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Significance Statement 

Designing thermodynamic conditions to improve (or reduce) the stability of a target material is a key 
task in materials engineering. For example, during materials synthesis one aims to enhance the stability 
of a target phase relative to its precursors or competing byproduct phases. If an undesired phase forms 
in experiment, one aims to destabilize the undesired phase by dissolution or corrosion. When multiple 
thermodynamic knobs are available to engineer relative stability, it can be difficult to navigate the 
corresponding high-dimensional phase diagram to identify optimal pathways to promote or destabilize 
a target phase. We propose that instead of mapping the absolute phase boundaries of a target material, 
we can invoke a generalized Clausius-Clapeyron relation, which provides a ‘compass’ to point out 
which directions on a high-dimensional phase diagram are best to stabilize or destabilize a target phase.  

Abstract 

Phase boundaries on high-dimensional phase diagrams are also high-dimensional objects, and can 
represent phase coexistence between numerous phases simultaneously. On a 2D temperature-pressure 
phase diagram, phase boundaries are 1D lines separating two phases, with a slope given by the 
Clausius-Clapeyron relation, dP/dT = ΔS/ΔV. However, this derivative form of the Clausius-Clapeyron 
relation does not scale meaningfully to higher dimensions. Here, we derive a parametric form of the 
Clausius-Clapeyron relation that is readily applicable to high-dimensional phase diagrams. The 
gradient of this phase boundary guides us on how to increase or decrease the relative stability of a 
target compound, meaning this generalized Clausius-Clapeyron relation enables us to engineer relative 
stability with respect to multiple thermodynamic conditions simultaneously. Using this approach, we 
analyze the acid stability of manganese oxide catalysts on a 4-dimensional Pourbaix diagram with axes 
of pH, redox potential, nanoparticle size, and aqueous [K+] ion concentration.  

 
  



 A primary goal in materials thermodynamics is to construct phase diagrams with accurate and 
precise phase boundaries for all known phases in a chemical system. However, the ‘thermodynamic 
assessments’ required to construct accurate phase diagrams1,2,3,4 can be very time-consuming. This 
process involves compiling all calorimetric and DFT-computed thermochemical data, constructing 
free-energy models for the solids, solid-solutions and liquid phases, then critically evaluating the 
resulting phase diagrams against experimentally-observed phase boundaries, while adhering to Gibbs 
Phase Rule and other thermodynamic considerations of phase coexistence.5 Because thermodynamic 
assessments can be such a laborious process, phase diagrams do not exist in many materials 
engineering contexts, despite their obvious importance and utility.  

 It would be valuable to develop a simpler and more agile framework to explore the stability 
conditions of materials. We propose that in many materials engineering situations, it may not actually 
be necessary to map out the full phase diagram. Instead, it may be enough to just characterize the 
stability of a desired target phase relative to its competing phases. For example, perhaps we aim to 
synthesize a target phase α, but experimentally we observe that α transforms to an undesired β phase, 
or that formation of α is blocked by the undesired nucleation of γ, etc. The salient question then 
becomes: How do we modify our experimental conditions to promote the stability of α, while 
destabilizing all other competing phases? In other words, how do I engineer the relative stability 
between a desired target phase versus an experimentally-obtained undesired phase?  

 High-dimensional phase diagrams become increasingly difficult to navigate when there are 
multiple operative forms of thermodynamic work being considered. To engineer stability in multi-
parameter thermodynamic space, materials scientists have often turned to statistical approaches, such 
as Design of Experiments (DoE), Bayesian optimization with Gaussian processes, or other recent AI 
approaches in sequential learning.6,7,8,9,10,11 These sequential learning algorithms are usually physics-
agnostic, however, their efficiency and efficacy can be greatly improved by augmenting them with 
stronger thermodynamic priors on how to engineer relative stability.12  

 When considering relative stability, the most important feature of a thermodynamic phase 
diagram is the gradient of the phase boundary between the target phase and its competing phase(s). 
This is formulated in the Clausius-Clapeyron relation, which on a 2D temperature-pressure diagram is 
derived from dGα = dGβ; such that–SαdT +VαdP = –SβdT + VβdP; resulting in dP/dT = ΔS /ΔV. As 
shown in Figure 1, isothermally pressurizing a fluid usually enhances the relative stability of the 
solid—as dP/dT > 0, and ΔSSL > 0 while usually ΔVSL > 0. However, isothermally pressurizing H2O 
preferences the stability of water over ice, as ΔVIW < 0, as water is denser than ice.  

 
Figure 1. The gradient of a phase 
boundary determines the relative 
stability between two or more phases 
under changing thermodynamic 
conditions. Left shows an example 
where the solid is denser than liquid; 
whereas Right shows then liquid is 
denser than solid (like H2O). 

  



 Beyond temperature and pressure considerations, a generalized Clausius-Clapeyron relation 
can be derived from a thermodynamic potential dZ = –X1dY1 – X2dY2, where Y1 and Y2 are intensive 
thermodynamic variables, which yields the equation dY1/dY2 = – ΔX2/ΔX1. Generalized Clausius-
Clapeyron relations have been used to determine dT/dH for magnetic materials,13 dF/dT for shape-
memory alloys,14 and even d(pH)/dσ for martensitic actuators in viruses.15 The derivative form of the 
Clausius-Clapeyron equation also serves as a starting point to more complicated thermodynamic 
relations—for example by combining with Maxwell’s relations or Bridgman’s relations16 to derive new 
thermodynamic partial derivatives for a variety of materials engineering applications.  

 Unfortunately, the derivative form of the Clausius-Clapeyron equation dY1/dY2 is not readily 
generalizable to higher-dimensional phase diagrams, as the phase-coexistence regions become higher-
dimensional than a 1D line. For example,  on a 4-dimensional phase diagram, one can have 
phase boundaries that are 0-, 1-, 2-, or 3-dimensional; corresponding to 5-, 4-, 3-, or 2-phase 
coexistence, respectively. For higher dimensional phase boundaries, it is not meaningful to write 
derivative-like expressions for gradients between three or more variables (such as dT/dP/dH/…/etc.); 
nor is it straightforward to arrive at such a ratio starting from dGα = dGβ = dGγ = … etc.  

Here, we derive a vector representation of the Clausius-Clapeyron relation, which is readily 
generalizable to high-dimensional phase boundaries. We develop two representations of this relation: 
1) a parametric representation for “bottom-up” construction of high-dimensional phase boundaries, 
where the phase boundaries are constructed from known or measured extensive variables of the 
competing phases; and 2) a Cartesian representation for “top-down” half-space intersections of high-
dimensional free energy surfaces. Note that Clausius-Clapeyron analyses only work on phase diagrams 
with all-intensive variables, which can be generally derived using the duality approach discussed in 
Part II of this three-part series. Because we are concerned with only the stability of a single target phase, 
phase diagrams with intensive natural variables are ideal to engineer relative stability while avoiding 
the complexities of heterogeneous equilibrium.  

