
Automated Attack Synthesis for
Constant Product Market Makers

Sujin Han
KAIST

Daejeon, Korea
sujinhan@kaist.ac.kr

Jinseo Kim
KAIST

Daejeon, Korea
jinseo@kaist.ac.kr

Sung-Ju Lee
KAIST

Daejeon, Korea
profsj@kaist.ac.kr

Insu Yun
KAIST

Daejeon, Korea
insuyun@kaist.ac.kr

Abstract—Decentralized Finance enables many novel applica-
tions that were impossible in traditional finances. However, it also
introduces new types of vulnerabilities, such as composability
bugs. The composability bugs refer to issues that lead to erro-
neous behaviors when multiple smart contracts operate together.
One typical example of composability bugs is those between token
contracts and Constant Product Market Makers (CPMM), the
most widely used model for Decentralized Exchanges. Since 2022,
23 exploits of such kind have resulted in a total loss of 2.2M USD.
BlockSec, a smart contract auditing company, once reported that
138 exploits of such kind occurred just in February 2023.

We propose CPMM-Exploiter , which automatically detects
and generates end-to-end exploits for CPMM composability
bugs. Generating such end-to-end exploits is challenging due to
the large search space of multiple contracts and various fees
involved with financial services. To tackle this, we investigated
real-world exploits regarding these vulnerabilities and identified
that they arise due to violating two safety invariants. Based
on this observation, we implemented CPMM-Exploiter , a new
grammar-based fuzzer targeting the detection of these bugs.
CPMM-Exploiter uses fuzzing to find transactions that break
the invariants. It then refines these transactions to make them
profitable for the attacker. We evaluated CPMM-Exploiter on two
real-world exploit datasets. CPMM-Exploiter obtained recalls
of 0.91 and 0.89, respectively, while five baselines achieved
maximum recalls of 0.36 and 0.58, respectively. We further
evaluated CPMM-Exploiter by running it on the latest blocks of
the Ethereum and Binance networks. It successfully generated
18 new exploits, which can result in 12.9K USD profit in total.

Index Terms—smart contract, security, composability, fuzzing

I. INTRODUCTION

Decentralized Finance (DeFi) provides new financial ser-
vices using blockchain and smart contracts. These services use
tokens, which are digital assets beyond native currencies on
the blockchain. A key financial service smart contracts offer
is Decentralized Exchanges (DEX). Unlike Centralized Ex-
changes (CEX), DEXes enable users to swap one asset for an-
other without a central authority. Through DEXes, blockchain
users can freely convert their assets, which determines the
pricing of assets and provides fluidity in the blockchain
economy. To enable swapping without an intermediary, most
DEXes adopt the Constant Product Market Maker (CPMM)
model to automatically determine appropriate exchange rates.
As of June 2023, approximately 77% of DEXes adopt the
Uniswap protocol, which implements the CPMM model [1]

This usefulness of DeFi is often threatened by new types
of vulnerabilities, one of which is composability bugs. Com-
posability bugs refer to issues that lead to erroneous behaviors
when multiple smart contracts operate together. This concept
has been formulated by Babel et al. [2], who defined economic
composability of smart contracts in DeFi. Economic compos-
ability is a property of a system where adding a new contract,
Cnew, to the existing system does not result in negative
economic impacts. If economic composability is violated,
vulnerabilities in a specific contract can potentially affect the
entire system. This paper examines vulnerabilities that cause
such violations in the context of token contracts and DEXes
that follow the CPMM model (i.e., CPMM composability
bugs). Recently, this type of vulnerability has been frequently
exploited. For instance, on January 20, 2023, an attacker
leveraged BRA token’s flawed tax mechanism to steal around
225K USD worth of digital assets from a DEX trading BRA
tokens [3]. Moreover, BlockSec, which is a renowned security
auditing company, reported 138 attacks of such kind in just
the month of February 2023.

Several tools have been proposed to detect multi-contract
bugs similar to CPMM composability bugs, but they are inef-
fective at detecting CPMM composability bugs. For example,
Echidna [4], one of the most popular fuzzing tools, supports
transactions involving multiple contracts. ItyFuzz [5] utilizes
snapshots to efficiently explore the large search space com-
posed of multiple contracts. These tools have the advantage
of being able to detect various forms of vulnerabilities, but
they are not suitable for targeting CPMM composability bugs
on a large scale. Due to the diversity of financial models in
DeFi, distinguishing signs of CPMM composability bugs and
intended behaviors is challenging. For example, a decrease
in DEX token balance is a common sign of a CPMM com-
posability bug. At the same time, numerous tokens adopt the
deflationary model that constantly decreases the total supply
of tokens. This behavior may be extended to automatically
decrease the DEX token balance. However, this does not imply
that all deflationary tokens are exploitable because profitability
depends on many other factors, such as the attacker’s token
balance relative to DEX’s and taxes charged to token transfers.
Hence, to precisely detect CPMM composability bugs, tangible
evidence (i.e., profit-generating transaction) is necessary, but
fuzzers running without knowledge of token flow are unlikely

ar
X

iv
:2

40
4.

05
29

7v
2

 [
cs

.C
R

]
 2

5
A

pr
 2

02
4

to generate such transactions given a tight budget.
To address these limitations, we propose a two-step ap-

proach to detect CPMM composability bugs. Analyzing exist-
ing vulnerabilities, we discovered that CPMM composability
bugs may occur when two safety invariants are broken. If
these invariants are violated, attackers have an opportunity to
steal assets from CPMM DEXes. Hence, instead of directly
detecting vulnerabilities, our approach identifies violations of
invariants and finds ways to abuse these violations for profit,
ultimately leading to vulnerability detection.

Based on this insight, we design and implement CPMM-
Exploiter to detect CPMM composability bugs and auto-
matically synthesize exploits for the detected vulnerabilities.
CPMM-Exploiter works as follows. First, CPMM-Exploiter
utilizes grammar-based fuzzing to find a transaction that
breaks the safety invariants. Then, CPMM-Exploiter refines
the transaction to make it profitable. Through this process,
CPMM-Exploiter can eliminate false positives by avoiding
intended violations that do not lead to token leaks. According
to our evaluation, CPMM-Exploiter outperformed five base-
lines in detecting CPMM composability bugs. On two real-
world exploit datasets, CPMM-Exploiter obtained recalls of
0.91 and 0.89, while baselines achieved recalls of 0.36 and
0.58. Furthermore, to demonstrate the effectiveness of CPMM-
Exploiter in a large-scale setting, we ran CPMM-Exploiter on
the latest blocks of the Ethereum and Binance networks and
discovered 18 transactions that are profitable, which can result
in 12.9K USD total profit.

To summarize, we make the following contributions:
• We formalize composability bugs between DEXes fol-

lowing the CPMM model and token smart contracts. We
identify two safety invariants that, when broken, allow an
attacker to steal funds from DEXes.

• We propose CPMM-Exploiter , a two-step framework that
detects CPMM composability bugs and generates exploits
based on detected bugs.

• We evaluate CPMM-Exploiter on public datasets and
compare it with five baseline tools: Echidna [4], Ity-
fuzz [5], DeFiTainter [6], Slither [7], and Mythril [8]. In
addition, we demonstrate the applicability of our tool in
the wild by running it on Ethereum and Binance chains.

II. BACKGROUND

A. ERC20 Tokens

Tokens are digital assets beyond native currencies on the
blockchain. Among these tokens, the most commonly used,
fungible tokens are referred to as ERC20 tokens as they are
originally defined through the Ethereum Request for Com-
ments 20 (ERC20).1 Native currencies (e.g., ETH in Ethereum
or BNB in Binance) can also utilize ERC20 services through
compatible tokens, such as Wrapped Ethereum (WETH) or
Wrapped Binance Coin (WBNB).

1Although each blockchain may refer to them differently according to their
protocol (e.g., BEP20 or TRC20), we collectively call them as ERC20 Tokens
in this paper.

33 Y Tokens Out

40 X Tokens In

33 Y Tokens In

40 X Tokens Out

A

B B

A

DEX X Token Balance DEX X Token Balance

D
EX

 Y
 T

ok
en

 B
al

an
ce

D
EX

 Y
 T

ok
en

 B
al

an
ce

Fig. 1. Example swap operation in a CPMM with x ∗ y = 1000.

