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We study the effects of photoirradiation with circularly polarized light on the Dirac half-metal
state induced by the ferrimagnetic order in a triangular Kondo-lattice model. Our analysis based on
the Floquet theory reveals that two types of Floquet Chern insulator phases appear as photoinduced
nonequilibrium steady states and that these two phases can be experimentally detected and distin-
guished by measurements of the Hall conductivity. It is elucidated that these rich nonequilibrium
topological phases come from higher-order terms in the high-frequency expansion called Brillouin-
Wigner expansion, which is in striking contrast to usually discussed Floquet Chern insulator phases
originating from the lowest-order terms of the expansion. So far, the lattice electron models on sim-
ple non-multipartite lattices such as triangular lattices and square lattices have not been regarded as
targets of the Floquet engineering because the lowest-order terms of the high-frequency expansion
for Floquet effective Hamiltonians cancel each other to vanish in these systems. Our findings of
the Floquet Chern insulator phases in a triangular Kondo-lattice model are expected to expand the
range of potential models and even materials targeted by the Floquet engineering.

I. INTRODUCTION

Since the first theoretical proposal of the Floquet
Chern insulator state in graphene [1, 2], the Floquet en-
gineering of topology in condensed matters has been a
central issue of the photoinduced physics [3, 4]. The
predicted photoinduced Hall current of topological ori-
gin in graphene was indeed observed in experiments re-
cently [5, 6]. Possible realizations of the Floquet Chern
insulator state are theoretically and experimentally pro-
posed also in several atomic-layer systems including
twisted multilayer graphene [7–9], silicene [10], black
phosphorene [11], transition-metal dichalcogenides [12–
15], organic salts [16–22], and cuprate superconduc-
tors [23]. In addition, subsequent seminal works have re-
vealed new concepts, e.g., the anomalous Floquet states
due to hybridization of multiple Floquet sectors with dif-
ferent photon numbers [24–27] and the Floquet fractional
Chern insulator states as intrinsic fractionally quantized
Hall states under a periodic drive [28], which are attract-
ing a great deal of research interest recently. The circu-
lar dichroism of the Floquet states is also studied inten-
sively [29, 30].

The Floquet engineering of material topology has been
developed further in various directions [31]. On the sur-
faces of topological insulators, Floquet-Bloch states with
ultrafast intraband and interband dynamics are experi-
mentally observed [32, 33]. In three-dimensions, Floquet
Weyl semimetal states [34, 35] as three-dimensional coun-
terparts of the Floquet Chern insulator states have been
proposed to emerge in the photodriven three-dimensional
Dirac electron systems [36] and the Mott-insulating mag-
nets on the pyrochlore lattice [37]. Consideration of
strong electron correlations is another important direc-
tion of the research. The Floquet theory combined
with the dynamical mean-field theory (DMFT) named
Floquet-DMFT has been developed as a powerful tool to
analyze the photodriven phenomena in correlated elec-

tron systems [38, 39], e.g., manipulation of fermion-
fermion interactions [40] and higher-harmonic genera-
tions in Mott insulators [41]. In addition, the Floquet
engineering extends its scope to the research field of spin-
tronics [42, 43]. Analyses based on the Floquet theory
have revealed a variety of physical mechanisms of spin-
current generation based on spin-wave excitations by ap-
plication of electromagnetic waves to magnets such as
multiferroic materials with magnetoelectric coupling [44].
Spin dynamics toward and in the Floquet states are also
active research topics [45, 46]. The Floquet engineering
continues to attract researchers from the viewpoints of
both fundamental science and technical application.
The geometry of lattice structure is a crucial factor for

the Floquet engineering [2, 47, 48]. We argue this as-
pect by introducing a technical detail of the Floquet the-
ory. The Floquet theory describes nonequilibrium steady
states induced by a periodic drive such as light in an ex-
tended Hilbert space of states with different photon num-
bers n, i.e., the original space without the periodic drive
(n=0) and duplicated subspaces with n = ±1,±2, · · · .
Because direct analyses of this extended Hilbert space
require a huge computational cost, a high-frequency ex-
pansion technique is frequently used, in which the du-
plicated nonzero photon-number subspaces are projected
onto the original Hilbert space. In this framework, we
often consider the terms up to the first-order of the ex-
pansion with respect to 1/ω for the effective Hamiltonian

Ĥeff ,

Ĥeff = Ĥ0 −
∑

n>0

[

Ĥn, Ĥ−n

]

nω
, (1)

Ĥn =
1

T

∫ T

0

dτ Ĥ(τ)einωτ , (2)

where Ĥ(τ) denotes the original time-dependent Hamil-
tonian under photoirradiation, and ω and T = 2π/ω de-
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note the frequency and time period of light, respectively.
The first term of Eq. (1) describes the time-average of
the original Hamiltonian, while the second term describes
the projection of one-photon subspaces into the original
Hilbert space.

In fact, in the Floquet engineering, the second term
plays a substantial role for the emergence of photoin-
duced topological phases. However, it is known that the
first-order terms usually vanish because of the cancella-
tion of contributions from equivalent paths having phases
with opposite signs. In fact, we can avoid such cancella-
tions to realize a nonzero contribution from the first-order
terms in multipartite lattices, e.g, honeycomb lattices (bi-
partite), Lieb lattices (bipartite), and Kagome lattices
(tripartite). On the contrary, the cancellation cannot be
avoided in simple non-multipartite lattices such as square
and triangular lattices even in the presence of extrinsic
sublattice degrees of freedom introduced by long-range
orders of spins and/or charges. For this reason, lattice
electron models on several multipartite lattices such as
Kagome lattices, honeycomb lattices, and Lieb lattices
have been intensively studied in the research of Floquet
engineering, but those on simple square lattices and tri-
angular lattices have not been its major target so far.