First, we demonstrate the bottom-up approach to the high-dimensional Clausius-Clapeyron 
relation by calculating the 2D phase boundary on a 3D temperature-pressure-magnetic field (T-P-H) 
phase diagram between BCC and FCC iron, using their known entropies, molar volumes, and magnetic 
moments. A major advantage of the Clausius-Clapeyron equation is that it does not require free 
energies, it only needs the extensive quantities of the two phases, which can often be easier to obtain 
than the temperature- and pressure-dependent Gibbs free energies of each phase. By knowing the high-
dimensional gradient of the phase boundary, along with a single multi-phase coexistence point, the 
entire phase boundary can be constructed parametrically.   

 Next, we demonstrate the ‘top-down’ approach by calculating, visualizing, and interpreting a 
full 4D phase diagram. Specifically, we build a 4D Pourbaix diagram to examine the acid stability of 
manganese oxides, which have applications as earth-abundant oxygen evolution catalysts.17,18 We 
extend the traditional pH and E axes in two additional dimensions to further account for nanoparticle 
size (1/R) and impurity ion concentration (μK

+). We focus our discussion on how to leverage the 
generalized Clausius-Clapeyron relation to navigate non-intuitive aspects of high-dimensional phase 
diagrams, from which we can derive meaningful insights to engineer relative materials stability. 



Vector derivation of the Clausius-Clapeyron Relation 

We begin by rederiving the classic 2D Clausius-Clapeyron relation from a vector 
representation. On a T-P phase diagram, the Gibbs free-energy surface of a phase is G = H’ + PV – TS; 
where H′ is the standard-state formation enthalpy of a phase, and P′ = P – 1 atm (since P = 1 atm at 
standard state). This can be rewritten in Cartesian form such that ax + by + cz – d = 0 has a 1-to-1 
mapping to the expression ST – VP′ + G – H′ = 0. In our goal of calculating gradients, we treat S and 
V as constant at a given T and P, which linearizes the free-energy plane in the vicinity of a given phase 
coexistence point. 

On the T–P–G axes, the normal vector of the free-energy plane can be expressed as , ,1i iS V

where i represents the phase.  Figure 2 illustrates an example of the ice/water phase boundary at 273K 
and 2.16 MPa, with a table showing their corresponding entropies and molar volumes.19 Between two 
phases, α and β, the normal vectors of their free-energy planes are nα and nβ, and their cross product  
nα × nβ produces the differential vector for the phase coexistence line in T–P–G space:  
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where   ˆ, , and T P G are unit vectors in the temperature, pressure and Gibbs free energy direction with 

their appropriate corresponding units. The parametric form of the 1D phase-coexistence line, L, in 
G(T,P) space can therefore be expressed as:  

0 0 0, , , ,         CoexistenceL T P G V S V S S V  

where λ is the parameter, 0 0 0, ,T P G  is an initial condition point. This form also produces an 

expression for dG = VαSβ – SαVβ along the coexistence line, which does not appear in the traditional 
Clausius-Clapeyron relation.  

By projecting this vector onto the T–P axes (in other words, eliminating the G term) and 
expressing this coexistence line in a parametric differential form, we recover the classical Clausius-

Clapeyron relation, dT/dP = ΔV/ΔS, rewritten in differential vector form as 
,

, ,
T P

dT dP V S d    

where λ is the parameter. Importantly, to preserve the units of the T, P and G axes, λ must have units 
of [Temperature / Volume], which ensures for example that dT and λΔV both have units of temperature. 
More generally, the parameter λ has units of [Energy / ([X1][X2])], where [X1] and [X2] are the units of 
the conjugate extensive variables X1 and X2.  



 

 
Figure 2. Vector representation of Clausius-
Clapeyron relation for the ice-water coexistence 
boundary. The coexistence vector is given by the 
cross product of the normal vectors to each free-
energy plane in G(T,P) space. Table 1. Molar 
entropies and volumes between water and ice at a 
given T0, P0 condition. 

 

To construct a phase diagram, one generally requires the free-energies of all phases in a 
chemical system. However, obtaining free-energies may not always be possible or convenient. In a 
‘bottom-up’ approach to the Clausius-Clapeyron relation, one can parametrically construct the entire 
phase boundary with just the extensive variables for all competing phases, plus one point of coexistence 
to anchor the phase boundary. The gradient of a phase boundary can be linearized by assuming the 
extensive variables are constant—this will apply for small perturbations in intensive conditions, but 
for curved phase boundaries one should recalculate the ΔX at other coexistence points.  

 
High-Dimensional Generalization of the Clausius-Clapeyron Relation  

On a high-dimensional phase diagram with all intensive axes, phase boundaries can be up to 
k-dimensional for any integer k < d, where d is the dimensionality of the phase diagram. This  
k-dimensional phase boundary represents phase coexistence between (d – k) phases, and can be 
spanned by a linear combination of k one-dimensional Clausius-Clapeyron vectors, built from any two 
intensive variables.  

Consider the allotropic phase transformation between BCC and FCC iron. In addition to the 
temperature and pressure driven phases transformations between these two phases, BCC iron also has 
a higher magnetic moment than FCC Fe (2.2 μB vs 1.5 μB), so their phase boundary should also vary 
with the applied magnetic field. The thermodynamic potential for a single-component material with 
temperature, pressure, and magnetic field as natural variables is dZ = –SdT + VdP – MdH. This is a  
4-dimensional free-energy space (1 energy axis and 3 work axes). By Generalized Gibbs’ Phase Rule20, 
F = W – P + 1. With 3 thermodynamic axes (W = 3) and two-phase coexistence (P = 2), the phase 
boundary between BCC and FCC iron has 2 intensive degrees-of-freedom (F = 2), meaning it is a  

2-dimensional surface on the 3D T-P-H phase diagram. 