The ERC20 standard requires a token smart contract to im-
plement a set of Application Binary Interface (ABI) consisting
of 9 functions and 2 events. These functions are necessary for
basic operations of tokens, such as transfer(address,
value) and balanceOf(address). Such a uniform in-
terface allows developers to build financial services, such as
DEXes, for a countless number of tokens without having to
write custom code for each token. This design increases the
flexibility of ERC20 token implementation; however, it also
poses the risk of potentially violating various invariants within
the service, leading to security vulnerabilities.

B. Constant Product Market Maker Model

The Constant Product Market Maker (CPMM) model is
adopted by DEXes to automatically swap one ERC20 token
for another ERC20 token at an appropriate exchange rate. The
CPMM model states that, given a DEX holding x amount of
X tokens and y amount of Y tokens, the product of x and y
should remain the same (i.e., x×y = k). When a user requests
to swap ∆x amount of X tokens for Y tokens, the amount of
Y tokens the DEX returns, ∆y, is calculated with the equation
(x + ∆x) × (y − ∆y) = k. Thus, any swap operation in a
CPMM DEX can be represented as a movement along the
curve x× y = k as shown in Figure 1.

The majority of DEXes today charge a small percent fee for
each exchange to provide profit for the liquidity providers who
deposited the initial x amount of X tokens and y amount of Y
tokens. For example, the Uniswap protocol, which is the most
widely used DEX, charges a 0.3% fee for each exchange. As
a result, most DEXes can be said to have adopted a modified
version of the CPMM model, where the product of two assets
slightly increases after each exchange (i.e., x× y ≥ k).

III. CPMM COMPOSABILITY BUGS

A. Terminology

Notation. Assume we have two ERC20 tokens, X token and
Y token, and a DEX following the CPMM model for the two
tokens, denoted by D. The quantity of X token and Y token
in D are denoted with x and y, respectively.
Profitability. We define profitability in terms of gaining token
X in one transaction. If an attacker begins with an initial
balance of X tokens, a transaction that results in an increased
balance of X tokens for the attacker without any additional
financial input is a profitable transaction. Furthermore, we

33 Y Tokens In

48 X Tokens Out

33 Y Tokens Out

40 X Tokens In

A

B
B

A’

B’

DEX X Token Balance DEX X Token Balance

D
EX

 Y
 T

ok
en

 B
al

an
ce

D
EX

 Y
 T

ok
en

 B
al

an
ce

Fig. 2. Example attack scenario where the attacker is able to decrease Y
token balance of the DEX.

limit our scope to call sequences that can be executed in one
transaction to exclude the impact of interest accumulation and
other market players. In a typical attack scenario, X token
would be a coin with relatively stable value, such as the native
currency (e.g., WETH or WBNB) or stablecoins (e.g., USDT).
CPMM composability bugs. We call a bug in the Y token
contract that enables an attacker to construct a profitable
transaction (i.e., call sequences that extract X tokens) from the
system composed of X token, Y token, and D as a CPMM
composability bug. For example, as demonstrated in Figure 1,
if D has x = 20 and y = 50 (x × y = 1000) and a user
requests to swap 40 X tokens for Y tokens, the appropriate
amount of Y tokens D should return according to the CPMM
is 33. Disregarding other market players and fees, if the user
immediately requests to swap the 33 Y tokens the user just
obtained for X tokens, then D should return 40 X tokens.
However, if the attacker is able to decrease y or increase one’s
own balance of Y tokens without cost, then the attacker is
able to gain more than the expected 40 X tokens as depicted
in Figure 2 and Figure 3. We can say that the additional X
token is illegitimately obtained from the system because the
attacker did not make any financial contributions to the system
other than the initial 40 X tokens. Such vulnerabilities have
been exploited to extract significant portions of DEX token
balances and oftentimes drain the DEX entirely.

B. Type 1: DEX Token Balance Decrease

If an attacker can decrease y without making any payment
(i.e., additional X tokens or liquidity tokens) to D, then the
attacker can effectively alter the product, k, in the constant
product function, x × y = k to a smaller value, effectively
shifting the swap curve inward. An example scenario is shown
in Figure 2. At point B, if the attacker can decrease the Y by
around 8.3, the attacker can decrease k to 500 ((16.7−8.3)×
60 ≈ 500). Since the attacker only decreased y and X remains
the same, the next swap will happen at a point straight below
the previous point on the updated swap curve (i.e., point B′).
The price of the Y token is greater at this point because the
price of the Y token is determined by the ratio between x and
y. Only decreasing y decreases the proportion of y, which
increases the price of Y tokens in D and allows the attacker
to swap the same amount of Y tokens for more X tokens
(i.e., swapping to point A′ instead of point A). Hence, when

33 Y Tokens Out

40 X Tokens In

33 Previously
Obtained Y Tokens In

48 X Tokens Out

30 Y Tokens
Obtained for Free In

A

B B

A

A’

DEX X Token Balance DEX X Token Balance

D
EX

 Y
 T

ok
en

 B
al

an
ce

D
EX

 Y
 T

ok
en

 B
al

an
ce

Fig. 3. Example attack scenario where the attacker is able to increase one’s
own balance of Y tokens.

Invariant 1 is broken, attackers have an opportunity to extract
X tokens owned by D.

Invariant 1 (DEX token balance decrease). Users should not
be able to transfer or burn assets owned by a DEX without
making any payment to the DEX.

Real-world example. For instance, on September 2, 2022, an
attacker exploited a vulnerability in the ShadowFi token to
steal around 1078 BNB, which was worth around 301K USD
at the time of the exploit [9]. The vulnerability was that the
ShaowFi token allowed any user to burn ShadowFi tokens in
the Shadowfi DEX.

C. Type 2: Attacker Token Balance Increase

If an attacker can gain Y tokens without cost, then the
attacker can also gain X tokens without cost through D. An
example scenario is shown in Figure 3. At point B, if the
attacker can increase its own balance of token Y without
making any additional payments, then the attacker can gain
more than the expected amount of X tokens (i.e., swapping
to point A’ instead of point A). Hence, when Invariant 2
is broken, attackers have an opportunity to extract X tokens
owned by D.

Invariant 2 (Attacker token balance increase). Users should
not be able to obtain tokens traded in a DEX without cost.

Real-world example. For example, on January 10, 2023, an
attacker leveraged BRA token’s flawed tax mechanism to steal
around 819 BNB, which was worth around 225K USD at the
time of the exploit [3]. The BRA contract had a bug that
transferred the same tax amount twice, allowing an attacker
to accumulate a large sum of BRA tokens for free.

D. Prevalence of CPMM Composability Bugs

Recently, attackers have frequently exploited CPMM com-
posability bugs to extract considerable amounts of tokens
from DEXes. For example, BlockSec [10], a renowned smart
contract auditing firm, reported that 138 exploits in February
2023 utilized Invariant 1 violation. Furthermore, DeFiHack-
Labs [11], a public exploit replication dataset, reported 23 real-
world exploits that were consequences of either Invariant 1
or Invariant 2 breaking (Table I). The 23 exploits caused a
cumulative loss of 2.2M USD.

TABLE I
CPMM COMPOSABILITY BUG FOUND IN DEFIHACKLABS DATASET.