Then we encounter the following question: Is it really
impossible to conduct the Floquet engineering with elec-
tron models on simple non-multipartite lattices? The
answer is no, and the Floquet engineering can indeed
be applied to lattice electron models on, e.g., triangular
and square lattices. In this paper, we demonstrate that
even a simple triangular-lattice system can host rich Flo-
quet topological phases under photoirradiation based on
a theoretical study on the photodriven Dirac half-metal
state in a Kondo-lattice model with spin-charge cou-
pling. Our Floquet analysis reveals that originally mass-
less half-metallic Dirac electrons become massive under
irradiation with circularly polarized light, and, conse-
quently, two kinds of Floquet spin-polarized Chern insu-
lator phases emerge. Importantly, the first-order terms
of high-frequency expansion are not relevant to this pho-
toinduced topological phase transition because they com-
pletely cancel each other out and vanish on the triangu-
lar lattice. Instead, higher-order terms turn out to play
a substantial role for emergence of these Floquet topo-
logical phases. We also argue that these Floquet Chern
insulator phases can be detected and distinguished by a
measurement of the Hall conductivity. Our findings are
expected to broaden the range of candidate materials for
the Floquet engineering.

The rest of this paper is organized as follows. In Sec. II,
we describe the extended Ising Kondo-lattice model uti-
lized in this study. In Sec. III, we explain our theoretical
framework based on the Floquet theory and the high-
frequency expansion. In this section, we also discuss how
the first-order terms of the high-frequency expansion van-
ish in the non-multipartite lattice systems. In Sec. IV, we
present the results, which include nonequilibrium band
structures, nonequilibrium phase diagrams, and the Hall
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FIG. 1. (a) Up-up-down ferrimagnetic order with three sub-
lattices (A, B, and C) on the triangular lattice. Thick lines
indicate a honeycomb network of up-spins. (b) Band dis-
persion relations for the extended Ising Kondo-lattice model
with JK/t = 2 and J ′

K/t = 0. (c) Those for JK/t = 2 and
J ′

K/t = 0.05. Red and blue colors of the lowest three bands
in (b) and (c) indicate the up- and down-spin polarizations,
respectively.

conductivity under irradiation with circularly polarized
light. Section V is devoted to summary.

II. MODEL

We start with a triangular Kondo-lattice model which
describes the coupling between conduction electrons and
localized spins on the triangular lattice [49]. The Hamil-
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tonian is given by

HIKLM = −t
∑

〈i,j〉

∑

σ=↑,↓

(

ĉ†iσ ĉjσ + h.c.
)

− JK
∑

i

∑

σ,σ′=↑,↓

ĉ†iσ σ̂
z
σσ′ ĉiσ′Siz

+ J ′
K

∑

i

∑

j∈{NN of i}

∑

σ,σ′=↑,↓

ĉ†iσσ̂
z
σσ′ ĉiσ′Sjz . (3)

Here ĉ†iσ (ĉiσ) denotes the creation (annihilation) opera-
tor of an conduction electron with spin σ(=↑, ↓) on site i,
and Si = (0, 0, Siz) with Siz = ±1 is the localized Ising
spin on site i. The symbol σ̂z is the Pauli matrix for the
spin z-component, and rij ≡ rj − ri denotes the bond
vector from site i to site j. The first term represents the
nearest-neighbor hoppings of conduction electrons, where
t is the transfer integral and is used as a unit of energy.
The second and third terms describe the intrasite ferro-
magnetic and intersite antiferromagnetic exchange cou-
pling between the conduction electron spins and the lo-
calized Ising spins, respectively, where JK and J ′

K are the
coupling constants. We assume a three-sublattice up-up-
down ferrimagnetic order of the localized spins [Fig. 2(a)].
This spin structure is known to be realized as the ground
state when the electron filling is nearly 1/3. We assume
the limit of strong Ising anisotropy where this magnetic
order does not alter under photoirradiation.
In equilibrium, this ferrimagnetic order induces Dirac-

cone bands when (JK + 3J ′
K)/t > 1, whose Dirac points

are located at K-point and ε = ±JK. These Dirac-cone
bands are perfectly spin polarized. Specifically, the lower-
lying Dirac cone around ε = −JK is up-spin polarized,
whereas the higher-lying Dirac cone around ε = +JK is
down-spin polarized [Fig. 2(b)]. When the electron filling
is ne = 1/3, the lowest two of the six bands are occupied
and the lower Dirac point with up-spin polarization is
located at the Fermi level. This state is refered to as
“Dirac half metal”.
In fact, an additional down-spin band overlaps this

Dirac point, which inevitably hinders physical responses
of the Dirac electrons. The intersite antiferromagnetic
Kondo coupling J ′

K can remove this down-spin band from
the Dirac point through lowering its energy as shown in
Fig. 2(c) [49]. This band shift does not change the chem-
ical potential µ = −JK, which is originally located at
the Dirac point of lower-lying Dirac-cone bands. In this
situation, we expect physical responses purely from the
Dirac electrons, at least, at low temperatures. In the fol-
lowing, we discuss the results obtained for JK/t = 2 and
J ′
K/t = 0.05.
When the order of localized spins {Si} is rigid and is

never affected by the photoirradiation, the above Kondo-
lattice model can be reduced to a tight-binding model
with sublattice-dependent on-site potentials as,

H = −t
∑

i6=j,σ

ĉ†iσ ĉjσ +
∑

i,σ

vi,σ ĉ
†
iσ ĉiσ, (4)

with

vi,σ =











−JKσ i ∈ sublatticeA

−JKσ i ∈ sublattice B

(JK + 6J ′
K)σ i ∈ sublatticeC

(5)

where σ = +1 (σ = −1) for up (down) spin. This formula
is a general form of the Hamiltonian for the noninteract-
ing electron systems with arbitrary on-site potentials.
When this system is irradiated by light, the situation

is described by the following Hamiltonain with a time-
dependent vector potential A(τ),

Ĥ(τ) = −t
∑

i6=j,σ

eiA(τ)·rij ĉ†iσ ĉjσ +
∑

i,σ

vi,σ ĉ
†
iσ ĉiσ . (6)

The general form of the time-dependent vector potential
is given by,

A(τ) =
Eω

ω
(e1 cosωτ + e2 sinωτ) , (7)

where e1 and e2 are arbitrary three-component vectors
describing the light polarization. This vector potential
generates the light electric field,

E(τ) = −∂A(τ)

∂τ
= Eω (e1 sinωτ − e2 cosωτ) . (8)

In this study, we examine the effect of circularly polarized
light and thus set e1 = (1, 0, 0) and e2 = (0, 1, 0).

