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Abstract: Are quasicrystals stable or metastable? Density functional theory (DFT) is often used to 
evaluate thermodynamic stability, but quasicrystals are long-range aperiodic and their energies cannot 
be calculated using conventional ab initio methods. Here, we perform first-principles calculations on 
quasicrystal nanoparticles of increasing sizes, from which we can directly extrapolate their bulk and 
surface energies. Using this technique, we determine with high confidence that the icosahedral 
quasicrystals ScZn7.33 and YbCd5.7 are ground-state phases—revealing that translational symmetry is 
not a necessary condition for the T = 0 K stability of inorganic solids. Although we find the ScZn7.33 
quasicrystal to be thermodynamically stable, we show on a mixed thermodynamic and kinetic phase 
diagram that its solidification from the melt is nucleation-limited, which illustrates why even stable 
materials may be kinetically challenging to grow. Our techniques here broadly open the door to first-
principles investigations into the structure-bonding-stability relationships of aperiodic materials. 



 

Quasicrystals are a mesmerizing and provocative class of materials. With their long-range 
aperiodicity and forbidden rotational symmetries, the discovery of quasicrystals1 forced solid-state 
chemists to reconsider long-standing assumptions regarding crystallinity, bonding, and materials 
formation.2,3 Although over 100 intermetallic quasicrystals have been experimentally characterized,4,5 
the underlying mechanisms driving quasicrystal formation are still not fully understood. One 
longstanding and fundamental question is: Are quasicrystals enthalpy stabilized or entropy stabilized?3 
In other words, are quasicrystals T = 0 K thermodynamic ground states; or are they enthalpically 
metastable6 but become entropy-stabilized at high temperatures by phasons, phonons, aperiodic 
substructural tilings, or other forms of configurational disorder?7–10 

Prior assertions on the thermodynamic stability or metastability of quasicrystals have relied 
primarily on indirect arguments. For example, the binary YbCd5.7 and ScZn7.33 quasicrystals are argued 
to be stable due to their persistence under thermal annealing at elevated temperatures11,12—however 
this thermal stability could be kinetic rather than thermodynamic stability. Various quasicrystals are 
also claimed to be metastable, due to their structural disorder from collective atomic fluctuations 
known as ‘phasons’,13,14 Hume-Rothery derived arguments about their electron/atom 
concentrations,15,16 or their observation as transient intermediates during solidification.17–19 However, 
these arguments are also indirect measures of thermodynamic stability. 

Density functional theory (DFT) calculations are routinely used to evaluate the thermodynamic 
stability of inorganic solids from first-principles. However, DFT calculations rely on periodic boundary 
conditions, meaning that conventional DFT calculations cannot be used to calculate quasicrystals. DFT 
has been applied to quasicrystal approximants,20,21 which are crystalline phases with the same 
substructural building-blocks of quasicrystals. However, these approximants do not exhibit the 
essential quasicrystalline characteristic of aperiodicity. Molecular dynamics simulations with isotropic  
multi-well interatomic potentials have been able to produce quasicrystalline phases in silico,22–26 which 
is remarkable given the simplicity of these pair potentials. However, it is unclear if these isotropic 
interatomic potentials capture the true quantum-chemical bonding and steric interactions in real 
intermetallic quasicrystals. 

Here, we present a first-principles method to directly evaluate the bulk and surface energies of 
quasicrystals from density functional theory. Our technique leverages the fact that the volumes of 
nanoparticles scale with the number of atoms, N, but their surface areas scale with N2/3. The total energy 
of a nanoparticle can be written as a sum of the bulk energy and the surface energy: ENP = Ebulk + γA, 
where γ is the surface energy and A is the surface area. Normalizing by the number of atoms, N, gives: 
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where ρ is the atomic density, and η is the dimensionless shape factor. By calculating the energies of 
quasicrystal nanoparticles of increasing sizes, we can fit a linear regression to this relation and directly 
extract both the bulk and surface energies of a quasicrystal. This size-dependent energy scaling 
relationship has previously been used to determine surface energies, either from DFT surface slab 
calculations27–29 or melt-drop solution calorimetry experiments.30,31 Here, we repurposed this relation 
to extract the bulk energy of an aperiodic material from first-principles calculations. 

 

 



 

Bulk stability of icosahedral quasicrystals 

Using this technique, we investigated the thermodynamic stability of the Tsai-type binary 
icosahedral quasicrystals (iQC) ScZn7.33 and YbCd5.7, whose atomistic structures were previously 
resolved with high-resolution synchrotron single-crystal X-ray diffraction.32,33 The experimentally 
characterized aperiodic structures of ScZn7.33 and YbCd5.7 contain 37,483 and 56,155 atoms, within 
cubes of (8 nm)3 and (10 nm)3, respectively. 

Figure 1a illustrates how we construct quasicrystal nanospheres for our DFT calculations. First, 
we select five random initial sites, each centered on a primary tetrahedral Tsai cluster. We then scoop 
out different-sized nanospheres around this center site, with nanoparticles ranging from 24 atoms (0.4 
nm radius) to 740 atoms (1.41 nm). There are overlapping and partially occupied atomic sites in the 
XRD-refined structure files. To prepare ordered structures for DFT calculations, we deploy clustering 
and site-ordering algorithms (details discussed in Supplementary Information S1), which preserve the 
interatomic distances in Tsai-type icosahedral building-block motifs, while enforcing the overall 
quasicrystal stoichiometry. 

 

 
 
Figure 1. Bulk and surface energies of icosahedral quasicrystals from scooped nanospheres. a, 
Schematic illustration of scooping iQC-ScZn7.33 nanospheres from the refined experimental atomistic structure. Yellow 
atoms represent random scooping sites. The right figure shows the series of nanoclusters with different sizes from 
scooping. b, The energies of iQC-ScZn7.33 nanospheres show a linear relationship to N-1/3. A linear regression can 
therefore be used to determine the bulk formation energy (Ebulk / N) from the intercept, and surface energy (γ) from the 
slope. c, Calculated bulk formation and surface energy of iQC-YbCd5.7. 

 

 

 

 



 

To accurately extrapolate these nanoparticle energies to the bulk infinite limit, the biggest 
nanospheres should be as large as possible. However, the computational cost of plane-wave DFT 
calculations scale as O(N3), meaning nanoparticles with hundreds of atoms have considerable 
computational cost.  Here we use the recently developed package DFT-FE,34–36 which solves the Kohn-
Sham equations using the discretized high-order finite-element method37 in conjunction with 
Chebyshev filtered subspace iteration procedure38 and leverage GPU acceleration.39 This enables O(N2) 
scaling up to 30,000 electron systems (~1000 atoms of iQC-ScZn7.33).35 Convergence tests and 
benchmarking of DFT-FE formation energies are detailed in Supplementary Information S2. 

DFT-FE further exhibits good parallel scaling, which enables structural relaxations on 
quasicrystal nanoparticles. We relax all atomic coordinates of our scooped nanospheres and provide 
the final relaxed structural coordinate files in the Supplementary Files. The ionic relaxations of the 
largest quasicrystal nanoparticles here required supercomputing resources at the frontier of exascale 
computing.40,41 However, static calculations of our DFT-relaxed structures are reproducible on typical 
supercomputing resources. 

Figure 1b and 1c show the DFT-calculated nanoparticle energies for iQC-ScZn7.33 and iQC-
YbCd5.7 nanoclusters. We then fit a linear trend to N-1/3, using the shape factor of a sphere η = (36π)1/3. 
For iQC-ScZn7.33, we calculate the bulk formation energy to be Ebulk / N = –222 ± 10 meV/atom and 
the surface energy to be γ = 76 ± 2 meV/Å2. For iQC-YbCd5.7, we calculate Ebulk / N = –201 ± 26 
meV/atom and γ = 40 ± 3 meV/Å2. The error bars arise from the standard deviation of the nanoparticle 
energies originating from the 5 different scooping sites, which samples different local aperiodic tiling 
environments and surface terminations for the different nanoparticles. In Supplementary Information 
S3, we show that our nano-scooping technique reproduces the energetics of crystalline Sc and ScZn6, 
yielding bulk and surface energies that match traditional DFT calculations with periodic boundary 
conditions within 9 meV/atom and 3 meV/Å2 for Sc, and 5 meV/atom and 2 meV/Å2 for ScZn6, 
respectively. This shows that the nano-scooping method is a reliable and accurate technique to evaluate 
quasicrystal bulk and surface energies. 

 

 
Figure 2. DFT-calculated convex hull stability of icosahedral quasicrystals for a, iQC-ScZn7.33 and b, 
iQC-YbCd5.7. The blue hulls are the plot of the most stable crystalline binary alloys connecting their calculated bulk 
formation energy from DFT. 