Vulnerable
Token

Invariant
Broken

Date
of Exploit Reported Loss Reported Loss

in USD

Wdoge 1 2022/04/24 78.6 BNB 30.2K
LPC 2 2022/07/25 45.1K B-USD 45.1K
XST 2 2022/08/10 27.4 ETH 46.2K
Shadowfi 1 2022/09/02 1.08K BNB 300K
PLTD 1 2022/10/18 24.5K B-USD 24.5K
HEALTH 1 2022/10/20 16.6 BNB 4.54K
AES 1 2022/12/07 61.6K B-USD 61.6K
BGLD 1 2022/12/12 8.80 BNB 2.40K
BRA 2 2023/01/10 228K B-USD 228K
Upswing 1 2023/01/18 22.6 ETH 35.6K
ThoreumFi 2 2023/01/19 2.26K BNB 659K
SHEEP 1 2023/02/10 9.54 BNB 2.93K
Starlink 1 2023/02/17 38.4 BNB 11.8K
GPT 1 2023/05/25 155K B-USD 155K
ANCH 2 2023/06/06 199K B-USD 199K
Bamboo 1 2023/07/04 235 BNB 57.6K
ApeDAO 1 2023/07/18 19.2K B-USD 19.2K
BIGFI 1 2023/09/07 30.3K B-USD 30.3K
HCT 1 2023/09/07 30.5 BNB 6.58K
BFC 1 2023/09/09 42.3K B-USD 42.3K
pSeudoEth 2 2023/10/08 1.44 ETH 2.34K
TGBS 1 2024/03/06 377 BNB 154K
GHT 1 2024/03/07 15.4 ETH 58.6K
Note. BSC-USD was denoted as B-USD.

Generate
Testcases

Execute Testcases
with Invariant Checks

Invariant
Broken?

Generate Testcases
with Repetitions

Execute Testcases

Profit
Generated?

Profit
Generated?

No

Yes

No

Yes

Yes

Find Invariant Violations Build Exploits

Profitable
Transaction

Profitable
Transaction

Input
Token X
Token Y

DEX for X & Y

Not
Vulnerable

Not
Vulnerable

No

Fig. 4. Overall workflow of CPMM-Exploiter .

IV. OVERVIEW

To automatically detect and exploit CPMM composability
bugs, we propose CPMM-Exploiter . In this section, we de-
scribe our goals for CPMM-Exploiter design, the technical
challenges in achieving those goals, and our approach to
address the challenges.

A. Goals

To apply CPMM-Exploiter in the real world, we set the
following goals:
Fully automated. CPMM-Exploiter should automatically gen-
erate exploits for CPMM composability bugs without human
intervention. This is crucial as the number of smart contracts is
increasing rapidly, and manual analysis is not scalable. Many
existing tools detect mere signs of bugs without providing an

end-to-end exploit (e.g., suspicious token balance changes [5]).
Unfortunately, this design requires developers to manually
analyze contracts to confirm vulnerabilities, making them
unscalable and time-consuming.
Efficient. As the number of smart contracts is increasing
rapidly, CPMM-Exploiter should be able to analyze a large
number of contracts in a short time. We set up a goal to analyze
one contract in a few minutes. By doing so, CPMM-Exploiter
can be used to analyze many contracts in all blockchains
within days.
Generic. We aim to make CPMM-Exploiter generic so that
it can be applied to various tokens and DEXes. This is
important because each token implements its own business
logic, and each DEX has its own CPMM implementation.
CPMM-Exploiter should be able to analyze any token and
DEX without any modification.

B. Technical Challenges

Large search space. Several technical challenges exist in
achieving the above goals. Since CPMM composability bugs
are triggered when multiple contracts interact, one must ex-
plore the vast search space composed of them. Moreover, the
stateful nature of smart contracts exacerbates the search space
problem because the same functions may behave differently
based on contract states. Moreover, conditional statements
may depend on states, making argument generation difficult.
At the same time, to generate exploits within a short time
frame, we need to identify and prioritize areas that are highly
likely to contain CPMM composability bugs. However, due
to the diversity in token contract implementation, designing a
suitable guidance strategy is a challenging task.
Complex financial ecosystem. Furthermore, even after iden-
tifying specific issues in the contracts, crafting an end-to-end
exploit poses additional challenges. This is because the exploit
should be profitable, even considering the various fees and
costs attached to financial services. The most representative
example would be the exchange fees imposed by DEXes. Most
DEXes charge a percent fee for every exchange. To construct
an exploit, we need to make its revenue high enough to offset
the fees and costs involved with executing the transaction,
including DEX exchange fees.

C. Scope

CPMM-Exploiter is implemented for smart contracts run-
ning on EVM-based blockchain (e.g., Ethereum and Binance
Smart Chain). Moreover, CPMM-Exploiter aims to steal
ERC20 tokens from Uniswap V2 DEXes, which is the most
popular implementation of the CPMM model. However, we
believe CPMM-Exploiter can be applied to other CPMMs. We
support smart contracts with or without source code. However,
our analysis can be more accurate (e.g., using ABIs) if the
source code is available.

V. DESIGN

In this section, we describe the design of CPMM-Exploiter .

CPMM-Exploiter Testcase Grammar

⟨Transaction⟩ ::= ⟨SwapXY⟩ ⟨Payload⟩ ⟨SwapYX⟩

⟨Payload⟩ ::= ⟨Cycle⟩
| ⟨StateChange⟩
| ⟨Cycle⟩ ⟨StateChange⟩

⟨Cycle⟩ ::= ⟨CycleA⟩
| ⟨CycleB⟩
| ⟨CycleC⟩

⟨CycleA⟩ ::= ⟨CycleA⟩⟨CycleA⟩
| ⟨UserToUser⟩

⟨CycleB⟩ ::= ⟨CycleB⟩⟨CycleB⟩
| ⟨UserToDEX⟩ ⟨DEXToUser⟩

⟨CycleC⟩ ::= ⟨UserToDEX⟩ ⟨CycleD⟩ ⟨DEXToUser⟩

⟨CycleD⟩ ::= ⟨CycleD⟩⟨CycleD⟩
| ⟨DEXToDEX⟩

⟨UserToUser⟩ ::= Y.transfer(this, amount)

⟨UserToDEX⟩ ::= Y.transfer(DEX, amount)

⟨DEXToUser⟩ ::= DEX.skim(this)

⟨DEXToDEX⟩ ::= DEX.skim(DEX)

⟨StateChange⟩ ::= ⟨StateChange⟩⟨StateChange⟩
| DEX.sync()
| Y.burn(amount)
| ...

Fig. 5. CPMM-Exploiter’s grammar represented in Backus-Naur Form.
Repeat rules (marked with bold) are not used for testcase generation in the
first step. They are used for building exploits in the second step.

A. Workflow

The overall workflow of CPMM-Exploiter is illustrated in
Figure 4. CPMM-Exploiter adopts a two-step approach to gen-
erate an exploit based on CPMM composability bugs. In the
first step, CPMM-Exploiter utilizes grammar-based fuzzing to
find a transaction that breaks invariants in section III. For this,
CPMM-Exploiter utilizes contract ABIs if available. If any
transaction results in profit (i.e., exploits), CPMM-Exploiter
terminates early. On the other hand, if CPMM-Exploiter can
only find invariant-breaking transactions, CPMM-Exploiter
proceeds to the second step. In particular, it refines the
invariant-breaking transactions to build an exploit. This step is
necessary to distinguish exploitable invariant violations from
intended ones accompanied by safety measures to protect
DEXes’ assets (e.g., deflationary tokens that decrease balances
of all token holders). To exacerbate the broken invariants,
CPMM-Exploiter repeats segments of the transaction to either
further decrease DEX token balance (breaking Invariant 1)
or to further increase the attacker’s one (breaking Invariant
2). Finally, if a profitable transaction is generated, CPMM-
Exploiter returns the transaction and flags the set of contracts
as vulnerable.