III. METHODS

We analyze the model in Eq. (6) using the Floquet
theory. We also perform real-time simulations based on
the time-dependent Schrödinger equation to support the
Floquet analysis. In the following, we describe a fun-
damental formalism of the Floquet theory and its ap-
plication to noninteracting systems. Then we describe
the Keldysh Green’s functions to calculate the Hall con-
ductivity in the photoirradiated system in Sec. III.B. In
Sec. III.C, we describe the Brillouin-Wigner expansion as
one of the typical high-frequency expansion techniques.
In Sec. III.D, we discuss how the first-order terms of
the Brillouin-Wigner expansion are canceled in the non-
multipartite lattice electron systems. In Sec. III.E, we
explain details of the real-time simulations. We also dis-
cuss the unit conversions used in this study in Sec. III.F.

III.A. Floquet theory

The time-dependent Schrödinger equation for nonin-
teracting systems is given by

i~
∂

∂τ
|ψ(τ)〉 = Ĥ(τ) |ψ(τ)〉 , (9)
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where τ , Ĥ(τ) and |ψ(τ)〉 denote the time, the non-
interacting time-dependent Hamiltonian, and the time-
dependent single-particle wavefunction, respectively.
When we consider a time-periodic Hamiltonian Ĥ(τ)

with a frequency ω, which satisfies Ĥ(τ) = Ĥ(τ + T )
with T = 2π/ω, the wavefunction |ψ(τ)〉 is given by,

|ψ(τ)〉 = e−iεt/~ |φ(τ)〉 . (10)

Here |φ(τ)〉 (= |φ(τ + T )〉) is the time-periodic single-
particle state called Floquet state, which has the same
time periodicity as that of Ĥ(τ), and ε denotes the eigen-
value of the corresponding Floquet state. Equation (10)
is the representative formula of the Floquet theorem. Be-
cause both Ĥ(τ) and |φ(τ)〉 are time periodic, we can

expand them by the complex Fourier series as,

Ĥ(τ) =
∑

m

e−imωτ Ĥm, (11)

|φ(τ)〉 =
∑

m

e−imωτ |φm〉 , (12)

where the complex Fourier coefficients Ĥm and |φm〉 are,
respectively, given by,

Ĥm =
1

T

∫ T

0

dτ Ĥ(τ)eimωτ , (13)

|φm〉 = 1

T

∫ T

0

dτ |φ(τ)〉 eimωτ . (14)

Here the integer m in Ĥm and |φm〉 denotes the number
of photons.

For Ĥ(τ) in Eq. (6), we obtain an explicit formula of the Fourier coefficient Ĥn as,

Ĥn = −t
∑

i6=j,σ

J−n(Aij)e
−inθij ĉ†iσ ĉjσ + δ0,n

∑

i,σ

viσ ĉ
†
iσ ĉiσ . (15)

We use the following relation in the derivation,

1

T

∫ T

0

dτ exp {iAij sin(ωτ + θij) + inωτ} = J−n(Aij)e
−inθij , (16)

where Jn(x) is the n-th order Bessel function of the first kind. The quantities Aij and θij are, respectively, given by,

Aij =
Eω

ω

√

(rij · e1)2 + (rij · e2)2, (17)

θij = tan−1

(

rij · e1
rij · e2

)

. (18)

Substituting Eqs. (10), (11), and (12) into Eq. (9), we obtain the following eigenvalue equation,
(

ĤF − ωM̂r

)

|φF〉 = ε |φF〉 , (19)

where

ĤF =



























. . .
...

...
...

...
... . .

.

· · · Ĥ−2,−2 Ĥ−2,−1 Ĥ−2,0 Ĥ−2,+1 Ĥ−2,+2 · · ·
· · · Ĥ−1,−2 Ĥ−1,−1 Ĥ−1,0 Ĥ−1,+1 Ĥ−1,+2 · · ·
· · · Ĥ0,−2 Ĥ0,−1 Ĥ0,0 Ĥ0,+1 Ĥ0,+2 · · ·
· · · Ĥ+1,−2 Ĥ+1,−1 Ĥ+1,0 Ĥ+1,+1 Ĥ+1,+2 · · ·
· · · Ĥ+2,−2 Ĥ+2,−1 Ĥ+2,0 Ĥ+2,+1 Ĥ+2,+2 · · ·
. .
. ...

...
...

...
...

. . .



























, (20)

M̂r =



























. . .
...

...
...

...
... . .

.

· · · −2Îr Ôr Ôr Ôr Ôr · · ·
· · · Ôr −Îr Ôr Ôr Ôr · · ·
· · · Ôr Ôr Ôr Ôr Ôr · · ·
· · · Ôr Ôr Ôr +Îr Ôr · · ·
· · · Ôr Ôr Ôr Ôr +2Îr · · ·
. .
. ...

...
...

...
...

. . .



























. (21)
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In the real-space representation, the matrix HF is composed of 2N × 2N -dimensional block matrices Ĥn,m ≡ Ĥn−m.

The matrices Îr and Ôr are 2N × 2N -dimensional identity matrix and zero matrix, respectively. The Floquet-state
vector |φF〉 in the real-space representation is defined as,

|φF〉 =t (· · · , {φ−2
iσ }, {φ−1

iσ }, {φ0iσ}, {φ1iσ}, {φ2iσ}, · · · ), (22)

where {φniσ} is a set of 2N components φniσ of the n-photon Floquet-state vector |φn〉 with i = 1, 2, · · · , N and σ = ±1.

In this way, the time-dependent Schrödinger equation in Eq. (9) with a time-periodic Hamiltonian Ĥ(τ) is mapped
onto the time-independent eigenvalue problem given by Eq. (19).
Using the Fourier transforms,

ĉ†iσ =
1√
N

∑

k

ĉ†
k
e−ik·ri , ĉiσ =

1√
N

∑

k

ĉ†
k
eik·ri , (23)

we rewrite Eq. (19) in the momentum-space representation as,

(

ĤF(k)− ωM̂m

)

|φF(k)〉 = εk |φF(k)〉 , (24)

where

ĤF(k) =



























. . .
...

...
...

...
... . .

.

