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Bound states in the continuum (BICs) are spatially localized states with energy 

embedded in the continuum spectrum of extended states. The combination of BICs 

physics and nontrivial band topology theory giving rise to topological BICs, which are 

robust against disorders and meanwhile of the merit of conventional BICs, is attracting 

wide attention recently. Here, we report valley edge states as topological BICs, which 

appear at domain wall between two distinct valley topological phases. The robustness 

of such BICs is demonstrated. The simulations and experiments show great agreement. 

Our findings of valley related topological BICs shed light on both BICs and valley 

physics, and may foster innovative applications of topological acoustic devices. 
  



 2 

Bound states in the continuum (BICs) are resonances with zero leakage featured 

by discrete energies embedded in a continuum background spectrum [1-3]. BICs have 

been realized via various mechanisms, such as symmetry incompatibility [4-6] and 

parameter tuning [7-10], in different systems [9-18]. Among them, phononic crystal 

(PC) for acoustic wave acts as a powerful platform to explore the BICs, even in the 

presence of open non-Hermitian interactions, because of its extraordinary 

controllability and tunability [19,20]. Benefited from the high-Q values and strong 

localizations, BICs have been proposed for extensive applications, including large-area 

high-power lasers in photonic slabs [21,22], chemical and biological sensing [23], and 

supersonic surface acoustic wave filters [24].  

In recent years, topological matter has emerged as a booming and fruitful branch 

[25-28]. The fundamental feature of topological systems is the existence of the 

topological boundary states predicted by bulk-boundary correspondence. Very recently, 

the combination of BICs and nontrivial band topology leads to a new type of states, 

referred to as topological BICs [29-37]. Specifically, topological BICs are the 

topological boundary states with their energies survived in the continuum spectrum, 

where the hybridization between topological bound states and background extended 

states is forbidden. In the presence of topological protection, such BICs are robust 

against imperfections and disorders. Topological BICs are extensively studied in 

higher-order topological systems [38,39], such as the zero-dimensional (0D) corner 

states in 2D systems [31-36] and the 1D hinge states in 3D systems [37]. However, 

these states are nondispersive and thus can hardly propagate. For dispersive BICs, the 

topological boundary states are propagatable in a continuum and keep highly confined 

in transverse directions, beyond the conventional case where the topological states only 

exist in bandgaps. 

In this work, we realize valley topological BICs (VTBICs), which inherit 

dispersive propagations from valley topology and keep highly confined due to the 

mechanism of separability. VTBICs are constructed in 2D systems by coupling two 

identical layers of valley topological insulators [40-46]. The associated Hamiltonian 

can be separated into two orthogonal topological subsystems. In each subsystem, the 
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spatially confined topological states occur at the interface between two topological 

phases with opposite valley Chern numbers. These valley edge states form BICs since 

the edge states of one subsystem appear in bulk continuum of the other subsystem 

without hybridization, and vice versa. Note that the proposed VTBICs here are 

dispersive and can propagate robustly along the interfaces in the background spectrum, 

significantly different from the previous reported nondispersive topological BICs [31-

36]. VTBICs and their reflection immunities have been conclusively identified by 

performing airborne sound experiments in PCs.  

We start by considering two identical layers of valley topological insulators 

constructed in a square lattice and coupled indirectly through a middle layer (with the 

sites colored in blue), as shown in Fig. 1(a). For this sandwiched structure, each unit 

cell includes five sites labeled by numbers, and the lattice constant of the square lattice 

is 𝑎 √2⁄  (with 𝑎 = 1 for simplicity). The on-site energies for the green and pink sites 

are 𝑚 and −𝑚, respectively, and for the blue ones are 𝑚!. The hopping strengths for 

intralayer couplings are labeled 𝑡" and 𝑡#, and for interlayer ones are 𝑡$ and 𝑡%. The 

Hamiltonian of this model is thus written as 

𝐻& =

⎝

⎜
⎛

𝑚 𝑤 0 0 0
𝑤∗ −𝑚 0 0 𝑡$
0 0 𝑚 𝑤 0
0 0 𝑤∗ −𝑚 𝑡%
0 𝑡$ 0 𝑡% 𝑚!⎠

⎟
⎞

,                   (1) 

where 𝑤 = 𝑡" + 2𝑡# cos(𝑘( 2⁄ ) 𝑒)*&! %⁄ + 𝑡#𝑒)*&! . It shows that without the 

interlayer couplings (𝑡$ and 𝑡%) the Hamiltonian 𝐻& is separated in three independent 

layers. In fact, even in the presence the interlayer couplings, the Hamiltonian 𝐻& can 

be separated into two independent subsystems: after a unitary transformation with 

