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We investigate the dynamics of an ion moving through a homogeneous Bose-Einstein condensate
(BEC) after an initial momentum is imparted. For this, we derive a master equation in the weak-
coupling limit and Lamb-Dicke approximation for the reduced density matrix of the ion. We study
the time evolution of the ion’s kinetic energy and observe that its expectation value, identified
as the ion temperature Tion, is reduced by several orders of magnitude in a time on the order of
microseconds for a condensate density in the experimentally relevant range between 1013 cm−3 and
1014 cm−3. We characterize this behavior by defining the duration at half maximum as the time
required by Tion to reach half of its initial value, and study its dependence on the system parameters.
Similarly, we find that the expectation value of the ion’s momentum operator is reduced by nine
orders of magnitude on the same timescale, making the ion’s position converge to a final value.
Based on these results, we conclude that the interaction with the bosonic bath allows for cooling
and pinning of the ion by decreasing the expectation value of its kinetic energy and velocity, which
constitutes a result of direct relevance for current atom-ion experiments.

I. INTRODUCTION

Quantum mixtures of ultracold atoms and ions have
attracted the interest of an increasing part of the ultra-
cold quantum matter community in the last few years.
Combining the high controllability of trapped ions with
the long coherence times of ultracold atomic systems,
they provide a fertile platform for the study of both few-
and many-body physics and their application to the
advancement of quantum technologies arising from the
long-ranged character of atom-ion interactions. Some
of the most recent theoretical investigations include
ab-initio quantum Monte Carlo and multi-configuration
time-dependent Hartree methods for bosons as well as
diagrammatic techniques for the analysis and character-
ization of polaronic states [1–3]. More recently, studies
have also focused on how the interaction between two
ions is mediated by the surrounding gas [4, 5], while
proposals to exploit ions in ultracold gases as quantum
simulators [6–9] or sensors [10] have been put forward.
We refer to Refs. [11, 12] for an overview in the field.
As far as experiments are concerned, most of the recent
achievements involve the presence of external potentials
that tightly trap the ion [13]. In particular, sympathetic
cooling was observed in such setups with the ion confined
in radio-frequency traps [14, 15] or in optical dipole
traps [16, 17]. Similar systems were also employed in
the observation and study of few-body processes and
chemical reactions between ions and atoms [18–22]. On
the other hand, experiments based on the ionization
of Rydberg atoms [23, 24] have explored the scenario
where no trap is present and the ion is driven by
an external electric field, focusing on the transport
properties of electrical charges inside a Bose-Einstein
condensate [25, 26] and the formation of molecules in
Rydberg-atom-ion systems [27, 28]. However, while the

formation and behavior of neutral polarons both in the
case of Fermi [29–32] and Bose environments [33–35]
has made tremendous progress, the physics of mobile
charged impurities in ultracold gases is at an earlier
stage compared to its neutral analogous. This is due
to the experimental challenges in reaching the ultracold
regime involving only a few partial waves, due to the
notorious micromotion [36]. Theoretical challenges arise
from the fact that the properties of the systems depend
not only on the scattering length and effective range of
the atom-ion potential, but also on the presence of the
long-range tail of the interaction, preventing the use of
the pseudopotential approximation [37, 38].
Here, we study the quantum dynamics of a free, i.e.,
not trapped, ion moving inside a bosonic quantum
gas with a finite initial momentum. Let us note that
one-dimensional in-depth investigations of the quantum
dynamics of the motional degrees of freedom of an
ion both at zero and finite temperature interacting
with matter waves confined in a double well have been
carried out in Refs. [39, 40]. The ion-induced correlated
dynamics of a bosonic system after ionization has been
analyzed in Ref. [41], where the ion, however, has been
treated as a static impurity. Specifically, we resort to
the master equation approach developed in Refs. [42, 43]
to characterize the evolution of the expectation value
of the ion’s kinetic energy, velocity and position. Our
study is motivated by the recent experimental advances
involving untrapped ions in condensates [25, 44], where
we note that optical control of the ion movement in the
atomic gas can be accomplished by means of optical
traps as well [45, 46]. In this work, we are inspired by
the specific scenario that originates from the experiment
reported by T. Kroker et al. in Ref. [44]. As depicted
in Fig. 1(a), a laser pulse ionizes some of the 87Rb
atoms in a BEC within 215 fs, hence instantly creating
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ions inside the bosonic gas with a finite initial kinetic
energy determined by the excess energy of the ionization
process. For this reason, we focus mostly on the case
of the homonuclear system 87Rb+/87Rb, as this is the
atomic species utilized in those experiments, but we
also provide a brief analysis of the case of ions with a
larger mass. We note that although in Refs. [44, 47] the
initial kinetic energy of the ion is on the order of a few
microelectronvolts, this can be experimentally reduced
by an order of magnitude. Fig. 1(b) illustrates that
for the corresponding initial momentum the ion can be
cooled and pinned within the BEC due to the long range
atom-ion interaction arising from the polarizability of
the atomic cloud. We characterize the cooling of the ion
and find it to be remarkably robust against the initial
ion velocity, density and temperature of the BEC as well
as the mass ratio between the ion and the atoms.

The paper is organized as follows: in Sec. II we
introduce the atom-ion interaction potential and the
Hamiltonian describing the hybrid atom-ion system,
while in Sec. III we derive the ionic master equation
from which the equation of motion of the most relevant
observables are obtained. In Sec. IV we analyse and
discuss the results of the numerical simulations, while
in Sec. V we discuss the experimental implications of
the study. Finally, in Sec. VI we summarize our findings
and provide an outlook for future analysis.

II. SYSTEM

In this section, we briefly characterize the theoretical
treatment of our system. For a more thorough descrip-
tion, we refer the interested reader to Refs. [42, 43].

A. Atom-ion interaction potential

The interaction between a charged and a neutral par-
ticle depends on their separation r = |r|. It is described
asymptotically by the polarization potential V (r) =
−C4/r

4, where C4 = αe2/(8πϵ0) with α the static polar-
izability of the atom, e the electron charge and ϵ0 the vac-
uum permittivity. This potential has the characteristic
length R⋆ =

√
2µC4/ℏ2 and energy E⋆ = ℏ2/[2µ(R⋆)2],

with µ as reduced mass. The value of R⋆ is much larger
than the length scale of the van der Waals interaction be-
tween neutral particles and, for typical atom-ion systems,
it is of the order of hundreds of nanometers. In particu-
lar, for the 87Rb/87Rb+ system we have R⋆ ≃ 265.81 nm
and E⋆ ≃ kB · 79 nK (kB is the Boltzmann constant).
Due to the singularity of the polarization potential and
the fact that we shall have to calculate its Fourier trans-
form, we consider the following regularization [42]

Vreg(r) = −C4
r2 − c2

r2 + c2
1

(r2 + b2)2
, (1)
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(b)
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FIG. 1. Proposal for cooling an ion in an ultracold bosonic
gas. (a) An atom in a BEC is ionized by an ultrashort laser
pulse via a non-resonant two-photon process. The excess en-
ergy Eexc of the ionization process determines the initial mo-
mentum k0 of the ion in x direction. (b) Subsequently, the
ion is slowed down due to the atom-ion interaction arising
from the polarizability of the atomic cloud. By deriving a
master equation, we can extract the time-evolution of the ex-
pectation value of the ion’s position ⟨r̂x⟩ and show that it is
pinned within a microsecond in a 87Rb BEC.

where the energy spectrum and the atom-ion scattering
length aai are controlled by the parameters b and c [48].
The choice of the values of those parameters is discussed
extensively in Ref. [43]. An example of the potential is
displayed in the main plot Fig. 2.
The scattering amplitude in the first-order Born approx-
imation is proportional to the Fourier transform of the
potential, and is given by

f(q) = − µ

2πℏ2

∫
R3

dr eiq·rVreg(r)

=
c2π(R⋆)2

(b2 − c2)2q

{
e−bq

[
1 +

(b4 − c4)q

4bc2

]
− e−cq

}
.