· · · Ĥ−2,−2(k) Ĥ−2,−1(k) Ĥ−2,0(k) Ĥ−2,+1(k) Ĥ−2,+2(k) · · ·
· · · Ĥ−1,−2(k) Ĥ−1,−1(k) Ĥ−1,0(k) Ĥ−1,+1(k) Ĥ−1,+2(k) · · ·
· · · Ĥ0,−2(k) Ĥ0,−1(k) Ĥ0,0(k) Ĥ0,+1(k) Ĥ0,+2(k) · · ·
· · · Ĥ+1,−2(k) Ĥ+1,−1(k) Ĥ+1,0(k) Ĥ+1,+1(k) Ĥ+1,+2(k) · · ·
· · · Ĥ+2,−2(k) Ĥ+2,−1(k) Ĥ+2,0(k) Ĥ+2,+1(k) Ĥ+2,+2(k) · · ·
. .
. ...

...
...

...
...

. . .



























, (25)

M̂m =



























. . .
...

...
...

...
... . .

.

· · · −2Îm Ôm Ôm Ôm Ôm · · ·
· · · Ôm −Îm Ôm Ôm Ôm · · ·
· · · Ôm Ôm Ôm Ôm Ôm · · ·
· · · Ôm Ôm Ôm +Îm Ôm · · ·
· · · Ôm Ôm Ôm Ôm +2Îm · · ·
. .
. ...

...
...

...
...

. . .



























. (26)

The matrix HF(k) is composed of 6×6-dimensional block matrices Ĥn,m(k) ≡ Ĥn−m(k). The matrices Îm and Ôm are
6× 6-dimensional identity matrix and zero matrix, respectively. The Floquet-state vector |φF(k)〉 in the momentum
space is defined as,

|φF(k)〉 =t (· · · , {φ−2
ν (k)}, {φ−1

ν (k)}, {φ0ν(k)}, {φ1ν(k)}, {φ2ν(k)}, · · · ), (27)

where ν is the band index. The present system has six bands for each photon-number subspace (i.e., ν = 1, 2, · · · , 6)
because of the three sublattices and the spins σ = ±1. Here {φnν (k)} is a set of six components φnν (k) of the n-photon
Floquet-state vector |φn(k)〉 at momentum k. For practical treatment of Eq. (24), we restrict the number of photons
to |n| ≤ nmax with nmax=16 throughout the present study. After this truncation, we obtain the band dispersion
relations εnν (k) and the eigenstates |φnν (k)〉 by diagonalizaing the truncated Floquet Hamiltonian HF(k)− ωMm.

III.B. Keldysh Green’s function formalism

The Chern number of the νth band in the Floquet
state and the Hall conductivity under photoirradiation

are respectively given by [1, 31, 50],

Nν
Ch =

1

2π

∫

BZ

dk Ων
z (k), (28)

σxy =
e2

h

1

2π

∑

ν

∫

BZ

dk nν(k)Ω
ν
z (k). (29)
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The Berry curvature Ων
z (k) is given by,

Ων
z(k) = i

∑

(m,µ)[6=(n,ν)]

〈φnν (k)|∂kx
HF(k)|φmµ (k)〉 〈φmµ (k)|∂ky

HF(k)|φnν (k)〉
[

εnν (k)− εmµ (k)
]2 . (30)

The nonequilibrium electron distribution function nν(k)
represents the expectation value of electron occupation
of the state with a momentum k and the band index
ν. For the off-resonant condition that all the Floquet
sidebands with nonzero photon number n 6= 0 do not
overlap the original band set with n = 0, we can simply
approximate nν(k) ∼ f(ε0ν(k)) where f(ε) is the Fermi
distribution function in equilibrium. On the contrary,
for the on-resonant condition that some of the Floquet
sidebands overlap the original bands, this approximation
no longer holds. Therefore, we need to calculate nν(k)
for evaluating the Hall conductivity.
We utilize Keldysh Green’s function method [39, 51]

to calculate nν(k). The Dyson equation for the Green’s
function matrix is given by,

(

ĜR(k, ε) ĜK(k, ε)

0 ĜA(k, ε)

)−1

=







[

ĜR0(k, ε)
]−1 [

ĜK0(k, ε)
]−1

0
[

ĜA0(k, ε)
]−1






−
(

Σ̂R Σ̂K(ε)

0 Σ̂A

)

.

(31)

where ĜR, ĜA, and ĜK (Σ̂R, Σ̂A, and Σ̂K) are the re-
tarded, advanced, and Keldysh Green’s functions (self-
energies) for the Floquet states, respectively. Matrix el-
ements of the noninteracting Green’s functions for the
Floquet states and the self-energies are respectively given
by,

[ĜR0(k, ε)]−1
nν,mµ = εδnmδνµ − [HF(k)− ωMm]nν,mµ,

(32)

[ĜR0(k, ε)]−1
nν,mµ = εδnmδνµ − [HF(k)− ωMm]nν,mµ,

(33)

[Σ̂R]nν,mµ = −iΓδnmδνµ, (34)

[Σ̂A]nν,mµ = iΓδnmδνµ, (35)

[Σ̂K(ε)]nν,mµ = −2iΓ tanh

[

ε− µ+mω

2kBThr

]

δnmδνµ, (36)

where Γ represents the strength of dissipation due to the
coupling to a heat reservoir at temperature Thr. We set
Γ/t = 0.1 in this study. Then, the lesser Green’s function

Ĝ< is given by,

Ĝ<(k, ε) = ĜR(k, ε)Σ̂<(ε)ĜA(k, ε), (37)

where the lesser self-energy Σ̂< is given by,

Σ̂<(ε) =
Σ̂A + Σ̂K(ε)− Σ̂R

2
. (38)

Finally, the nonequilibrium electron distribution nν(k)
with momentum k and band index ν is given by,

nν(k) =
〈φ0ν (k)|N̂k

(

ε0ν(k)
)

|φ0ν(k)〉
〈φ0ν (k)|Âk (ε0ν(k)) |φ0ν(k)〉

, (39)

where the operators Â and N̂ are respectively given by,

Âk(ε) =
i

2π

(

ĜR(k, ε)− ĜA(k, ε)
)

, (40)

N̂k(ε) = − i

2π
Ĝ<(k, ε). (41)

In this study, we use 144 × 144 k-points for numerical
calculations. The chemical potential µ is determined by
using the bisection method to preserve the total electron
number ne. We iterate the Keldysh Green’s function cal-
culation to tune the chemical potential until the value of
ne becomes very close to the target value. In the follow-
ing, we keep ne = 0.34 with negligibly small errors less
than 10−8.

