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Phenomenological rules that govern the collective behaviour of complex physical systems are
powerful tools because they can make concrete predictions about their universality class based on
generic considerations, such as symmetries, conservation laws, and dimensionality. While in most
cases such considerations are manifestly ingrained in the constituents, novel phenomenology can
emerge when composite units associated with emergent symmetries dominate the behaviour of the
system. We study a generic class of active matter systems with non-reciprocal interactions and
demonstrate the existence of true long-range polar order in two dimensions and above, both at the
linear level and by including all relevant nonlinearities in the Renormalization Group sense. We
achieve this by uncovering a mapping of our scalar active mixture theory to the Toner-Tu theory of
dry polar active matter by employing a suitably defined polar order parameter. We then demonstrate
that the complete effective field theory – which includes all the soft modes and the relevant nonlinear
terms – belongs to the (Burgers-) Kardar-Parisi-Zhang universality class. This classification allows
us to prove the stability of the emergent polar long-range order in scalar non-reciprocal mixtures in
two dimensions, and hence a conclusive violation of the Mermin-Wagner theorem.

Introduction. The field of active matter describes the
collective behaviour of non-equilibrium systems, which
are composed of units that break detailed-balance at the
smallest scale [1–3], and are often classified based on the
symmetries of these microscopic units [4]. It is possi-
ble, however, that spontaneously formed composite units
can lead to the emergence of physical behaviour that is
completely different from what is expected for the sys-
tem. Examples of such occurrences in condensed matter
physics, which can often – though not always – accom-
pany emergent symmetries, include formation of Cooper-
pairs in the BCS theory of superconductivity [5] as well
as fractionalization and spin-charge separation in mod-
els of high-temperature superconductivity [6]. In active
matter, a rare feature presents itself where non-reciprocal
interactions (or action-reaction symmetry breaking) can
lead to the emergence of polarity in non-polar mixtures
[7], as afforded at small scales by the physics of phoretic
active matter [8], and observed in experiments [9, 10].

A fundamentally important feature of non-reciprocal
interactions – when Newton’s third law is apparently vi-
olated because of mutually asymmetric response in sys-
tems out of equilibrium [11] – is its inherent connec-
tion with time-reversal symmetry breaking, which is a
notion commonly associated with self-propulsion in the
context of active matter [12]. This feature has been
studied widely in polar [13–18] and scalar [19–22] ac-
tive matter, alongside other types of phenomenology in-
cluding the ability to sustain novel spatio-temporal pat-
terns [13, 16, 20, 21, 23, 24], spontaneous chiral symme-
try breaking [16], capability to design shape-shifting self-
organizing structures [25, 26], and proposals for fast and
efficient self-organization of primitive metabolic cycles at
the origin of life [27–29].

Here, we formally investigate the occurrence of emer-
gent polar symmetry due to chasing interactions in non-

reciprocal mixtures, in the context of the recently in-
troduced non-reciprocal Cahn-Hilliard (NRCH) model
[20, 21]. Using a suitably defined polar order parameter,
which measures the coherence between the two species,
we derive the effective governing dynamics of the emer-
gent polar order field, and explore its connections with
the conventional theories of polar flocks [3, 30–32]. We
investigate the possibility of polar ordering, as well as
its stability to fluctuations, both at the linear level us-
ing a comprehensive coarse-graining of the microscopic
description of the system, as well as the fully nonlinear
description that exploits a mapping to the KPZ univer-
sality class [33, 34]. Both linear and nonlinear descrip-
tions exhibit true long-range polar order in the system
in any dimension higher than one, in violation of the
Mermin-Wagner theorem [35].
The model. We consider two particle densities ϕa(x, t)

(where a = {1, 2} labels the species), with conserved dy-
namics
{
∂tϕa +∇ · ja = 0,

ja = −∇
[
µa − αεabϕb −K∇2ϕa

]
−
√
2D ξa.