 T0 P0 

Condition 273 K 2.16 MPa 

 S (J/mol/K) V (cm3/mol) 

Water -2.558 17.19 

Ice -23.55 19.39 

ΔXWater-Ice 20.99 -2.2 



  

 T0 P0 H0 
Condition 1183 K 1 atm 0.45 μT 

 S (J/mol/K) V (cm3/mol) M (μB) 
α-Fe (BCC) 27.28 7.37 2.2  
γ-Fe (FCC) 27.97 7.30 1.5 
ΔXFCC-BCC 0.69 -0.07 -0.7 

 
Figure 3. Clausius-Clapeyron relation on 3D phase diagram of temperature-pressure-magnetic field, showing a 
2D phase boundary between ferromagnetic α-Fe (BCC) and paramagnetic γ-Fe (FCC). The gradient of this 2D phase 
boundary is constructed parametrically, taken from the linear combination of 2D Clausius-Clapeyron relations between 
H-T, T-P, or H-P axes. Blue is α-Fe (BCC) and red is γ-Fe (FCC). Table 2. Molar entropies, volumes, and magnetic 
moments between BCC and FCC iron at a given T0, P0, H0 condition.21,22 

  



Figure 3 illustrates the 2D phase boundary between FCC and BCC iron on the 3D T-P-H phase 
diagram. There are three possible 1D vectors for the 2D Clausius-Clapeyron relation:  
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Where the units of the parameters are λ ≡ [Temperature / Volume], μ ≡ [Temperature / Magnetic 
Moment], and ν ≡ [Energy / Volume / Magnetic Moment]. The 2-dimensional boundary between BCC 
and FCC Fe can be spanned by a linear combination of any two of these 1D vectors within this 4D 
space, such that the plane is expressed P = P0 + αv1 + βv2, where α and β are arbitrary parametric terms.  

We can further sum all three vectors together and normalize, resulting in a symmetric form of:  

1
, , , ,

2
         dT dP dH V d M d S d M d S d V d       

Finally, although the original Clausius-Clapeyron relation does not give the change in free energy 
along the coexistence boundary, we can further calculate it within our representation: 

0 0 0( ) ( ) ( )       dH dP dTdZ d V S S V d S M M S d M V M V             
 

  In even higher dimensions, one can continue this process simply by taking additional linear 
combinations of 1D Clausius-Clapeyron vectors. As shown in the T-P-H phase diagram, only 2 of 3 
possible Clausius-Clapeyron vectors are needed to span the 2D phase boundary. In higher dimensions, 
the number of required 1D vectors diminishes combinatorically. For any k-dimensional phase 
boundary, k Clausius-Clapeyron vectors are required to span the phase boundary, but the number of 
possible ∂Y1/∂Y2 relations scales as dC2. This enables one to infer missing Clausius Clapeyron relations 
and their corresponding extensive materials properties, which is especially valuable when some partial 
derivatives or properties are difficult to measure or calculate. A full discussion of this scaling 

relationship is in Supplemental Information 1.  

 

  



Cartesian representation of Clausius-Clapeyron relationships 

Thus far we have described a parametric vector approach to building high-dimensional phase 
boundaries, which are spanned by linear combinations of 1-dimensional Clausius-Clapeyron vectors. 
In this approach, we need as many 1D vectors as there are dimensions of the phase boundary. This 
approach is most applicable in experimental contexts with limited materials properties or phase 
equilibria data, or when rigorous free-energy descriptions of the relevant phases are unavailable. 
However, in the era of high-throughput computational materials science, the free energy surfaces of 
phases can be calculated computationally. The opportunity arises then to leverage these free energies 
to better understand phase equilibria in complex thermodynamic environments.  

To this end, we next present an alternative “top-down” approach to analyze high-dimensional 
phase boundaries, which assumes the availability of free-energy data. This approach, which arrives at 
mathematically-equivalent descriptions of the phase boundary compared to the vector approach, 
identifies high-dimensional phase boundaries by calculating the half-space intersections of high-
dimensional free-energy hyperplanes. 

In an N-dimensional thermodynamic space (including the energy axis), the free-energy, Z, of 
a single phase can be represented in Cartesian form by  

,
0i ii d

X Y Z   

In this case, a k-dimensional phase boundary can be calculated from the intersection of (N–k) 
hyperplanes from the N-dimensional thermodynamic space. For example, in a three-dimensional G(T,P) 
space, the free-energy planes are two-dimensional, and a two-phase coexistence 1D line is given by 
the intersection of 2 hyperplanes. A three-phase coexistence 0D point is given by the intersection of 3 
hyperplanes. This argument extends to higher-dimensions; e.g. two-phase coexistence is given by the 
intersection of two 4D hyperplanes, which results in a 3-dimensional phase boundary.  

One can express these intersections by equating the hyperplane equations, for example, on a 
4D phase diagram, three-phase coexistence between the phases α, β, γ is given on a 2D phase boundary, 
which can be written as Zα = Zβ = Zγ:  

, , ,i i i i i ii i i
X Y X Y X Y       

One major benefit of this Cartesian representation is that the Clausius-Clapeyron relationship for two-
phase coexistence becomes simple to compute in high dimensions. In parametric form, a k-dimensional 
phase boundary needs to be spanned by k one-dimensional vectors, meaning for two-phase coexistence 
one needs (d–1) individual 1D Clausius-Clapeyron vectors. However, if one has the free-energy 
surfaces, one can directly compute any Clausius-Clapeyron derivative simply by calculating dY1/dY2 = 
– ΔX2/ΔX1, where the extensive variables X are parameters in the Cartesian free-energy expression.  

  



Clausius-Clapeyron Analysis of a 4D Pourbaix Diagram.  

We conclude this three-part series on high-dimensional thermodynamics with a Clausius-
Clapeyron analysis of a full 4-dimensional phase diagram. Our goal is to illustrate how the 
simultaneous consideration of multiple thermodynamic variables enables a more comprehensive 
approach to materials design and engineering. Although a 4D phase diagram stretches our imagination, 
it is still conceptually accessible by imagining the fourth dimension as time. While examining this 4D 
diagram, we will develop tools and intuition to mathematically conduct dimensional analogy to even 
higher-dimensional phase diagrams.  

In particular, here we analyze the stability of manganese oxides under acidic conditions, with 
a goal to increase the stability of a solid manganese oxide relative to its dissolved Mn2+ aqueous ion. 
Energy storage and transformation technologies require new catalysts23,24 for the oxygen reduction 
reaction (ORR) and oxygen evolution reaction (OER) 25,26, ideally without using expensive noble metal 
catalysts like platinum27,28,29. One candidate system is manganese oxide-based catalysts, however 
manganese oxides are generally not stable in acid electrochemical environments, where they easily 
decompose during changes in redox potential during cyclic voltammetry.30,31,32  

There is a great diversity of manganese-based oxide materials, with various polymorphs and 
manganese oxidation states.33,34,35 This raises the question of whether or not there exists a candidate 
manganese oxide phase that has good stability in acidic solutions. As illustrated on a Pourbaix diagram, 
the relative stabilities of different manganese oxides vary as a function of aqueous pH and E. 
Furthermore, different surface energies between manganese oxide phases can drive nanoscale 
crossovers in polymorph stability,33,36,37 and intercalation of impurity ions from solution such as K+, 
Na+, Ca2+, etc, can also affect the bulk stability of various polymorphs.33  