III.C. Brillouin-Wigner expansion

To study the effect of lattice geometry on the elec-
tron states in the photoirradiated system, we adopt the
Brillouin-Wigner expansion [47], which is one of the typ-
ical high-frequency expansion techniques [52–55]. The
high-frequency expansion is accurate in the limit of ω →
∞ where 2π/ω is a time periodicity of the Hamiltonian.

The expansion gives an effective Hamiltonian ĤBW called
Brillouin-Wigner Hamiltonian, which describes the elec-
tron states under photoirradiation and is obtained by an
appropriate projection of nonzero photon-number sub-
spaces of HF − ωMr to the original Hilbert space with
zero photon number. The Brillouin-Wigner Hamiltonian
is given by,

ĤBW =
∑

n=0,1,2,···

Ĥ
(n)
BW, (42)
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with

Ĥ
(0)
BW = Ĥ0,0, (43)

Ĥ
(1)
BW =

∑

n6=0

Ĥ0,nĤn,0

nω
= −

∑

n>0

[

Ĥn, Ĥ−n

]

nω
, (44)

Ĥ
(2)
BW =

∑

n1,n2 6=0

Ĥ0,n1
Ĥn1,n2

Ĥn2,0

n1n2ω2
−

∑

n6=0

Ĥ0,nĤn,0Ĥ0,0

n2ω2
,

(45)

Ĥ
(3)
BW =

∑

n1,n2,n3 6=0

Ĥ0,n1
Ĥn1,n2

Ĥn2,n3
Ĥn3,0

n1n2n3ω3

+
∑

n6=0

Ĥ0,nĤn,0Ĥ0,0Ĥ0,0

n3ω3

−
∑

n1,n2 6=0

Ĥ0,n1
Ĥn1,0Ĥ0,n2

Ĥn2,0

n2
1n2ω3

−
∑

n1,n2 6=0

Ĥ0,n1
Ĥn1,n2

Ĥn2,0Ĥ0,0

n1n2ω3

(

1

n1
+

1

n2

)

.

(46)

Note that all the n-th order terms are the order of (1/ω)n.

We neglect emergent many-body terms in Ĥ
(2)
BW and Ĥ

(3)
BW

which have no influence on the Floquet single-particle

states in the noninteracting systems [47].

III.D. Cancellation of the first-order terms

i

j

k1

k2

i

j

k1

k2

i

j

k1

k2

i

j

k1

k2

FIG. 2. Examples of pairs of three-site hopping paths (i →
k1 → j) and (i → k2 → j) whose contributions to indirect
hoppings from site i to site j cancel each other.

We discuss how the first-order terms of the Brillouin-
Wigner expansion in the non-multipartite lattice electron
systems vanish through mutual cancellation. The numer-
ator of Eq. (44) can be calculated by substituting Eq. (15)
into Eq. (44). The explicit calculations are done for n > 0
as,

[

Ĥn, Ĥ−n

]

=
∑

i,j

∑

k,l

tijtklJ−n(Aij)Jn(Akl)e
−in(θij−θkl)

[

ĉ†i ĉj , ĉ
†
k ĉl

]

= 2i(−1)n+1
∑

i,j

∑

k

tiktkjJn(Aik)Jn(Akj) sin {n (θik − θkj)} ĉ†i ĉj. (47)

Here we omit the spin indices for simplicity, but the gen-
erality of the argument is not compromised by considera-
tion of the spin degrees of freedom. These terms describe
three-site hoppings of conduction electrons from site i to
site j via site k (i → k → j) mediated by two nearest
neighbor hoppings t. Importantly, in the two and three
dimensional lattices without sublattice degrees of free-
dom, every three-site hopping path (i → k1 → j) has its
counterpart (i → k2 → j), which satisfies the following
relations,

tik1
tk1jJn(Aik1

)Jn(Ak1j) = tik2
tk2jJn(Aik2

)Jn(Ak2j),
(48)

θik1
− θk1j = −(θik2

− θk2j). (49)

These relations indicates that the summation over k in
the rightmost side of Eq. (47) leads to a perfect cancel-

lation of the first-order terms. Examples of the pairs of
three-site hopping paths (i→ k1 → j) and (i→ k2 → j)
on the triangular lattice are shown in Fig. 2, whose con-
tributions to indirect hoppings from site i to site j cancel
each other. In contrast, the contributions from the first-
order terms survive in the multipartite lattices, such as
honeycomb lattices, Lieb lattices, and Kagome lattices.
This situation is hardly changed even if further neighbor
transfer integrals are considered for these lattices.

III.E. Real-time simulations based on the

time-dependent Schrödinger equation

In addition to the Floquet analysis, we also per-
form numerical simulations for real-time electron dynam-
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ics under photoirradiation based on the time-dependent Schrödinger equation. The time-dependent Schrödinger
equation in Eq. (9) can be formally solved in the form,

|ψν(k, τ +∆τ)〉 = T exp

[

−i
∫ τ+∆τ

τ

dτ ′ Hk(τ
′)

]

|ψν(k, τ)〉 , (50)

where |ψν(k, τ)〉 is the single-particle state of νth band with momentum k and time τ , Hk(τ
′) denotes the k-resolved

Hamiltonian with time τ ′, and T is the time-ordering operator. The single-particle excitation spectrum is given
by [56, 57]

A(k, ε) = Im
∑

i,σ

∫

dτ1dτ2 spr(τ1; τpr, σpr) spr(τ2; τpr, σpr) e
iε(τ1−τ2)

[

G<
k,iiσσ(τ1, τ2)−G>

k,iiσσ(τ1, τ2)
]

, (51)

with

G<
k,ijσσ′ (τ1, τ2) = i 〈ĉ†

k,jσ′ (τ2)ĉk,iσ(τ1)〉 , (52)

G>
k,ijσσ′ (τ1, τ2) = −i 〈ĉk,iσ(τ1)ĉ†k,jσ′ (τ2)〉 . (53)

