that cannot be readily 
obtained from a compositional phase diagram. Figure 3d show that to reduce Ta2O5 to metallic Ta, 
μO needs to be below -4.6 eV, which are also conditions generally needed to synthesize pure tantalum 
nitrides. The phase boundary between the various tantalum nitrides TaNx and the Ta2O5 also indicates 
conditions for the stability of the pure tantalum nitrides in air. 

 

Stability of the Li-ion cathode material LiMn2O4 

LiMn2O4 is a candidate cathode material for rechargeable Li-ion batteries, in particular because 
Mn is not a critical element like cobalt-based battery electrodes.40 ,41  LiMn2O4 has a spinel crystal 
structure with diffusion channels that enable fast diffusion of Li+, even at relatively low concentration 
of Li+ .42,43 However, during the synthesis and electrochemical operation of LiMn2O4, many competing 
ternary LixMnyOz phases can form, such as Li4Mn5O12 and LiMnO2, as well as the solid-solution phases 
that can form between these ternary phases and MnO2, Mn3O4. (Figure 4a,b). The complexity of the 
available phases and structural transformations, especially between layered rocksalt structures and the 
spinel structures, can result in undesired phases in the form of impurities during synthesis, as well as 
irreversible decomposition pathways during electrochemical cycling and operation.  

Under various synthesis or operation contexts, all 3 elements Li, Mn and O can be volatile in 
LiMn2O4. The oxygen chemical potential can be controlled by an oxidizing or reducing environment 
during synthesis, and likewise thermal decomposition by metal reduction and oxygen evolution also 
depends on μO

44 During battery charging and discharging, Li is cycled in and out of LiMn2O4 through 
the electrolyte,20 where μLi = μLi,metal

o
 – e𝜑,18 where 𝜑 is the electric potential, and μLi,metal

o = 0 because 
μ is referenced to the chemical potential to elemental Li. Because the electrolyte is adjacent to LiMn2O4, 
the electrolyte can exchange Li, Mn or O with LiMn2O4. In particular, one major issue hampering the 
widespread adoption of manganese-based cathodes is dissolution of the redox-active Mn ion in organic 
electrolytes, where Mn diffuses through the electrolyte to form an undesirable solid-electrolyte 
interface (SEI) at the anode, which erodes overall battery capacity.45  

Although all three elements can be exchanged through an open boundary condition, it can be 
confusing to analyze LiMn2O4 stability on a full μLi-μMn-μO chemical potential diagram, since it 
becomes difficult to isolate the work of the reservoir on the individual volatile species. It may be better 
to close the system to two components, and examine the role of the reservoir chemical potential on just 
the third component. From Figure 4a through Figure 4d, we illustrate how to interpret an xLi-xMn-μO 

diagram from the Li-Mn-O ternary convex hull. Each slice in Figure 4a, b is an isopleth between 
oxygen and a fixed LixMn1-x ratio. The Li:Mn isopleth with a 1:2 ratio (purple), corresponding to 
LiMn2O4, intersects both pure phases as well as 2-phase tie lines. By viewing the convex hull along 
this isoplethal slice in Figure 4c, we can use the intercept of tangent lines against the μO axis to 
illustrate the different phase transition and phase-coexistence regions. By repeating this process for all 
LixMn1-x ratios, we can construct the full xLi-xMn-μO diagram in Figure 4d. The right-side axis of Figure 
4c shares the same color correspondence with the stability and coexistence regions in Figure 4d. 



 

Figure 4. a) Ternary xLi-xMn-xO convex hull. Inset shows DFT calculated-phases with ordered compositions, where 
Li9Mn20O40 phase represents delithiated LixMnO2, the lithium-rich modification of LiMn2O4 is represented by Li11Mn13O32, 
and the Li9Mn14O32 phase represents a tie-line between MnO2-Li4Mn5O12. Isopleths between O2 to LixMn1-x are shown, 
with a purple highlight for a ratio of Li:Mn = 1:2. b) Ternary convex hull with energy axis, with isoplethal slices shown. 
c) Intercept rule construction of stability regions and phase coexistence along the μO axis. d) mixed xLi-xMn-μO phase 
diagram, e) mixed xMn-xO-μLi phase diagram, f) mixed xLi-xO-μMn phase diagram. For the phase coexistence in x1-x2-μ3 
diagram, single phases are vertical lines, 2-phase coexistence regions are rectangles that connects two single phases, 
and 3-phase coexistence regions are horizontal red lines that connects the ends of three single phases. 