To capture all of these effects simultaneously, we construct here a four-dimensional Pourbaix 
diagram for the Mn-H2O system with axes of pH, redox potential, nanoparticle size, and [K+] impurity 
ion concentration. The composition- and size-dependent Pourbaix potential for each phase can be 
written as:  
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1
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The derivation of this potential is provided in our previous works.36,37 Here, Ψ is the Pourbaix potential, 
with respect to pH; redox potential, E; surface area to volume ratio, A/V; chemical potential of 
potassium, μK, under a constraint of water-oxygen equilibrium. N, is the number of atoms of a certain 
element; Q, is the number of charges; 𝜌, is volume density; 𝜂, is shape factor; μH2O, is water energy; 
μK, is surface energy. The number of Mn atoms are conserved in the phase transformations between 
Mn-based oxides with different compositions, thus Ψ is normalized by the number of Mn atoms, Nm. 
The molar Gibbs free energy of a phase, Gbulk, is its chemical potential, μi = μi

o + RTln[ai], where μi
o is 

given by the standard-state Gibbs formation free-energy, ΔGf
o, and the activity ideally scales with the 

natural log of the metal ion concentration in solution. 



 In our analysis, we consider the phases: Mn2+, MnO4
-, Mn3O4, α-Mn2O3, α-MnOOH, γ-

MnOOH, α-K0.11MnO1.94, δ-K0.21MnO1.87, γ-MnO2 and β-MnO2. The thermochemical data for these 
phases, including surface energies and K+-intercalated energies, were calculated in our previous 
publications from DFT using the SCAN metaGGA functional.38,39,40 Our thermochemical data used 
here is tabulated in the Supplementary Table 2.  

Because we are investigating the acid stability of solid manganese oxides, the relevant phase 
boundary is between each solid manganese oxide phase and its dissolved state, the Mn2+(aq) ion. From 
a Clausius-Clapeyron perspective, we aim to increase the relative stability of the solid manganese oxide, 
meaning we need to determine how varying these 4 thermodynamic variables will shift the phase 
boundary of a manganese oxide solid into and towards the Mn2+(aq) region, thereby enlarging the 
stability region of the solid. The relative stability analysis is then to find conditions where the Clausius-
Clapeyron relation dpH/dY < 0; such that a change in Y shifts the phase boundary between Mn2+(aq) 
vs. MnOx(solid) to lower pH values, indicating increased acid stability. 

Phase Coexistence on a High-Dimensional Phase Diagram 

 All the variables in the size-dependent Pourbaix potential are intensive, meaning that phase 
stability regions are all 4-dimensional stability polytopes—in other words, single-phase regions all 
have four intensive degrees of freedom. Phase coexistence boundaries all have F = 5 – P degrees of 
freedom, where F is the dimensionality of the phase boundary and P is the number of coexisting phases, 
as summarized in Table 3. Some non-intuitive aspects of high-dimensional geometry emerge—for 
example, it is possible for three 4D single-phase regions to coexist on a 2D phase boundary; also, the 
phase boundary between two phases is 3-dimensional. These facts are difficult to visualize in our three-
dimensional universe, but they are direct consequences of generalized Gibbs’ phase rule.   

Table 3. Formulas of Coexisting Phases and their Dimensionality of Phase Boundary. 

P-phase 
coexistence 

Dimensionality of 
Phase Boundary 

Coexisting Phases 

5 0 (vertex) β-MnO2, α-K0.11MnO1.94, δ-K0.21MnO1.87, Mn2+, α-MnOOH 
4 1 (line) β-MnO2, α-K0.11MnO1.94, δ-K0.21MnO1.87, Mn2+ 
3 2 (polygon) α-K0.11MnO1.94, δ-K0.21MnO1.87, Mn2+ 
2 3 (polytope) δ-K0.21MnO1.87, Mn2+ 
1 4 (polytope) δ-K0.21MnO1.87 

 

To facilitate the visualization of these 4D phase stability regions and their corresponding phase 
boundaries, here we introduce the concepts of slice and projection, illustrated in Figure 4, which are 
two different approaches to dimensionality reduction for 2D or 3D visualization. To make a slice, an 
intensive variable is set to a constant value and the rest of the thermodynamic potential is evaluated. 
Slices essentially remove one dimension from the phase diagram. The other dimensionality reduction 
method is projection, which shows a ‘shadow’ of the phase on the thermodynamic axes, constructed 
by projecting all the vertices of the stability region onto the axes, and taking the geometric convex hull 



of the vertices. One limitation of the projection approach is that when projecting multiple phases, the 
‘shadows’ of various phases can overlap. However, the advantage of the projection is that it reveals all 
the possible thermodynamic conditions a phase can exist; whereas one would typically have to 
construct slices sequentially over a thermodynamic axis to survey all the possible stability conditions 
of a phase. Once the domain of stability for a desired phase is determined from a projection approach, 
one can further apply slices to study materials stability to construct interpretable phase diagrams. 

 

Figure 4. Phase stability region of Mn3O4 in 1/R, E, pH space. The plane bounded by red lines is a slice when E is 
fixed at 0.2V. The plane bounded by blue lines is a projection to pH -E space. 

 

4D size- and impurity concentration-dependent Pourbaix Diagram 

Figure 5 shows several different perspectives of our 4-dimensional Pourbaix diagram. Because 
we want to improve the acid stability of manganese oxides, we focus our diagrams on the solid 
manganese oxide phases that border the Mn2+(aq) ion, which is the undesired dissolution product of 
solid manganese oxides in acid. Figure 5a shows the traditional 2D Pourbaix diagram for the Mn-H2O 
system, which visualizes the bulk equilibrium phases under a given E and pH. The bulk equilibrium  
phase β-MnO2 is only stable at low pH in a small range of high redox potentials.  

For catalysts, it is often valuable to maximize the surface area to volume ratio. This provides 
the greatest amount of active catalytic area for a given mass of catalytic material. Not only does a high 
surface area to volume ratio promote the functional performance of a catalyst, a variety of metastable 
manganese oxide phases can be stabilized at high surface-area-to-volume ratios—as demonstrated in 
previous experimental investigations41,42,43,44, as well as our previous computational studies.36 These 
metastable manganese oxides phases have lower surface energy than the bulk equilibrium phases, so 
at the nanoscale where surface-area-to-volume ratio is large, these bulk metastable phases can in fact 
become the nanoscale equilibrium phase. 



In our previous work, we visualized nanoscale Pourbaix diagrams36 using 2D slices of the (1/R) 
axis at fixed E or fixed pH. In this work, Figure 5b shows the full 3D nanoscale Pourbaix diagram, 
along with the competing nanoscale crossovers in polymorph stability. Size-stabilized bulk metastable 
manganese oxides include α-MnOOH, γ-MnOOH, δ-MnO2 and R-MnO2. 