B. Finding Invariant Violations

As a first step, CPMM-Exploiter searches for invariant
violations between given contracts and DEXes. Unfortunately,

it is difficult to find such violations by exploring all possible
functions due to the complexity of DeFi contracts. To address
this, we employ grammar-based fuzzing to explore states
relevant to CPMM composability bugs efficiently. In particular,
we focus on interactions between a target token (Y) and a
DEX, which are the primary causes of CPMM bugs. Figure 5
illustrates the grammar used by CPMM-Exploiter to generate
testcases. At the beginning, CPMM-Exploiter swaps X tokens
(e.g., stablecoins) to the target token Y (<SwapXY>). Then,
CPMM-Exploiter attempts to break invariants by injecting
a payload that consists of cyclic token transfers and state-
changing functions (<Payload>). Finally, CPMM-Exploiter
swaps Y tokens back to X tokens to complete the transaction
(<SwapYX>). In the following, we discuss our intuition be-
hind the grammar and how we use it to find invariant-breaking
transactions.
Cyclic transfers. One of the key components of our payload is
cyclic token transfers. The cyclic token transfers are necessary
to simulate diverse interactions between the attacker and the
DEX, while ensuring that the attacker does not lose any tokens.
In CPMM-Exploiter , we consider three types of cyclic trans-
fers: <CycleA>, <CycleB>, and <CycleC>. <CycleA>
represents a self-transfer in the attacker’s account, <CycleB>
represents an exchange between the attacker and the DEX,
and <CycleC> is similar to <CycleB> but involves a
self-transfer in the DEX’s account. It is worth to note that
DEX.skim(this) returns tokens if the DEX has more
tokens than needed. In a normal scenario, such operations are
meaningless as they circulate tokens between the attacker and
the DEX. However, if the target token Y implements transfer-
related features (e.g., deflationary mechanisms), this can lead
to invariant violations.
State-changing functions. In addition to cyclic transfers, we
consider state-changing functions that can alter the state of the
DEX or Y. There could be various state-changing functions in
the DEX and Y contracts. One of the most critical functions is
DEX.sync(), which updates the k value in the CPMM curve
(i.e., x × y = k). Another example is burn-related functions
in the Y contract, which can decrease the total supply of Y
tokens. We also consider other state-changing functions in the
Y contract that do not take arguments. Such functions are
often used for various purposes, such as updating internal state
variables or providing bonuses to token owners.
Generation. Given Y contract ABI, CPMM-Exploiter derives
all possible testcases by following the grammar in Figure 5.
It is worth noting that CPMM-Exploiter does not perform
repetition at this point to first survey the large space. For
amount, CPMM-Exploiter randomly fills them with various
values, including zero, the attacker’s balance, and the DEX’s
balance. To start, the initial X token of the attacker is set to
an amount that can swap out a random value between 1% and
99% of the DEX’s Y token balance.

C. Refining to Build Exploits

Even if we can find invariant-breaking transactions, it
does not always imply a CPMM composability bug. Since

TABLE II
LOC TO IMPLEMENT CPMM-Exploiter .

Components Lines of Code

Grammar-based fuzzing 2,613 Loc of Rust
State Tracking 893 LoC of Rust

Solidity Execution Environment 1,064 LoC of Solidity

each token adopts a unique economic model, it may have
intentionally broken invariants with mitigation measures to
protect assets in DEX. To verify whether the detected violation
is exploitable, CPMM-Exploiter attempts to synthesize an
exploit (i.e., profitable transaction) with the invariant-breaking
transaction found earlier.

To build an exploit, CPMM-Exploiter aims to increase
the exploit revenue by repeating call sequences. Such repeat-
able segments are <CycleA>, <CycleB>, <CycleD>, and
<StateChange> in Figure 5. For Invariant 1, we need to
decrease the DEX token balance of Y to increase its price in
DEX. For Invariant 2, we need to earn more Y tokens without
cost to gain more X tokens. Repeating invariant-breaking calls
can exacerbate the broken invariant, increasing exploit revenue
and chances to build a profitable transaction.

D. State Tracking

CPMM-Exploiter executes the generated testcases on a
simulated on-chain environment. We modified the EVM back-
end to keep track of important state variables, such as the
current token balances of the attacker and the DEX. These
values are used for two purposes. First, they replace arguments
in the testcases as such variables can change over time (e.g.,
token balances). Second, they are also used to determine
whether safety invariants from section III have been broken
(i.e., whether DEX Y token balance decreased or attacker Y
token balance increased).

VI. IMPLEMENTATION

CPMM-Exploiter was built on top of Foundry [12] and
relies on Foundry to set up and fetch on-chain data necessary
for simulated on-chain testing. The LoC to implement CPMM-
Exploiter is shown in Table II.

Most token exchanges (i.e., <SwapXY> and <SwapYX>)
are handled through the relevant Uniswap Router, instead
of directly exchanging through the DEX, because direct ex-
changes through DEX require calculation of appropriate input
and output amounts before the exchange. However, tokens that
take exclusive fees (i.e., fees outside of the transfer amount)
are incompatible with Uniswap Routers. Thus, when token
exchange through Uniswap V2 Router fails, CPMM-Exploiter
runs another simulated environment to calculate the fee percent
and utilizes the fee information to directly swap tokens by
calculating the correct input and output quantities.

VII. EVALUATION

To evaluate CPMM-Exploiter , we answer the following
research questions:

• RQ1: How effective is CPMM-Exploiter at detecting
CPMM composability bugs compared to existing tools?

• RQ2: How efficient is CPMM-Exploiter at detecting
CPMM composability bugs compared to existing tools?

• RQ3: How significant are the techniques applied to
CPMM-Exploiter?

• RQ4: How effective is CPMM-Exploiter at detecting
undiscovered CPMM composability bugs in the real-
world?

A. Experimental Setup

1) Baseline Selection: Among many existing tools for
smart contract analysis, we selected five tools as baselines
for the evaluation: ItyFuzz [5], Echidna [4], DeFiTainter [6],
Slither [7] and Mythril [8]. We selected ItyFuzz, Echidna,
and DeFiTainter as they support multi-contract analysis and
can detect (a subset of) CPMM composability bugs. We also
included Slither and Mythril, which do not support multi-
contract analysis, to demonstrate that tools designed for single
contracts are ineffective at detecting CPMM composability
bugs. We also attempted to include EF/CF [13] and Clockwork
Finance [2] as baselines, but they were not selected because we
could not run them for our datasets. EF/CF does not support
on-chain fuzzing if contracts require large on-chain storage,
which is true for many token contracts. Meanwhile, Clockwork
Finance requires manual modeling for each contract, which is
not feasible for our large-scale evaluation.

In the following, we describe the configurations for each
tool used in the evaluation. We tried to configure each tool to
provide the fairest possible comparison.
ItyFuzz. We run ItyFuzz with only the bug oracle that detects
ERC20 token leaks. ItyFuzz also has a bug oracle for detecting
token imbalances in DEXes (similar to Invariant 1), but these
issues do not always lead to vulnerabilities. Here, we expect
ItyFuzz to detect end-to-end exploits that result in profit,
similar to how CPMM-Exploiter operates.
Echidna. Echidna requires custom oracles to detect vulnerabil-
ities. Thus, we implemented an oracle that checks whether the
attacker contract can get more native tokens after exchanging
all ERC20 tokens for native ones. We also set up enough
initial native currency balance for each exploit in Echnida (i.e.,
10,000 ETH or 10,000 BNB).
DeFiTainter. DeFiTainter determines whether a given function
contains a price manipulation vulnerability. Thus, we ran
DeFiTainter for all public and external functions of a contract
and flagged the contract as vulnerable if any of the functions
outputted a positive result. Since DeFiTainter requires source
code analysis, we could not run it for close-sourced contracts.
Mythril. Mythril has no detector for ERC20 token or ether
leaks. However, other detectors may have detected the pro-
grammatic error, leading to broken safety invariants for CP-
MMs. Thus, we manually validate each result to check if
Mythril can find the root cause of each exploit.
Slither. Since Slither includes many non-critical detectors,
we ran Slither with only detectors that could be a potential

TABLE III
CPMM COMPOSABILITY BUG DATASETS USED FOR EVALUATION.

DEFIHACKALABS CONTAINS PAST EXPLOITS THAT BREAK EITHER
INVARIANT 1 OR 2. BLOCKSEC CONTAINS PAST EXPLOITS THAT BREAK

INVARIANT 1. REALWORLD-ETH AND REALWORLD-BSC CONTAIN
ON-CHAIN UNISWAP/PANCAKE SWAP CONTRACTS WITH ASSETS WORTH

MORE THAN 1,000 USD.

Dataset Number of Contracts

DeFiHackLabs 23
BlockSec 124

RealWorld-ETH 23,701
RealWorld-BSC 20,607

root cause for CPMM composability bugs (i.e. arbitrary-send-
erc20, protected-vars, arbitrary-send-erc20-permit, arbitrary-
send-eth, unchecked-transfer). Then, similar to Mythril, we
manually validate its result to check if it can discover the
root cause of each exploit. Since Slither requires source code
analysis, we cannot run it for close-sourced contracts.