From the xLi-xMn-μO in Figure 4d, we can examine reactions involving LiMn2O4 with O2 gas, 
for example during synthesis or thermal decomposition. The μO for O2 gas can be referenced to different 
temperatures and partial pressures using the earlier diagram from Figure 3c. The μO stability window 
for LiMn2O4 is between [-1.5, -0.6] eV/atom; corresponding to temperature range around 600 – 900K, 
for PO2 ranges from [0.21, 1] atm, corresponding to ambient atmosphere. This stability condition is in 
line with the reported solid-state synthesis temperatures of LiMn2O4, which range from 700 – 
1000K46,47, as well as the thermal decomposition temperature of LiMn2O4 at 1100K.48 Additionally, 
compared to layered structure electrodes, such as LiMnO2, higher μO is beneficial for the stability of 
LiMn2O4, which matches the experimental fact that the Mn3+/Mn4+ redox in LiMn2O4 requires a larger 
amount of oxygen redox to achieve high capacity, compared to Mn2+/Mn4+ in LiMnO2

49. 

To analyze lithiation process of LiMn2O4 for a given Mn:O ratio, we can utilize the xO-xMn-μLi 
axis. As shown in Figure 4e, when we raise the voltage (thereby decreasing μLi) to charge LiMn2O4, it 
undergoes oxidation and transforms into MnO2. We note that on the equilibrium phase diagram, the 
MnO2 phase corresponds to the ground-state β (pyrolusite) phase, whereas for the real LiMn2O4 system, 
topotactic delithiation results in metastable λ-MnO2, which maintains the spinel framework. On the 
other hand, reducing the electrostatic potential (increasing μLi) can result in phase separation to 
Li2MnO3 + Mn3O4. The μLi window between -3.7 and -2.8 eV/atom corresponds to the phase transitions 
between MnO2 and LiMn2O4, as well as the transition from LiMn2O4 to LiMnO2.  

 For electrolyte stability, Mn dissolution from LiMn2O4 will occur if the μMn is lower in the 
electrolyte than the lower-limit μMn stability window in LiMn2O4. For example, dissolution of Mn 
occurs if the applied μMn in the electrolyte is below -4.1 eV, which as shown in Figure 4f, can induce 
multiple phase transformations to Li4Mn5O12, Li9Mn20O40, Li9Mn14O32. To design an organic 
electrolyte that is resistant to Mn-dissolution, one needs to identify an organic electrolyte where the 
Mn-ion solvation energy overlaps the stability window of LiMn2O4 in the μMn axis. To perform this 
analysis, one can construct the corresponding chemical potential diagram of the electrolyte from a 
convex hull using the same tangent line principles discussed here.  



Oxidation of compositionally-complex alloys 

Compositionally-complex alloys (CCAs) have near equimolar concentrations of multiple metal 
species, and in special cases form single-phase solid-solution high-entropy alloys (HEAs) and medium-
entropy alloys (MEAs), which may have valuable properties for high-temperature materials for 
spacecraft and satellites,50 corrosion-resistance for seawater treatment equipment,51,52 superior electron 
transport for electronic device, etc.53,54,55 However, discontinuous oxide granules or oxide layers can 
form when these alloys are exposed to O2 atmospheres and high temperature. Although experimental 
measurements of the surface oxide phases formed in HEAs and MEAs are becoming more 
numerous,56,57 thermodynamic modeling remains sparse. 58 This may be due to the complexity of the 
possible binary, ternary, and quaternary oxides that compete to form during HEA/MEA oxidation.  

To analyze the oxidation behaviors of multi-component alloys, we take CrCoNiOx as a 
representative example. The chemical potential of oxygen in an HEAs depends on many factors, such 
as penetration depth of oxygen as it diffuses in, as well as the μO applied by the temperature and partial 
pressure of O2 gas at the surface. The appropriate boundary conditions for this system are closed in the 
metal species, but with open exchange of volatile oxygen species. The relevant phase diagram is 
therefore closed with metal composition axes xCr-xCo-xNi, and open with a μO axis. For the sake of 
visualization, we examine a here 3-metal MEA, however, the underlying geometric arguments and 
analyses are readily extendable to higher-component alloys.   