(2)

An example is shown in the inset of Fig. 2, where f(q)
approaches zero for large momenta, while at qR⋆ ≃ 7.37
it exhibits a minimum. The expression of the scattering
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FIG. 2. Main plot: Atom-ion interaction potential in units
of E⋆ as a function of the atom-ion separation r in units of
R⋆. Dashed line: polarization potential. Solid line: regu-
larized potential in Eq. (1) with parameters b = 0.07797R⋆,
c = 0.2239R⋆, corresponding to an atom-ion scattering length
aai ≃ R⋆ and a single two-body bound state with binding en-
ergy EBS ≃ −1.43E⋆. Inset: scattering amplitude f(q) [see
Eq. (2)] corresponding to the regularized potential in the main
plot. Note that f is in units of R⋆, whereas q in units of 1/R⋆.

amplitude is used in the derivation of the master equa-
tion, as we shall discuss it in Sec. III.

B. Hamiltonian

We consider a non-trapped ion of mass M coupled to
an ultracold bosonic gas with massm, henceforth referred
to as bath. The Hamiltonian is the sum of three terms:
Ĥ = Ĥion + Ĥbath + Ĥint, with Ĥion = p̂2/(2M),

Ĥbath =

∫
R3

drb Ψ̂
†
b(rb)

[
p̂2b
2m

+
g

2
Ψ̂†

b(rb)Ψ̂b(rb)

]
Ψ̂b(rb),

(3)
and

Ĥint =

∫
R3

drb Ψ̂
†
b(rb)Vib(rb − r̂)Ψ̂b(rb), (4)

where the subscript b indicates the bosons of the bath, r̂
is the position operator of the ion, and Vib represents the
two-body potential between the ion and the particles of
the bath. Moreover, we assume the bath to be confined
in a box of length L and its atoms to interact via con-
tact potential with coupling strength g = 4πℏ2asbb/m,
asbb being the three-dimensional (3D) atom-atom s-wave
scattering length.
The bosonic field operator can be written as an expansion
around the condensate density n0 = N0/L

3 (N0 being the
number of condensed particles) as

Ψ̂b(rb) =
√
n0 + δΨ̂b(rb), (5)

where the fluctuations are described within Bogoliubov
theory, i.e.,

δΨ̂b(rb) = L−3/2
∑
q

(
uqb̂qe

iq·rb + vqb̂
†
qe

−iq·rb
)
, (6)

with [b̂q, b̂
†
q′ ] = δq,q′ . By using Eq. (6) we can rewrite

the bath Hamiltonian as follows

Ĥbath ≈ E0 +
∑
q

ℏωqb̂
†
qb̂q (7)

with E0 = gN2
0 /(2L

3) the condensate ground-state en-
ergy, and the phononic dispersion relation given by

ϵ(q) ≡ ℏωq =

√(
ℏ2q2
2m

)2

+
(
ℏcsq

)2
, (8)

where cs =
√

gn0/m is the speed of sound of the gas. The
amplitudes of the Bogoliubov modes are given by [49]

uq =

√
ℏ2q2/(2m) + gn0

2ℏωq
+

1

2

vq =−

√
ℏ2q2/(2m) + gn0

2ℏωq
− 1

2
.

(9)

Hence, the atomic density operator reads

Ψ̂†
b(rb)Ψ̂b(rb) = n0 +∆n̂(rb) (10)

and we can use the definition in Eq. (5) to write the last
term on the right hand side as

∆n̂(rb) = δn̂(rb) + δ2n̂(rb) (11)

with δn̂(rb) =
√
n0[δΨ̂b(rb) + δΨ̂†

b(rb)] and δ2n̂(rb) =

δΨ̂†
b(rb)δΨ̂b(rb). In our description we only consider the

first of the two terms, thereby taking into account only
the density fluctuations proportional to the square root
of the condensate density n0. Let us note that the second
order is related to the non-condensed part of the gas. As
we pointed out in Ref. [43], its contribution becomes rel-
evant when the gas temperature approaches the critical
temperature of condensation from below, and is the only
one contributing in the absence of condensation. Here,
however, our analysis focuses on gas temperatures much
lower than the critical temperature, allowing the con-
tribution of the quadratic terms to be safely neglected.
According to Eq. (6), we have

δn̂(rb) =

√
n0

L3

∑
q

[(
uq + v∗q

)
b̂qe

iq·rb

+
(
u∗
q + vq

)
b̂†qe

−iq·rb
]
.

(12)

At this stage let us remark that we assume that the con-
densate density is not affected by the presence of the ion
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and remains homogeneous. As recently shown in Ref. [1],
however, the formation of many-body bound-states can
change the bath density around the ion substantially.
Such many-body bound-states are not included in the
present study, since their formation remains negligible
as long as no stimulated resonance processes occur [50].
Under these assumptions, our open system approach is
justified.
Finally, the interaction Hamiltonian becomes

Ĥint =

∫
R3

drb Vib(rb − r̂)δn̂(rb)

= ℏ
∑
q

(
Ŝqb̂q + Ŝ†

qb̂
†
q

) (13)

with

Ŝq =

√
n0L3

ℏ
(
uq + v∗q

)
eiq·r̂cq (14)

and

cq =
1

L3

∫
R3

dy eiq·yVib(y). (15)

Note that the coefficient cq is related to the scattering
amplitude f(q) by

cq = −2πℏ2

µL3
f(q) (16)

As discussed in Sec. II A, we model the two-body
atom-ion potential Vib with the regularization of Eq. (1),
whose scattering amplitude is given in Eq. (2).

III. IMPURITY MASTER EQUATION

In this section we derive a master equation for the re-
duced density matrix of the ion. We start from the mas-
ter equation in the Born and Markov approximation for
an impurity in a bosonic bath:

d

dt
ρ̂(t) = − i

ℏ

[
Ĥion, ρ̂(t)

]
−
∑
q

∫ t

0

dτ Ω2
q

{
+
(
nq + 1

)[
eiq·r̂, e−iq·r̂(t,τ)ρ̂(t)

]
e−iωqτ

+nq

[
ρ̂(t)e−iq·r̂(t,τ), eiq·r̂

]
e−iωqτ

+
(
nq + 1

)[
ρ̂(t)eiq·r̂(t,τ), e−iq·r̂

]
eiωqτ

+nq

[
e−iq·r̂, eiq·r̂(t,τ)ρ̂(t)

]
eiωqτ

}
.

(17)

Here, we defined

Ω2
q =

|uq + vq|2

ℏ2
|cq|2n0L

3, (18)

while nq = [eβ(ϵ(q)−µB) − 1]−1 is the Bose-Einstein oc-
cupation number based on the averages over the thermal
state of the bath B̂0 [see also Eq. (B7)]

Trb
{
b̂†qb̂q′B̂0

}
= nq δq,q′ , (19)

with µB the chemical potential of the bosonic gas at tem-
perature Tgas, and β = 1/(kBTgas). We note that Eq. (17)
corresponds to the first line of Eq. (41) in Ref. [43] and
can be applied to any kind of impurity in interaction with
a bath of bosonic atoms by specifying the scattering am-
plitude in the definition of cq and the equation of motion
of the impurity r̂(t, τ). For a detailed derivation we refer
to Ref. [43].