  

 

Figure 5. Projections and slices of a high dimensional Pourbaix diagram in pH-E-μK-1/R space of K-Mn-O-H 
system into lower dimensions. (a) Traditional Pourbaix diagram with E and pH as axis. (b) A slice of α-K0.11MnO1.94, 
δ-K0.21MnO1.87, β-MnO2, Mn2+ when fixing E = 0.2 V. (c) A projection of δ-K0.21MnO1.87, δ-MnO2, Mn2+ in pH-E-μK space. 
(d) A slice of α-K0.11MnO1.94, δ-K0.21MnO1.87, β-MnO2, Mn2+ when fixing E = 1.2V. 2-phase coexistence regions are 
bounded by bold black lines. 

 

  



However, adding surface energy contributions to the free energy of a material always reduces 
its acid stability. This is because surface energy is always positive, meaning that a high (1/R) increases 
the free-energy of a solid; whereas the free energy of the Mn2+(aq) ion does not change with (1/R). 
From a Clausius-Clapeyron formulation, this is written as 

H ( )
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p
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Because γsolid > 0 and γMn2+(aq) = 0, the phase boundary as a function of acid stability always destabilizes 
the solid phase.  

As defined by the Pourbaix potential, each single phase is a 4D polytope in the pH-E-1/R-μK 
space. Within this framework, a 2-phase coexistence region, designated as α and β phase, is 
characterized by the condition Ψα = Ψβ, or equivalently, ΔΨα–β = 0. Table 4 shows for each intensive 
variable the difference in their conjugate extensive variables; for example, for pH this term would be 
Δ[-RTln(10)(2NO-NH)]. From these coefficients, one can directly calculate the partial derivatives 
between any two natural variables, offering quantitative insight into how to affect relative stability. An 
in-depth discussion on how to represent coexistence from 2 to 5 phases using the Cartesian form of the 
Clausius-Clapeyron relations is presented in Supplemental Information 2. 

 

Table 4. Coefficient vectors of 2-phase coexistence among Mn2+ and β-MnO2, α-K0.11MnO1.94, δ-
K0.21MnO1.87, α-MnOOH 

Intensive variable pH μK E 1/R - 

Conjugated 
extensive 
quantity 

∆[-RTln(10) 
(2NO-NH)] 

-∆NK ∆[-(2NO-NH+Q)] ∆(γηρ) ∆(Gbulk-NOμH2O) 

Units eV/Mn  eV/Katom/Mn eV/V/Mn eV ̇ nm/Mn  eV/Mn  

β-MnO2 
+ Mn2+ 

0.105 0 0.886 -0.451 -1.090 

α-K0.11MnO1.94 
+ Mn2+ 

0.099 0.047 0.809 -0.578 -0.659 

δ-K0.21MnO1.87 
+ Mn2+ 

0.122 0.116 0.963 -0.210 -0.520 

α-MnOOH 
+ Mn2+ 

0.125 0 0.707 -0.696 -1.139 

 

On the other hand, when increasing the aqueous [K+] concentration in the system—which 
increases μK by μK = μ0

K + RTln([K+])—the phases cryptomelane, α-K0.11MnO1.94, and birnessite δ-
K0.21MnO1.87 appear on the phase diagram, with a much larger stability region relative to pyrolusite β-
MnO2. This can be rationalized by the open crystal structures of α-MnO2 and δ-MnO2 phases, as α-



MnO2 Hollandite has 2×2 tunnel structures where intercalation of large K+ ions is energetically 
favorable, and similarly the δ-MnO2 phase is a layered phase that also readily uptakes K+. Intercalation 
of K+ ions therefore stabilizes and lowers the bulk free energy of α- and δ- MnO2, enlarging their 
stability windows. From a Clausius-Clapeyron formulation, this is written as 

( )

ln(10)(2 )
K

K O H

NpH

RT N N


 
  

  

The relative stability regions are visualized in the pH-E-μK space in Figure 5c. Notably, δ-K0.21MnO1.87 
is stable within a relatively large redox potential window at low pH.  

As an aside; if we were performing experiments to solve for the Clausius-Clapeyron relations, 
even if our ultimate goal were to understand the derivatives dpH/dY, we do not strictly need to do this 
measurement. As discussed previously, by choosing 3 of the 6 possible ratios: dpH/dE, dpH/d(1/R), 
dpH/dμK, dE/d(1/R), dE/dμK, or d(1/R)/dμK—so long as all 4 variables are included—we can solve for 
the other three ratios.  

 

Engineering relative stability in four dimensions 

 With the full four-dimensional Clausius-Clapeyron relation from Table 4, we can make holistic 
assessments on how to engineer relative materials stability along four thermodynamic axes dimensions. 
From the perspective of an acid-stable manganese oxide catalyst, there are two primary considerations: 
First, the material should be the equilibrium phase under operation conditions, which can be affected 
by all four variables E, pH, 1/R and μK. The second design consideration is from the perspective of 
acid-stability, where the phase boundary between the solid compound and Mn2+ should have a dpH/dY 
as negative as possible, for all considered intensive variables.  

 From these considerations, and from the manganese oxides in our dataset, the best acid-stable 
manganese oxide phase should be birnessite δ-KxMnO2. Of all the possible manganese oxide phases, 
δ-MnO2 has the lowest surface energy due to its easily exfoliable 2D layered structure. This low surface 
energy means that the acid stability of δ-MnO2 is least affected when increasing the surface area to 
volume ratio, for example by making low-dimensional nanoscale catalysts. From a functional 
perspective, catalysts rely on high surface area to volume ratios to maximize catalytic area, and δ-
MnO2 solubility increases the least at the nanoscale, compared to the other candidate MnOx phases.   

 Moreover, under a high aqueous concentration of K+ ions, both α-MnO2 and δ-MnO2 can 
favorably intercalate K+ and reduce their bulk free-energies, which further increases their acid stability. 
Although dpH/dμK+ is higher for α-MnO2 than δ-MnO2, α-MnO2 is only stable in a narrow [K+] 
concentration, whereas at higher [K+] concentrations δ-MnO2 is the stable phase. Therefore, it is more 
robust to simply use a high excess concentration of [K+] to stabilize the δ-MnO2 polymorph, which 
increases the reliability and operational stability of this functional compound.  

  



Three-, Four- and Five-Phase Coexistence 

 Gibbs’ prediction of the triple-point on the temperature-pressure phase diagram; where solid, 
liquid and gas all coexist simultaneously; played a historical role in the adoption and establishment of 
chemical thermodynamics45,46. On higher-dimensional phase diagrams, three-phase coexistence is not 
only common, but an even greater number of possible coexisting phases is possible.  