Typically, phase diagrams for 4-component systems are viewed in barycentric coordinates 
using a 3D Gibbs tetrahedron to represent the quaternary convex hull, with 4 composition variables 
but no energy axis (Figure 5a). The energy axis can be recovered by constructing pseudo-ternary 
convex hulls by taking compounds as terminal points of the convex hull, and plotting the formation 
energy of phases relative to the terminal compounds, as illustrated in Figure 5b.  

Each phase in the quaternary convex hull is a vertex, which we assign a color corresponding 
to the metal composition. We assign red, green, and blue to Co, Cr, and Ni, respectively. The color of 
binary through quaternary phases are then determined by their barycentric Co:Cr:Ni molar ratio. We 
use color saturation to correspond to the lowest critical oxygen chemical potential in which the phase 
is thermodynamically preferred to form, where white indicates pure O2 gas.   

Figure 5c, 5d shows two xCr-xCo-xNi-μO phase diagrams at high and low μO ranges—split up to 
more clearly visualize the phase coexistence regions. By comparing the critical oxygen chemical 
potentials, we can extract the tendency of various metal constituents to oxidize; for example, Cr will 
oxidize at μO = -4 eV to form a protective Cr2O3 scale, which is before Ni and Co which both oxidize 
around μO = -2.5 eV. Experimentally, the oxidation of equimolar CrCoNi is shown to form only a Cr2O3 
layer53,54,56, as anticipated by these diagrams. Additionally, a mixed spinel (Co,Ni)Cr2O4 is 
experimentally observed53,54,56,59, which in our phase diagram on Figure 5c may correspond to a solid-
solution that would form along the tie line between CoNi2O4 and CrNiO4.  



 

Figure 5. a) Quaternary xCo-xCr-xNi-xO convex hull. Each single phase is assigned a color based on metal composition 
of Cr:Co:Ni ratio, and a transparency based on the lowest critical μO for a given phase. Two triangular ternary isopleths 
are shown in gray colorscale, connecting CoO2-CrNiO4-CrO2, and Cr2O3-NiO-CoO. b) Psuedo-ternary convex hulls 
with a recovered formation energy axis, with energies referenced to the terminal compound phases. c). Mixed xCr-xCo-
xNi-μO phase diagram, where c) μO in [-2.0, 0.0] eV/atom, and d) μO in [-4.5, -2.0] eV/atom. 

 

In Figure 5c, 5d, each single phase is a vertical line, a 2-phase coexistence region is vertical 
rectangle plane bounded by two single phase lines, a 3-phase coexistence region is a triangular prism 
formed by three single phase lines, and finally a 4-phase coexistence region is a horizontal triangle 
connected by two 3-phase coexistence triangular prisms. Although 2-phase coexistence regions and 4-
phase coexistence regions are both 2-D manifolds, they have different physical interpretations because 
there is no degree of freedom for changing μO in 4-phase coexistence, leading to a horizontal 2D region, 
whereas we can change μO in 2-phase coexistence, leading to a vertical 2D region. 



Dimensionality of Coexistence Regions in Mixed Diagrams 

As discussed in Part I of this 3-part series, the essential geometric object corresponding to 
phase coexistence is the simplicial polytope, which is an N-dimensional analogue of a triangle. The 
counting relations between the vertices, edges, and facets of a simplicial polytope are given by the 
Dehn-Somerville relations, which takes a similar form to Pascal’s triangle. For example, a 4-phase 
coexistence tetrahedron is a 3-dimensional simplex, which has 4C1 = 4 vertices (single phases),  
4C2 = 6 edges (2-phase coexistence), 4C3 = 4 triangles (3-phase) and 4C4 = 1 tetrahedron (4-phase). 
Even when one performs a Legendre transformation, the fundamental underlying geometric structure 
of the U(S,X) simplex, as well as its coexistence regions, are preserved.  

 

 

Figure 6. A 3D simplicial polytope (a tetrahedron) with extensive natural variables is smushed via a 
Legendre transformation to a fixed intensive variable of μ4

*. All simplicial facets from the tetrahedron, and 
thereby its phase coexistence information, remains preserved following the Legendre transformation.  