A. Lamb-Dicke approximation

In order to render the master equation numerically
treatable, we perform the Lamb-Dicke approximation to
further simplify it. Such an approximation is based on
the assumption that the average wavelength of the atoms
in the bosonic bath, corresponding to the de Broglie
wavelength λdB(Tgas), is much larger than the spatial
extension of the ion, namely the width of the associated
wave packet. The validity of this requirement is discussed
in Appendix A, while here we proceed with the deriva-
tion of the master equation. In the Lamb-Dicke regime,
we Taylor expand the products of exponential functions
containing q · r̂ and q · r̂(t, τ) and keep the terms up
to second order. For instance, the first commutator in
Eq. (17) can be written as

[
eiq·r̂, e−iq·r̂(t,τ)ρ̂(t)

]
≃

i[q · r̂, ρ̂(t)] + [q · r̂,q · r̂(t, τ)ρ̂(t)]− 1

2

[
(q · r̂)2, ρ̂(t)

]
.

(20)

However, due to the assumed spherical symmetry of the
bath, the first term on the right hand side of Eq. (20)
is zero after the sum over q is taken, and so are the
terms containing odd powers of qx, qy or qz. Hence, the
directions are decoupled and the contribution from the
first commutator reads

∑
ξ([r̂ξ, r̂ξ(t, τ)ρ̂(t)]−[r̂2ξ , ρ̂(t)]/2),

ξ = x, y, z.
We now explicitly substitute the equation of motion of
the free ion r̂ξ(t, τ) = r̂ξ−(p̂ξ/M)τ and perform the time
integration. We note that the latter is performed analyt-
ically in the present study, which is in contrast with the
usual approach in the literature [51] and with the pre-
vious works [42, 43], where the limit t → ∞ has been
taken. For further details we refer to the Appendix B.
Similarly to Ref. [43], we use the master equation to de-
rive the differential equations for the expectation value
of the squared momentum p̂2ξ along the direction ξ (see
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Appendix C for an alternative derivation):

d

dt
⟨p̂2ξ⟩ =

∑
q

Ω2
qq

2
ξ

{
2ℏ2

ωq

(
2nq + 1

)
sin(ωqt)

+
4ℏ

Mω2
q

[
ωqt cos(ωqt)− sin(ωqt)

]
⟨p̂2ξ⟩

} (21)

and for the squared position r̂2ξ and covariance ĉξ =
r̂ξp̂ξ + p̂ξ r̂ξ:

d

dt
⟨r̂2ξ⟩ =

1

M
⟨ĉξ⟩

d

dt
⟨ĉξ⟩ =

2

M
⟨p̂2ξ⟩+

+
∑
q

Ωqq
2
ξ

{
2ℏ

Mω2
q

[
ωqtcos

(
ωqt

)
− sin

(
ωqt

)]
⟨ĉξ⟩

+
2ℏ2

Mω2
q

(
2nq + 1

)[
cos

(
ωqt

)
+ ωqtsin

(
ωqt

)
− 1

]}
.

(22)

In the limit of a large bath, where L → ∞, the quantized
values assumed by the wave vector qξ = 2πsξ/L with
s ∈ Z become closely spaced. In this regime, the sum
over q can be replaced with the integral L3/(2π)3

∫
R3 dq.

From the expectation value of p̂2 = p̂2x + p̂2y + p̂2z, we cal-
culate the ion temperature. The latter, for an untrapped
ion, can be defined as the expectation value of the kinetic
energy in units of the Boltzmann constant:

Tion =
1

kB

1

2M
⟨p̂2⟩. (23)

For the sake of completeness, we remark that the defini-
tion of the ion temperature can change for different sys-
tems. For instance, in the case of Paul-trapped ions, both
the secular motion and micromotion have to be taken into
account (see Ref. [52] for details).
Finally, we report the equations of motion for the first
momenta, which are derived in a similar manner

d

dt
⟨r̂ξ⟩ =

1

M
⟨p̂ξ⟩

d

dt
⟨p̂ξ⟩ =

∑
q

Ω2
qq

2
ξ

{
2ℏ

Mω2
q

[
ωqtcos

(
ωqt

)
− sin

(
ωqt

)]
⟨p̂ξ⟩

}
.

(24)

B. Initial quantum state after ionization

The aim of this section is to describe the density
matrix of the ion immediately after ionization of a
bosonic quantum gas. We assume the BEC with
typical parameters presented in Tab. I is confined in a
harmonic potential with trap frequencies ωξ = 2πνξ,
which is typically realized by an optical dipole trap. In
the following, we consider two possible experimental

scenarios for the ionization process: either ionization
of a Rydberg excitation or direct ionization with an
ultrashort laser pulse. Let us note that once the ion is
created, however, it is no longer affected by the optical
dipole trap confining the condensate and no additional
external potential for the ion is assumed. Hence, the
ion is free to move within the BEC. Nonetheless, the
ion inherits its spatial extent, as represented by the
squared modulus of its wave function, from the former
atom in the trapped condensate before ionization.
Crucially, the spatial extent of the ion must fulfill the
requirements of the Lamb-Dicke approximation at all
times, as we discuss in Appendix A. Finally, we assume
that the ionization process occurs on a time scale much
faster than the atomic dynamics, i.e., we treat it as an
instantaneous process.

Ionization via Rydberg states - We begin by con-
sidering the case of ionization via Rydberg excitation,
for which the initial ionic state can be represented as a
thermal state. We assume that, before the ionization,
the bosons are in a trapped motional state due to
their confinement. At low temperatures, all bosons are
described by the same single-particle state, to a very
good approximation. If a laser pulse is utilized to excite
the internal state of the atoms to a Rydberg state, and if
the chosen Rydberg state is such that the corresponding
blockade radius is large enough to guarantee a single
excitation in the atomic ensemble, then, that excitation
is delocalized over the entire atomic cloud. Namely, a
giant superposition state is created. The motional state,
however, to a very good approximation is the same
as before the Rydberg excitation took place. When
a second laser pulse is applied to ionize the Rydberg
atom as in Ref. [24], the quantum superposition with
a single Rydberg excitation is collapsed into a specific
product state of the many-body system. Nonetheless,
the motional state is still well described by the initial
single-particle state of the bosonic ensemble mentioned
before, except for an imparted momentum due to the
two laser pulses. Specifically, we consider the atom
before ionization to be confined in a harmonic trap
with trap frequencies ωξ = 2πνξ and single-particle

eigenenergies E
(ξ)
nξ = ℏωξnξ with nξ = 0, 1, 2, . . . , that

is, we neglect interactions among them. Moreover, we
assume that the ionization imparts a momentum k0,ξ
along the ξ-direction at t = t0. Assuming that the atom
is not completely cooled down to the trap ground state,
the density matrix reads

ρ̂ξ(t0) =
(
1−e

−
ℏωξ

kBTgas

)
eik0,ξ r̂ξ×

×
∑
nξ

e
−

E
(ξ)
nξ

kBTgas |nξ⟩ ⟨nξ| e−ik0,ξ r̂ξ ,
(25)

where |nξ⟩ are the states of the harmonic oscillator with
frequency ωξ and Tgas the gas temperature.
The initial value of the squared momentum along the
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direction ξ is calculated as the average Tr{p̂2ξ ρ̂ξ(t0)} over

the initial density matrix ρ̂ξ(t0). Using the definition of

the momentum operator p̂ξ = i
√
ℏMωξ/2(â

†−â) and the
properties of the trace, we get to the following formula
for the initial squared momentum [53]:

⟨p̂2ξ(t0)⟩ =
(
1− e

−
ℏωξ

kBTgas

)
×

×
∑
n

e
−

ℏωξ
kBTgas

n
[
ℏMωξ

2

(
2n+ 1

)
+ ℏ2k20,ξ

]
.