Designing conditions for multi-phase coexistence is promising in various functional devices. 
For example, photoelectrochemical water splitting47, solid-state lithium-ion batteries48, core-shell 
nanoparticle architectures49 all rely on composite materials with hierarchical structures where there are 
multiple phases interacting with one another. Finding thermodynamic conditions for multiphase 
heterogeneous equilibrium can establish the long-term operational stability of such devices, which may 
otherwise degrade by undesired chemical reactions. In technologies that rely on phase transitions, such 
as multiferroric switching materials for transducers and information storage, finding a high-
dimensional phase coexistence point may enable switching between more than two-states,50 which 
could result in exciting new materials functionality.51  

To illustrate 3- and 4-phase coexistence, we begin by analyzing Figure 5d as a representative 
3D phase diagram. Here, with a fixed redox potential, Gibbs’ Phase Rule is effectively the same as a 
diagram with just 3 intensive axes. In this case, two-phase coexistence is represented by 2D planes. 
The intersection of two planes (say, α+β and β+γ) produces a three-phase coexistence line (α + β + γ). 
The intersection of two three-phase coexistence lines then leads to a 4-phase coexistence point.  

However, Figure 5d is not a 3D phase diagram, but rather, is a 3D slice of a 4D phase diagram 
at a fixed redox potential. When we vary the value of the redox potential slice, the 4-phase coexistence 
point moves in the pH, 1/R and μK directions; this represents a 1D line on the 4D phase diagram. An 
animation of the 4D phase diagram is provided in Supplementary Movie 1, where we use time to 
illustrate the fourth dimension. There is one special point in 4D space, where the 4D line terminates in 
conjunction with another 4D coexistence line. At this specific vertex, there is 5-phase coexistence. We 
can in fact visualize this special point by finding the precise redox potential where this 5-phase 
coexistence happens, which is at E = 0.513 V, which is the condition illustrated in Figure 4d. Therefore, 
the visualized 4D phase coexistence point on Figure 5d is in fact also a 5-phase coexistence point.  

In Table 5, we provide explicit conditions for this 3-, 4- and 5-phase coexistence. These 
conditions are represented as vertices in 4D space. The 2-dimensional 3-phase coexistence boundary 
is fully defined by 3 vertices; and is spanned by any two of the 1D vectors that connect these 3 vertices. 
Similarly, the 1-dimensional 4-phase coexistence line is given by 2 vertices, and the 5-phase 
coexistence point is simply provided by its coordinates in 4D space.  

  



Table 5. Three vertices of 3-phase coexistence among α-K0.11MnO1.94, δ-K0.21MnO1.87 and Mn2+. Two vertices of 4-
phase coexistence among β-MnO2, α-K0.11MnO1.94, δ-K0.21MnO1.87 and Mn2+. One vertex of 5-phase coexistence among 
β-MnO2, α-K0.11MnO1.94,δ-K0.21MnO1.87, Mn2+ and γ-MnOOH. 

 pH 𝝁K E 1/R 

Three-phase coexistence 
Mn2+ +α-K0.11MnO1.94 + 

δ-K0.21MnO1.87 

0 4.353 -1.120 0 

6.801 -4.906 0.323 0 

7.368 -6.763 0.513 0.211 

Four-phase coexistence 
β-MnO2 + α-K0.11MnO1.94 + 
δ-K0.21MnO1.87 + Mn2+ 

-1.394 -6.170 1.513 0.234 

6.680 -6.732 0.553 0.222 

Five-phase coexistence 
β-MnO2 + α-K0.11MnO1.94 + δ-

K0.21MnO1.87 + Mn2+ + α-MnOOH 
7.368 -6.763 0.513 0.211 

 

  



Conclusions 

In Part I and Part II of this three-part series, we presented methods to construct high-
dimensional phase diagrams, first with axes of extensive variables in Part I, and then with axes of 
intensive variables in Part II. However, since high-dimensional objects are so far removed from our 
everyday experience, these phase diagram can be difficult to navigate even when they are constructed. 
It can also be laborious and expensive to build high-dimensional phase diagrams in full, as for each 
axis we need all the thermochemical properties of each phase.  

Our goal in Part III was to explore more the properties of phase boundaries, which again, are 
the key geometric objects on a phase diagram. Importantly, the gradient of a phase boundary is enough 
to evaluate relative stability, such that one does not necessarily need to characterize all the 
thermochemical data in a system. This transforms us from a ‘thermodynamic assessment’ process, 
where we construct the full phase diagram at once, to a more flexible framework that is quicker to 
implement in real-world engineering situations. One only has to characterize the experimentally-
obtained phase, and then use concepts of relative stability to shift the applied experimental conditions 
towards the direction of the phase we desire. As more undesired phases are observed, one can 
iteratively build towards a full description of the high-dimensional phase boundaries between a target 
phase and all its competing phases. This offers a practical (and practicable) pathway to optimize the 
synthesis or operation conditions of target functional materials.  

We conclude this three-part series by re-iterating Gibbs’ first sentence in thermodynamics: 
“Although geometrical representations of propositions in the thermodynamics of fluids are in general 
use, and have done good service in disseminating clear notions in this science, yet they have by no 
means received the extension in respect to variety and generality of which they are capable.” Despite 
a rich 150-year-old history, equilibrium thermodynamics still has many exciting opportunities for 
fundamental development.  

Altogether, this three-part series provides a foundation to construct, navigate, and interpret new 
varieties of phase diagrams, with thermodynamic axes beyond temperature, pressure and composition, 
with as many axes as needed to capture all the essential physics of the thermodynamic system. As is 
often the case with thermodynamics, it is not strictly necessary to have perfect thermochemical data 
before we can derive meaningful scientific insights, or formulate promising engineering decisions. 
Most importantly, one needs a robust understanding of the geometric structure of thermodynamics. If 
one can visualize and anticipate the underlying geometry of free energy surfaces, as well as the 
conditions of heterogeneous equilibrium, we will altogether eliminate confusion and strengthen our 
intuition for materials design. Hopefully, this will enable us to better exercise our creativity to design 
the complex functional materials that drive modern technology.  



Code Availability 

All code for analyzing and visualizing high dimensional Pourbaix diagrams and Clausius Clapeyron 
relations can be found on Github at the following link:  

https://github.com/dd-debug/chemical_potential_diagram_and_convex_hull_and_pourbaix_diagram 

The link includes a readme, tutorial example files, installation guide, Python package requirements, and 
instructions for use.  
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SI1. Inferring missing thermochemical data with the Clausius-Clapeyron Relation 

Gathering thermochemical data, either by computation or experiment, is always costly. 
However, we can often infer missing thermochemical data so long as one has enough information to 
fully constrain all relevant free-energy surfaces. For example, taking the T-P-H phase diagram of 
manuscript Figure 3, if we have already measured ∂H/∂P and ∂T/∂P then we can directly infer ∂H/∂T. 
Note that for clarity we have omitted the full mathematical notation, but each of these partial 
derivatives is evaluated with all other variables held constant.  