  



 

Using these bulk formation energies, we next evaluate the T = 0 K convex hull stability of the 
icosahedral quasicrystal phases (Figure 2). For iQC-ScZn7.33, the calculated bulk formation energy is 
below the existing Sc-Zn convex hull by ΔEhull = –23 ± 10 meV/atom. In intermetallic systems, DFT 
predictions of ground-state structures are 96% accurate.42 Therefore, based on our calculations, we 
assert with high confidence that the iQC-ScZn7.33 quasicrystal is a thermodynamic ground-state phase. 
iQC-ScZn7.33 was conjectured to be thermodynamically stable in the original experimental work, based 
on its thermal persistence under annealing at 390 ℃ for 22 h.12 Our electronic structure calculations 
here provide first-principles validation of this original claim. 

iQC-YbCd5.7 was the first discovered binary icosahedral quasicrystal,11 and was also argued to 
be stable due to it being a congruently melting phase—although this is an indirect argument as it could 
possibly be a eutectoid phase with low-temperature phase separation. We calculate the formation 
energy iQC-YbCd5.7 to be 7 meV/atom below the existing convex hull. Although the error bar is ± 26 
meV/atom, we solve that the entropy of iQC-YbCd5.7 is lower than that of its competing Yb14Cd51 + 
YbCd6 neighbors (Supplementary Information S4). If iQC-YbCd5.7 were a metastable phase at low 
temperatures, we calculate that it would phase separate for temperatures below 561 K. Because there 
is no experimentally-reported phase separation upon cooling iQC-YbCd5.7, this suggests that YbCd5.7 
is also most probably a T = 0 K ground state phase. 

Our finding that the ScZn7.33 and YbCd5.7 quasicrystals are ground-state phases leads to a 
surprising conclusion that long-range translational symmetry is not necessary for the T = 0 K stability 
of inorganic solids. This result provokes deep and fundamental questions on the relationships between 
atomic structure and quantum chemical bonding in inorganic solids. Which short-range chemical bonds 
stabilize the triacontahedron building blocks, and why do long-range interactions between these 
triacontahedrons favor long-range aperiodicity? On the other hand—if aperiodic solids can be ground 
state phases, then what is so special about translational symmetry that enforces nearly all stable 
materials to be crystalline? Quasicrystals offer a gateway system through which we can interrogate 
these fundamental questions of solid-state chemistry. 

 

Competitive nucleation between intermetallics 

When the Sc-Zn phase diagram was first thermodynamically assessed in 1997, five 
intermetallic phases were identified.43 However, the icosahedral ScZn7.33 quasicrystal was not 
discovered until 2010.12 If iQC-ScZn7.33 is thermodynamically stable, why did it take so long to 
discover? One mechanism may be that the other Sc-Zn intermetallics have lower surface energies than 
the quasicrystal, which could stabilize these competing intermetallics at the nanoscale.30,31 All 
materials nucleate and grow through the nanoscale, meaning these competing intermetallics would 
dominate the nucleation kinetics44 of solidification from the undercooled liquid—giving them a head 
start on subsequent crystal growth processes. Because we also calculated the surface energies of the 
iQC-ScZn7.33 quasicrystal, we next evaluate if the other intermetallics in the Sc-Zn system can be nano-
stabilized relative to the quasicrystal, and thereby be more kinetically favored to nucleate. 

  



 

First, we use DFT to calculate surface energies for the other crystalline phases in the Sc-Zn 
system, considering high-index surface slabs with {hkl} up to 3 (Supplementary Information S5).45 
Using these surface energies, in Figure 3a we extend the Sc-Zn convex hull along a third axis of Area-
to-Volume ratio, or effectively, 1/R.46 The slope of each intermetallic phase along the 1/R axis is γη/ρ, 
corresponding to its surface energy, shape factor from the Wulff construction, and atomic density, 
respectively. Figure 3b shows an E/N vs. 1/R slice of the size-dependent convex hull at the ScZn7.33 
composition. At this composition, iQC-ScZn7.33 is the bulk equilibrium phase; however, the 
stoichiometric combination of ScZn6 + ScZn12 has a lower γη/ρ value than iQC-ScZn7.33, such that 
ScZn6 + ScZn12 become nano-stabilized for R < 0.63 nm. The size-dependent phase diagram in Figure 
3c indicates a strong likelihood of structural competition between quasicrystalline iQC-ScZn7.33 and 
crystalline ScZn6 and ScZn12 during nucleation. 

 

 

Figure 3. Size-dependent stability of 
iQC-ScZn7.33. a, 3D convex hull of Sc-Zn 
system that includes a 1/R axis to 
represent surface area to volume ratio. 
The violet plane marks a composition slice 
at the ScZn7.33 composition. b, 2D Slice 
energy diagram of the 3D convex hull in 
the Energy versus 1/R axis at the ScZn7.33 

composition (violet). The bold straight 
purple and blue lines represents the 
phase(s) with the lowest energy for a given 
1/R. c, Projection of the 3D convex hull 
onto the size and composition axes (gray), 
producing a size-dependent phase 
diagram. Lines indicate pure compounds, 
and colored regions represent 2-phase 
coexistence. 



 

During solidification, any intermetallic phase can nucleate from an undercooled melt, even if 
it has a different composition than the parent liquid phase. We next calculate the relative nucleation 
barriers for each solid, ΔGc = 4/27 [(γη)3 / (ΔGsolid-liquid)2], where the driving force for solidification, 
ΔGsolid-liquid, depends on the composition of the parent liquid, as well as the undercooling temperature.47 
To reference a Sc-Zn liquid free-energy to our DFT-calculated solid energies, we reassess the Sc-Zn 
phase diagram using the Extensible Self-optimizing Phase Equilibria Infrastructure (ESPEI) package.48 
We use our DFT-calculated T = 0 K convex hull for the bulk formation enthalpies of the solids, and 
we co-optimize the liquid free energy and solid entropies simultaneously, constrained by the 
experimentally-measured liquidus curve43 and the congruent melting or peritectic decomposition 
condition of each intermetallic (details in Supplementary Information S6).49 We then obtain μSc,liquid 
and μZn,liquid from the intercept rule on the tangent line of Gliquid at each liquid composition and 
undercooling temperature—from which we evaluate ΔGliquid–solid = GSolid – μSc,liquid – μZn,liquid to each 
competing solid phase (Figure 4a). 

Figure 4b plots the homogeneous nucleation barrier of each solid versus the undercooling 
temperature, starting from a liquid with the same composition of the quasicrystal (xZn= 0.88). At this 
liquid composition, the quasicrystalline approximant phase ScZn6 has the lowest nucleation barrier for 
all undercooling temperatures. This is consistent with the experimental observations of Canfield et 
al.,12 where ScZn6 was found to be the primary phase in most solidification experiments. Only 
serendipitously did the quasicrystal present itself as small facetted icosahedral residues on the surfaces 
of ScZn6 crystals, or on the walls of the crucible.12 

To isolate single-grains of iQC-ScZn7.33, Canfield et al. reported that they had to start from a 
very Zn-rich liquid with compositions ranging from Sc4Zn96 to Sc2Zn98.12 In Figure 4c, we show the 
nucleation barrier of each phase when undercooled from a liquid of xZn = 0.97 composition, which 
reveals that iQC-ScZn7.33 becomes the lowest nucleation barrier phase below T < 603 K. This is 
because a higher driving force is needed to overcome the higher surface energy of iQC-ScZn7.33 relative 
to ScZn6, meaning a higher μZn,liquid is needed. In Figure 4d, we repeat this nucleation analysis at all 
Sc-Zn liquid compositions—overlaying a ‘kinetic phase diagram’ on top of the thermodynamic Sc-Zn 
phase diagram, where the color shading corresponds to the phase with the lowest nucleation barrier for 
a given liquid composition and undercooling. 

This mixed thermodynamic and kinetic phase diagram (Figure 4d) reveals key insights into the 
solidification dynamics of the Sc-Zn system. First, ScZn6 is nucleation-preferenced across a broad 
region of the kinetic phase diagram, due to its comparatively low surface energy and high driving force. 
Once ScZn6 nucleates, it can dominate the early stages of crystal growth. iQC-ScZn7.33 is the ground-
state phase, meaning it still has a propensity to nucleate at low temperatures, forming the small grains 
on the ScZn6 crystals as reported experimentally. However, Figure 4d shows that iQC-ScZn7.33 
becomes nucleation-preferenced at high xZn liquid compositions and small undercoolings. After it 
nucleates, iQC-ScZn7.33 can be grown in the two-phase Liquid + iQC-ScZn7.33 coexistence region—
consistent with the experimentally-reported procedure to isolate phase-pure quasicrystals.12 Figure 4 
highlights the subtle interplay between thermodynamics and kinetics during materials synthesis, and 
illustrates why not all thermodynamically-stable phases are necessarily easy to synthesize. 