(26)

In a similar fashion, we obtain the initial squared posi-
tion:

⟨r̂2ξ(t0)⟩ =
(
1− e

−
ℏωξ

kBTgas

)∑
n

e
−

ℏωξ
kBTgas

n ℏ
2Mωξ

(
2n+ 1

)
,

(27)
whereas the initial values of the covariance ĉξ is always
zero.

Ion

Kinetic energy 1.3 · 10−7 eV

Temperature 1 mK

Excess velocity 530 mm/s

BEC

Atom number 3 · 104

Peak density 2 · 1014 cm−3

Speed of sound 2.7 mm/s

Trap frequencies νξ 120 − 170 Hz

Cloud radius 5µm

TABLE I. Typical experimental parameters for the homonu-
clear system 87Rb+/87Rb. The initial kinetic energy of the
87Rb+ ion corresponds to a two-photon ionization via a vir-
tual intermediate state by an intense femtosecond laser pulse
with a duration of 200 fs near the ionization threshold. The
parameters of the Bose-Einstein condensate are typical for
87Rb atoms in an optical dipole trap.

Ionization with an ultrashort laser pulse - Another
interesting scenario is the ionization procedure employed
in Ref. [44], where a femtosecond laser is focused down
to a waist w0 = 1µm, which is small compared to the
size of the atomic cloud. Within a single pulse of 215 fs
duration, the number of ionized atoms can be precisely
tuned with the laser peak intensity. More details of
the experimental procedure are reported in Sec. V. In
this case, the ionization process can be interpreted as
a continuous measurement process, where the focused

laser beam with Gaussian envelop e−2r2/w2
0 is the probe

field [54]. Therefore, the probability of finding the ion

at position r is given by

P (r) =

√
2

πw2
0

∫
R3

dr′ e
− 2

w2
0
(r′−r)2

⟨r′| ρ̂BEC |r′⟩ (28)

namely, the convolution between the Gaussian beam and
the probability density ⟨r′| ρ̂BEC |r′⟩ of the condensate.
The initial density distribution of the ion can be there-
fore identified with Eq. (28), while the initial ion’s wave
function can be defined, apart from a global phase, as
the square root of P (r), with spatial extent determined
by the beam-waist. Consider an ultra-cold bosonic gas
with experimental parameters as listed in Tab. I that
corresponds to the experimental situation reported in
Ref. [44]. Hence, the bosonic density distribution is well
described by the Thomas-Fermi profile, which reads

⟨r′| ρ̂BEC |r′⟩ = n0

[
1−

(
x′

Rx

)2

−
(

y′

Ry

)2

−
(

z′

Rz

)2
]

(29)
in the region defined by the ellipsoid with radii Rξ

(ξ = x, y, z), and zero elsewhere. The definitions of Rξ

and other details on the Thomas-Fermi approximation
can be found, e.g., in Ref. [55]. The integral in Eq. (28)
can be computed numerically in spherical coordinates.
As anticipated, we define the initial ion wavefunction as
Ψ0(r) = eik0,ξ r̂ξ

√
P (r), where we added the contribution

of the initial imparted momentum along the ξ direction.

The initial state of the ion is used to calculate the
initial conditions for the equations of motion of the
expectation values given in Sec. III A. For the param-
eters considered in our study, however, no significant
differences have been observed between the initial states
obtained after photoionization of a Rydberg atom or
of a ground-state atom with a femtosecond laser pulse.
Albeit the numerical analysis in the following section
refers to the thermal state (25), we note that the choice
of one or the other initial condition does not affect the
conclusions we are going to outline in Sec. IV.

IV. RESULTS

In this section, we report on the dynamics of an ion
with initial momentum in an ultracold bosonic cloud.
The evolution of the ion temperature, velocity and
position are obtained by numerically solving Eq. (21)
and Eq. (24). We investigate the impact of different
experimental parameters such as the initial momentum
of the ion k0, the density of the atomic cloud n0 and
the atom-ion scattering length aai on the ion dynamics.
Unless stated differently, the system consists of a 87Rb+

ion in a bosonic bath of 87Rb atoms at Tgas = 1nK,
with n0 = 2 · 1014 cm−3, and aai ≃ R⋆ corresponding
to the potential in Fig. 2 (see also Tab. I). Let us note
that the results obtained at fixed density do not depend
on the specific value of the temperature of the ultracold
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FIG. 3. Ion temperature T x
ion = ⟨p̂2x⟩/(2MkB) as a function of

time for n0 = 2 ·1014 cm−3 (solid lines) and n0 = 2 ·1013 cm−3

(light dashed lines). (a) The initial ion temperatures corre-
spond to T x

ion = 1.17 mK (blue), T x
ion = 0.84 mK (orange) and

T x
ion = 0.51 mK (green). The inset shows a magnification of

the main plot in the range from t = 0.8µs to t = 0.9µs, as
indicated. From the latter, we observe that the temperature
corresponding to n0 = 2 · 1014 cm−3 converges to a value of
around 2µK, independent on the initial condition.

bosonic gas, Tgas, which is chosen according to the
discussion in Appendix A. Moreover, we consider the
momentum imparted at t = t0 to be directed along x,
and we focus on the dynamics along the same direction.
In fact, although the initial conditions for T y,z

ion may be
different from zero depending on the choice of the initial
state and the direction of the imparted momentum,
the decoupling of the three directions allows us to con-
sider just one direction without any loss of generality [56].

A. Cooling dynamics

We start by comparing the ion temperature as a
function of time for different initial conditions.

Initial temperature of the ion - In Fig. 3, the re-
sults corresponding to initial ion temperatures in the
millikelvin regime are shown. We can observe from
the main plot and inset that the time required for
T x
ion to converge to 2µK is almost independent on its

initial value at t = t0. In other words, the larger the
initial momentum, the faster the cooling. On the other
hand, the cooling dynamics is strongly affected by the
condensate density n0, as can be observed by comparing
the dark solid lines with the light dashed lines. We refer
to Appendix D for a comparison with the dynamics
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FIG. 4. (a) Main plot: full duration at half maximum
(FDHM) for two atomic densities as a function of the initial
ion temperature; solid lines connecting the points are a mere
guide to the eye. Inset: definition of FDHM. (b) FDHM for
T x
ion(t = t0) ≃ 1.01 mK and aai ≃ R⋆ (gray squares). Main

plot: FDHM as a function of the gas density n0; the solid
line connecting the points is a mere guide to the eye. In-
set: FDHM as a function of the average particle separation
d̄ = 1/ 3

√
n0; the dotted line is a linear function fitting the

data.

corresponding to lower initial ion temperatures.