The lesser and greater Green’s functions G<
k,iiσσ(τ1, τ2)

and G>
k,iiσσ(τ1, τ2) correspond to occupied and unoccu-

pied states of the ith site with momentum k and spin
σ(=↑, ↓), respectively. spr(t; τpr, σpr) denotes the normal-
ized Gaussian wavepacket of the probe pulse given in the
form,

spr(τ ; τpr, σpr) =
1√

2πσpr
exp

[

− (τ − τpr)
2

2σ2
pr

]

, (54)

where τpr and σpr are the pulse center and the pulse
width, respectively. The effect of pump pulse, which is
treated as a time-periodic external field in the framework
of the Floquet theory, is also taken into account by means
of the Peierls substitution k → k + A(τ). The vector
potential that mimics a circularly polarized pump pulse
with the Gaussian envelope is given by,

Apu(τ) =
Eω

ω
exp

[

− (τ − τpu)
2

2σ2
pu

]

(e1 cosωτ + e2 sinωτ) ,

(55)
with maximum electric field strength of Eω and the fre-
quency of ω. Here τpu and σpu are the pulse center and
the pulse width, respectively. We set (τpu, τpr, σpu, σpr) =
(500T, 500T, 76T, 25T ) in this work. We solve the time-
dependent Schödinger equation in Eq.(50) in the time
window of t ∈ [0, 1000T ] with the time step of ∆τ =
T/800 where T = 2π/ω. The initial states {|ψν(k, 0)〉}
are set to be the eigenstates of HIKLM(k) in equilibrium
where A(τ) = 0. The exponential function in Eq. (50) is
expanded up to the 20th order.

IV. RESULTS

IV.A. Phase diagram

We first study nonequilibrium steady states of elec-
trons under irradiation with circularly polarized light by
using the truncated Floquet Hamiltonian HF(k)−ωMm.
To construct a phase diagram, we calculate Eω-ω profiles
of several physical quantities, i.e., Chern number of the
third band N3

Ch, indirect band gap ∆23, and direct band

gap ∆̃23 by diagonalizing the truncated Floquet Hamil-
tonian. The obtained profiles are shown in Figs. 3(b)-
(d), respectively. Note that we adopt the natural units
e = ~ = c = 1 for the following calculations. Table I
summarizes the unit conversions when we assume t=0.1
eV and a=5 Åfor the transfer integral and the lattice
constant, respectively.

The original six bands are divided into two band sets
with three bands each separated by the exchange gap.
Importantly, sums of the Chern numbers Nν

Ch over the
three bands within a band set become zero, that is,
∑3

ν=1N
ν
Ch = 0 and

∑6
ν=4N

ν
Ch = 0. Accordingly, when

the electron filling is nearly 1/3 with only the lowest two
of six bands originally filled with electrons, the Chern
number of the system NCh =

∑

ν∈filledN
ν
Ch is related

with N3
Ch as NCh = −N3

Ch. In Fig. 3(a), we find two re-
gions with N3

Ch = −1 (NCh = +1) separated by a region
with N3

Ch = +2 (NCh = −2).

The N3
Ch = −1 phase in the high-frequency regime

is caused by a gap opening at the K point as discussed
in Sec. IV.B. As the system approaches from the high-
frequency N3

Ch = −1 phase to the N3
Ch = +2 phase, the

band gap at the M point gradually closes and completely
vanishes at the boundary between these two phases. Sub-
sequently, the gap reopens at the M point as the system
enters the N3

Ch = +2 phase as described in Sec. IV.C. On
the contrary, the boundary between the N3

Ch = +2 phase
and the low-frequency N3

Ch = −1 phase corresponds to
the point at which the flat band appears with vanishing
bandwidth due to the dynamical localization. Accord-
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FIG. 3. (a)-(c) Eω-ω profiles of (a) the Chern number of the third band N3

Ch, (b) the indirect band gap ∆23, and (c) the direct

band gap ∆̃23 calculated by diagonalizing the truncated Floquet Hamiltonian HF(k)−ωMm. (d) Nonequilibrium phase diagram
in the plane of light amplitude Eω and frequency ω under irradiation with circularly polarized light, which is constructed from
the Eω-ω profiles of the physical quantities in (a)-(c).

TABLE I. Unit conversions when the transfer integral is t=0.1 eV and the lattice constant is a=5 Å. The variables with
(without) tilde denote dimensionful (dimensionless) quantities.

Quantity Dimensionless quantity Corresponding values
Frequency ω = ~ω̃/t=1 ω̃=24.2 THz

Light electric field Eω = eaẼω/t=1 Ẽω=2 MV cm−1

Time τ = τ̃ t/~=1 τ̃=6.6 fs

Temperature Thr = kBT̃hr/t=1 T̃hr=1163 K

ing to the Floquet theory, the transfer integrals under a
periodic drive are renormalized by a factor of the Bessel
function J0(Eω/ω), and the factor becomes zero at this
phase boundary. We also note that the Chern number is
ill-defined in the white regions because the band gap is
too small.
The Eω-ω profiles of two types of band gaps (indirect

and direct gaps) between the second and the third bands
are shown in Figs. 3(b) and 3(c). The indirect and direct

band gaps ∆µν and ∆̃µν between the µth and νth bands
are defined by,

∆µν = min
k∈BZ

[

ε0ν(k)
]

− max
k∈BZ

[

ε0µ(k)
]

, (56)

∆̃µν = min
k∈BZ

[

ε0ν(k)− ε0µ(k)
]

. (57)

According to ∆23, we judge whether the system is
gapped/insulating (∆23 > 0) or gapless/metallic (∆23 <
0). On the other hand, we capture the closing of direct

band gap according to ∆̃23, which becomes zero on the
dashed lines in Fig. 3(c). These two lines correspond
to the two phase boundaries in Fig. 3(a), i.e., a phase
boundary at which the gap closes at M points and an-
other phase boundary at which the doubly degenerate
up-spin-polarized bands appear.
The Eω-ω profiles of the physical quantities in

Figs. 3(a)-(c) are summarized into a phase diagram in
Fig. 3(d). We assign the region with ∆23 < 0 to a
semimetal phase irrespective of the value of NCh. On
the contrary, we assign the regions with ∆23 > 0 and

nonzero quantized NCh to a Chern insulator phase. We
have two types of Chern insulator phases, i.e., the phase
I with NCh = +1 and the phase II with NCh = −2. As
will be discussed l in Sec. IV.E, it turns out that the sign
of ∆23 or whether the system is semimetallic or insulat-
ing does not affect the quantization of Hall conductivity
so much. Therefore, less attention will paid to the sign
of ∆23 in the following discussion.