2) Datasets: Datasets used for evaluation are shown in
Table III. We used two datasets for evaluation. First, we
use DeFiHackLabs [11], a public dataset containing exploit
replications for reported DeFi hacking incidents. This dataset
has been widely used for evaluating smart contract analysis
tools [14], [15]. Among these, we selected 23 exploits that
utilize CPMM composability bugs. Second, for a more thor-
ough evaluation, we also used BlockSec [16], a public dataset
containing 138 real-world exploits that involve breaking In-
variant 1. Out of the 138 exploits, we use 124 exploits for
this evaluation, as 14 are duplicate exploits of the same DEX.
For duplicates, the exploit with the earliest block number was
kept. Only one exploit, the SHEEP token exploit, is included
in both the DeFiHackLabs and BlockSec datasets. Third, we
also evaluate CPMM-Exploiter on Uniswap and PancakeSwap
contracts on the Ethereum and Binance networks that contain
more than 1,000 USD worth of native tokens or stablecoins.
These datasets were used to evaluate how effective CPMM-
Exploiter is at detecting undiscovered CPMM composability
bugs in the real world.

B. Effectiveness in Detecting CPMM Composability Bugs

To compare the effectiveness of CPMM-Exploiter in de-
tecting CPMM composability bugs with existing tools, we
measured the recall of CPMM-Exploiter and each of the base-
lines for the DeFiHackLabs and BlockSec datasets 2 To avoid
non-deterministic results from fuzzing, we ran fuzzing-based
approaches (i.e., CPMM-Exploiter , ItyFuzz, and Echidna)
three times for each exploit and reported the average recall.
We use 20 minutes as the timeout for each contract, which is
reasonably long enough if we consider the number of contracts
to analyze in the real world (e.g., tens of thousands of DEX
contracts).

2We did not measure the precision of CPMM-Exploiter as it generates end-
to-end exploits in on-chain environment, always yielding 100% precision.

TABLE IV
CPMM COMPOSABILITY BUG DETECTION RATE OF CPMM-Exploiter AND

BASELINES ON THE DEFIHACKLABS DATASET.

Token Ours ItyFuzz Echidna DeFiTainter Slither Mythril

AES 1 1 0 0 0 0
ANCH 1 0 0 0 0 0
ApeDAO 0 0 0 1 0 0
Bamboo 1 1 0 0 0 0
BFC 1 0.33 0 0 0 0
BGLD 1 0 0 0 0 0
BIGFI 1 0.33 0 0 0 0
BRA 1 0 0 0 0 0
GHT 0 0 0 - - 0
GPT 1 0 0 - - 0
HCT 1 0.33 0 0 0 0
HEALTH 1 0 0 0 0 0
LPC 1 1 0 0 0 0
PLTD 1 0 0 0 0 0
pSeudoEth 1 1 0 - - 0
Shadowfi 1 0 0 0 0 0
SHEEP 1 0.33 0 0 0 0
Starlink 1 0 0 0 0 0
TGBS 1 1 0 0 0 0
ThoreumFi 1 0 0 - - 0
Upswing 1 1 0 0 0 0
Wdoge 1 1 0 0 0 0
XST 1 0 0 0 0 0

Total 21/23 8.33/23 0/23 1/19 0/19 0/23
Recall 0.91 0.36 0.00 0.05 0.00 0.00

TABLE V
CPMM COMPOSABILITY BUG DETECTION RATE OF CPMM-Exploiter AND

BASELINES ON THE BLOCKSEC DATASET.

Ours ItyFuzz Echidna DeFiTainter Slither Mythril

Total 110/124 72/124 11/124 1/123 0/123 0/124
Recall 0.89 0.58 0.09 0.01 0.00 0.00

Table IV and Table V show the results of running CPMM-
Exploiter and baselines on the DeFiHackLabs and BlockSec
datasets, respectively. In summary, CPMM-Exploiter outper-
formed other tools in detecting CPMM composability bugs. In
DeFiHackLabs dataset (Table IV), CPMM-Exploiter detected
21 out of 23 exploits, while ItyFuzz detected 8.33 exploits on
average. Moreover, CPMM-Exploiter achieved the highest re-
call value of 0.91, while ItyFuzz had the second-highest recall
value of 0.36. DeFiTainter detected only one vulnerability out
of 19 contracts it could analyze, thus having a recall value
of 0.05. Other tools failed to detect any vulnerabilities. In the
BlockSec dataset (Table V), CPMM-Exploiter also achieved
the highest recall of 0.89, while ItyFuzz had the second-highest
recall of 0.58.

CPMM-Exploiter obtained significantly higher recalls than
other tools because it efficiently explores various contract
states focusing on token transfers. ItyFuzz and Echidna were
suboptimal in generating exploits because they generated
testcases without guidance on the flow of tokens. Furthermore,
Slither and Mythril could not identify erroneous behaviors in
token contracts because they do not know how those contracts
operate with DEXes. The results indicate the need for a

TABLE VI
AVERAGE TIME TAKEN BY CPMM-Exploiter , ITYFUZZ, AND ECHIDNA TO

DETECT BUGS IN THE DEFIHACKLABS DATASET (SECONDS).

Token Ours ItyFuzz

AES 22 508
ANCH 11 -
ApeDAO - -
Bamboo 8 17
BFC 12 86
BGLD 133 -
BIGFI 10 927
BRA 12 -
GHT - -
GPT 12 -
HCT 9 177
HEALTH 11 -
LPC 12 102
PLTD 32 -
pSeudoEth 7 26
Shadowfi 106 -
SHEEP 7 795
Starlink 11 -
TGBS 15 15
ThoreumFi 24 -
Upswing 9 33
Wdoge 669 27
XST 11 -

Average 54 246

Fig. 6. Heatmap of time taken to detect CPMM composability bugs in
BlockSec dataset (in seconds).

targeted approach to detect CPMM composability bugs.

Answer to RQ1: CPMM-Exploiter outperforms
existing tools in detecting CPMM composability bugs.

C. Efficiency in Detecting CPMM Composability Bugs

To compare the efficiency of CPMM-Exploiter in detecting
CPMM composability bugs with existing tools, we measured
the time taken by CPMM-Exploiter , ItyFuzz, and Echidna
to detect CPMM composability bugs in DeFiHackLabs and
BlockSec datasets. We report the average time taken, exclud-
ing trials when bugs were undetected. Static analysis tools
(i.e., DeFiTainter, Slither, and Mythril) are not included in
this comparison, as they could not detect nearly all CPMM
composability bugs.

Table VI shows the time taken to detect each vulnerability
in the DeFiHackLabs dataset. The last row contains the av-

erage time taken to detect vulnerabilities overall. On average,
CPMM-Exploiter took 54 seconds to detect vulnerabilities,
around 4.56 times faster than the average time taken by
ItyFuzz, which is 246 seconds. However, ItyFuzz was able to
detect one vulnerability faster than CPMM-Exploiter for one
exploit (i.e., Wdoge). This is because the Wdoge charges an
exclusive fee for token transfers. To calculate and take account
of such fees, CPMM-Exploiter deploys another simulated
environment and tests transfers, which incurs nonnegligible
latency overhead.

Figure 6 is a visual representation of how fast each tool was
at finding each vulnerability in the BlockSec dataset. Each cell
in the heatmap contains the result for one vulnerability, thus
a total of 124 cells per tool. The red color indicates that the
tool took a relatively long time (close to 1200 seconds or
20 minutes) to detect the vulnerability, while the blue color
indicates that the tool took a relatively short time (close to 0
seconds) to detect the vulnerability. White cells indicate that
the tool was not able to detect vulnerability for all three trials.

CPMM-Exploiter was able to detect most vulnerabilities in
a short period, while ItyFuzz detected vulnerabilities in vary-
ing time frames. On average, ItyFuzz and Echidna took 410
seconds and 151 seconds to detect vulnerabilities, respectively.
Meanwhile, CPMM-Exploiter took only 11 seconds to detect
vulnerabilities, around 37 times faster than the average time
taken by ItyFuzz and 13.7 times faster than the average time
taken by Echidna.