(1)

The parameter α characterizes the non-reciprocal inter-
action, and thus also the activity. We are using a conven-
tion in which α > 0 when species 1 chases after species
2 (see Fig. 1a). εab is the fully anti-symmetric Levi-
Civita matrix and we use Einstein summation conven-
tion. For simplicity, we assume the same damping co-
efficient for both species, and absorb it in the unit of
time. We also assume the same stiffness K, hence ex-
cluding the possibility of a small-scale Turing instabil-
ity [22, 36]. µa = ∂f/∂ϕa is the chemical potential ex-
pressed as the derivative of the free-energy density f .
We use f = − 1

2 (ϕaϕa)+
1
4 (ϕaϕa)

2, which is invariant un-
der orthogonal transformations in the ϕ1, ϕ2 plane and
promotes equilibrium phase separation into ϕaϕa = 1,
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FIG. 1. Emergent polar order in active scalar mixtures.
(a) Due to non-reciprocal interactions, type-1 particles chase
type-2 particles, while both being governed by conserved dy-
namics. The corresponding concentrations ϕ1 and ϕ2 exhibit
phase-shifted spatio-temporal oscillations that we map onto
the active polar order parameter J . The corresponding con-
figuration for the polar field J is shown in the plane below
the waves. The vector fields and the waves are evaluated from
numerical simulations of Eq. (1) (see Methods). (b) Repre-
sentation of the free-energy density in the (ϕ1, ϕ2) space. The

wave state with amplitude |ϕ| =
√

1−Kq20 corresponds to an
energetic level higher than the bottom of the potential well.
(c) The ordered state J0 is the ground state of the Mexican-
hat potential U(J), and we study the longitudinal fluctua-
tions, δJ∥, and the perpendicular fluctuations, δJ⊥.

corresponding to fmin = − 1
4 (see Fig. 1b) [24]. This

choice allows exact analytical calculations, whose pre-
dictions are parameter-free [24, 37]. The noise sources
are not correlated between species and are characterized
by zero mean and unit variance ⟨ξa,i(x, t)ξb,j(x′, t′)⟩ =
δabδijδ

d(x − x′)δ(t − t′). The amplitude D is chosen to
be the same for both densities.

Travelling bands. The above form of NRCH model
admits solutions in the form of travelling density waves
(Fig. 1a), which can be represented via a complex field
defined as ϕ ≡ ϕ1 + iϕ2 = |ϕ| ei(q0·x−ω0t), with |ϕ| =√

1−Kq20 and ω0 = αq20 . The solution is stable, and is
associated with a cyclic orbit in the configuration space at
any point x that does not reside at the bottom of the free
energy landscape, corresponding to f = − 1

4

(
1−K2q40

)

and K
2 (∇ϕ)2 + f = − 1

4

(
1−Kq20

)2
(see Fig. 1b). In

these solutions, parity and time-reversal symmetries, to-
gether with time- and space-translation symmetries are
spontaneously broken. Moreover, an emergent polar or-

der is observed in the system that is composed of two
scalar fields.
Polar order parameter. To understand the nature of

the emergent polar order, we start by defining a local
polar order parameter J = εabϕa∇ϕb, which is nonzero
when the density waves have a phase difference, leading
to parity symmetry breaking. Using numerical simula-
tions, it has been shown that J transitions to taking
non-vanishing values when α is tuned to exceed the co-
efficient of linear reciprocal interaction [20], which is set
to zero here for simplicity.
We derive the effective governing equation for the

emergent polar order parameter J(x, t), using the dy-
namical equations for the two concentrations (1). To the
leading order, we obtain

∂tJ + λ1J(∇ · J) + λ2(J ·∇)J = Γ∇(∇ · J)
+DlJJ(J ·∇)(∇ · J) +DmJJ∇2|J |2 + r1J

+
(
r − u|J |2

)
|J |2J −∇P + λ3J(J ·∇)ρ+ ξJ ,(2)

where the different terms are organized such that the sim-
ilarities to the Toner-Tu equations [30] are highlighted.
The quantities that are introduced in Eq. (2) are func-
tions of the amplitude ρ(x, t) =