We reproduce these size-dependent convex hulls and nucleation analyses for the Yb-Cd system 
in Supplementary Information S7. Because iQC-YbCd5.7 is a congruently melting phase, it is the only 
phase that nucleates from the liquid below its congruent melting point.50 This means it is fairly 
straightforward to obtain phase-pure iQC-YbCd5.7, which plausibly explains why it was the first 
discovered binary icosahedral quasicrystal.11 



 

 
Figure 4. Mixed thermodynamic and kinetic phase diagram of competitive nucleation in the Sc-Zn 
system. a, Evaluation of the ΔGliquid–solid from an undercooled liquid by the common tangent construction. The tangent 
line (blue) of Gliquid (red) is drawn at iQC-ScZn7.33 composition (XZn = 0.88) and T = 500 K. The dashed black lines above 
the points correspond to ΔGliquid–solid for each solid. b, Calculated free energy barrier of the critical nucleus (ΔGC) at 
quasicrystal composition (XZn = 0.88) and c, XZn = 0.97 with different temperature. d, Kinetic phase diagram of 
nucleation in Sc-Zn system. The black lines and compositions represent the equilibrium phase diagram calculated from 
ESPEI by referring DFT and experimental phase diagrams12,43 and colored regions below the liquid indicate the phase 
having the lowest nucleation barrier at given temperature and composition. The vertical aquamarine and gray dashed 
line indicate the composition at XZn = 0.88 and 0.97, respectively. The left figure zooms in on the regions marked with 
dashed red lines of the right figure.  



 

Outlook 

Here, we presented a nanoparticle size-scaling technique to directly evaluate the bulk and 
surface energies of quasicrystals, overcoming a fundamental limitation of ab initio methods to compute 
the thermochemical properties of aperiodic matter. By opening the door to DFT calculations on 
quasicrystals, we can now unleash the full suite of first-principles methods to explore the fascinating 
structure-chemistry-bonding relationships of quasicrystalline materials. 

For example, we can use finite-difference51 or ab initio molecular dynamics methods52 to 
elucidate the non-Debye nature of aperiodic phonons in quasicrystals. We can fit cluster expansions to 
construct partition functions for phason disorder,53 which could reveal why some quasicrystals exhibit 
heat capacities up to 4.7 kB/atom54—greatly exceeding the law of Dulong-Petit. Crystal Orbital 
Hamiltonian Population (COHP)55 and Density Functional Theory-Chemical Pressure (DFT-CP) 
analysis21,56,57 offers a pathway to understand which quantum-chemical bonds stabilize long-range 
aperiodic tilings. These DFT calculations can now be performed on real intermetallic quasicrystals 
using our technique, which will reveal how chemistry influences the various thermochemical 
properties of different quasicrystals. This computational method also encourages more experimental 
characterization of atomistic quasicrystalline structures, for which recently developed electron 
tomography methods may be promising.58 

Our nanoparticle size-scaling approach can also be applied beyond quasicrystals—for example 
to partition the energetics of intermetallics with giant unit cells containing thousands of atoms  
(β-Mg2Al3, NaCd2, etc),59 or to other forms of poorly-crystalline matter including glasses, amorphous 
oxides, organic soft matter, and protein crystals.60–62 Training machine-learned interatomic potentials63 
on first-principles calculations of these finite-sized nanoparticles may be a scalable pathway to DFT-
derived insights into hierarchically aperiodic systems.  



 

Methods 

Structure refinement 

Atomistic structures of Tsai-type ScZn7.33 and YbCd5.7 icosahedral quasicrystals (iQCs) were 
previously determined through high-resolution single-crystal X-ray diffraction experiments by 
Yamada et al.33 and Hiroyuki et al.,32 respectively. The site distribution of atoms was analyzed through 
the radial pair-correlation function of interatomic distance (Supplementary Information S1). 
Overlapping sites were eliminated by clustering the nearest atoms and averaging the distance and 
reanalyzed through partial and total radial pair-correlation function. Partially occupied sites of ScZn7.33 
were ordered by assigning atomic sites from a Gaussian distribution following experimentally 
measured stoichiometries.32 The refined bulk structure files are in the Supplementary Files. 

Density functional theory 

All electronic structure calculations for the intermetallics were performed using Density Functional 
Theory-Finite Element (DFT-FE) method34,35 and validated against the Quantum Espresso (QE) 
package,64,65 with the General Gradient Approximation (GGA), Perdew-Burke-Ernzerhof (PBE)66 
exchange functional, and Optimized Norm-Conserving Vanderbilt (ONCV)67,68 pseudopotentials 
(Supplementary Information S2). The optimal k-points for all periodic crystalline alloys were 
generated from automatic density in the Pymatgen package.69 The discretization for QE and DFT-FE 
are chosen such that the discretization errors in QE and DFT-FE are both below 10-6 Ha/atom range. 
The chemical accuracy, ionic force, and cell stress convergence threshold for geometry relaxation of 
crystalline alloys were set to 10-5 Ha/atom, 10-4 Ha/Bohr, and 10-6 Ha/Bohr3, respectively. The Fermi-
Dirac smearing temperature was set to 500 K. For the finite-size calculations of scooped nanospheres, 
gamma-point calculations were employed in DFT-FE. The ionic force threshold was set to less than 9 
× 10-4 Ha/Bohr for structure relaxation. 

Surface energy calculations of crystalline compounds 

Surface energies of the crystalline intermetallic compounds were calculated from slab structures, 
generated by cleaving bulk phases using the Pymatgen package.45 The maximum Miller index was set 
to 3 and minimal vacuum length normal to the surface was set to 15 Å. Optimal atomic length was 
selected from the surface energy convergence test by thickness for selected planes (Supplementary 
Information S5). The inclination of stable slab planes was searched from ‘WulffShape’ in the 
Pymatgen package70 for γ-plot construction. The weighted surface energy was calculated from the 
weighted mean of the surface energy by the area of the Wulff shape planes. 

Phase diagram assessment 

Gibbs free energies for the solid and liquid phases were thermodynamically assessed using the 
Extensible Self-optimized Phase Equilibria Infrastructure (ESPEI) package.48 The pure elemental solid 
and liquid free energy parameters were taken from the SGTE database.71 ESPEI generates model 
parameters incorporating the published experimental liquidus curve12,43,50 and our DFT formation 
energies of crystal structures including the quasicrystals. The non-ideal mixing energies were 
calculated from Redlich-Kister model72 based on the thermochemical data using Muggianu 
extrapolation.73 Interaction parameters and formation entropies of intermetallic compounds were 
simultaneously optimized via the Bayesian ensemble Markov Chain Monte Carlo (MCMC) method74 
employing triangular priors ranging from ± 0.8 θ where θ represents the initial parameter. The detailed 
optimization procedure and assessment are described in Supplementary Information S6. 
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S1. Structure refinement of Tsai-type iQC-ScZn7.33 and YbCd5.7 raw structure data 

The atomistic structure data of Tsai-type ScZn7.33 and YbCd5.7 icosahedral quasicrystals (iQCs) that 
were determined through high-resolution single-crystal X-ray diffraction experiments by Yamada et al.1 
and Hiroyuki et al.,2 respectively were used in this study. The Tsai-type iQC consists of three building units: 
the Tsai cluster (TC), were used in this study. The Tsai-type iQC consists of three building units: the Tsai 
cluster (TC), the obtuse rhombohedron (OR), and the acute rhombohedron (AR). The TC is a series of five 
consecutive polyhedra arranged like onion shells: tetrahedron, dodecahedron, icosahedron, 
icosidodecahedron, and rhombic triacontahedron. Each TC is aggregated by OR or AR linkers, which make 
up the entire atomic structure. The linked local structure resembles two approximant (derivative) crystals. 
The 1/1 approximant3,4 is a body-centered cubic structure in which TCs are linked by sharing a face along 
two-fold directions or OR along three-fold directions. The 2/1 approximant5,6 forms a staggered stacking of 
TCs by introducing diagonal AR linkage. 

The discrepancy between global symmetry operations and local symmetry breaking leads to 
slight deviations in atomic coordination from the ideal geometry.7 The innermost tetrahedron of the 
TC breaks icosahedral symmetry, distorting neighboring clusters.8 Additionally, chemical disorder 
affects overlapping and partially occupied sites.1 The iQC-ScZn7.33 experiences distortion in double 
Friauf polyhedron (DFP) sites due to partial substitutions of Sc by Zn. Tetrahedron sites can rapidly 
reorient their atomic configuration inside the clusters within a few picoseconds,9 leaving a cluster of 
partially-occupied overlapping atomic sites, which must be refined to avoid repulsion errors in DFT 
calculations. 

The atomic positions and local structure of iQC-ScZn7.33 and YbCd5.7 were analyzed using the 
indexed positions of iQC-ScZn7.33 determined by Yamada et al.1 (Figure S1), through the radial pair-
correlation function. The pair-correlation density profile of the raw structure shows strong peaks at 
interatomic distances less than 1 Å, indicating that the positions of atoms were almost overlapping each 
other (Figure S2). Analysis of the partial radial distribution by sites revealed that most overlapping atoms 
are in tetrahedron sites (Figure S3 ⓘ). All overlapping sites including tetrahedron sites were reduced by 
clustering the nearest atoms and averaging the distance (Figure S4a). The density profile after the reduction 
shows almost no peaks at distances less than 2 Å, while preserving the original geometry of the clusters 
(Figure S2 and S3). 