𝑈 =

⎝

⎜
⎛
−cos𝜙 0 sin𝜙 0 0
0 −cos𝜙 0 sin𝜙 0

sin𝜙 0 cos𝜙 0 0
0 sin𝜙 0 cos𝜙 0
0 0 0 0 1⎠

⎟
⎞

,               (2) 

𝐻& is block-diagonalized as 𝐻&, = 𝑈-𝐻&𝑈 = ?ℎ
(%) 0
0 ℎ(0)

A, where tan𝜙 = 𝑡% 𝑡$⁄ , 
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ℎ(%) = D𝑚 𝑤
𝑤∗ −𝑚E, and ℎ(0) = F

𝑚 𝑤 0
𝑤∗ −𝑚 G𝑡$% + 𝑡%%

0 G𝑡$% + 𝑡%% 𝑚!

H.        (3) 

Here, ℎ(%) and ℎ(0)  are the Hamiltonians of two subsystems in subspaces of 

dimensions 2 and 3, respectively. The ℎ(%) subsystem involves only the upper and 

lower layers, while the ℎ(0) subsystem further is relevant to all the three layers. Note 

that, the block diagonalization procedure of 𝐻& holds for arbitrary interlayer couplings 

𝑡$ and 𝑡%.  

Figure 1(b) gives the bulk dispersions along the high symmetry lines in the 

Brillouin zone [right panel of Fig. 1(a)]. Without loss of generality, the interlayer 

couplings are chosen to be unequal. The dispersions denoted by red and blue curves are 

derived from the two blocks ℎ(%)  and ℎ(0) , respectively. Since the unitary 

transformation generates the upper block ℎ(%) only by mixing the upper and lower 

layers, the wave functions associated with the red curves disappear on the middle layer 

(Supplemental S-I [47]). Actually, the upper block ℎ(%) has identical form with that of 

the single upper or lower layer in the absence of interlayer couplings. Thus, the upper 

block ℎ(%) possesses the same topology as the valley topological insulator in square 

lattice [46]. Here we present the nontrivial Berry curvature distribution of the first band 

of the upper block ℎ(%)  in Fig. 1(c), while those of other bands are provided in 

Supplemental S-II [47]. As shown in Fig. 1(c), Berry curvatures mainly locate around 

the points 𝑁	and 𝑁′ with opposite magnitudes, forming two valleys of time-reversal 

counterparts. The valley Chern numbers of valleys 𝑁 and 𝑁′ can be recognized as 

𝐶1
(%) = −1 2⁄  and 𝐶1"

(%) = 1 2⁄ . Significantly different from the case in Ref. [29], the 

remaining lower block ℎ(0)  is also topological nontrivial with the valley Chern 

number being (𝐶1
(0), 𝐶1"

(0)) = (1 2⁄ ,−1 2⁄ ). 

A topologically distinct phase can be constructed by changing the on-site energies 

of five sites and forming a new unit cell shown in Fig. 1(d). Compared to the phase in 

Fig. 1(a), the on-site energies of sites 1 and 3 are interchanged with those of sites 2 

and 4, and sites 1 and 3 are coupled indirectly via site 5. For this new phase, the 

valley Chern numbers of both subsystems are inversed with respect to those of the phase 

in Fig. 1(a), while the bulk dispersions remain the same (see Supplemental S-I and S-II 

[47]). Hereafter, we denote the topological phases in Figs. 1(a) and 1(d) as phases I and 
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II, respectively. To investigate the valley edge states, these two phases are placed 

together to form a supercell as illustrated in Fig. 1(e). The bulk-boundary 

correspondence guarantees the existence of spatially confined valley topological states 

occurring at the interface and each subsystem of phases I and II with inversed valley 

Chern numbers host its own valley edge states. Specifically, as shown in Fig. 1(f), the 

ℎ(%) subsystem (with the bulk states denoted by red shadows) induces the valley edge 

states denoted by magenta curve, and the ℎ(0) subsystem (with the bulk states denoted 

by blue shadows) hosts the valley edge states denoted by cyan curve. More importantly, 

the valley edge states of the ℎ(%) subsystem can survive in the bulk states of the ℎ(0) 

subsystem and vice versa. The hybridization of bulk and valley edge states is forbidden 

due to the subsystems are orthogonal. This is further verified by the eigenstate 

distributions of valley edge states shown in the right panel of Fig. 1(f), where the valley 

edge states are highly confined at the interface and do not extend into the bulk. Thus, 

the valley edge states here are the VTBICs. As the VTBICs inherit from the bulk states, 

VTBICs originated from the ℎ(%) subsystem vanish on the middle layer even in the 

absence of mirror symmetry about the middle layer, while those of the ℎ(0) subsystem 

are distributed at all layers. These properties facilitate our experimental observations 

below. Moreover, one can tune the parameters to obtain different types of VTBICs, as 

discussed in Supplemental S-III [47]. 