√
ϕaϕa, which for the

traveling band solution will represent a uniform field with
ρ(x, t) = ρ0 =

√
1−Kq20 . To the lowest order, we find

λ1 = 2α/ρ2, λ2 = 2α/ρ2, Γ = 1−ρ2−2m, DlJ = 4K/ρ4,
DmJ = 2K/ρ4, r1 = 2(2m + 5ρ2 − 3)∇2ρ/ρ, r = 2(1 −
ρ2)/ρ4, u = 2K/ρ8, P = 2J · ∇m, λ3 = 4α/ρ3. Here,
we have defined the auxiliary field m = ρ4(r − u|J |2)/2,
which identically vanishes in the broken symmetry state.
The noise term ξJ will be discussed below.
We can make a number of observations from Eq. (2),

which describes the collective dynamics of the emer-
gent polar order parameter field. The coefficients of the
symmetry-breaking advective terms, namely λ1 and λ2,
are proportional to α. It is thus evident that α assumes
the role of the velocity of self-propulsion in the Toner-Tu
description and breaks Galilean invariance [30]. The de-
terministic dynamics of J is not conserved; this is due to
a dissipative force that can be expressed as the derivative
of a Mexican hat potential U(J) = − r

4 |J |4 + u
6 |J |6 (see

Fig. 1c), namely, −∂U(J)/∂J = (r−u|J |2)J |J |2. For a
uniform background amplitude ρ0, the dissipative force
vanishes at the steady-state value of J0 = |J0| =

√
r0/u0

when r0 > 0 (Fig. 1c), with r0 = r(ρ0) = 2(1 − ρ20)/ρ
4
0

and u0 = u(ρ0) = 2K/ρ80, namely, J0 = ρ20
√
(1− ρ20)/K.

(Throughout the paper, the subscript 0 always indicates
that the quantity is evaluated at the background solution
ρ0). If we take the uniform amplitude state to repre-
sent the stable traveling band solution, then J0 = ρ20q0.
In dimensions d > 1, this potential is characterised by
rotational symmetry, which is broken when the ground
state J0 = J0ê spontaneously chooses a specific direction
along ê.
To complete the effective description of the dynamics,
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we need a governing equation for the amplitude, which
plays the role of the density in the Toner-Tu analogy. We
find

∂tρ+ λ4(∇ · J) = βm|J |2 +Dρ∇2ρ

+κ∇2|J |2 + w(J · ∇)(∇ · J) + ξρ, (3)

with the coefficients given as λ4 = α/ρ, β = 1/ρ3,
Dρ = 5−3ρ2+2m, κ = K/ρ3, w = 2K/ρ3, and the noise
term ξρ will be discussed below. We observe that the am-
plitude equation exhibits significant differences with both
the conserved [30] and the non-conserved [31] versions of
Toner-Tu equations.

The noise terms ξJ and ξρ can be derived straightfor-
wardly from the stochastic sources of Eq. (1), leading
to

ξJ =
√
2Dεab(ϕa∇−∇ϕa)(∇ · ξb),

ξρ =
√
2D(ϕa/ρ)(∇ · ξa),

(4)

which are multiplicative noises and have the potential to
be conserved, in apparent contradistinction to the non-
conserved noise in Toner-Tu equations [30]. When we

evaluate the noise terms using the traveling band solu-
tion, we obtain effective Gaussian noises with zero mean
and the following correlators in Fourier space

⟨ξJ⊥i(q, ω)ξJ⊥j(q
′, ω′)⟩ = 2Dρ20q

2
0q⊥iq⊥j δq+q′δω+ω′ ,

⟨ξJ∥(q, ω)ξJ∥(q
′, ω′)⟩ = 8Dρ20q

4
0 δq+q′δω+ω′ ,

⟨ξρ(q, ω)ξρ(q′, ω′)⟩ = 2Dq20 δq+q′δω+ω′

⟨ξρ(q, ω)ξJ∥(q
′, ω′)⟩ = 4Dρ0q

3
0 δq+q′δω+ω′ ,

(5)

to the lowest order, where q⊥ = q−(q ·ê)ê and the short-
hands δq+q′ ≡ (2π)dδd(q+q′) and δω+ω′ ≡ (2π)δ(ω+ω′)
have been used. We thus observe that while the noise
terms for the longitudinal emergent polar order parame-
ter and the amplitude are non-conserved, the noise terms
for the transverse emergent polar order parameter are
conserved.
Linear theory. The ordered state that is predicted by