Answer to RQ2: On average, CPMM-Exploiter detects
CPMM composability bugs 4.56 to 37 times faster than
existing tools.

D. Ablation Study

To demonstrate the effectiveness of the two-step approach,
we conducted evaluations with two modified versions of
CPMM-Exploiter: CPMM-Exploiter-NoRepeat and CPMM-
Exploiter-NoIC . CPMM-Exploiter-NoRepeat only runs gen-
erated testcases and does not utilize repetitions to generate
exploits. CPMM-Exploiter-NoIC generates testcases with a
random number of repetitions and directly checks for profit
generation. Similar to previous evaluations, CPMM-Exploiter-
NoRepeat and CPMM-Exploiter-NoIC were each run three
times.

On average, CPMM-Exploiter-NoRepeat detected 11 out of
23 vulnerabilities, and CPMM-Exploiter-NoIC detected 16 out
of 23 vulnerabilities. Meanwhile, CPMM-Exploiter detected
21 out of 23 vulnerabilities. Such an outcome is expected.
CPMM-Exploiter-NoRepeat cannot detect vulnerabilities that
require repetition for profit. CPMM-Exploiter-NoIC cannot
efficiently allocate resources to function calls more likely to
lead to exploits.

Answer to RQ3: CPMM-Exploiter’s two-step approach
outperforms grammar-based fuzzing without repetition
and grammar-based fuzzing without invariant checks.

TABLE VII
REAL-WORLD EXPLOITS GENERATED BY CPMM-Exploiter . AS THESE

VULNERABILITIES HAVE NOT BEEN PATCHED, WE DENOTE THEM WITH
NUMBERS TO AVOID PROVIDING DETAILS FOR EXPLOITABLE

VULNERABILITIES.

Exploit
Number

Invariant
Broken Nework

Maximum
Achievable Profit

in USD
% Pair Asset

1 1 BSC 0.65 107.87
2 1 BSC 186.41 1.68
3 2 BSC 398.00 0.74
4 1 BSC 125.00 2.86
5 1 BSC 0.37 0.01
6 1 BSC 4796.00 189.66
7 1 BSC 282.76 2.40
8 1 BSC 76.64 3.54
9 1 BSC 1.87 0.05
10 1 BSC 1.55 0.19
11 2 ETH 191.06 0.24
12 1 ETH 338.54 1.66
13 2 ETH 30.17 0.28
14 1 ETH 26.81 0.39
15 1 ETH 5597.62 99.85
16 1 ETH 16.76 1.90
17 1 ETH 0.03 0.06
18 2 ETH 811.15 56.93

E. Effectiveness in the Real World

To demonstrate the effectiveness of CPMM-Exploiter in
detecting undiscovered CPMM composability bugs in the
real world, we ran CPMM-Exploiter on the latest blocks of
Ethereum and Binance networks from 22nd January 2024 to
9th February 2024. For each network, we extracted a list of
DEXes following the Uniswap V2 protocol with more than
1,000 USD worth of native tokens or stablecoins. 23,701
contracts from Ethereum and 20,607 contracts from Binance
satisfied the criteria. We ran CPMM-Exploiter with a timeout
of 20 minutes per DEX.

Table VII contains the summary of exploits generated by
CPMM-Exploiter . Please note that we represent them with
exploit numbers instead of token names or addresses because
these vulnerabilities have not yet been patched. In summary,
CPMM-Exploiter could generate 18 exploits by exploiting
CPMM composability bugs in the real world, resulting in
a total 12.9K USD profit. To demonstrate the impact of
each vulnerability, we report the maximum achievable profit
(column 4) and the proportion of maximum achievable profit
to the pair stablecoin balance before the exploit (column 5).
As CPMM-Exploiter halts when it finds a profit-generating
transaction and does not proceed to maximize profit, we
manually adjusted some parameters of the exploit (e.g., initial
token balance or the number of repetitions) to maximize the
profit. Profit maximization was straightforward for all exploits.

Interestingly, CPMM-Exploiter was able to generate two
exploits that gained more profit than the entire token balance
of the DEX (exploits 1 and 6). Such exploits were possible
because the exploit also withdraws tokens owned by the vul-
nerable token contract. Moreover, CPMM-Exploiter generated
one exploit that almost drains the DEX (exploit 15) and one

1 function transfer(address addr, uint amount) external {
2 if (addr == DEX_ADDR) {
3 // missing interval check
4 maintainPrice();
5 }
6 // transfer tokens
7 balances[msg.sender] -= amount;
8 balances[addr] += amount;
9 }

10 function maintainPrice() internal {
11 // decrease pair token balance by 10%
12 balances[DEX_ADDR] =
13 balances[DEX_ADDR] * 9 / 10;
14 }

Fig. 7. Vulnerable code snippet from Exploit 15.

exploit that withdraws more than half of the tokens owned by
the DEX (exploit 18).

Other exploits withdraw only a small portion of tokens
owned by the DEX. Oftentimes, the profits were restricted be-
cause CPMM-Exploiter could only execute invariant-breaking
call sequences once due to interval checking mechanisms
that prevent functions from executing multiple times in one
transaction. If we remove the constraint that the exploit has
to be completed in one transaction, CPMM-Exploiter can
repeatedly withdraw small portions in intervals, which may
ultimately drain the DEX. Thus, the remaining vulnerabilities
may also be critical.

Answer to RQ4: CPMM-Exploiter can generate im-
pactful real-world exploits.

VIII. CASE STUDY

This section reports case studies for two real-world CPMM
composability bug that CPMM-Exploiter detected.

A. Exploit 15: Breaking Invariant 1

Exploit 15 is a real-world bug that breaks Invariant 1. This
bug is caused due to a missing interval check in the token
contract. When a transfer is made to the DEX, the vulnerable
token, henceforth Token 15, removes a portion of the DEX
token balance. Unfortunately, the token developers did not
include an interval check for this behavior, allowing an attacker
to drain the DEX’s stablecoin asset by repeatedly triggering
the vulnerability. Consequently, an attacker can almost drain
the DEX’s stablecoin balance, which is worth 5597.62 USD.

The simplified version of vulnerable code is shown in
Figure 7. Whenever users sell Token 15 to the DEX, the price
of Token 15 falls, which may pressure users to sell Token
15. Thus, Token 15 has a function that periodically burns
a share of Token 15 in the DEX to maintain its price (i.e.,
maintainPrice() function in lines 10-14). However, the
token developer did not implement an interval check before ex-
ecuting the maintainPrice() function. This bug enables
an attacker to burn an arbitrary portion of the DEX token
balance, breaking Invariant 1, and leverage the vulnerability
to drain stablecoins from the DEX.

B. Exploit 18: Breaking Invariant 2

Exploit 18 is a real-world bug that breaks Invariant 2.
This token, henceforth Token 18, rewards users whenever

1 function getRate() public {
2 return totalTokenSupply / totalShareSupply;
3 }
4 function transfer(address addr, uint amount) external {
5 // transfer tokens
6 uint shareAmount = amount / getRate();
7 shareBalances[msg.sender] -= shareAmount;
8 shareBalances[addr] += shareAmount;
9 }

10 function maintainToken() external {
11 // missing interval check
12 // check that caller is a token owner
13 require(shareBalances[msg.sender] > minAmount);
14 // proportionally decrease variables
15 totalTokenSupply = totalTokenSupply * 9 / 10;
16 totalShareSupply = totalShareSupply * 9 / 10;
17 // award caller
18 shareBalances[msg.sender] += awareAmount;
19 }
20 function balanceOf(address addr) external {
21 return shareBalances[addr] * getRate();
22 }

Fig. 8. Vulnerable code snippet from Exploit 18.

they call a maintenance function. Unfortunately, this reward
can be repeatedly reaped, allowing an attacker to accumulate
a significant amount of Token 18. We concluded that this
vulnerability can be leveraged to drain around 57% of relevant
DEX’s stablecoin balance, which is worth 811.15 USD.