IV.B. Single-particle spectra

To understand how these Floquet Chern insulator
phases appear, we investigate the Floquet band struc-
tures under photoirradiation. Figures 4(a)-(d) show the
single-particle spectra A(q, ε) calculated by real-time
simulations of the time-dependent Schrödinger equation
(color) and the Floquet band structures calculated by
diagonalization of the truncated Floquet Hamiltonian
HF(k) − ωMm (green solid lines) for various values of
Eω when ω is fixed at 8. The value of Eω is increased as
indicated by a horizontal arrow in Fig. 4(e).
Figure 4(a) indicates that the Dirac point located at

K point is almost gapless when the light amplitude is
as small as Eω=2. The Dirac gap is gradually opened
with increasing Eω, and eventually the Dirac point is
apparently gapped when the light amplitude is as large
as Eω=12 as seen in Fig. 4(d). In the presence of the gap,
the two lowest bands acquire a nonzero Chern number of
NCh=1 in total. Note that the band gap between the
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FIG. 4. (a)-(d) Single-particle spectra A(q, ε) for various values of Eω, i.e., (a) Eω=2, (b) Eω=4, (c) Eω=8, (d) Eω=12,
respectively, when ω=8. The horizontal solid lines represent the energy level of Dirac points at K point in equilibrium, while
the horizontal dashed lines represent the chemical potential (µ = −1.5) used in the present simulations. (e) Variation of Eω

from (a) to (d) is indicated by a horizontal thick arrow.

second and third bands on the M point is always opened
irrespective of the value of Eω.

In the Floquet band structures, the band set, which al-
most perfectly overlaps the single-particle spectrum, cor-
responds to the electron states with zero-photon absorp-
tion. In addition to this original band set, the equivalent
band sets repeatedly appear with an energy interval of
ω, which correspond to the n-photon absorbed (emit-
ted) electron states and are referred to as the Floquet
sidebands. When the light amplitude is small as Eω=2
in Fig. 4(a), we find that the original band set and the
Floquet sideband sets located right above and below it
partially overlap, because the light frequency of ω = 8 is
smaller than the bandwidth of W ∼ 12 (i.e., ω < W ).
This situation is referred to as the on-resonant case.

The overlap of band sets occurs also when Eω=4 and
Eω=8. In this on-resonant case, band-anticrossing occurs
at specific points indicated by solid circles. Interestingly,
the spectral weight A(q, ε) is extended to the sidebands
at the band-anticrossing point, which indicates that the
Floquet sidebands are partially occupied by electrons.
On the contrary, there are some points at which band
crossing instead of anticrossing occurs. At these band-
crossing points, the spectral weight A(q, ε) does not ex-
hibit particular change or anomaly. The crossing and an-
ticrossing of the bands are governed by the structure of
the Hamiltonian matrix. The Hamiltonian matrixHIKLM

can be block-diagonalized into independent up-spin and
down-spin blocks asHIKLM = H↑⊕H↓. When two bands
belong to the same (different) spin blocks, the anticross-
ing (crossing) occurs when they cross.

Next we discuss the variation of band structures upon
another topological phase transition, which occurs from
the NCh = +1 phase to the NCh = −2 phase with de-
creasing ω when Eω is fixed at 12. Figure 5(a) indicates
that both K and M points are gapped when ω=7.5, and
the system has a Chern number of NCh = +1 associ-
ated with the photoinduced gapped Dirac point at the
K point. As ω decreases, the band gap at the M point
gradually decreases. Indeed, as seen in Figs. 5(b) and (c),
the band gap at the M point is almost closed when ω = 7
and ω = 6.8. With further decreasing ω, the band gap
start opening again after the system enters the NCh = −2
phase. As seen in Fig. 5(d), a clear gap opens up when
ω = 6.
The Chern number of NCh = −2 in the system af-

ter the gap reopening at the M point can be understood
as follows. First, the Dirac-gap opening at the K point
gives the Chern number of +1 to the lowest two bands,
i.e., N1

Ch + N2
Ch = +1. Subsequently, the closing and

reopening of gap at the M points give additional Chern
number of −1 at each M point. Because the system has
three independent M points in the hexagonal Brillouin
zone of the up-up-down ferrimagnetic order, the total
Chern number becomes NCh = (+1) + (−1)× 3 = −2.

IV.C. Hall conductivity

It is predicted that these two Floquet Chern insulator
phases in the photodriven ferrimagnetic system can be
detected and distinguished experimentally by the mea-
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when Eω=12. The horizontal solid lines represent the energy level of Dirac points at K point in equilibrium, while the horizontal
dashed lines represent the chemical potential (µ = −1.5) used in the present simulations. (e) Variation of ω from (a) to (d) is
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surement of Hall conductivity σxy. Figure 6(a) shows
the Eω-dependence of σxy calculated using the Keldysh
Green’s-function formalism when ω is fixed at 8. Here,
Fig. 6(b) shows the calculated chemical potential µ when
the electron filling is ne=0.34. In Fig. 6(a), we find that
σxy is almost zero when Eω is small as Eω / 4. As Eω

increases, σxy increases gradually. When Eω ∼ 12 in-
side the NCh = 1 phase, σxy is nearly quantized to e2/h
at a low temperature of T=23 K, which corresponds to
the Chern number of NCh = +1 in the Floquet Chern
insulator phase I. Such a quantization of σxy cannot be
seen at a higher temperature of T=300 K. However, we
still observe a positive nonzero σxy as large as 20% of the
quantized value at T=300 K.

On the other hand, Figs. 6(c) and (d) show the ω-
dependence of σxy and µ when Eω is fixed at 12. We
find that nearly quantized values of σxy of −2e2/h and
e2/h are observed in the two Floquet Chern insulator
phases with NCh = −2 and NCh = +1, respectively, at
low temperatures (T=23 K), whereas the quantization
is obscure at higher temperatures (T=300 K). A clear
sign change of σxy from negative to positive is observed
when the system enters from the NCh = −2 phase to the
NCh = +1 phase with increasing ω. Interestingly, this
sign change is observed not only at T=23K but also at
T=300 K. The heating is unavoidable in real experiments
with light irradiation, but this result indicates that the
sign change is robust against rise in temperature, which
is a favorable property for the experimental observation.