Eq. (2) identifies a phase separated state with spatial
modulation, as well as spontaneous breaking of time-
reversal and rotational symmetry. To test the robust-
ness of J0 in the presence of noise, we linearly expand
Eqs. (2) and (3) around the steady-state. We substi-
tute J = J0 + δJ = (J0 + δJ∥)ê + δJ⊥ distinguishing
longitudinal and perpendicular fluctuations, and perturb
the amplitude as ρ = ρ0 + δρ. We derive the fluctuating
linear dynamics up to second order in gradients,

∂tδρ = −2β0q
2
0ρ

5
0γ

2δρ− 2β0Γ0J0δJ∥ − λ4,0(∇ · δJ) +Dρ,0∇2δρ+ w0J0[∇2δJ∥ + ∂∥(∇ · δJ)] + ξρ, (6)

∂tδJ∥ = −4q20Γ0δJ∥ − 4q30ρ
3
0γ

2δρ− 2J0λ1,0(∂∥δJ∥)− J0λ1,0(∇⊥ · δJ⊥) + J2
0λ3,0∂∥δρ+ 2q0ρ0Dρ,0∇2

⊥δρ (7)

+2q0ρ0(Dρ,0 + ρ20γ
2)∂2

∥δρ+ 13Γ0(∂
2
∥δJ∥) + 4Γ0∇2

⊥δJ∥ + 5Γ0∂∥(∇⊥ · δJ⊥) + ξJ∥ ,

∂tδJ⊥ = −λ2,0J0∂∥δJ⊥ + 4q0ρ
3
0γ

2∇⊥∂∥δρ+ Γ0∇⊥(∇⊥ · δJ⊥) + 5Γ0∇⊥(∂∥δJ∥) + ξJ⊥
, (8)

where we have used ∂∥ ≡ ê ·∇, ∇⊥ ≡ ∇− ê(ê ·∇), and
γ2 = (3ρ20 − 2)/ρ20.

The slow modes. From Eq. (8), the fluctuations
that are perpendicular to the broken symmetry direc-
tion, δJ⊥, can be identified as slow modes of the model,
as they represent the Goldstone modes associated with
the continuous rotational symmetry breaking (Fig 1).
While δρ and δJ∥ appear to be fast variables, the exis-
tence of a constraint in the form of a curl-free condition
∂i(Jj/ρ

2) − ∂j(Ji/ρ
2) = 0 suggests that an additional

slow mode that combines the two fields also exists in
the dynamics. Examining the eigen-mode structure of
Eqs. (6) and (7), we identify the new slow variable as
δs = δJ∥ − 2(J0/ρ0)δρ. Solving for different linear slow
modes, we find

δJ⊥(q, ω) = G(q, ω) ξJ⊥
(q, ω), (9)

δs(q, ω) = G(q, ω) ξs(q, ω), (10)

in terms of the Green function of the linear dynam-

ics G(q, ω) =
[
i(ω − vgq∥) + Γ0

(
q2⊥ + γ2q2∥

)]−1

. The

coefficient vg = 2αq0 advects the fluctuations along
the ordering direction and represents the propagating
sound speed. The diffusion is anisotropic with coeffi-
cients Γ0 = Kq20 along the transverse directions and
Γ0γ

2 = Kq20(3ρ
2
0 − 2)/ρ20 along the longitudinal direc-

tion. Note that the stability of the dynamics requires
ρ20 > 2/3 (in order to have γ2 > 0), which is connected
to the Eckhaus instability [38]. The noise for the new
slow mode in Eq. (10) has zero mean and the following
correlator

⟨ξs(q, ω)ξs(q′, ω′)⟩ = 2Dρ20q
2
0q

2
∥ δq+q′δω+ω′ . (11)

We note that the dynamics of the slow modes corresponds
to a rather uncommon class where the deterministic evo-
lution of the dynamics is dissipative while the noise con-
tribution that drives the stochastic fluctuations is con-
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served [39].
Long-Range Oder in d > 1. We can now calculate the

magnitude of the transverse fluctuations of the emergent
polar order parameter. Combining Eqs. (9) and (5), we

have ⟨|δJ⊥(x, t)|2⟩ =
∫
ω

∫ Λ

q
2Dρ20q

2
0q

2
⊥|G(q, ω)|2 with Λ

being the finite ultraviolet cutoff. The integrals can be
calculated to give

⟨|δJ⊥(x, t)|2⟩ = (d− 1)
Dρ20
dK

Λd

(2π)d
, (12)

which stays finite below the onset of Eckhaus instabil-
ity for any d > 1. Therefore, in our theory transverse
fluctuations are suppressed and the system exhibits true
long-range order in J for any d > 1 even at the linear
level.