Figure 8 shows the simplified version of Token 18.
This token manages its balances using two variables,
totalTokenSupply and totalShareSupply. As more
users join the market for Token 18, the two variables will
increase and may result in integer overflow. To prevent such
a situation, Token 18 has to decrease the two variables
periodically. Such maintenance function is implemented in
lines 10 to 19 in Figure 8. Unlike other tokens that commonly
embed these functions in a commonly called function, such
as transfer, Token 18 adopts a different approach where
it incentivizes users to directly call the function with rewards.
However, the developers did not limit the number of times this
function call can be called. Thus, an attacker can repeatedly
call the maintainToken() function to accumulate a signif-
icant amount of Token 18 without cost, breaking Invariant 2.
This vulnerability can be leveraged to extract a sizable amount
of stablecoins from DEXes trading Token 18.

IX. DISCUSSION

A. Responsible Disclosure for Smart Contract Vulnerabilities

We attempted to notify the token maintainers about bugs
found by CPMM-Exploiter . However, these tokens were no
longer maintained or the maintainers were unreachable. As
a result, these vulnerabilities remain unpatched, so we could
not open-source our code. Currently, we are in the process of
reporting our findings to CISA (Cybersecurity & Infrastructure
Security Agency). We also discussed this issue with SEAL
911, which is a group of security researchers who focus on
blockchain security. We hope for an ethical way to manage
vulnerabilities in projects with no active maintainers.

B. Limitations

CPMM-Exploiter’s main limitations are twofold. First, the
current implementation of CPMM-Exploiter only supports

Uniswap V2 DEXes. We believe CPMM-Exploiter can be
extended to support other CPMM implementations with more
development effort. Second, CPMM-Exploiter does not utilize
all the functions available from token contracts when gener-
ating testcases. Currently, we only support burn-related func-
tions and zero-argument functions. To support more functions,
additional analysis is necessary to infer the purpose of those
functions and generate suitable arguments.

C. Threats to Validity

One threat to the validity is evaluation datasets. Since we
suggest a new category of vulnerability, we could not evaluate
our system on datasets used in previous works [4]–[6]. Instead,
we used a subset of a popular dataset, DeFiHackLabs [11], as
one of our evaluation datasets. Since we manually selected
vulnerabilities that fall into the category of CPMM com-
posability bugs, some bias and subjectivity may have been
introduced. Furthermore, there are significantly fewer cases
that break Invariant 2 than cases that break Invariant 1 in
both DeFiHackLabs and BlockSec datasets. Such imbalance
may have skewed the detection results for some tools.

X. RELATED WORK

Numerous tools detect smart contract vulnerabilities. Some
utilize static analysis techniques, such as model checking [2],
[17]–[19] and symbolic execution [20]–[26]. While others
utilize dynamic analysis techniques, most notably fuzzing [4],
[5], [13], [27]–[36]. Recent works also utilize machine learn-
ing [37]–[44], including Large Language Models [14] .
Multi-contract vulnerability detection. Several works were
proposed to detect multi-contract vulnerabilities. Some focus
on detecting commonly appearing ones, such as reentrancy
and delegatecall-related vulnerabilities [45]–[47], while some
aim to detect a wide variety of vulnerabilities [4], [5], [13]. In
particular, ItyFuzz explores various combinations of contract
states through fuzzing with snapshots, and Echidna uses a
static analyzer, Slither, to extract useful information before
fuzzing. Although CPMM composability bugs can theoret-
ically be detected with such methods, our evaluation indi-
cates that a generic approach is ineffective. Since CPMM
composability bugs are closely tied to the business logic of
contracts and sometimes require a long sequence of function
calls for exploitation, a targeted approach is more suitable, as
demonstrated by CPMM-Exploiter .
Automatic exploit generation for smart contracts. Some
works propose systems that automatically generate exploits.
EthPloit [48] generates exploits for single contracts based on
fuzzing. FlashSyn [49] utilizes counterexample driven approx-
imation to generate flashloan attacks. Recently, Gritti et al. [47]
designed a system that analyzes multiple contracts to auto-
matically detect and exploit confused deputy vulnerabilities.
CPMM-Exploiter pursues the same goal of exploit generation,
but it targets a vulnerability that the aforementioned tools
cannot detect.

XI. CONCLUSION

Smart contracts enable many novel and innovative applica-
tions in DeFi. At the same time, they introduce new vulnera-
bilities, such as CPMM composability bugs. To mitigate this
issue, we propose CPMM-Exploiter , a novel grammar-based
fuzzing tool that automatically detects and generates an end-
to-end exploit for CPMM composability bugs within minutes.
CPMM-Exploiter obtained recalls of 0.91 and 0.89 on real-
world exploits of CPMM composability bugs, while the best
recalls from five baselines were 0.36 and 0.58. Furthermore,
CPMM-Exploiter produced 18 exploits with a total profit of
12.9K USD when run on Ethereum and Binance networks.

REFERENCES

[1] S. P. Lee, “Market share of decentralized crypto exchanges,
by trading volume.” https://www.coingecko.com/research/publications/
decentralized-crypto-exchanges-market-share, 2023.

[2] K. Babel, P. Daian, M. Kelkar, and A. Juels, “Clockwork finance:
Automated analysis of economic security in smart contracts,” pp. 2499–
2516, IEEE, 2023.

[3] N. Mutual, “How was bra token exploited?.” https://medium.com/
neptune-mutual/how-was-bra-token-exploited-24ff323249d, 2023.

[4] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
effective, usable, and fast fuzzing for smart contracts,” in Proceedings
of the 29th ACM SIGSOFT international symposium on software testing
and analysis, pp. 557–560, 2020.

[5] C. Shou, S. Tan, and K. Sen, “Ityfuzz: Snapshot-based fuzzer for smart
contract,” pp. 322–333, 2023.

[6] Q. Kong, J. Chen, Y. Wang, Z. Jiang, and Z. Zheng, “Defitainter:
Detecting price manipulation vulnerabilities in defi protocols,” pp. 1144–
1156, Association for Computing Machinery, 2023.

[7] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB),
IEEE, May 2019.

[8] “Mythril.” https://github.com/Consensys/mythril, 2017. GitHub reposi-
tory.

[9] Q. W. Security, “Shadowfi $301k burn function ex-
ploit analysis—quilaudits.” https://medium.com/quillhash/
shadowfi-301k-burn-function-exploit-analysis-quillaudits-45a17ce04193,
2022.

[10] “Blocksec.” https://blocksec.com/, 2024.
[11] “Defihacklabs.” https://github.com/SunWeb3Sec/DeFiHackLabs, 2020.

GitHub repository.
[12] “Foundry.” https://github.com/foundry-rs/foundry, 2024. GitHub repos-

itory.
[13] M. Rodler, D. Paaßen, W. Li, L. Bernhard, T. Holz, G. Karame, and

L. Davi, “Ef/cf: High performance smart contract fuzzing for exploit
generation,” arXiv preprint arXiv:2304.06341, 2023.

[14] Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu, “Gptscan: Detecting logic vulnerabilities in smart contracts by
combining gpt with program analysis,” Proc. IEEE/ACM ICSE, 2024.

[15] Z. Zhang, Z. Lin, M. Morales, X. Zhang, and K. Zhang, “Your exploit
is mine: Instantly synthesizing counterattack smart contract,” in 32nd
USENIX Security Symposium (USENIX Security 23), pp. 1757–1774,
2023.

[16] “Blocksec twitter.” https://twitter.com/BlockSecTeam/status/
1624077078852210691, 2023.

[17] Y. Mo, J. Chen, Y. Wang, and Z. Zheng, “Toward automated detecting
unanticipated price feed in smart contract,” pp. 1257–1268, Association
for Computing Machinery, 2023.

[18] F. Ma, M. Ren, L. Ouyang, Y. Chen, J. Zhu, T. Chen, Y. Zheng,
X. Dai, Y. Jiang, and J. Sun, “Pied-piper: Revealing the backdoor
threats in ethereum erc token contracts,” ACM Transactions on Software
Engineering and Methodology, vol. 32, no. 3, pp. 1–24, 2023.