We now show that the VTBICs elaborated above can be realized in PCs. The tight-

binding model of Fig. 1(e) can be emulated by an acoustic cavity-tube structure directly, 

as shown in Fig. 2(a). The unit cell (side and top views) of phase Ⅰ is shown in Fig. 2(b). 

The five acoustic cavities (tetragonal prism) mimic the sites, and the cylinders emulate 

the couplings among them. Specifically, the intralayer couplings are emulated by the 

gray and black cylinders with diameters 𝑑$ = 2	mm, and 𝑑% = 8	mm, respectively, 

and the interlayer couplings are emulated by the yellow cylinders with radius 𝑟2 =

4.8	mm. Here, we choose the equal interlayer couplings for simplicity. In this case, the 

wave functions in the ℎ(%)  and ℎ(0)  subsystems are antisymmetric and symmetric 

(Supplemental S-IV [47]), respectively, which facilitate our experimental observations. 

Note that the states in the ℎ(%) and ℎ(0) subsystems have no parity symmetry in the 

general case. The other geometrical parameters are chosen as 𝑎 = 24	mm , 𝑠 =



 6 

10	mm, 𝑙2 = 1.8	mm, 𝑙$ = 11	mm, 𝑙% = 16	mm, 𝑙! = 10	mm. Similarly, the unit 

cell of phase II can be constructed by changing the heights of five cavities and forming 

a new unit cell. We have checked that bulk properties (bulk dispersions, symmetries 

and topology of bulk states) of phase I and phase II are consistent well with the 

predictions, where ℎ(%) and ℎ(0) subsystems have band gaps in the range of 7.47-

8.14	kHz and 8.17-8.78	kHz, respectively (Supplemental S-IV [47]). The projected 

dispersions for the interface structure in Fig. 2(a) are presented in Fig. 2(c). As expected, 

the acoustic VTBICs (solid magenta curve) originated from ℎ(%) subsystem appear in 

the continuum spectrum of the extended bulk states (blue dots) of the ℎ(0) subsystem 

without hybridization, and vice versa. The spatial distributions of these acoustic 

VTBICs are consistent with the results of tight-binding model, as shown in 

Supplemental S-V [47].  

Based on the fact that the states from the ℎ(%)  and ℎ(0)  subsystems are not 

hybridized, the topological states of two subsystems (i.e., bulk states and VTBICs) of 

the PC can be experimentally validated (Supplemental S-VI [47]). We first identify the 

bulk states of the ℎ(%) and ℎ(0) subsystems of phase I by the anti-phase and in-phase 

excitations, respectively. The anti-phase and in-phase sources are realized by a pair of 

sources with 𝜋 and 0 phase shifts, respectively. By performing 1D Fourier transform 

of the measured pressure at the positions marked by the red dots in Fig. 2(a), we have 

mapped out the projected dispersions for the bulk states of ℎ(%) subsystem of phase I. 

As shown in Fig. 2(c), the experimental data (bright color) agree well with the simulated 

results (white dots), where the band gap of ℎ(%)  subsystem is clearly presented. 

Similarly, the in-phase sources can well excite the bulk states of ℎ(0) subsystem and 

the measured projected dispersions (bright color) agrees well with the simulated one 

(blue dots), as shown in Fig. 2(d). We have checked that the measured projected 

dispersions of two subsystems of phase II are the same as that of phase I, consistent 

with the simulations, see Supplemental S-VI [47]. 

We then turn to the experimental demonstration of acoustic VTBICs. As shown in 

Fig. 3(a), the measured dispersions exhibits clearly a 1D mode with a positive slope by 

using anti-phase sources, which reproduces perfectly the simulated dispersions 
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(magenta curve), except for the band broadening due to the finite-size effect. Note that 

there is no signal of the overlapped bulk states from the ℎ(0) subsystem and negative 

slope VTBICs from the ℎ(%)  subsystem, which further demonstrates the well 

excitation of the VTBICs from the ℎ(%) subsystem propagating toward 𝑥 direction. 

To further characterize the VTBICs from the ℎ(%) subsystem, we present its spatial 

acoustic pressure distributions in Fig. 3(b), where the sound signals are strong localized 

at the interface and decay into the bulk. Agreeing with the theoretical prediction, the 

acoustic fields vanish at the middle layer and are antisymmetric between the upper and 

lower layers. When using in-phase sources, the measured dispersions and spatial 

distributions of the VTBICs from the ℎ(0) subsystem are obtained in Figs. 3(c) and 

3(d), respectively. Similarly, we have also identified the VTBICs moving along the −𝑥 

direction by injecting sound waves from the right side of the sample, see Supplemental 

S-VI [47]. All these experimental data demonstrate the existence of VTBICs of one 

subsystem embedded in the continuum spectrum of bulk states of the other subsystem. 