Non-linear theory. To verify to which extent the pre-
dictions of linear theory hold, we need to understand
the role of non-linearities. The most relevant contribu-
tions are given by terms containing one gradient and two
fields, coupling the dynamics of transverse and longitu-
dinal slow modes. Below, we will show that these are the
solely relevant nonlinear term as predicted by the Renor-
malization Group framework. After expanding Eqs. (2)
and (3) at this order in fluctuations, changing to the co-
moving frame of reference (with velocity vg ê), and rescal-
ing the longitudinal coordinate by γ, we can write down
the dynamics for a vector field p = γ δs ê+ δJ⊥, as fol-
lows

∂tp+ λ0p ·∇p = Γ0∇2p−∇η(x, t), (13)

where the nonlinear coupling constant can be traced back
to the non-reciprocity as λ0 = 2α/ρ20, and we have used
the curl-free condition reported above as inherited by
p, namely ∂ipj − ∂jpi = 0. The variance of the noise
reads ⟨η(q, ω)η(q′, ω′)⟩ = 2D0 δq+q′δω+ω′ , where the am-
plitude is given as D0 = Dq20ρ

2
0γ. Remarkably, we thus

obtain the well-known noisy Burgers equation [34, 40].
We finally express the polar vector field as the gradient

of a scalar function p = −∇h, as the curl-free constraint
implies. The dynamics (13) thus becomes

∂th = Γ0∇2h+
λ0

2
(∇h)2 + η(x, t), (14)

namely, the celebrated Kardar-Parisi-Zhang (KPZ) equa-
tion in any dimension d [33]. This result states that
the non-linear dynamics of the fluctuating modes around
the ordered traveling state of our system can be mapped
to the equation for growing interfaces described by the
height function h(x, t), thus belonging to its universal-
ity class. Non-reciprocity, here described by the pa-
rameter α, is the key ingredient to connect the NRCH
model for particle densities to the KPZ equation. We
note that the KPZ field represents the fluctuations of the
constant phase manifolds in the underlying complex field
theory involving the order parameter ϕ = ρ eiθ, namely,

θ(x, t) = γq0 · x− (ω0 − vgq0)t− h(x, t) in terms of the
new coordinates. Therefore, the flatness or roughness of
the KPZ field can be interpreted as a reflection on the
shape of the bands in the NRCH model, which effectively
represents an active traveling smectic phase [20].
Renormalization Group predictions. We can now use

the results on the critical dynamics of the KPZ equation
to characterize the scaling behavior of our emergent po-
lar order parameter. For a scaling factor b = el ≳ 1,
we will seek to find scaling transformations in the form
of as t → bzt, x → bx, p → bζ−1p such that the dy-
namics (13) is scale invariant. Here, z is the dynamical
critical exponent, and ζ is the roughness exponent of the
underlying KPZ field h. Applying these transformations
to Eq. (13), we obtain the following scaling relations for
the coupling constants of the field theory: Γb = Γ0b

z−2,
Db = D0b

z−d−2ζ , and λb = λ0b
ζ+z−2. The Gaussian

fixed point corresponds to λ∗ = 0 at which the long-
wavelength dynamics is ruled by the linear theory with
exponents z = 2 and ζ = 1 − d/2. These exponents
determine the critical dimension dc = 2 at which the
non-linearity λ0 is only marginally relevant. With these
scaling dimensions, it is easy to verify that all higher or-
der non-linearities are irrelevant.
Perturbative Renormalization Group calculations per-

formed for the effective coupling constant of theory
g = Kd λ

2
0D0/

(
4Γ3

0

)
(in which Kd ≡ Sd/(2π)

d) and

Sd = 2πd/2/Γ(d/2) is the area of the unit-sphere in d
dimensions) yields

dg

dl
= (2− d)g +

2

d
(2d− 3) g2, (15)

at one-loop order [40]. For d = 1, Eq. (15) suggests that
the dynamics is governed by a stable fixed point at g∗ =
1/2 (with the fixed point at g∗ = 0 being unstable), which
corresponds to exponents ζ = 1/2 and z = 3/2 that turn
out to be exact. At d = 2, the fixed point at g∗ = 0
is marginally unstable, which hints at the existence of a
correlation length given as