[19] J. Ye, M. Ma, Y. Lin, Y. Sui, and Y. Xue, “Clairvoyance: Cross-
contract static analysis for detecting practical reentrancy vulnerabilities
in smart contracts,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings, pp. 274–
275, 2020.

[20] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” pp. 161–
178, IEEE, 2022.

[21] A. Ghaleb, J. Rubin, and K. Pattabiraman, “Achecker: Statically detect-
ing smart contract access control vulnerabilities,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), pp. 945–
956, IEEE, 2023.

[22] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 1186–1189, IEEE, 2019.

[23] S. So, S. Hong, and H. Oh, “{SmarTest}: Effectively hunting vulnerable
transaction sequences in smart contracts through language {Model-
Guided} symbolic execution,” in 30th USENIX Security Symposium
(USENIX Security 21), pp. 1361–1378, 2021.

[24] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defectchecker:
Automated smart contract defect detection by analyzing evm bytecode,”
IEEE Transactions on Software Engineering, vol. 48, no. 7, pp. 2189–
2207, 2021.

[25] H. Wang, Y. Liu, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu,
“Oracle-supported dynamic exploit generation for smart contracts,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 3,
pp. 1795–1809, 2020.

[26] S.-W. Lin, P. Tolmach, Y. Liu, and Y. Li, “Solsee: a source-level
symbolic execution engine for solidity,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1687–1691, 2022.

[27] “Detecting state inconsistency bugs in dapps via on-chain transaction
replay and fuzzing,” ISSTA 2023 - Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pp. 298–309, 7 2023.

[28] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” pp. 103–119,
IEEE, 2021.

[29] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha, “Smartian:
Enhancing smart contract fuzzing with static and dynamic data-flow
analyses,” Proceedings - 2021 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, pp. 227–239, 2021.

[30] M. Olsthoorn, D. Stallenberg, A. Van Deursen, and A. Panichella,
“Syntest-solidity: Automated test case generation and fuzzing for smart
contracts,” in Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceedings, pp. 202–206,
2022.

[31] W. Chen, Z. Sun, H. Wang, X. Luo, H. Cai, and L. Wu, “Wasai:
Uncovering vulnerabilities in wasm smart contracts,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 703–715, 2022.

[32] N. Parasaram, E. T. Barr, S. Mechtaev, and M. Böhme, “Precise data-
driven approximation for program analysis via fuzzing,” in 2023 38th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 611–623, IEEE, 2023.

[33] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering, pp. 259–
269, 2018.

[34] I. Ashraf, X. Ma, B. Jiang, and W. K. Chan, “Gasfuzzer: Fuzzing
ethereum smart contract binaries to expose gas-oriented exception secu-
rity vulnerabilities,” IEEE Access, vol. 8, pp. 99552–99564, 2020.

[35] Y. Huang, B. Jiang, and W. K. Chan, “Eosfuzzer: Fuzzing eosio smart
contracts for vulnerability detection,” in Proceedings of the 12th Asia-
Pacific Symposium on Internetware, pp. 99–109, 2020.

[36] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
pp. 778–788, 2020.

[37] Y. Chen, Z. Sun, Z. Gong, and D. Hao, “Improving smart contract
security with contrastive learning-based vulnerability detection,” in 2024
IEEE/ACM 46th International Conference on Software Engineering
(ICSE), pp. 940–940, IEEE Computer Society, 2024.

[38] Z. Yang, J. Keung, M. Zhang, Y. Xiao, Y. Huang, and T. Hui,
“Smart contracts vulnerability auditing with multi-semantics,” in 2020
IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 892–901, IEEE, 2020.

https://www.coingecko.com/research/publications/decentralized-crypto-exchanges-market-share
https://www.coingecko.com/research/publications/decentralized-crypto-exchanges-market-share
https://medium.com/neptune-mutual/how-was-bra-token-exploited-24ff323249d
https://medium.com/neptune-mutual/how-was-bra-token-exploited-24ff323249d
https://github.com/Consensys/mythril
https://medium.com/quillhash/shadowfi-301k-burn-function-exploit-analysis-quillaudits-45a17ce04193
https://medium.com/quillhash/shadowfi-301k-burn-function-exploit-analysis-quillaudits-45a17ce04193
https://blocksec.com/
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/foundry-rs/foundry
https://twitter.com/BlockSecTeam/status/1624077078852210691
https://twitter.com/BlockSecTeam/status/1624077078852210691

[39] H. H. Nguyen, N.-M. Nguyen, C. Xie, Z. Ahmadi, D. Kudendo, T.-
N. Doan, and L. Jiang, “Mando: Multi-level heterogeneous graph em-
beddings for fine-grained detection of smart contract vulnerabilities,” in
2022 IEEE 9th International Conference on Data Science and Advanced
Analytics (DSAA), pp. 1–10, IEEE, 2022.

[40] Z. Zhang, Y. Lei, M. Yan, Y. Yu, J. Chen, S. Wang, and X. Mao,
“Reentrancy vulnerability detection and localization: A deep learning
based two-phase approach,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1–
13, 2022.

[41] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and
X. Mao, “Peculiar: Smart contract vulnerability detection based on
crucial data flow graph and pre-training techniques,” in 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE),
pp. 378–389, IEEE, 2021.

[42] M. Li, X. Ren, H. Fu, Z. Li, and J. Sun, “Convmhsa-scvd: Enhancing
smart contract vulnerability detection through a knowledge-driven and
data-driven framework,” in 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE), pp. 578–589, IEEE, 2023.

[43] F. Luo, R. Luo, T. Chen, A. Qiao, Z. He, S. Song, Y. Jiang, and
S. Li, “Scvhunter: Smart contract vulnerability detection based on
heterogeneous graph attention network,” in 2024 IEEE/ACM 46th In-
ternational Conference on Software Engineering (ICSE), pp. 954–954,
IEEE Computer Society, 2024.

[44] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: Towards
semantic-aware security auditing for ethereum smart contracts,” in Pro-
ceedings of the 33rd ACM/IEEE international conference on automated
software engineering, pp. 814–819, 2018.

[45] Y. Xue, J. Ye, W. Zhang, J. Sun, L. Ma, H. Wang, and J. Zhao, “xfuzz:
Machine learning guided cross-contract fuzzing,” IEEE Transactions on
Dependable and Secure Computing, 2022.

[46] Z. Liao, Z. Zheng, X. Chen, and Y. Nan, “Smartdagger: a bytecode-
based static analysis approach for detecting cross-contract vulnerability,”
in Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 752–764, 2022.

[47] F. Gritti, N. Ruaro, R. McLaughlin, P. Bose, D. Das, I. Grishchenko,
C. Kruegel, and G. Vigna, “Confusum contractum: Confused deputy
vulnerabilities in ethereum smart contracts,” in 32nd USENIX Security
Symposium (USENIX Security 23), pp. 1793–1810, 2023.

[48] Q. Zhang, Y. Wang, J. Li, and S. Ma, “Ethploit: From fuzzing to efficient
exploit generation against smart contracts,” pp. 116–126, IEEE, 2020.

[49] Z. Chen, S. M. Beillahi, and F. Long, “Flashsyn: Flash loan attack
synthesis via counter example driven approximation,” arXiv preprint
arXiv:2206.10708, 2022.

	Introduction
	Background
	ERC20 Tokens
	Constant Product Market Maker Model

	CPMM Composability Bugs
	Terminology
	Type 1: DEX Token Balance Decrease
	Type 2: Attacker Token Balance Increase
	Prevalence of CPMM Composability Bugs

	Overview
	Goals
	Technical Challenges
	Scope

	Design
	Workflow
	Finding Invariant Violations
	Refining to Build Exploits
	State Tracking

	Implementation
	Evaluation
	Experimental Setup
	Baseline Selection
	Datasets

	Effectiveness in Detecting CPMM Composability Bugs
	Efficiency in Detecting CPMM Composability Bugs
	Ablation Study
	Effectiveness in the Real World

	Case Study
	Exploit 15: Breaking Invariant 1
	Exploit 18: Breaking Invariant 2

	Discussion
	Responsible Disclosure for Smart Contract Vulnerabilities
	Limitations
	Threats to Validity

	Related Work
	Conclusion
	References