An exciting result emerges for two-phase coexistence in higher dimensions, where the amount 
of relative information needed to fully define the gradient of a high-dimensional phase boundary 
diminishes combinatorically. For any k-dimensional phase boundary, k number of 1D Clausius-
Clapeyron vectors are needed to span the phase boundary. However, the number of possible ∂Y1/∂Y2 
relations increases as dC2. For example, on a 4D phase diagram, the phase boundary for 2-phase 
coexistence is 3-dimensional, and requires 3 spanning Clausius-Clapeyron vectors. However, there are 
6 combinations of ∂Y1/∂Y2 that can be measured {A/B, A/C, A/D, B/C, B/D, C/D}, and the 
measurement of any 3 ratios that contain all 4 variables constrains the entire phase boundary. Table 
S2 extends this idea to higher dimensions, and shows the somewhat counterintuitive result that the 
higher dimensional the phase boundary, the fewer of the available individual Clausius-Clapeyron 
relations that need be measured to fully define the two-phase boundary. This approach is especially 
valuable when some of the partial derivatives are difficult to experimentally measure for some reason 
or another.  

Table S2: Relative decrease in number of Clausius-Clapeyron measurements needed to define a two-
phase phase boundary 

Dimension of Phase 
Boundary 

Minimum ∂Y1/∂Y2 

measurements needed 
Possible ∂Y1/∂Y2 
measurements  

Fraction of required 
derivatives 

1 1 1 100% 

2 2 3 66% 

3 3 6 50% 

4 4 10 40% 

5 5 15 33% 

6 6 21 29% 

 

Not only can the generalized Clausius-Clapeyron relation be used to calculate high-
dimensional phase boundaries from extensive material properties—it can also be used to extract 
difficult-to-measure extensive material properties from measured high-dimensional phase boundaries.  
However, it is important to note that even if we have the gradient of the plane and the molar extensive 
variables of one phase, we cannot directly infer all of the molar extensive variables of the other phase 
simultaneously. This can be shown from a matrix equation Ax = B:  
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      Eq. 7 

This matrix equation has a unique solution if and only if rank(A) = n, where n is number of elements 
in x. If, on the other hand, the determinant of A is zero, then A is singular and there are linearly 
dependent columns of matrix A. The determinant of matrix A in Eq. 7 is 0, therefore Eq. 7 does not 
have a unique solution for Sγ, Vγ, Mγ.  

Therefore, to calculate the molar extensive quantities of the γ phase, we need (at least) one 
initial value from any of Sγ, Vγ, Mγ; after which the system is fully constrained and we can calculate the 
remaining two molar extensive quantities. This rank analysis can be generally extended to high-
dimensions as well.  

Consistent with the long-standing tradition of experimental classical thermodynamics, this 
generalized Clausius-Clapeyron formulation thus presents myriad opportunities to leverage 
combinations of readily measurable extensive and intensive thermodynamic data to infer the values of 
less-accessible quantities of both categories. Future work may explore the combinatorial limits of these 
options, to great potential value to the modern experimentalist. 

  



SI2. Examples of Cartesian representation of Clausius-Clapeyron relationships 

The Cartesian representation of the generalized Clausius-Clapeyron relationship helps 
determine how one natural variable will change in relation to others in situations of multi-phase 
coexistence and in higher dimensions. In our manuscript, we demonstrate the coexistence of 1 to 5 
phases within the pH-E-1/R-μK 4D Pourbaix diagram. All calculations are conducted using this 
Cartesian form. One of the key advantages of employing the Clausius-Clapeyron equation in this form 
is our ability to precisely calculate the dynamic relationships between different natural variables. By 
utilizing the materials' formation energies and extensive molar quantities, we are equipped to compute 
changes in an intensive natural variable relative to others under varying conditions. 

SI2.1. Single phase 

As explored in Part II of this three-part series on high-dimensional phase diagram papers, each 
single phase is characterized through a Legendre transformation, which is resolved by the intersection 
of half-spaces. In the manuscript, we present the Pourbaix potential (Ψ) for each single phase, in 
relation to the four natural variables: pH, electrode potential (E), inverse temperature (1/R), and the 
chemical potential of potassium (μK). Within the pH-E-1/R-μK space, each phase is represented as a 
four-dimensional (4D) polytope: 
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SI2.2. 2-phase coexistence 

A 2-phase coexistence region in a 3D space is a 2D surface shared by two 3D polytopes, as 
shown in the chemical potential diagram of Figure S2. Similarly, a 2-phase coexistence region in a 4D 
space is a 3D interface shared by two 4D polytopes. Just as we are accustomed to presenting the 
equation of a 2D plane (ax + by + cz + d = 0) within a 3D space (defined by the coordinates x, y, and 
z), we can represent a 3D 2-phase coexistence region within a 4D space through a linear combination 
of the four natural variables:  

H 1/

1
[ ] H [ ] [ ] [ ] [ ] 0

Kp K E RX p X X E X C
R                                                       Eq. 1 

where [XpH]α-β, [XμK]α-β, [XE]α-β, [X1/R]α-β, [C]α-β represent coefficient vectors – the conjugated variables 
of the four natural variables and a constant, their physical form is represented in manuscript Table 4. 
This approach simplifies the complex task of delineating phase coexistence in higher-dimensional 
spaces, making it more accessible for analysis and interpretation. 

Thus, a vector of coefficients [XpH]α-β, [XμK]α-β, [XE]α-β, [X1/R]α-β, [C]α-β] can represent a 3D  
2-phase coexistence in the 4D pH-E-1/R-μK space. Their values can be calculated by employing the 
condition Ψα = Ψβ at the α-β phase coexistence. Consequently, the partial derivative between any two 
natural variables can be expressed as the ratio of the negative reciprocal of the corresponding two 

coefficients, such as H/ H [ ] / [ ]
KK pp X X          . 



 
Figure S1. Chemical potential diagram of BaMnN2, Mn2N and MnN. The red dashed line represents the 3-phase 
coexistence region. The shared planes by two single phases are the 2-phase coexistence regions. 

  



SI2.2. 3-phase coexistence 

For a ternary system in a 3D space, a 3-phase coexistence region is 1D, as shown as the red 
dashed line in Figure S1. Mathematically, a 2D 2-phase coexistence plane in this 3D space is A∙μBa + 
B∙μMn + C∙μN + D = 0. We can use the Eq.2 and Eq.3 to represent the phase coexistence between 
BaMnN2 + Mn2N and MnN + Mn2N, respectively. 