ℓ× =
2π

q0
exp

(
2πK3q40
γα2D

)
. (16)

For length scales smaller than ℓ×, the dynamics is gov-
erned by the g∗ = 0 fixed point that corresponds to ζ = 0
and z = 2, whereas for length scales larger than ℓ× a
strong coupling fixed point controls the dynamics. For
d = 3, an unstable fixed point g∗ = 1/2 separates two
phases: a flat phase characterized by the stable fixed
point g∗ = 0 corresponding to α < αc, and a rough phase
controlled by a strong coupling fixed point corresponding
to α > αc. The onset of the roughening transition occurs
at

αc =

(
π2K3q40
γD

)1/2

. (17)



5

Calculations up to two-loop order (that introduce higher
order terms in Eq. (15)) do not significantly change the
above conclusions [41, 42]. Note that NRCH provides
a unique opportunity for an experimental realization of
the 3D KPZ universality class, and the corresponding
roughening transition, without the need to have access
to 4D position space.

It is important to examine how the question of true
long-range emergent polar order is influenced by the pres-
ence of nonlinearity in the dynamics, and how it is af-
fected by whether the constant-θ bands are statistically
flat or rough. The fluctuations in the polarization can be
calculated as

⟨p(x, t)2⟩ = ⟨∇h(x, t)2⟩ ∼
∫ Λ

1/L

q1−2ζdq ∼ Λ2(1−ζ),(18)

which is finite as long as ζ < 1 holds; note that Eq. (18)
would yield ∼ L2(ζ−1) when ζ > 1, which would diverge
with the system size L. Inserting the Gaussian fixed
point value of ζ = 1−d/2 in Eq. (18) yields Λd, which is
the result reported in Eq. (12). It is, indeed, known that
ζ < 1 generally holds for KPZ equation in any dimension,
with the most recent conjecture of ζ = 7/(4d+10) (and,
correspondingly, z = 8d+13

4d+10 ) representing well the nu-
merically obtained results so far [43]. Therefore, the true
long-range order in the emergent polar order parameter
persists even in the presence of the nonlinear term and
when the underlying KPZ dynamics is governed by the
perturbatively inaccessible strong coupling fixed point,
e.g. in d = 2 and beyond the roughening transition (cor-
responding to α > αc) in d = 3.
Discussion and conclusions. We present a new effective

theory for a mixture of two species with non-reciprocal
interaction as described by conserved scalar fields, in
terms of an emergent polar order parameter field that
breaks time-reversal symmetry. Our framework shows
striking similarities with the Toner-Tu theory of dry po-
lar active matter, most notably an ordering potential and
nonlinearities describing activity-driven advection. The
effective theoretical framework for the emergent polar or-
der parameter field predicts rotational symmetry break-
ing and the existence of Goldstone modes that emerge
as a result of broken rotational symmetry. The theory,
however, features marked differences with the Toner-Tu
theory. The amplitude equation is not equivalent either
to the conserved [30] or the Malthusian [31] versions of
Toner-Tu equations. Moreover, the noise that drives the
soft modes is conserved, which leads to a violation of the
Mermin-Wagner theorem in d = 2 [44], already at the lin-
ear level, as the low-cost and thus easily excitable elastic
deformations of the Goldstone modes are suppressed by
the vanishing strength of the spontaneous fluctuations
at the largest length scales. We note that most existing
theories of polar active matter do not show long-range
order in d = 2 at the linear level, and non-linear ac-
tive terms are necessary to tame fluctuations around the

ordered state [3], with the exception of theories that in-
corporate a momentum conserving fluid near a boundary
[13, 45, 46].

The predictions of the linear theory are validated by
our analysis including nonlinear terms. We show that
the fluctuating modes of our theory follow a noisy Burg-
ers equation for a single curl-free vectorial field, which
can be mapped to a KPZ dynamics in every d. We ob-
serve that the relevant nonlinearity is produced by non-
reciprocity and cannot generate any non-conserved noise
term under renormalization. Building on the effective
KPZ description of the fully nonlinear theory, we prove
that the system exhibits true long-range polar order in
any dimension, which is the central result of our work.