Atomic density - To systematically study the cool-
ing dynamics, we define the full duration at half
maximum (FDHM) as the time it takes for the ion
temperature to reach half of its initial value [see inset
of Fig. 4(a)]. Note that small values of the FDHM
correspond to higher cooling rates: the larger is the
FDHM, the smaller is the atom-ion cross section and vice
versa. The time-scale of the cooling dynamics is similar
to the average time-scale for classical collisions with one
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atom in the bath given by t = dWS/vx(t0) = 265 ns
for an initial velocity of vx(t0) = 0.4m s−1 and with

dWS = (3/(4πn0))
1/3

= 106 nm being the Wigner-Seitz
radius at a condensate density of n0 = 2 · 1014 cm−3.
The circles in the main plot of Fig. 4(a) show that the
FDHM is barely affected by the initial temperature
of the ion. Moreover, the same weak dependence
is observed for n0 = 2 · 1014 cm−3 (full circles) and
n0 = 2 ·1013 cm−3 (empty circles). Figure 4(b) quantifies
how effective the cooling of the ion is, depending on
the density of the condensate (main plot) and on the
mean distance between the atoms (inset). The initial
temperature is fixed to T x

ion(t0) ≃ 1.1mK and the gray
squares are the values of the FDHM for different n0

(or d̄ = 1/ 3
√
n0 in the inset). As expected, a denser

gas ensures a faster cooling (i.e. a smaller FDHM)
due to the stronger impact of the atom-ion interaction
on the ion dynamics. We observe that the FDHM
increases linearly with the mean distance. Both the
gas and the ion are treated fully three-dimensionally in
the master equation. However, due to the Lamb-Dicke
approximation, solutions are given by the tensor product
of the density matrices of the three spatial directions.
Fig. 4(b) exemplary shows the result for the x direction
as the dynamics is effectively one-dimensional for the ion
moving into a fixed direction. Because of this, the ion
dynamics is characterized by the mean distance between
the bosons, which accounts for the rate of atom-ion
collisions in one direction: the larger the distance, the
larger the FDHM, i.e., the smaller is the cooling rate
and vice versa. This is in contrast with the expectation
that the cooling rate is linearly proportional to the
gas density. In the future it will be interesting to find
solutions to solve the master equation without relying
on the Lamb-Dicke approximation to investigate the
density dependence of the FDHM as well as a maximum
capture velocity for the cooling and pinning dynamics.

Atom-ion scattering length - Another feature that we
point out is the dependence of the cooling dynamics
on the atom-ion scattering length. The recent obser-
vation of Feshbach resonances in compound atom-ion
systems [17] confirms the possibility of tuning the
atom-ion interaction via an external magnetic field. This
dependence can be exploited in experiments to achieve
a higher cooling rate without changing parameters such
as the atomic density or the ion initial temperature.
Since the cooling dynamics is closely related to the
elastic cross-section, no strong dependence on the
scattering length would be expected at high collision
energies, where the ion can be treated classically. In
contrast, such a dependence could be expected at ion
temperatures on the order of µK and below, where
fewer partial waves contribute to scattering events and
quantum effects become relevant. On this regard, we
note that the number of partial waves contributing in
the millikelvin regime is on the order of ten. In the
main plot of Fig. 5 the non-trivial dependence of the
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FIG. 5. Main plot: scattering length dependence of the
FDHM for T x

ion(t0) = 1.17 mK (gray diamonds) and T x
ion(t0) =

100 nK (purple circles). The lines are a mere guide to the eye.
Lower inset: time dependence of the ion temperature for two
values of the atom-ion scattering length and initial ion tem-
perature T x

ion = 1.17 mK. The two values of the scattering
length are indicated in the main plot by the two arrows. Up-
per inset: time dependence of the ion temperature for two
regularized potentials supporting a different number of two-
body bound states: one bound state with EBS ≃ −1.43E⋆

(blue) and two bound states with EBS,1 ≃ −1.39E⋆ and
EBS,2 ≃ −152.78E⋆ (orange).

FDHM on aai is shown for two values of the initial
temperature: T x

ion(t0) = 1.17mK and T x
ion(t0) = 100 nK,

the latter being on the order of the typical energy of
the atom-ion potential E⋆/kB = 79nK. We observe a
similar behavior for the two initial conditions. However,
considering values of aai between ∼ −2R⋆ and ∼ 2R⋆,
the difference between the maximum and minimum
FDHM for the lower initial temperature of the ion is
24% larger compared to the higher initial temperature
(0.057µs and 0.046µs, respectively). This shows that
the dependence is indeed more pronounced when the
collision energy is lower, as expected. The noticeably
larger values of the FDHM observed for the two values
of aai below −2R⋆ could indicate the failure of the Born
approximation due to the strong atom-ion coupling.
Another hypothesis to explain the dependence of the
FDHM on aai could be the binding of atoms to the ion.
This would increase the effective mass of the ion, which
would modify the scattering parameters with the bath
as well as the cooling dynamics.
Finally, we consider a regularized atom-ion potential
supporting two two-body bound states. In the upper
inset of Fig. 5 we can observe that the cooling dynamics
does not depend qualitatively on the number of such
bound states. Although the FDHM corresponding to
two bound states is about twice the value obtained with
one bound state, the reduction of T x

ion takes place on
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FIG. 6. Time dependence of ion temperature for different ion
species immersed in a gas of 87Rb atoms with density n0 =
2 · 1014 cm−3. The initial ion temperature is T x

ion = 1.17 mK.
The corresponding values of R⋆ are the following: 265.81 nm
for 87Rb+, 294.67 nm for 138Ba+ and 307.23 nm for 174Yb+.

similar timescales in the two cases. We remark, however,
that the choice of the potential with one bound state is
justified by the fact that the occupation of deeply bound
states is much less likely compared to the occupation
of loosely bound states because of the large energy gap
between them (see, e.g. [50]).

Ionic species - Similar simulations are repeated for
different ionic species moving in the 87Rb atomic gas. In
Fig. 6, the time dependence of T x

ion is shown for 138Ba+

and 174Yb+ compared to the rubidium ion considered
in the previous analysis. The observed behavior is
qualitatively the same, but the plot shows that higher
values of the ion-atom mass ratio M/m result in slower
cooling. We remark that the use of different ions affects
the value of the ratio M/m, hence, the range of validity
of the Lamb-Dicke approximation (see Appendix A).

B. Pinning dynamics

Now, we discuss the evolution of the expectation
value of the position and momentum of the ion given
by Eq. (24). Note that all results are given in one
dimension, since the initial momentum k0 is assumed to
be along x.

Ion velocity evolution - In the main plot of Fig. 7, we
observe how the ion’s velocity decays, reaching a value
on the order of 10−10 ms−1 at t = 0.9µs. Similar to what
was observed for the decay of Tion, the time required
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FIG. 7. Time dependence of the ion’s velocity vx = ⟨p̂x⟩/M
(main plot) and position (inset) along the x-direction for dif-
ferent initial ion velocities: vx = 0.47 m s−1 (blue), vx =
0.40 m s−1 (orange) and vx = 0.31 m s−1 (green). Solid lines
correspond to a regularized atom-ion potential with aai ≃ R⋆,
whereas the gray dashed line corresponds to a neutral impu-
rity in a gas with a short-range pseudopotential with aai ≃
0.05R⋆.
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FIG. 8. Time dependence of the ion’s position for T x
ion(t0) =

1.17 mK and different gas densities (solid gray lines). The
values of n0 are chosen uniformly in the interval between the
indicated values of n0 = 2 · 1013 cm−3 and n0 = 2 · 1014 cm−3.
The dashed blue line represents the position of a particle mov-
ing at constant velocity.

for the velocity to decay depends only weakly on its
initial value. For this reason, the ion’s final positions are
reached at approximately the same time for all values of
vx(t0) = ℏk0/M , as shown in the inset of Fig. 7.
This result is completely different from the dynamics of
a neutral impurity in a bosonic bath interacting via a
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short-range pseudopotential, as shown in Fig. 7 by the
dashed gray lines. On the timescale relevant for the
atom-ion dynamics, the neutral impurity does not come
to rest, and the neutral impurity moves with constant
velocity through the gas (see inset). We attribute this
difference to the long-range character of the polarization
potential, which cannot be adequately described by
taking only the s-wave scattering into account. For a
meaningful comparison, we choose a value of 0.05R⋆

for the impurity-gas scattering length, corresponding
roughly to the range of the van der Waals interaction
between 87Rb atoms. Note that choosing a scattering
length comparable to R⋆ for the neutral impurity would
correspond to the unitary limit, and the validity of the
master equation description would likely no longer hold.