[XμBa]1∙μBa + [XμMn]1∙μMn + [XμN]1∙μN + [C]1 = 0                                                                               Eq. 2 

[XμBa]2∙μBa + [XμMn]2∙μMn + [XμN]2 ∙μN + [C]2 = 0                                                                               Eq. 3 

A 1D 3-phase coexistence line, is the intersection of two 2D 2-phase coexistence planes. So, the 
BaMnN2 + Mn2N + MnN 3-phase coexistence line must simultaneously satisfy Eq.2 and Eq.3 
simultaneously. Here, any variable can be eliminated by forming a linear combination of Eq.2 and 
Eq.3. For instance, by multiplying Eq.3 by -[XμN]1/[XμN]2 and adding it to Eq.2, we establish a linear 
relationship between μBa and μMn. Therefore, a line in a 3D space indicates that any two among the 
three natural variables share a linear relationship. 

 Similar statements are also valid for the 4D pH-E-1/R-μK space. Just like a 3-phase coexistence 
region in a 3D space is a 1D line; a 3-phase coexistence region in a 4D space is a 2D plane – the 
intersection of two 3D 2-phase coexistence polytopes (Eq.4 and Eq.5). 

H 1 1 1 1/ 1 1

1
[ ] H [ ] [ ] [ ] [ ] 0

Kp K E RX p X X E X C
R                                                                         Eq. 4 

H 2 2 2 1/ 2 2

1
[ ] H [ ] [ ] [ ] [ ] 0

Kp K E RX p X X E X C
R                                                                       Eq. 5 

Again, any variable can be eliminated by linear combination of Eq.4 and Eq.5.Therefore, a 2D plane 
in a 4D space means any three among four natural variables has a linear relationship, which can be 
expressed by: 

H 1 1 1 1

H 2 2 1/ 2 2

H 3 1/ 3 3 3

1/ 4 4 4 4

[ ] H [ ] [ ] [ ] 0

1[ ] H [ ] [ ] [ ] 0

1[ ] H [ ] [ ] [ ] 0

1[ ] [ ] [ ] [ ] 0
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K
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p K E

p K R

p R E

R K E

X p X X E C

X p X X CR
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X X X E CR













      

      

      

      

                                                                              Eq. 6 

Eq. 6 gives us four sets of coefficient vectors, where an example for Mn2++α-K0.11MnO1.94+δ-
K0.21MnO1.87 3-phase coexistence is shown in manuscript Table S1. From a Clausius-Clapeyron 
perspective, the four sets of coefficients can help us determine the change of an intensive variable as 
the change of another intensive variable under different fixed conditions. For example, under a fixed 

redox potential E, the relationship of pH and μK is H 1 1/ H [ ] / [ ]
KK E pp X X      by Eq 6.1. And if 

particle radius R is assumed fixed, H 2 2/ H [ ] / [ ]
KK R pp X X      by Eq 6.2. And if R and E are 

both fixed, based on Eq 6.3 and 6.4 pH and μK are fixed too. This means there are only two degrees of 
freedom for a 3-phase coexistence in a 4D phase diagram. 



Table S1. Coefficient vectors of 3-phase coexistence among Mn2+, α-K0.11MnO1.94 and δ-K0.21MnO1.87. 

 A B C D F 

Mn2+ + 
α-K0.11MnO1.94 + 
δ-K0.21MnO1.87 

0 0.058 -0.040 0.506 0.297 

-0.120 0 -1.023 1.209 1.099 

0.005 0.060 0 0.478 0.265 

0.086 0.099 0.669 0 -0.280 

 

SI2.3. 4-phase and 5-phase coexistence 

Similarly, a 4-phase (α, β, γ, δ) coexistence region is the intersection of three 3D 2-phase (α-
β, β-γ, γ-δ) coexistence regions, which is a line. So, any two variables can be eliminated by linear 
combination of three 2-phase equations (Eq.1). Therefore, a 1D line in a 4D space means any two 
among four natural variables has a linear relationship. This requires 2C4=6 equations to represent this 
line. But we only need two vertices to represent this 4-phase coexistence line by using parametric 
form, as shown as manuscript Table 5. 

 For a 5-phase coexistence region, it is a 0D point. Any three variables can be eliminated by 
linear combination of four 2-phase equations (Eq.1). It means any natural variables has a fixed value 
(the coefficients of other variables are 0). 

  



Table S3. Bulk Formation Energies, Surface Energies, Shape factors, Volume/Metal of K-Mn-O-H 
Phases 
Phase Formation energy Surface energy Shape factor Volume/metal 

Unit eV/ formula J/m2 -- Å3/Mn 

R-MnO2 -4.783 1.33 3.53 29.7 

α-K0.0625MnO2 -5.03 1.19 5.35 33.8 

α-K0.11MnO1.94 -5.6 1.19 5.35 33.8 

α-K0.125MnO2 -5.364 1.19 5.35 33.8 

α-K0.166MnO2 -5.52 1.19 5.35 33.8 

α-K0.25MnO2 -5.764 1.19 5.35 33.8 

α-Mn2O3 -9.132 1.19 5.35 33.8 

α-MnO2 -4.767 1.19 5.35 33.8 

α-MnOOH -5.763 1.19 5.35 33.8 

β-MnO2 -4.837 1.54 3.85 27.5 

β-MnOOH -5.629 1.54 3.85 27.5 

δ-K0.21MnO1.87 -6.02 0.14 9.79 44.4 

δ-K0.33MnO2 -5.988 0.14 9.79 44.4 

δ-K0.5MnO2 -6.469 0.14 9.79 44.4 

δ-K0.75MnO2 -6.894 0.14 9.79 44.4 

δ-MnO2 -4.558 0.14 9.79 44.4 

γ-MnOOH -5.964 0.84 6.09 33.5 

γ-MnO2 -4.787 0.84 6.09 33.5 

Mn 0 -- -- -- 

MnO -3.762 -- -- -- 

Mn2O3 -9.132 -- -- -- 

Mn3O4 -13.346 1.43 5.44 26.2 

Mn(OH)2 -6.198 0.47 5.69 43.5 

KMnO2 -7.313 -- -- -- 

Mn2+ (aq) -2.363 -- -- -- 

MnO4
- (aq) -4.634 -- -- -- 

K+ (aq) -2.926 -- -- -- 



Mn3+ (aq) -0.85 -- -- -- 

MnO4
2- (aq) -5.222 -- -- -- 

Mn(OH)3
- (aq) -7.714 -- -- -- 

MnOH+ (aq) -4.198 -- -- -- 

HMnO2
- (aq) -5.243 -- -- -- 
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