We would like to close by highlighting an important
feature of the emergent polar order parameter, which can
be written as J = 1

2i (ϕ
∗∇ϕ− ϕ∇ϕ∗) in analogy to quan-

tum mechanics: it has been constructed to measure the
coherence between the two species in the NRCH model.
In light of this definition, one can argue that investigat-
ing the dynamics of J follows the same spirit as studying
the effective dynamics of composite particles in quan-
tum condensed matter systems [5, 6]. Moreover, since
coherence is the interesting physical observable, ϕ plays
a role that is more analogous to a wave function than a
density, whereas ρ2 plays the role of density or probabil-
ity, again, highlighting the significance of the composite
particles that chase each other taking on the role of the
fundamental unit of the effective theory, leading to the
emergence of an unanticipated polar symmetry.
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MaxSyn-Bio Consortium, which are jointly funded by the
Federal Ministry of Education and Research (BMBF) of
Germany, and the Max Planck Society.
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APPENDIX

Numerical Simulations. Simulations shown in Fig.
1a have been performed using a pseudo-spectral method
with periodic boundary conditions. The algorithm com-
bines the evaluation of linear terms in Fourier space and
non-linear terms in real space in order to obtain a sta-
ble solution of the non-linear partial differential equa-
tions (PDE)s; more details can be found in Ref. [20].
Initial conditions have been chosen as waves with min-
imum wave-number qmin = 2π/L, as perturbed with a
white Gaussian noise extracted independently on each
lattice-site. We use a forward Euler-Maruyama method
to perform the time integration [47]. The noise fields were
generated at each point of the lattice and each time-step
from a Gaussian distribution with zero mean and unit
width.

Noise for the slow mode dynamics. Equation (4)
represents the noise corresponding to the polar order pa-
rameter and the amplitude, as derived from the conserved
additive noise of Eq. (1). Here, we do not consider spuri-
ous drifts in the dynamics of these fields [48]. In order to
determine the relevant noise contributions to the linear
dynamics of δρ and δJ , we expand the conserved multi-
plicative noise of Eq. (4) around the traveling wave state
ϕa = ϕ̄a(x, t) + δϕa(x, t), with ϕ̄1 = ρ0 cos θ0(x, t) and
ϕ̄2 = ρ0 sin θ0(x, t). For fluctuations of the polar order
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parameter we obtain

ξJ =
√
2D[εab∇ϕ̄b∇ · ξa + εabϕ̄a∇(∇ · ξb)],

which we can subsequently project onto the perpendicu-
lar and longitudinal directions, as follows

ξJ∥ =
√
2D[εab(∂∥ϕ̄b)∇ · ξj + εabϕ̄a∂∥(∇ · ξj)],

ξJ⊥
=

√
2Dεabϕ̄a∇⊥(∇ · ξb),

while for the amplitude fluctuations we obtain

ξρ =
√
2D(ϕ̄a/ρ0)∇ · ξa.

In Fourier space, the main effect of the spatio-temporal
oscillations is to translate wave-number and frequency
by the selected q0 and ω0. Mean values are null, and the
variances for the longitudinal fast fields become,

⟨ξρ(q, ω)ξρ(q′, ω′)⟩ = 2D(q20 + q2)δq+q′δω+ω′ ,

⟨ξJ∥(q, ω)ξJ∥(q′, ω′)⟩ = 8Dρ20q
4
0δq+q′δω+ω′ +

+2Dρ20q
2
0(4q

2 + 9q2∥ + q2q2∥/q
2
0)δq+q′δω+ω′ ,

We note that the leading contributions are non-
conserved. However, they cancel in the definition of δs
producing conserved noise for the longitudinal and trans-
verse slow modes:

⟨ξs(q, ω)ξs(q′, ω′)⟩ = 2Dρ20q
2
∥(q

2
0 + q2)δq+q′δω+ω′ ,

⟨ξJ⊥i(q, ω)ξJ⊥j(q
′, ω′)⟩ = 2Dρ20q⊥iq⊥j

(
q20 + q2

)
δq+q′δω+ω′ .

At the leading order, these are conserved additive noise
terms with amplitudes of order ∼ q2. At large momenta
the conservation law produces an order ∼ q4 behaviour.
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