Ion position evolution - The onset of the pinning
dynamics is affected by the gas density as shown in
Fig. 8. There, the dashed blue line represents the
position of a particle moving with constant velocity,
while the gray solid lines correspond to the ion’s position
in the presence of a condensate with different densities.
The plot shows that, at short times, the ion’s position
is not affected by the presence of the gas, while at later
times it is deflected to its final value at a rate increasing
with the density.
Interestingly, the initial linear time dependence of the
ion dynamics in the gas is an indication of the polaronic
behavior. Specifically, due to its interaction with the
bosonic bath, the ion is dressed by phononic excitations
in such a way that it can be considered as a quasi
particle moving freely within the gas. However, as time
evolves, effects such as dephasing of the phonon modes
become dominant until the ion comes to rest.

Friction coefficient evolution - Since the motion of
the ion cannot be explained by a classical trajectory,
we have analyzed the equation more closely for the
expectation value of the momentum [second line of
Eq. (24)]. That equation can be compared to the
classical equation of a particle subject to a friction. On
this purpose, we rewrite it as

d

dt
⟨p̂ξ⟩ = −Γ(t)⟨p̂ξ⟩, (30)

where we defined the friction Γ(t) according to Eq. (24).
In Fig. 9 the time dependence of Γ for two values of
the scattering length and for a neutral particle is shown.
In a classical scenario the friction coefficient would be
constant in time, whereas here it is explicitly time-
dependent. Since all properties of the atomic bath are
constant in time, the time-dependent friction observed
here can only be explained by a change in the properties
of the impurity. Moreover, we note that the qualitative
difference between the friction coefficient corresponding
to the neutral and charged particle highlights the key role
of the long-range atom-ion potential in our predictions.
In the neutral case, the time evolution of the friction
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FIG. 9. Time-dependent friction in units of the condensate
density n0 as a function of time for two different atom-ion
scattering lengths (solid and dashed) and for a neutral impu-
rity (dotted).

can be associated to the formation of a Bose polaron:
as the impurity moves through the condensate, it gets
dressed by phononic excitations, resulting in the reduc-
tion of the friction coefficient. For the ionic impurity,
a transient phase is observed at very short times where
the friction is almost zero for both scattering lengths.
This phase corresponds to the regime where the particle
is not affected by the presence of the gas, as shown in
Fig. 8, that is, a polaronic-type behavior. The increase
in Γ at longer times is responsible for the pinning dynam-
ics. We note that for large negative scattering lengths,
we observe much smaller values of Γ, corresponding to a
slower pinning. While for shorter time-scales the Bogoli-
ubov phonon modes behave coherently due to the super-
fluidity of the bath, at longer times coherence is reduced,
which we attribute to dephasing of the phononic modes.
Whether this phenomenon is connected to the formation
of two-body atom-ion states supported by our regular-
ized interaction is not possible to quantify in the current
formulation of the master equation. It will be interest-
ing in the future to investigate whether the formation of
many-body bound states as those predicted in Refs. [1–
3] occur and to understand if they are responsible of the
pinning dynamics we observe in this work. For this, the
description of the atomic gas needs to be modified and
the back action of the ion on the atomic gas has to be
included.

V. EXPERIMENTAL CONSIDERATIONS

In this section, we will describe experimental settings
that should allow investigating the cooling and pinning
dynamics of an ion in an ultracold bosonic gas. Finally,
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previously neglected inelastic processes and their im-
pacts on the ionic dynamics are discussed.

Results validation in future experiments - In order
to experimentally validate the calculated dynamics, it
is necessary to instantaneously create an ion out of
an ultracold bosonic gas with a defined, but tunable,
initial velocity vx. Two-photon ionization via a virtual
intermediate state by an intense femtosecond laser
pulse with adjustable wavelength gives rise to a tunable
excess energy Eexc. This results in an adjustable initial
velocity of the ion (compare Fig. 1). The experiments in
Refs. [44, 47] use ultrashort laser pulses of ∼ 200 fs dura-
tion and a rather high excess energy of Eexc = 0.68 eV,
which corresponds to an initial kinetic energy of the 87Rb
ion of ∼ 4µeV or an initial temperature of Tion = 33mK
[44]. However, by using an optical-parametric amplifier,
the wavelength of the laser pulses can be tuned close
to the ionization threshold so that the excess energy is
ultimately limited by the bandwidth of the laser pulse
due to the time-energy uncertainty relation. A Gaussian
laser pulse of 200 fs duration corresponds to a kinetic
energy of 115 neV for a 87Rb ion, which relates to an
initial temperature of Tion = 890µK. Such a regime is
covered by the initial parameters of our calculations and
would allow stopping the ion within the BEC.
In order to resolve the cooling and pinning dynamics of
the ion, it needs to be created in a localized region much
smaller than the extent of the BEC. This is possible by
focusing the laser beam to a diffraction limited spot with
a high-resolution microscope objective [44]. Because two
594 nm photons are sufficient to excite the outermost
electron of 87Rb just over the ionization threshold, such
a region would extend over the distance of ∼ 600 nm.
Subsequently, it is necessary to trace the position of
the ion with a high spatial and temporal resolution on
the order of 100 nm and 100 ns, respectively (compare
Fig. 8). An ion microscope [57, 58] is capable of directly
imaging the ion’s position with a sufficient resolution
as it does not rely on optical detection, thus surpassing
the resolution limit of visible light. However, to avoid
constant acceleration of the ion, it is necessary to
compensate for electric stray fields as well as possible.
Typically, related experiments reach a residual stray
field level of Estray = 0.1Vm−1 [24]. Such a field would
cause an acceleration of a = eEstray/M , yielding an
additional velocity of v = at = 0.1m s−1 during the
calculated time span of t = 1µs that is below the initial
velocities assumed here. Thus, nonetheless, a slowing of
the ion should be observable experimentally. A more
sophisticated approach would need the derivation of a
master equation with a constant acceleration term due
to the stray field, which is beyond the scope of this work,
but an obvious extension for future work.

Inelastic processes - In our analysis, we have stud-
ied the cooling dynamics of the ion, which arises from
elastic collisions with the atoms of the gas. However, in

the case of homonuclear systems such as 87Rb+/87Rb,
resonant charge exchange (RCx) can be relevant [59, 60].
This phenomenon consists of the charge of the ion
being transferred to a neutral atom after a collision.
To estimate its impact, let us first recall that two-body
collisions can be divided into two groups: glancing
collisions, where the particles trajectories are slightly
deflected, and Langevin collisions, which can be clas-
sically represented as the two particles getting close
in a spiraling motion and being scattered isotropically.
In the same classical picture, Langevin collisions occur
when the impact parameter of the collision is smaller
than a critical value bc = (2C4/Ecol)

1/4 [13], where C4

is the prefactor of the polarization potential and Ecol is
the energy of the collision. It has recently been observed
in Ref. [61] that RCx associated with glancing collisions
can be the dominant process for collisional energies
higher than 100K · kB, leading to fast cooling of the ion
(so-called swap cooling). On the other hand, for lower
energies, RCx can only occur by Langevin collisions,
with a cross section given by σRCx = σLgv/2. For the
87Rb+/87Rb system with Ecol = 1mK ·kB, σRCx is about
10 times smaller than the elastic cross section [13, 59]
and remains significantly lower than the latter even for
Ecol = 2µK · kB, where it reaches 1/3 of the elastic
cross section. Hence, resonant charge exchange is never
dominant in the energy range of the ion. However, note
that the previous reasoning is based on a semi-classical
analysis, which is accurate down to 1mK · kB. A more
accurate estimation for lower energies requires studies at
the quantum level that are not yet available.
Similar arguments can be applied to three-body recombi-
nation processes that lead to the formation of molecules.
In this regard, experiments involving a trapped 87Rb+

ion immersed in an ultracold cloud of 87Rb atoms [18]
showed that the three-body recombination rate is on
the order of a second for values of the atomic density,
comparable to the ones we considered in this work.
Although our study does not involve a trap and our
collision energies are lower than the ones considered
in the aforementioned experiment, we can assume the
formation of molecules not to play a significant role due
to the short time scales in which we expect the cooling
and pinning dynamics to take place.