The iQC-ScZn7.33 has partially occupied of Sc and Zn on icosahedron (Figure S1 ⓙ) and prolate 

AR (DFP) sites locate around TCs (Figure S1 ⓖ). These partially occupied sites were refined by randomly 
assigning atomic sites from a Gaussian distribution, based on the experimentally measured Sc/Zn ratio 
(0.74/0.26 for icosahedron and 0.48/0.52 for DFP site) (Figure S4b). 

 

 



 

Figure S1. Atomic position indices of Tsai-type iQC TC and DFP. 

 

 

Figure S2. Radial pair-correlation density profiles for experimentally reported atomistic structures (red) and 
structurally refined corrections (blue) for a, iQC-ScZn7.33 and b, iQC-YbCd5.7 quasicrystals. 

 



 

Figure S3. Partial radial pair-correlation density profile of a, raw and b, refined iQC-ScZn7.33, and c, raw and d, 
refined iQC-YbCd5.7 atomic structure data. The circled alphabet notation refers to atomic sites of Tsai-type iQC (Figure 
S1). Sites containing atoms closer than around 1.5 Å interatomic distance are highlighted opaquely. 

 



 

Figure S4. Schematic illustration of structure refinement. a, The reduction of overlapping atoms in tetrahedron sites 
(ⓘ) by clustering and b, partial occupation sites of DFP sites (ⓖ) from raw (left) to refined (right) atomic structures. 

  



S2. Density functional theory 

All electronic structure calculations for the intermetallics were performed using Density Functional 
Theory-Finite Element (DFT-FE) method10,11 and validated against the Quantum Espresso (QE) 
package,12,13 with the General Gradient Approximation (GGA), Perdew-Burke-Ernzerhof (PBE)14 exchange 
functional, and Optimized Norm-Conserving Vanderbilt (ONCV)15,16 pseudopotentials. The optimal k-
points for all periodic crystalline alloys were generated from automatic density in the Pymatgen package.17 
The discretization for QE and DFT-FE are chosen such that the discretization errors in QE and DFT-FE are 
both below 10-6 Ha/atom range. The chemical accuracy, ionic force, and cell stress convergence threshold 
for geometry relaxation of crystalline alloys were set to 10-5 Ha/atom, 10-4 Ha/Bohr, and 10-6 Ha/Bohr3, 
respectively. The Fermi-Dirac smearing temperature was set to 500 K.  

The DFT calculations for crystalline structures reproduces the same formation energies and convex 
hull when calculated from DFT-FE and compared with QE (Figure S5). This validates that the DFT-FE 
implementation has quantitative agreement with conventional crystalline DFT calculations. For the finite-
size calculations of scooped nanospheres, gamma-point calculations were employed in DFT-FE. The ionic 
force threshold was set to less than 9 × 10-4 Ha/Bohr for structure relaxation. 

 

 

Figure S5. Formation energy of structurally static and relaxed QE and DFT-FE simulations for selected phases in a, 
ScxZny and b, YbxCdy binary alloy systems. 

 

The formation energy of a crystalline compound and scooped nanocluster can be calculated from 
DFT simulations. 
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where EAxB(1-x) is calculated total atomic energy of nanoparticles from DFT, NA and NB are the number of 
atoms of A (Sc, Yb) and B elements (Zn, Cd) that satisfies NA + NB = N, and EA and EB are the atomic 
energy of A and B elements, respectively. 



S3. Calculation of bulk formation and surface energies of crystalline phases from scooped 
nanoclusters 

 

Figure S6. Calculated bulk formation and surface energy of a, Sc and b, ScZn6 from linear regression of nanocluster 
formation energy to N-1/3. 

  

 To confirm that the nano-scooping method we applied to quasicrystals is valid, we used the same 
technique on Sc and ScZn6, to check if the calculated bulk and surface energies agree with traditional DFT 
calculations using periodic boundary conditions. We scooped a series of nanospheres with different 
numbers of atoms from 36 to 475 for Sc and from 66 to 747 for ScZn6. The formation energies of scooped 
nanoclusters are calculated from relaxed structures. Figure S6 shows a linear trend of calculated formation 
energy to N-1/3 of nanospheres. From the linear regression, we calculate the bulk energies and surface 
energies for Sc to be Ebulk / N = –9 ± 4 meV/atom and γ = 85 ± 1 meV/Å2, and for ScZn6 we calculate  
Ebulk / N = –242 ± 8 meV/atom and γ = 76 ± 2 meV/Å2. The periodic DFT simulations of Sc and ScZn6 
calculates the bulk formation and surface energy to Ebulk / N = 0 meV/atom (by definition, since Sc is an 
elemental reference state) and γ = 82 meV/Å2 for Sc, and Ebulk / N = –237 meV/atom and γ = 78 meV/Å2 
for ScZn6 (Table S3). The energy difference of the bulk formation energy is 9 and 5 meV/atom and surface 
energy is 3 and 2 meV/Å2 for Sc and ScZn6, respectively. 

  



S4. Gibbs free energy of Yb-Cd system at iQC-YbCd5.7 composition 

 Here, we assess the T = 0K stability iQC-YbCd5.7 within the context of its DFT-FE calculated error 
bars. To do so, we assess the liquid free energy of the Yb-Cd system using the CALPHAD (CALculation 
of PHAse Diagram) approach. Given the melting points of iQC-YbCd5.7, Yb14Cd51, and YbCd6, we can fit 
their linearized entropies. This enables us to evaluate the scenario where if iQC-YbCd5.7 is indeed 
metastable and has a low-temperature phase separation, what its critical eutectoid temperature should be.  

The Gibbs free energy of liquid and solid compounds is calculated from the following equation.  

x y x yYb Cd f Yb CdG H TS    

where ΔfHφ is enthalpy of formation of the stochiometric phase φ (Supplementary Information S6), T is 

temperature, and 
x yYb CdS is calculated entropy of YbxCdy. The absolute entropy of compounds is calculated 

based on a thermodynamic definition that the enthalpy of elements is 0 at ambient condition. 
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where x yYb Cd

LG  is calculated Gibbs free energy of liquid from CALPHAD optimization (Supplementary 

Information S6) and x yYb Cd

mT  is melting temperature of YbxCdy. 

 The calculated entropy for iQC-YbCd5.7 and Yb14Cd51 + YbCd6 is 98.527 and 98.912 J/molꞏK, 
respectively. The upper-bound of the error bar for the formation energy of iQC-YbCd5.7 increases its 
enthalpy to be above the hull. If iQC-YbCd5.7 lies on the hull, the enthalpy would be -18,680 J/mol and the 
entropy would increase to 99.635 J/molꞏK. The phase transition from iQC-YbCd5.7 to Yb14Cd51 + YbCd6 
can then be calculated to occur at T < 561.5 K (Fig. S12A). If the enthalpy of iQC-YbCd5.7 goes above the 
hull, the phase transition temperature also increases (Fig. S12B). However, the transition temperature then 
becomes close to or even exceeding the melting temperature of YbCd5.7 (T = 909 K), as its enthalpy is 
above the hull. The previous experiment observed that the quasicrystalline YbCd5.7 phase solidifies in a 
fully annealed single-crystal state.18 Therefore, the Gibbs free energy of iQC-YbCd5.7 should be lower than 
that of Yb14Cd51 + YbCd6 at low temperature, and the formation enthalpy of iQC-YbCd5.7 should be below 
the convex hull of competing crystalline intermetallic phases. 

 



 

Figure S7. Calculated Gibbs free energy diagram at iQC-YbCd5.7 composition (XCd = 0.85) when the bulk formation 
energy is a, on the hull and b, the upper limit of the error above the hull.  The blue line is Yb14Cd51 + YbCd6, red is iQC-
YbCd5.7 if the formation energy is on the hull, orange is iQC-YbCd5.7 if the formation energy is the upper limit of the 
error, and green is iQC-YbCd5.7 from the intercept of linear regression (Figure 1c). The purple diamond is the 
intersection point of Yb14Cd51 + YbCd6 and iQC-YbCd5.7.  



S5. Wulff construction of crystalline alloys 

The Wulff construction of all crystalline alloys is built by calculating the surface energy of cleaved faces.  
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where Eslab is the energy and Nslab is the total number of atoms in a slab cell, and Ebulk and Nbulk are in bulk 
periodic cell. The slab structures were generated by cleaving bulk phases from ‘generate all slabs’ in the 
Pymatgen package.19 The maximum Miller index was set to 3 and minimal vacuum length normal to the 
surface was set to 15 Å. Optimal atomic length was selected from the surface energy convergence test by 
thickness for selected planes (Figure S8). The inclination of stable slab planes was searched from 
‘WulffShape’ in the Pymatgen package20 for γ-plot construction (Table S1 and S2, Figure S9 and S10). 
Table S3 and S4 summarize all calculated parameters of ScxZny and YbxCdy alloys from the Wulff 
construction, respectively. 