IV.D. Anayses based on the high-frequency

expansion

As discussed in Sec.III.C, the Floquet engineering has
often been performed using the effective Floquet Hamil-
tonian obtained by the Brillouin-Wigner expansion in
the high-frequency limit. More specifically, Hamiltoni-
ans composed of up to the first-order terms of the ex-
pansion with respect to 1/ω have been frequently used
for the research. However, it is known that the first-
order terms usually vanish because of the cancellation of
equivalent paths having phases with opposite signs. In
multipartite lattices, we can avoid this cancellation to
obtain a nonzero contribution from the first-order terms.
On the contrary, the cancellation cannot be avoided in
simple lattices such as square and triangular lattices even
in the presence of extrinsic sublattice degrees of freedom
introduced by long-range orders of spins and/or charges.
Thereby, Floquet topological electron states and photoin-
duced topological phase transition cannot be expected in
electron systems on simple lattices within the crude ap-
proximation based on the high-frequency expansion up to
the first-order. This is a reason why several multipartite
lattices such as Kagome lattices, honeycomb lattices, and
Lieb lattices have been studied in the research of Floquet
engineering, whereas simple square lattices and triangu-
lar lattices have not been in a scope of the research.

However, as discussed above, we have obtained rich
Floquet Chern insulator phases in the triangular Kondo-
lattice model by the analyses based on direct diagonal-
ization of the truncated effective Floquet Hamiltonian.
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FIG. 7. Contributions from terms of the high-frequency
expansion (the Brillouin-Wigner expansion) to the Floquet-
band structure in the photoirradiated system. The band dis-
persion relations around the K point are calculated using the
Brillouin-Wigner Hamiltonian ĤBW in Eq. (42) up to (a) the
first-, (b) the second-, and (c) the third-order terms with re-
spect to 1/ω when Eω=6 and ω=6.

In the present system, a ferrimagnetic order has been
assumed to realize the Dirac-cone bands around the K
point. The above-argued cancellation of the first-order
terms also occurs even in the presence of sublattice de-
grees of freedom due to the ferrimagnetic spin order. In
fact, the Floquet Chern insulator phases in the present

triangular-lattice system are attributable to the higher-
order terms of the expansion.
To demonstrate the substantial role of the higher-order

terms, we calculate the band structure around the K
point under irradiation with circularly polarized light
when Eω = 6 and ω = 6. Figure 7(a) shows the
band structure calculated using a Hamiltonian matrix
composed of up to the first-order terms only, that is,

ĤBW = Ĥ
(0)
BW + Ĥ

(1)
BW. This band structure is nearly

the same with that in equilibrium without photoirradi-

ation in Fig. 1(c), because the zeroth-order term Ĥ
(0)
BW

corresponds to the time-averaged Hamiltonian and the

first-order term Ĥ
(1)
BW vanishes due to the perfect cancel-

lation.
In Fig. 7(b), we show the band structure calculated

using a Hamiltonian matrix including up to the second-

order terms, that is, ĤBW =
∑2

n=0 Ĥ
(n)
BW. The overall

band structure shifts upward along the energy axis, in-

dicating that the second-order term Ĥ
(2)
BW has a nonzero

contribution, but it cannot open a gap at the Dirac point.

The band structure calculated for ĤBW =
∑3

n=0 Ĥ
(n)
BW in

Fig. 7(c), in contrast, shows a gapped Dirac point. This

indicates that the third-order term Ĥ
(3)
BW is the lowest-

order term required to open a gap at the Dirac point.
Owing to this gap opening, the system attains a nonzero
Chern number of NCh = +1.
These results clearly demonstrate that the higher-order

terms of the Brillouin-Wigner expansion instead of the
usually considered first-order terms are relevant to the
gap opening at the Dirac point, which results in the pho-
toinduced topological phase transition and rich Floquet
topological phases. This aspect is expected to widen the
target materials of the Floquet engineering and to en-
hance the possibility of the research.

V. SUMMARY

To summarize, we have theoretically studied the ef-
fects of photoirradiation with circularly polarized light
on the Dirac half-metal state in the triangular Kondo-
lattice model with a three-sublattice ferrimagnetic order.
By applying the Floquet analysis based on the truncated
Floquet Hamiltonian, we have found that two types of
Floquet Chern insulator phases with distinct Chern num-
bers of NCh = +1 and NCh = −2 appear as nonequilib-
rium steady states, which originate from the band gap
formation/closing at distinct momentum points. By cal-
culating the Hall conductivity in the photodriven system
using the Keldysh Green’s function formalism, we have
revealed that these two Floquet Chern insulator phases
can be experimentally detected and are distinguishable
by measurements of the Hall conductivity. Specifically,
it has been revealed that the Hall conductivity takes
nearly quantized values of e2/h and −2e2/h with op-
posite signs in the respective phases. It has also been
elucidated that these nonequilibrium topological phases
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come from the higher-order terms in the Brillouin-Wigner
expansion in the high-frequency limit, which is in strik-
ing contrast to usually discussed Floquet Chern insulator
phases originating from the lowest-order terms of the ex-
pansion. Because the first-order terms generally cancel
out and vanish in simple non-multipartite lattices, re-
search of the Floquet engineering has been performed by
taking several multipartite lattices, e.g., the Kagome lat-
tices, the honeycomb lattices, and the Lieb lattices. How-
ever, the present work has revealed that the higher-order
terms, which have nonzero contributions even in the non-
multipartite lattices, can induce the photoinduced topo-
logical phase transitions and the Floquet topological elec-
tron phases. This aspect indicates that various lattice
electron models on simple lattices such as square lattices
and triangular lattices can also be within a scope of the
Floquet engineering. We expect that the predicted Flo-
quet Chern insulator phases might be observed in tri-

angular ferrimagnets RFe2O4 (R=Yb, Lu, Er) [58–61]
under irradiation with circularly polarized light. The
present work will widen the list of candidate target ma-
terials/systems for the Floquet engineering and enhance
the possibility of research in this field.
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