VI. SUMMARY AND CONCLUSIONS

We studied the behavior of an ion moving in an ultra-
cold bosonic gas with an initial momentum resulting from
an ionization process. To this end, in Sec. III, we derived
the quantum master equation reported in Eq. (B10).
Based on this equation, we computed the differential
equations for the expectation value of the squared mo-
mentum [see Eq. (21)] and the expectation value of the
position and momentum [see Eq. (24))]. We numerically
solved these differential equations for different values of
initial momentum k0, condensate density n0, and atom-
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ion scattering length aai and showed the corresponding
results in Sec. IV. As a key observation, we demonstrated
that the ion temperature defined as Tion = ⟨p̂2⟩/(2MkB)
decays in time. We quantified this behavior by defining
the FDHM (i.e., full duration at half maximum) as the
time required for Tion to halve. Interestingly, we found
a linear dependence of the FDHM on the mean distance
between the bosons. Expanding on our key point of short
cooling times, we found that the FDHM is almost inde-
pendent of the initial temperature of the ion (Fig. 4a),
whereas it is noticeably affected by the density of the con-
densate (Fig. 4b). Similarly, we observed that the ion’s
velocity drops by nine orders of magnitude in a time that
is independent of the ion’s initial velocity (Fig. 7), which
we attribute to incoherent dynamics of the phonon modes
as a consequence of the enhancement of the friction co-
efficient (Fig. 9). In conclusion, our study predicts the
cooling and pinning of the ion due to its interaction with
the surrounding ultracold bosonic gas. Moreover, we ob-
served a substantial robustness of the results against the
parameters involved. These findings are relevant in view
of the upcoming experiments discussed in Sec. V, as the
time and length scales of the ion’s dynamics are compat-
ible with the expected experimental resolution.
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Appendix A: Validity of the Lamb-Dicke
approximation

The master equation derived in Sec. III relies on the
Lamb-Dicke approximation. We recall that the latter re-
sults in the expansion in Eq. (20) and it is based on the
assumption that the average wavelength of the atoms in
the bath is much larger than the width of the ion. Here,
we discuss the fulfillment of such a condition during the
evolution of the system in question. Of course, the as-
sumption has to hold regardless of the choice of the initial
state. Since the spatial extension of the ion wave func-
tion at the initial time must fulfill the approximation as
well, this imposes a condition on the temperature of the
gas.
Let us consider, for example, the ionization process via
a Rydberg state. In order to hold, the Lamb-Dicke ap-
proximation imposes that λdB(Tgas) ≫ σav, where σav is

the geometric average of σξ =
√

⟨r̂2ξ⟩ − ⟨r̂ξ⟩2 along the

three directions and represents the width of the ion wave
packet (i.e., the standard deviation), while λdB(Tgas) is
the de Broglie wavelength of the bosons in the gas at

temperature Tgas. A rough estimate is given by con-
sidering the ion to be in the ground state of the har-
monic trap in Eq. (25). Thus, we have at the initial

time σav =
√
ℏ/(2Mωav) with ωav = (ωxωyωz)

1/3 being
the geometrical average of the harmonic trap frequencies.
For a homonuclear system and with the trap frequencies
shown in Tab. I, we get the following condition on the
gas temperature

Tgas ≪
4πℏ
kB

M

m
ωav, (A1)

which yields a value of Tgas on the order of nK. At such
a low temperature, the exponential weights in the sum
of Eq. (27) barely affect the value of ⟨r̂2ξ(t0)⟩. For this

reason, we can safely use Eq. (A1) as a condition for
our system to be in the Lamb-Dicke regime at the initial
time. Note that the latter statement could be violated
for ion-atom systems with a different mass ratio.
In the case of ionization via an ultrashort laser pulse, the
condition for the validity of the Lamb-Dicke approxima-
tion can be simply verified by comparing the de Broglie
wavelength of the gas with the value of the laser beam
waist w0. Considering w0 = 1µm, as it is expected in
future experiments, we can impose a condition on Tgas.
Similarly, the required value is on the order of nK.
The validity of the Lamb-Dicke approximation at later
times, however, has to be monitored numerically by solv-
ing the equations for the first [Eq. (24)] and second order
moments [Eq. (21) and (22)]. In Fig. 10, we show the time
evolution of the spatial width of the ion σav for three dif-
ferent initial temperatures. As it can be observed, the ra-
tio between σav and the de Broglie wavelength is always
on the order of one tenth, confirming that the Lamb-
Dicke approximation is rather well justified.

Appendix B: Details on the master equation

For the sake of completeness, let us retrace the main
steps of the derivation starting from the von Neumann
equation for the density matrix of the total system (ion
plus bath) χ̂(t):

d

dt
χ̂(t) = − i

ℏ

[
Ĥ, χ̂(t)

]
. (B1)

Following the standard quantum-optical approach (see,
e.g., Ref. [51]), we write the density matrix in the inter-
action picture as

χ̃(t) = Û†(t)χ̂(t)Û(t) (B2)

with

Û(t) = exp

[
− i

ℏ

(
Ĥion + Ĥbath

)
t

]
. (B3)

Recalling the definition of the total Hamiltonian Ĥ =
Ĥion + Ĥbath + Ĥint, we obtain the following equation

d

dt
χ̃(t) = − i

ℏ

[
H̃int, χ̃(t)

]
, (B4)
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FIG. 10. Average spatial width of the ion as a function of
time as a percentage of the atomic de Broglie wavelength
λdB(Tgas) with Tgas = 1 nK and n0 = 2 · 1014 cm−3. The
three lines correspond to the three initial temperatures con-
sidered in Fig 3(a).

whose formal solution reads

χ̃(t) = χ̃(0)− i

ℏ

∫ t

0

dt′
[
H̃int(t

′), χ̃(t′)
]
. (B5)

Here, H̃int is the interaction Hamiltonian in the interac-
tion picture.
We now insert Eq. (B5) in Eq. (B4) and we get

d

dt
χ̃(t) =− i

ℏ

[
H̃int(t), χ̃(0)

]
− i

ℏ2

∫ t

0

dt′
[
H̃int(t),

[
H̃int(t

′), χ̃(t′)
]]
.