 

 

Figure S8. Convergence test of slab calculation by atomic thickness for a, (110), b, (211), and c, (321) ScZn planes, 
and d, (110), e, (211), and f, (321) YbCd planes.
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(1, 1, 1) 0.097 1.556 

(2, 1, 0) 0.096 1.543 

(2, 1, 1) 0.093 1.495 

(2, 2, 1) 0.094 1.514 

(3, 1, 0) 0.099 1.591 

(3, 1, 1) 0.099 1.580 

(3, 2, 0) 0.093 1.483 

(3, 2, 1) 0.092 1.479 

(3, 2, 2) 0.095 1.525 

(3, 3, 1) 0.092 1.472 

(3, 3, 2) 0.096 1.534 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.086 1.372 

(1, 0, 0) 0.079 1.259 

(1, 0, 1) 0.087 1.389 

(1, 0, 2) 0.086 1.384 

(1, 0, 3) 0.086 1.385 

(1, 1, 0) 0.089 1.423 

(1, 1, 1) 0.089 1.419 

(2, 0, 1) 0.093 1.487 

(2, 0, 3) 0.088 1.406 

(2, -1, 2) 0.081 1.294 

(2, -1, 3) 0.087 1.402 

(2, 2, 1) 0.090 1.439 

(2, 2, 3) 0.087 1.397 

(3, 0, 1) 0.086 1.384 

(3, 0, 2) 0.086 1.385 

(3, -1, 0) 0.087 1.389 

(3, -1, 1) 0.089 1.431 

(3, -1, 2) 0.086 1.383 

(3, -1, 3) 0.085 1.355 

(3, 1, 0) 0.091 1.465 

(3, 1, 1) 0.088 1.417 

(3, 1, 2) 0.088 1.413 

(3, 1, 3) 0.085 1.364 

(3, 2, 0) 0.089 1.424 

(3, 2, 1) 0.090 1.449 

(3, 2, 2) 0.090 1.437 

(3, 2, 3) 0.087 1.402 

(3, 3, 1) 0.090 1.436 

(3, 3, 2) 0.090 1.437 

Table S1. Calculated surface energies of crystalline ScxZny alloys from slab structures. 



 ScZn3   

 

Sc13Zn73 

 

Sc13Zn58 

 

 

 

 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.070 1.127 

(1, 0, 0) 0.078 1.244 

(1, 0, 1) 0.079 1.259 

(1, 0, 2) 0.087 1.397 

(1, 0, 3) 0.083 1.337 

(1, -1, 0) 0.067 1.071 

(1, 1, 0) 0.083 1.331 

(1, -1, 1) 0.090 1.450 

(1, 1, 1) 0.084 1.349 

(1, -1, 2) 0.087 1.398 

(1, 1, 2) 0.089 1.434 

(1, -1, 3) 0.083 1.338 

(1, 1, 3) 0.089 1.421 

(2, 0, 1) 0.097 1.556 

(2, 0, 3) 0.087 1.387 

(2, -1, 0) 0.082 1.316 

(2, 1, 0) 0.083 1.333 

(2, -1, 1) 0.088 1.413 

(2, 1, 1) 0.087 1.392 

(2, -1, 2) 0.090 1.443 

(2, 1, 2) 0.087 1.392 

(2, -1, 3) 0.090 1.441 

(2, 1, 3) 0.089 1.426 

(2, -2, 1) 0.075 1.203 

(2, 2, 1) 0.087 1.388 

(2, -2, 3) 0.087 1.396 

(2, 2, 3) 0.089 1.418 

(3, 0, 1) 0.076 1.225 

(3, 0, 2) 0.080 1.285 

(3, -1, 0) 0.083 1.332 

(3, 1, 0) 0.088 1.408 

(3, -1, 1) 0.085 1.357 

(3, 1, 1) 0.084 1.339 

(3, -1, 2) 0.087 1.394 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(3, 1, 2) 0.083 1.323 

(3, -1, 3) 0.090 1.436 

(3, 1, 3) 0.087 1.401 

(3, -2, 0) 0.084 1.342 

(3, 2, 0) 0.083 1.323 

(3, -2, 1) 0.086 1.371 

(3, 2, 1) 0.087 1.391 

(3, -2, 2) 0.088 1.416 

(3, 2, 2) 0.087 1.390 

(3, -2, 3) 0.088 1.417 

(3, 2, 3) 0.086 1.375 

(3, -3, 1) 0.075 1.195 

(3, 3, 1) 0.087 1.389 

(3, -3, 2) 0.086 1.375 

(3, 3, 2) 0.087 1.392 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(1, 0, 0) 0.075 1.208 

(1, 1, 1) 0.086 1.381 

(2, 1, 1) 0.084 1.349 

(3, 1, 0) 0.081 1.304 

(3, 2, 1) 0.082 1.306 

(3, 3, 2) 0.079 1.270 

(1, 1, 0) 0.087 1.387 

(2, 1, 0) 0.084 1.344 

(2, 2, 1) 0.083 1.322 

(3, 1, 1) 0.081 1.296 

(3, 2, 0) 0.079 1.262 

(3, 2, 2) 0.140 2.246 

(3, 3, 1) 0.130 2.088 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.088 1.403 

(1, 0, 0) 0.088 1.407 

(1, 0, 1) 0.090 1.442 

(1, 0, 2) 0.080 1.287 

(1, 0, 3) 0.081 1.291 

(1, 1, 0) 0.092 1.471 

(1, 1, 1) 0.082 1.310 

(2, -1, 2) 0.084 1.347 

(2, -1, 3) 0.080 1.276 

(2, 0, 1) 0.084 1.340 

(2, 0, 3) 0.082 1.315 

(2, 2, 1) 0.077 1.236 

(2, 2, 3) 0.075 1.202 

(3, -1, 0) 0.086 1.380 

(3, -1, 1) 0.076 1.211 

(3, -1, 2) 0.080 1.285 

(3, -1, 3) 0.077 1.230 

(3, 0, 1) 0.082 1.311 

(3, 0, 2) 0.080 1.285 

(3, 1, 0) 0.078 1.252 

(3, 1, 1) 0.079 1.266 

(3, 1, 2) 0.080 1.285 

(3, 1, 3) 0.075 1.199 

(3, 2, 0) 0.072 1.159 

(3, 2, 1) 0.075 1.205 

(3, 2, 2) 0.074 1.181 

(3, 2, 3) 0.078 1.242 

(3, 3, 1) 0.072 1.155 

(3, 3, 2) 0.071 1.145 

Table S1. Continued. 



ScZn6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ScZn12 

 

 

 

Zn 

 

 

 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(1, 0, 0) 0.083 1.335 

(1, 1, 1) 0.087 1.397 

(2, 1, 1) 0.083 1.324 

(3, 1, 0) 0.083 1.333 

(3, 2, 1) 0.084 1.346 

(3, 3, 2) 0.082 1.319 

(1, 1, 0) 0.078 1.256 

(2, 1, 0) 0.087 1.398 

(2, 2, 1) 0.084 1.353 

(3, 1, 1) 0.077 1.236 

(3, 2, 0) 0.084 1.353 

(3, 2, 2) 0.104 1.669 

(3, 3, 1) 0.083 1.330 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.070 1.126 

(1, 0, 0) 0.080 1.277 

(1, 0, 1) 0.071 1.139 

(1, 0, 2) 0.069 1.110 

(1, 0, 3) 0.074 1.188 

(1, 1, 0) 0.069 1.112 

(1, 1, 1) 0.082 1.316 

(1, 1, 2) 0.073 1.175 

(1, 1, 3) 0.072 1.154 

(2, 0, 1) 0.076 1.222 

(2, 0, 3) 0.070 1.129 

(2, 1, 0) 0.079 1.260 

(2, 1, 1) 0.073 1.172 

(2, 1, 2) 0.074 1.179 

(2, 1, 3) 0.068 1.085 

(2, 2, 1) 0.074 1.183 

(2, 2, 3) 0.069 1.102 

(3, 0, 1) 0.073 1.174 

(3, 0, 2) 0.070 1.121 

(3, 1, 0) 0.071 1.140 

(3, 1, 1) 0.075 1.195 

(3, 1, 2) 0.072 1.146 

(3, 1, 3) 0.070 1.122 

(3, 2, 0) 0.074 1.187 

(3, 2, 1) 0.071 1.142 

(3, 2, 2) 0.072 1.161 

(3, 2, 3) 0.067 1.080 

(3, 3, 1) 0.075 1.197 

(3, 3, 2) 0.071 1.134 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.070 1.126 

(1, 0, 0) 0.080 1.277 

(1, 0, 1) 0.071 1.139 

(1, 0, 2) 0.069 1.110 

(1, 0, 3) 0.074 1.188 

(1, 1, 0) 0.069 1.112 

(1, 1, 1) 0.082 1.316 

(1, 1, 2) 0.073 1.175 

(1, 1, 3) 0.072 1.154 

(2, 0, 1) 0.076 1.222 

(2, 0, 3) 0.070 1.129 

(2, 1, 0) 0.079 1.260 

(2, 1, 1) 0.073 1.172 

(2, 1, 2) 0.074 1.179 

(2, 1, 3) 0.068 1.085 

(2, 2, 1) 0.074 1.183 

(2, 2, 3) 0.069 1.102 

(3, 0, 1) 0.073 1.174 

(3, 0, 2) 0.070 1.121 

(3, 1, 0) 0.071 1.140 

(3, 1, 1) 0.075 1.195 

(3, 1, 2) 0.072 1.146 

(3, 1, 3) 0.070 1.122 

(3, 2, 0) 0.074 1.187 

(3, 2, 1) 0.071 1.142 

(3, 2, 2) 0.072 1.161 

(3, 2, 3) 0.067 1.080 

(3, 3, 1) 0.075 1.197 

(3, 3, 2) 0.071 1.134 

Table S1. Continued. 