Below we demonstrate the negligibly weak backscattering of the VTBICs 

propagating along sharply twisted interfaces. Figure 4(a) shows the sound transport in 

a Z-shaped bending channel. As exemplified by the field pattern simulated at 7.90	kHz 

(top) for VTBIC from the ℎ(%) subsystem and 8.55 kHz (bottom) for VTBIC from the 

ℎ(0) subsystem, respectively, the sound travels smoothly in the curved path despite 

suffering two sharp corners (bent by 135° ). The reflection immunity of VTBICs 

against sharp corners can be further checked from the corresponding Fourier spectra 

shown in the insets of Fig. 4(a). The spatial Fourier spectra show that the backward 

propagating modes are suppressed. The consistence exhibited in the broadband spectra 

for VTBICs from the ℎ(%) and ℎ(0) subsystems can be seen in Fig. 4(b). All the data 

confirm the weak influence of the bending corners on the wave transport of the VTBICs. 

In conclusion, we have theoretically proposed and experimentally verified the 

VTBICs in the 2D PC. The acoustic VTBICs, attributed to the valley edge states of two 

orthogonal subsystems, can be selectively accessed according to their symmetries. We 

emphasize that the VTBICs can exist for arbitrary interlayer couplings, even in absence 

of the mirror symmetry of the system in the z direction. Dramatically, we have 



 8 

demonstrated that the acoustic VTBICs can be guided along sharply twisted interfaces 

with negligible scattering. The VTBICs discussed in our acoustic system can also be 

realized in electronic, electromagnetic and mechanical systems as well.  
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Fig. 1. VTBICs in a tight-binding model with three layers. (a) Left panel: Schematic of 

the lattice of phase I. Gray box denotes the unit cell with five inequivalent sites labelled 

1-5. Right panel: The first Brillouin zone. (b) Bulk dispersions of phase Ⅰ for 𝑘3 = 0. 

The red and blue curves denote the bands of ℎ(%) and ℎ(0), respectively. (c) Berry 

curvature distribution of the first band of ℎ(%). (d) Lattice of phase II. (e) Interface 

between phases I and II for realizing the VTBICs. (f) Left panel: Projected dispersions 

of a ribbon with interface shown in (e). The valley edge states embedded in the bulk 

states are the VTBICs of ℎ(%) and ℎ(0) subsystems (magenta and cyan solid curves). 

Black dashed curve denotes the trivial interface states of ℎ(0) subsystem. Right panel: 

Distributions of eigenstates marked by the green and yellow stars in the left panel. The 

green lines indicate the interfaces. The parameters are chosen as 𝑚 = 0.5, 𝑚! = −1.3, 

𝑡" = −0.4, 𝑡# = −1.6, 𝑡$ = −1.2, and 𝑡% = −1.7. 
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Fig. 2. Acoustic realizations of VTBICs. (a) Photograph of the PC sample. (b) Side and 

top views of the unit cell of phase I. (c) Projected dispersions of the PC in (a), which is 

composed of two opposite topological phases, i.e., phase I and phase II. Again, the 

magenta (cyan) solid curves represent the VTBICs from the ℎ(%)  (ℎ(0)) subsystem 

lying in the extended bulk states of the ℎ(0) (ℎ(%)) subsystem denoted by blue (white) 

dots. The color map denotes the measured projected dispersions of bulk states of the 

ℎ(%) subsystem, which captures precisely the simulated results (white dots). (d) The 

same to (c), but the color map denotes the measured projected dispersions of bulk states 

of the ℎ(0) subsystem.  
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Fig. 3. Observations of VTBICs. (a) and (b) Measured projected dispersions and 

pressure field distributions of VTBICs from the ℎ(%) subsystem. The interface of the 

two phases is indicated by green lines. The red and blue microphones present two point 

sources with 0 and 𝜋 phases, respectively. (c) and (d) The same to (a) and (b), but for 

the VTBICs from the ℎ(0) subsystem. 
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Fig. 4. Robustness of the VTBICs. (a) Simulated pressure field distributions for the 

VTBICs from the ℎ(%) (top panel) and ℎ(0) (bottom panel) subsystems propagating 

along the Z-shaped channel. Insets: Measured spatial Fourier spectra for the VTBICs, 

which are performed within the domains marked by magenta rectangles. (b) Top panel: 

Magnitude of experimental Fourier spectra of 𝑘3 = 0 in the frequency range that only 

the VTBICs from the ℎ(%) subsystem can exist. Bottom panel: The same to the top 

panel, but for the spectra of 𝑘3 = 2𝜋/𝑎 for VTBICs from the ℎ(0) subsystem. 