(B6)

In order to proceed, we assume that at the initial time
t = 0 the system and the bath are not correlated. This
allows the total density matrix to be factorized as χ̃(0) =

ρ̃(0)⊗ B̂0, where ρ̃(0) = ρ̂(0) is the initial density matrix

of the ion, while B̂0 is the initial density matrix of the
Bose gas at thermal equilibrium

B̂0 =
e−β

(
Ĥbath−µGN̂

)
Z

, Z = Trb

{
e−β

(
Ĥbath−µGN̂

)}
,

(B7)

where β = 1/(kBTgas), N̂ is the bath number operator
and the chemical potential of the gas µG is zero for a
Bose gas below the critical temperature of condensation.
Note that the same assumption was made in Ref. [43],
where a Paul-trapped ion immersed in an ultracold gas
was considered. In that case, the assumption was well
justified, as the ion and the gas are typically prepared
separately in experiments, and no interaction occurs be-
fore they are brought together. In the present case, we

note that part of the simulations will refer to a scenario
where the ion is created after ionizing one of the atoms
in the gas. However, the interaction between the gas
atoms is weaker and of short-range nature compared to
the atom-ion polarization potential. Given the fact that
the ionization process occurs on a time scale much shorter
than every other time scale in our theoretical treatment,
we can reasonably assume that at the very initial mo-
ment of the ion generation the interaction between the
ion and the bath is weak. Only subsequently, it becomes
stronger, but in such a way that the gas state is not sig-
nificantly altered.
Now, we trace out the bath degrees of freedom from
Eq. (B6) obtaining an equation for the reduced density
matrix of the ion

d

dt
ρ̃(t) = − 1

ℏ2

∫ t

0

dt′ Trb

{[
H̃int(t),

[
H̃int(t

′), χ̃(t′)
]]}

,

(B8)
and we finally perform the Born and Markov approxima-
tions. The Born approximation relies on the fact that
the coupling between the ion and the bath is weak and
that the bath is very large. Therefore, the factorization
χ̃(t′) ≃ ρ̃(t′) ⊗ B̂0 is assumed to be valid at all times
t′. Instead, the Markov approximation is based on the
assumption that the dynamics of the bath is much faster
than the dynamics of the ion. It consists of the replace-
ment ρ̃(t′) → ρ̃(t).
We then get to the so-called Redfield equation for the
reduced ion density matrix in the interaction picture:

d

dt
ρ̃(t) = − 1

ℏ2

∫ t

0

dt′ Trb

{[
H̃int(t),

[
H̃int(t

′), ρ̃(t)⊗ B̂0

]]}
.

(B9)

From this equation, we can explicitly substitute H̃int

and transform back to the Schrödinger picture. After
tracing out the bath degrees of freedom, we get to the
impurity master equation provided in Eq. (17), where
we performed the change of variable τ = t − t′ and
r̂(t, τ) = Û(t)Û†(t− τ)r̂Û(t− τ)Û†(t).
Here, we report for the interested reader the complete
master equation in the Born-Markov and Lamb-Dicke ap-
proximation:

d

dt
ρ̂(t) = − i

ℏ

[
ĤS, ρ̂(t)

]
−

∑
ξ=x,y,z

{
λξ(t)[r̂ξ, ρ̂(t)p̂ξ]− λ∗

ξ(t)[r̂ξ, p̂ξρ̂(t)]

+ϕξ(t)
(
[r̂ξ, r̂ξρ̂(t)]− [r̂ξ, ρ̂(t)r̂ξ]

)}
,

(B10)
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where we have introduced the following functions:

λξ(t) =
∑
q

Ω2
q q

2
ξ

{
2nq

mω2
q

[
cos(ωqt) + ωqt sin(ωqt)− 1

]
+

1

mω2
q

[
eiωqt

(
1− iωqt

)
− 1

]}
,

ϕξ(t) =
∑
q

Ω2
q q

2
ξ

[
(2nq + 1)

sin(ωqt)

ωq

]
.

(B11)

The equations in Eq. (21), (22) and (24) are computed
by explicitly calculating the expectation value of the cor-
responding observables with Eq. (B10) and by making
use of the canonical commutation relations between the
position and momentum operators.

Appendix C: Alternative squared momentum
derivation

The same equation for the squared momentum in
Eq. (21) can be derived with a different approach. In
particular, we can calculate the variation in the ion’s en-
ergy due to the presence of the gas. Specifically, to second
order in the perturbative expansion we have

d⟨Ĥion(t)⟩
dt

=
i

ℏ

〈[
H̃int(t), Ĥion

]〉
− 1

ℏ2

∫ t

0

dt′
〈[

H̃int(t
′),

[
H̃int(t

′), Ĥion

]]〉
,

(C1)

where the average value ⟨. . . ⟩ has to be intended as the
trace over a density matrix. By choosing the total system
density matrix as the one we defined for the derivation
of the master equation, it is straightforward to show that
the first term on the right hand side of Eq. (C1) vanishes
due to the odd number of bath operators, while the sec-
ond gives rise to terms proportional to nq and (nq + 1).
After transforming back to the Schrödinger picture, per-
forming the time integrals and the Lamb-Dicke approxi-
mation, one can retrieve Eq. (21).

Appendix D: Dynamics for low initial ion
temperatures

Here we discuss the time evolution of the ion temper-
ature obtained for initial values in a regime comparable
to E⋆/kB = 79nK and one order of magnitude higher.
The results are shown in Fig. 11. Interestingly, the ion

is heated up at short times, meaning that the expecta-
tion value of its kinetic energy increases. At later times,
the ion temperature exhibits a maximum. This is po-
sitioned around ∼ 0.2µs for n0 = 2 · 10−14 cm−3 and
∼ 0.4µs for n0 = 2 · 10−13 cm−3. Similarly to what we
observed for initial ion energies in the mK-regime, the re-
sults in Fig. 11 only slightly depend on the initial temper-
ature, while they are noticeably affected by the density
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FIG. 11. Ion temperature T x
ion = ⟨p̂2x⟩/(2MkB) as a function

of time for n0 = 2 · 1014 cm−3 (solid lines) and n0 = 2 ·
1013 cm−3 (light dashed lines). The initial ion temperatures
correspond to T x

ion = 1µK (red) and T x
ion = 0.1µK (purple).

of the condensate. In particular, a lower density (light
dashed lines) corresponds to a shift towards larger times
and flattening of the maximum. The behavior of Tion at
short times can be attributed to the long-range and at-
tractive character of the atom-ion interaction generated
after the ionization process. Contrarily to a neutral im-
purity, which interacts with a particle of the bath only
when this is at its same position, the increased range
of the polarization potential causes the ion to heat up
due to the surrounding polarized bath atoms within a
radius given by R⋆. This dynamical behavior continues
until the frequency of collisions with the atoms in the
bath is large enough to cool down the moving ion. We
note that a similar initial heating, although with a lower
peak, is also observed with initial temperatures in the
mK-regime. However, the scale of temperatures in the
main plot of Fig. 3 does not allow this peaks to be appre-
ciated. It is also important to remark that no maximum
is observed in the expectation value of the ion momen-
tum ⟨p̂x(t)⟩, meaning that the heating of the ion at short
time does not correspond to an acceleration.
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Ĝ,

[
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[54] Kurt Jacobs and Daniel A. Steck, “A straightforward in-

troduction to continuous quantum measurement,” Con-
temporary Physics 47, 279–303 (2006).

[55] Lev Pitaevskii and Sandro Stringari,
Bose-Einstein Condensation and Superfluidity (Ox-
ford Science Pubblications, 2016).

[56] A finite initial temperature along y and z would not
have any qualitative effect on our analysis. However, a
quantitative study could require the total temperature
Tion = T x

ion + T y
ion + T z

ion to be considered.
[57] C. Veit, N. Zuber, O. A. Herrera-Sancho, V. S. V. Ana-

suri, T. Schmid, F. Meinert, R. Löw, and T. Pfau,
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