Yb 

 

 

 

YbCd 

 

 

 

 

 

 

 

 

 

 

 

 

 

YbCd2 

 

 

 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.031 0.500 

(1, 0, 0) 0.035 0.563 

(1, 0, 1) 0.033 0.526 

(1, 0, 2) 0.033 0.528 

(1, 0, 3) 0.033 0.522 

(1, 1, 0) 0.034 0.553 

(1, 1, 1) 0.035 0.566 

(2, 0, 1) 0.036 0.570 

(2, 0, 3) 0.034 0.551 

(2, -1, 2) 0.036 0.573 

(2, -1, 3) 0.037 0.589 

(2, 2, 1) 0.035 0.560 

(2, 2, 3) 0.036 0.572 

(3, 0, 1) 0.035 0.568 

(3, 0, 2) 0.035 0.555 

(3, -1, 0) 0.036 0.573 

(3, 1, 0) 0.036 0.579 

(3, -1, 1) 0.035 0.562 

(3, 1, 1) 0.041 0.660 

(3, -1, 2) 0.035 0.566 

(3, 1, 2) 0.041 0.658 

(3, -1, 3) 0.035 0.569 

(3, 1, 3) 0.036 0.574 

(3, 2, 0) 0.035 0.568 

(3, 2, 1) 0.039 0.631 

(3, 2, 2) 0.040 0.638 

(3, 2, 3) 0.035 0.566 

(3, 3, 1) 0.035 0.556 

(3, 3, 2) 0.035 0.561 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(1, 0, 0) 0.045 0.726 

(1, 1, 0) 0.039 0.632 

(1, 1, 1) 0.045 0.713 

(2, 1, 0) 0.045 0.723 

(2, 1, 1) 0.043 0.695 

(2, 2, 1) 0.044 0.713 

(3, 1, 0) 0.047 0.755 

(3, 1, 1) 0.046 0.740 

(3, 2, 0) 0.044 0.703 

(3, 2, 1) 0.043 0.693 

(3, 2, 2) 0.045 0.719 

(3, 3, 1) 0.044 0.701 

(3, 3, 2) 0.045 0.718 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.045 0.713 

(1, 0, 0) 0.041 0.650 

(1, 0, 1) 0.045 0.716 

(1, 0, 2) 0.044 0.697 

(1, 0, 3) 0.048 0.774 

(1, 1, 0) 0.046 0.730 

(1, 1, 1) 0.046 0.730 

(2, -1, 2) 0.042 0.674 

(2, -1, 3) 0.045 0.723 

(2, 0, 1) 0.043 0.689 

(2, 0, 3) 0.046 0.733 

(2, 2, 1) 0.046 0.739 

(2, 2, 3) 0.045 0.718 

(3, -1, 0) 0.045 0.716 

(3, -1, 1) 0.046 0.738 

(3, -1, 2) 0.045 0.716 

(3, -1, 3) 0.045 0.721 

(3, 0, 1) 0.043 0.683 

(3, 0, 2) 0.044 0.709 

(3, 1, 0) 0.047 0.756 

(3, 1, 1) 0.046 0.736 

(3, 1, 2) 0.046 0.732 

(3, 1, 3) 0.045 0.713 

(3, 2, 0) 0.046 0.744 

(3, 2, 1) 0.047 0.752 

(3, 2, 2) 0.046 0.733 

(3, 2, 3) 0.046 0.735 

(3, 3, 1) 0.046 0.738 

(3, 3, 2) 0.046 0.739 

Table S2. Calculated surface energies of crystalline YbxCdy alloys from slab structures. 



YbCd3 

 

 

 

 

Yb14Cd51 

 

 

 

 

Yb13Cd76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.037 0.596 

(1, 0, 0) 0.038 0.603 

(1, 0, 1) 0.040 0.643 

(1, 0, 2) 0.043 0.695 

(1, 0, 3) 0.042 0.670 

(1, 1, 0) 0.041 0.650 

(1, 1, 1) 0.041 0.655 

(2, 0, 1) 0.047 0.754 

(2, 0, 3) 0.043 0.690 

(2, -1, 2) 0.044 0.699 

(2, -1, 3) 0.044 0.703 

(2, 2, 1) 0.043 0.684 

(2, 2, 3) 0.044 0.698 

(3, 0, 1) 0.038 0.606 

(3, 0, 2) 0.039 0.632 

(3, -1, 0) 0.041 0.660 

(3, 1, 0) 0.043 0.684 

(3, -1, 1) 0.042 0.665 

(3, 1, 1) 0.042 0.674 

(3, -1, 2) 0.043 0.694 

(3, 1, 2) 0.040 0.639 

(3, -1, 3) 0.044 0.701 

(3, 1, 3) 0.043 0.686 

(3, 2, 0) 0.041 0.650 

(3, 2, 1) 0.042 0.679 

(3, 2, 2) 0.042 0.671 

(3, 2, 3) 0.042 0.680 

(3, 3, 1) 0.042 0.681 

(3, 3, 2) 0.042 0.680 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.041 0.657 

(1, 0, 0) 0.040 0.641 

(1, 0, 1) 0.044 0.704 

(1, 0, 2) 0.040 0.633 

(1, 0, 3) 0.037 0.591 

(1, 1, 0) 0.041 0.659 

(1, 1, 1) 0.041 0.652 

(2, -1, 2) 0.039 0.629 

(2, -1, 3) 0.039 0.629 

(2, 0, 1) 0.041 0.653 

(2, 0, 3) 0.037 0.591 

(2, 2, 1) 0.039 0.621 

(2, 2, 3) 0.036 0.574 

(3, -1, 0) 0.039 0.621 

(3, -1, 1) 0.041 0.654 

(3, -1, 2) 0.038 0.615 

(3, -1, 3) 0.036 0.569 

(3, 0, 1) 0.040 0.639 

(3, 0, 2) 0.037 0.596 

(3, 1, 0) 0.039 0.630 

(3, 1, 1) 0.039 0.618 

(3, 1, 2) 0.034 0.549 

(3, 1, 3) 0.034 0.549 

(3, 2, 0) 0.036 0.579 

(3, 2, 1) 0.037 0.593 

(3, 2, 2) 0.036 0.571 

(3, 2, 3) 0.034 0.548 

(3, 3, 1) 0.034 0.549 

(3, 3, 2) 0.034 0.549 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(1, 0, 0) 0.041 0.656 

(1, 1, 1) 0.697 11.168 

(2, 1, 1) 0.045 0.719 

(3, 1, 0) 0.043 0.692 

(3, 2, 1) 0.037 0.599 

(3, 3, 2) 0.041 0.658 

(1, 1, 0) 0.045 0.726 

(2, 1, 0) 0.043 0.696 

(2, 2, 1) 0.154 2.474 

(3, 1, 1) 0.123 1.966 

(3, 2, 0) 0.041 0.652 

(3, 2, 2) 0.084 1.340 

(3, 3, 1) 0.075 1.208 

Table S2. Continued. 