On a four-phase coexistence tetrahedron, all vertices share the same chemical potentials μ1 
through μ4. On composition axes, the coordinates for each vertex can be written as (x1, x2, x3, x4), where 
1, 2, 3, 4 correspond to different elements, and x4 = 1 – x1 – x2 – x3 by the affine constraint. Upon a 
Legendre transformation from x4 to μ4, the x4 coordinates all change to the same μ4, which effectively 
smushes all the vertices, edges and facets from the tetrahedron onto a single μ4

* value, as illustrated in 
Figure 6. Each xi coordinate then changes to xi′ by the new affine constraint, x3′ = 1 – x1′ – x2′.  

Importantly, all the 2-phase edges, 3-phase triangles, and the 4-phase tetrahedron are preserved 
after the Legendre transformation. The Legendre transformation does not generate any new phase 
coexistence information, nor does it lose any information. It simply provides a different perspective, 
but for the same equilibrium of heterogeneous substances. On mixed phase diagrams the phase 
coexistence regions no longer appear like simplicial polytopes, but are in fact down-projections of the 
high-dimensional simplices from the U(S,Xi) space where they originated. In the SI5, we provide tables 
that explicitly describe the dimensionality of coexistence regions on mixed phase diagrams. These the 
geometric considerations of phase coexistence are the same with any other intensive variable as well, 
for example on a traditional ternary composition phase diagram (x1, x2, x3, T), or replacing μ4 with 
pressure, magnetic field, area-to-volume ratio, etc.   



Duality in Thermodynamics 

Duality gives two different points of view of looking at the same object. As summarized in the 
table below, there is a duality in thermodynamics between open and closed systems; which corresponds 
to a duality between the Internal Energy potential and its Legendre transformation; which corresponds 
to a duality in computation between a convex hull and its half-space intersection. Our implementation 
of these duality concepts for chemical work are geometrically identical to the duality relationships 
between the Maxwell U(S,V) surface and the G(T,P) free energy surfaces which we are commonly 
familiar with today. Our primary contribution here was to extend these concepts from the G(T,P,x) 
space to the grand potential ϕ(T,P,μ) space. The dualities in macroscopic boundary conditions for 
classical thermodynamics can further be linked to dualities at the atomistic scale, in the statistical 
mechanics description between an NVT canonical ensemble and the μVT grand canonical ensemble.   

Duality in Thermodynamics 

Thermodynamic  
System 

Closed equilibrium mixture  
of heterogeneous substances 

Subsystem of single material  
open to an external reservoir 

Thermodynamic  
Potential 

Internal Energy U(Xi) with  
extensive natural variables 

Legendre transformation to Φ(Yi) 
with natural intensive variable 

Computational 
Thermodynamics Convex hull of vertices Half-space intersection of hyperplanes 

 

Our motivation for this work was to address the underutilization of chemical potential diagrams 
in the existing materials thermodynamics literature. Although computational tools for chemical 
potential diagrams have existed for over two decades, we believe that the bottleneck to their widespread 
proliferation is not their computation, but rather, is the physical understanding and interpretation of 
these diagrams. In particular, chemical potential diagrams offer a unique connection to the kinetics of 
diffusion, nucleation and growth, which has broad and obvious value in materials science and 
engineering. Therefore, the essential intellectual task in deploying chemical potential diagrams (or any 
phase diagram for that matter) is connecting a physical scenario to its boundary conditions and 
corresponding thermodynamic potential, and then from the available thermochemical data to the 
computation of a final phase diagram.  

In framing open boundary conditions to analyze the stability of a material-of-interest with 
respect to an open reservoir, the next question becomes, how can one control the relative stability of a 
target material, when there may be numerous forms of available work? In Part III of this series, we 
derive a generalized Clausius-Clapeyron relation to examine the gradients of phase boundaries on high-
dimensional phase diagrams, providing a pathway to control the relative stability of specific phases. 



Code Availability 

All code for analyzing and visualizing convex hull, high dimensional chemical potential diagrams, and 
mixed composition-chemical potential diagrams can be found on Github at the following link:  

https://github.com/dd-debug/chemical_potential_diagram_and_convex_hull_and_pourbaix_diagram 

The link includes a readme, tutorial example files, installation guide, Python package requirements, and 
instructions for use.  
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