YbCd6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cd 

 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(1, 0, 0) 0.045 0.717 

(1, 1, 0) 0.044 0.701 

(1, 1, 1) 0.045 0.720 

(2, 1, 1) 0.045 0.729 

(3, 1, 0) 0.045 0.723 

(3, 2, 1) 0.046 0.736 

(3, 3, 2) 0.045 0.723 

(2, 1, 0) 0.048 0.766 

(2, 2, 1) 0.046 0.731 

(3, 1, 1) 0.060 0.969 

(3, 2, 0) 0.046 0.735 

(3, 2, 2) 0.057 0.920 

(3, 3, 1) 0.046 0.730 

plane 
γ 

[eV/Å2] 
γ 

[J/m2] 

(0, 0, 1) 0.017 0.277 

(1, 0, 0) 0.042 0.666 

(1, 0, 1) 0.036 0.584 

(1, 0, 2) 0.036 0.572 

(1, 0, 3) 0.031 0.491 

(1, 1, 0) 0.040 0.637 

(1, 1, 1) 0.040 0.639 

(2, 0, 1) 0.038 0.614 

(2, 0, 3) 0.033 0.534 

(2, -1, 2) 0.038 0.610 

(2, -1, 3) 0.038 0.604 

(2, 2, 1) 0.039 0.629 

(2, 2, 3) 0.038 0.617 

(3, 0, 1) 0.036 0.577 

(3, 0, 2) 0.034 0.538 

(3, -1, 0) 0.042 0.670 

(3, 1, 0) 0.036 0.584 

(3, -1, 1) 0.041 0.653 

(3, 1, 1) 0.039 0.627 

(3, -1, 2) 0.040 0.635 

(3, 1, 2) 0.037 0.594 

(3, -1, 3) 0.038 0.613 

(3, 1, 3) 0.037 0.600 

(3, 2, 0) 0.041 0.657 

(3, 2, 1) 0.040 0.641 

(3, 2, 2) 0.040 0.641 

(3, 2, 3) 0.040 0.633 

(3, 3, 1) 0.039 0.626 

(3, 3, 2) 0.039 0.630 

Table S2. Continued. 



 

Figure S9. Calculated Wulff shapes of crystalline ScxZny alloys. 

 



 

Figure S10. Calculated Wulff shapes of crystalline YbxCdy alloys.



 

 

 

Table S3. Calculated parameters for the Wulff constructions of crystalline ScxZny systems from the periodic and slab calculations. The parameters of iQC ScZn7.33 are calculated 
from the finite-size DFT calculations. 

 

 

 Yb YbCd YbCd2 YbCd3 Yb14Cd51 Yb13Cd76 iQC-YbCd5.7 YbCd6 Cd 

Shape factor (η) 5.310 5.063 4.999 4.978 4.950 4.966 4.836 4.903 5.632 

Atomic density (ρ) 
[atom/Å3] 

0.026 0.036 0.039 0.040 0.041 0.042 0.043 0.042 0.043 

Weighted surface energy 
(γ) [eV/Å2] 

0.033 0.041 0.042 0.039 0.035 0.038 0.040 0.045 0.028 

Weighted surface energy 
(γ) [J/m2] 

0.532 0.657 0.679 0.621 0.554 0.602 0.633 0.718 0.446 

Bulk formation energy 
(Ebulk/N) [eV/atom] 

0 -0.334 -0.298 -0.253 -0.249 -0.180 -0.201 -0.188 0 

Table S4. Calculated parameters for the Wulff constructions of crystalline YbxCdy systems from the periodic and slab calculations. The parameters of iQC YbCd5.7 are calculated 
from the finite-size DFT calculations.

 Sc ScZn ScZn2 ScZn3 Sc13Zn58 Sc13Zn73 ScZn6 iQC-ScZn7.33 ScZn12 Zn 

Shape factor (η) 5.050 5.060 4.994 5.098 5.533 4.924 4.959 4.836 4.931 6.017 

Atomic density (ρ) 
[atom/Å3] 

0.040 0.053 0.059 0.060 0.062 0.062 0.063 0.064 0.065 0.064 

Weighted surface energy 
(γ) [eV/Å2] 

0.082 0.088 0.082 0.075 0.074 0.079 0.078 0.076 0.070 0.041 

Weighted surface energy 
(γ) [J/m2] 

1.306 1.402 1.313 1.196 1.189 1.258 1.249 1.224 1.119 0.660 

Bulk formation energy 
(Ebulk/N) [eV/atom] 

0 -0.382 -0.350 -0.312 -0.261 -0.241 -0.237 -0.222 -0.130 0 



 

Figure S11. Calculated hull of atomic density of a, ScxZny and b, YbxCdy. The lines connecting triangular points 
show the densest combination of alloys for a given composition. The quasicrystals represent the densest possible 
intermetallic arrangements in their chemical system at their composition.  

 

  



S6. Calculation of Phase Diagram 

Prior thermodynamic assessments 

Tang et al. and Kali-Ali et al. have previously reported thermodynamic modeling of the Sc-Zn and 
Yb-Cd systems, aided by ab initio calculations.21,22 The thermodynamic models of these two systems are 
reassessed here using the CALPHAD approach, incorporating our DFT formation energies of all structures 
including the quasicrystals.  

Palenzona et al. reported phase diagram data for the Sc-Zn system.23 They measured phase 
equilibria in the range of 40 to 100 % XZn using differential thermal analysis (DTA), X-ray diffraction 
(XRD), and electron microscopy. Five intermetallic compounds were identified in this system: ScZn, ScZn2, 
Sc17Zn58, Sc3Zn17, and ScZn12. However, further research into the Sc-Cu-Zn system led to a proposed 
correction of stoichiometry from Sc3Zn17 to ScZn6.24 This correction was prompted by the discovery of the 
Sc3CuyZn18-y phase region during explorations of Sc3CuxZn17-x compositions, where copper substitution for 
zinc suggested a more stable and representative YCd6 (RCd6) type structure, akin to that of ScZn6. 
Additionally, Canfield et al. reported a binary icosahedral quasicrystal phase, Sc12Zn88, which decomposes 
through a peritectic reaction at 778 K.25 The experimental thermodynamic data for the Sc-Zn system remain 
absent. 

Palenzona determined the experimental Yb-Cd phase diagram data through DTA, XRD, and 
electron microscopy.26 Six intermetallic compounds were identified in this system: YbCd, YbCd2, Yb3Cd8, 
Yb14Cd51, YbCd5.7 and YbCd6. A polymorphic transition of YbCd2 was detected at 968 K (αYbCd2 → 
βYbCd2). The crystal structure of some compounds was not experimentally defined. Later, YbCd5.7 was 
found to be a binary icosahedral quasicrystal phase with a congruent melting point at 909 K.18 Currently, 
there is no experimental thermodynamic data available for the Yb-Cd system. 

Thermodynamic Models 

1. Unary phases 

For the pure element of i (i = Cd, Sc, Yb, Zn) in φ phase (φ = liquid, Cd (hcp), Sc (bcc), Sc (hcp), 

Yb (fcc), Yb (bcc), or Zn (hcp)), the Gibbs free energy function 0 SER
i i iG G H    of temperature is given 

as follows:  

0 2 3 1 7 9lniG a bT cT T dT eT fT gT hT           

where SER
iH  is the molar enthalpy of the element i at 298.15 K and 1 bar in its stable element reference 

(SER) state, and T is the absolute temperature. The coefficients are taken from the Scientific Group 
Thermodata Europe (SGTE) database compilation by Dinsdale.27 

2. Solution phases 

For the solution phases φ (φ = liquid, Yb (fcc), Yb (bcc)), the Gibbs free energy function is given 
as follows: 

0 0 ( ln ln ) E
i i j i i i j jG x G x G RT x x x x G

        

where ix  and jx  are the mole fraction of the components i and j, R is the gas constant, and E G   is the 

excess Gibbs energy which can be described by Relich-Kister binary excess model28 
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where v
ijL  represents the temperature-dependent interaction parameters, and v

ija  and v
ijb  are the 

parameters to be evaluated from numerical optimization.  

3. Stochiometric phases 

For the stochiometric phases φ (φ = ScZn, ScZn2, Sc13Zn58, ScZn6, ScZn12, YbCd, αYbCd2, βYbCd2, 
Yb3Cd8, Yb14Cd51, YbCd5.7, and YbCd6), the Gibbs free energy function is given as follows: 

0 0
i i j i f fG x G x G H T S

         

where f H   is the enthalpy of formation of the stochiometric phase φ and f S   is the entropy of 

formation of the stochiometric phase φ. Most enthalpy of formation data is obtained through DFT 
calculation, except for βYbCd2, Yb3Cd8 due to lack of structure information.  

 

Optimization procedures  

The thermodynamic parameters in the Sc-Zn and Yb-Cd systems were initially generated and 
optimized using the Extensible Self-optimized Phase Equilibria Infrastructure (ESPEI) package.29 In this 
process, ESPEI first generates model parameters for CALPHAD models of the Gibbs energy for end 
members and intermetallic compounds, and Redlich-Kister interaction parameters based on the input of 
thermochemistry data using Muggianu extrapolation.30 Due to the lack of experimental data on liquid 
mixing energies, the initial interaction L parameters were derived by calculating the differences in Gibbs 
energies of the liquids and solids at various phase boundaries. For instance, at congruent melting points, 
the enthalpy of non-ideal mixing in the liquid phase can be estimated given that the ideal liquid and solid 
energies (with solid entropy sourced from the literature) are known.  

Interaction parameters and formation entropies of intermetallic compounds were simultaneously 
optimized using ESPEI via the Bayesian ensemble Markov Chain Monte Carlo (MCMC) method31 
employing triangular priors ranging from ± 0.8 θ where θ represents the initial parameter. Utilizing only 
the estimated liquid mixing energy and the optimized formation entropy of intermetallic compounds from 
literature, the optimized thermodynamic parameters in both systems were unable to perfectly fit the liquidus 
portion after 500 MCMC iterations. Consequently, a second assessment was conducted. This stage involved 
a meticulous adjustment of the formation entropy values for intermetallic compounds. Adjustments were 
made incrementally, and the phase diagram was recalculated after each modification to calibrate the 
numerical deviations. This iterative process continued until the calculated phase diagram aligned well with 
the experimental data within the expected uncertainty limits. The resulting phase diagrams of the Sc-Zn 
and Yb-Cd systems are shown in Figure S12, and optimized parameters of liquids and solids are 
summarized in Table S5 and S6. 



Figure S12. Optimized a, Sc-Zn and b, Yb-Cd phase diagrams using ESPEI (dots and lines) and the experimental 
phase equilibrium data (denoted by triangles and circles) from Materials Platform for Data Science (MPDS).32 

 

 Parameters 

Liquid 
L0 = -83967 + 10.7848 T,  

L1 = 15273 

ScZn ΔfHφ = -36859, ΔfSφ = -5.4856 

ScZn2 ΔfHφ = -33772, ΔfSφ = -5.7182 

Sc13Zn58 ΔfHφ = -25143, ΔfSφ = -5.6088 

ScZn6 ΔfHφ = -22841, ΔfSφ = -5.7117 

iQC-ScZn7.33 ΔfHφ = -21467, ΔfSφ = -7.5554 

ScZn12 ΔfHφ = -13583, ΔfSφ = -4.3402 

Table S5. Summary of optimized thermodynamic parameters of alloys in the Sc-Zn system from the ESPEI. 

 

 Parameters 

Liquid 
L0 = -94745 + 3.7720 T,  
L1 = -31759 + 0.5764 T 

YbCd ΔfHφ = -32253, ΔfSφ = -1.0098 

αYbCd2 ΔfHφ = -28764, ΔfSφ = 1.3293 

βYbCd2 ΔfHφ = -27932, ΔfSφ = 2.1884 

Yb3Cd8 ΔfHφ = -27965, ΔfSφ = -0.4836 

Yb14Cd51 ΔfHφ = -24064, ΔfSφ = 0.8416 

iQC-YbCd5.7 ΔfHφ = -19355, ΔfSφ = 0.8317 

YbCd6 ΔfHφ = -18603, ΔfSφ = 0.9936 

Table S6. Summary of optimized thermodynamic parameters of alloys in the Yb-Cd system from the ESPEI. 

 

 



In the calculated Sc-Zn system, as shown in Figure S12a, it should be noted that the ScZn12 phase 
exhibits metastability at the ground state (0 K), presenting a discrepancy with the previously published 
phase diagrams. Moreover, Sc13Zn58 and ScZn6 phases are also thermodynamically metastable at the ground 
state, but this detail is not evident due to the reported phase diagram’s lowest temperature threshold of 500 
K. This metastability is attributed to the formation energies of these phases, as calculated by DFT, which 
do not lie on the convex hull, thereby making them metastable at low temperature. This discrepancy may 
indeed reflect actual phase behaviors, as the sample used in DTA was prepared via the cooling of a mixed 
liquid during the experimental measurement of the Sc-Zn phase diagram. Throughout this process, kinetic 
barriers may inhibit the system from attaining its thermodynamic ground state. Notably, if the energy barrier 
required for the transformation from a metastable to a stable phase is substantial, the metastable phases 
(ScZn6 and Sc13Zn58) can persist after solidification. Consequently, a phase might be routinely observed in 
such method of measuring phase equilibrium data, even if it is not the most stable thermodynamically, due 
to the system's insufficient energy or time to overcome the barrier and transition into a more stable phase. 



S7. Size-dependent convex hull and nucleation analysis of the Yb-Cd system 

From the calculated parameters, theoretical total formation energy of a nanocluster of crystalline 
alloys can be calculated as a function of Area-to-Volume ratio, or equivalently, 1/R (1/R).33 

1NP bulkE E
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where η is dimensionless anisotropic shape factor and R is radius of nanoclusters. 

In Figure S13a, we repeat the same analysis to Yb-Cd systems. A compositional slice of this size-
dependent convex hull is taken at the YbCd5.7 composition, which is shown in Figure S13b. At the YbCd5.7 
composition, the bulk equilibrium phases are iQC-YbCd5.7. Because Yb14Cd51 and Yb13Cd76 have slightly 
lower surface energies (35 and 38 meV/Å2) than iQC-YbCd5.7, the stability of iQC-YbCd5.7 can be size-
dependent. However, the intersection of iQC-YbCd5.7 and Yb14Cd51 + Yb13Cd76 occurs at R = 0.17 nm, 
which is smaller than the unit cell length of Yb14Cd51 and Yb13Cd76 crystals. Therefore, the size effect is 
negligibly small while forming iQC-YbCd5.7. In Figure S13c, we construct the full size-dependent phase 
diagram of the Yb-Cd system, which is made by projecting the lowest free-energy phase(s) onto the 
underlying size- and composition-axes. 

Figure S14 illustrates the workflow to generate mixed thermodynamic and kinetic phase diagram 
of nucleation. Thermodynamic parameters of liquid and solids are from CALPHAD analysis 
(Supplementary Information S6). The ΔGliquid-solid is calculated from the gap between the common tangent 
line of the free energy curve of liquid at given composition and solids at given temperature. The surface 
energy of solids is calculated from the slope of linear regression of scooped nanoclusters (Supplementary 
Information S2) or the Wulff construction of crystal slabs (Supplementary Information S5). The 
combination of calculated ΔGliquid-solid and surface energy derives the nucleation barrier at critical nucleus 
(ΔGC) of homogeneous nucleation at given temperature and compositions. The free energy of at critical 
nucleus (ΔGC) of homogeneous nucleation was calculated from the following equation.34 
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where NA is the Avogadro number. The ΔGliquid-solid of the alloy systems was obtained from the free energy 
difference between tangent line of liquid at the targeted fraction and solids at the alloy composition. The 
repetition of the calculation with different temperatures and compositions reveals which solid phase has the 
lowest nucleation barrier at given temperature and composition. Coloring these phases onto the 
thermodynamic phase diagram is the mixed thermodynamic and kinetic phase diagram of nucleation. 

We perform a CALPHAD assessment of the Yb-Cd liquid free-energy, Gliquid. We apply the 
common tangent construction on Gliquid to calculate μYb,liquid and μCd,liquid, from which we calculate ΔGliquid–

solid to possible intermetallic phases in the thermodynamic temperature-composition phase diagram (Figure 
S15a) except βYbCd2 and Yb3Cd8, of which crystalline structure is not defined. When combined with the 
surface energies of each phase, Figure S15b shows the relative nucleation barriers of each solid phase from 
a liquid composition of iQC-YbCd5.7, as a function of undercooling from the melt. iQC-YbCd5.7 has the 
lowest nucleation barrier at T > 558.88 K. 

 



 

Figure S13. a, Expansion of 2D 
convex hull to 3D hull of Yb-Cd system. 
The green line is the connection between 
the biggest nanosphere and bulk iQC-
YbCd5.7 from Figure 1c. The orange line 
on the plane is the line at the composition 
of intersection point marked brown 
diamond. b, Energy diagram as a 
function of 1/R at the intersection point. 
The bold straight lines represent the 
phase(s) with the lowest energy for a 
given 1/R. c, Size-dependent phase 
diagram with various Cd compositions. 
Colors filled between vertical lines 
represent the phase coexistence region 
of two end members. 



 

Figure S14. Schematic illustration of the workflow to generate mixed thermodynamic and kinetic phase diagram of 
nucleation. 

 

 

  



In Figure S15c, we construct a mixed thermodynamic and kinetic phase diagram for the Yb-Cd 
system. iQC-YbCd5.7 is nucleation-preferenced over a wide range of temperatures and near YbCd5.7 liquid 
compositions. Experimental synthesis of iQC-YbCd5.7 and YbCd6 was near the congruent and peritectic 
point according to the thermodynamic temperature-composition phase diagram.18,26 Our kinetic phase 
diagram shows the lowest nucleation barrier for iQC-YbCd5.7 at its congruent melting point, as well as at 
lower temperatures within the YbCd6 + liquid peritectic region. The other Yb-Cd solid phases have the 
lowest nucleation barrier near their solid compositions. From these results, the kinetic selectivity of phases 
in the Yb-Cd system can be anticipated from the thermodynamic phase diagram, unlike in the Sc-Zn system.  

 

 

Figure S15. a, Illustration of common tangent construction in Yb-Cd system. The tangent line of Gliquid is drawn at 
the iQC-YbCd5.7 composition and T = 400 K. b, Calculated free energy barrier of the critical nucleus at iQC-YbCd5.7 
composition with different temperature. c, Kinetic phase diagram of nucleation on Yb-Cd system. The black lines and 
compositions represent the equilibrium phase diagram and colored regions below the liquid indicate the areas where 
the nucleation barrier for a certain phase is the lowest. 
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