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Abstract 

The constraint coordinate-momentum phase space (CPS) formulation of finite-state quantum 

systems has recently revealed that the triangle window function approach is an isomorphic 

representation of the exact population-population correlation function of the two-state system.  We 

use the triangle window (TW) function and the CPS mapping kernel element to formulate a novel 

useful representation of discrete electronic degrees of freedom (DOFs).  When it is employed with 

nonadiabatic field (NaF) dynamics, a new variant of the NaF approach (i.e., NaF-TW) is proposed.  

Extensive benchmark tests of model systems in both the condensed phase and gas phase 

demonstrate that the NaF-TW approach is competent in faithfully capturing the dynamical 

interplay between electronic and nuclear DOFs.  In comparison to the symmetrical quasi-classical 

(SQC) method where triangle window functions were originally proposed, the performance of 

NaF-TW is significantly better when the bifurcation characteristic of nuclear motion in the 

asymptotic region is important. 

TOC GRAPHICS 

 

KEYWORDS. Nonadiabatic dynamics, constraint phase space, nonadiabatic field, triangle 

windows  



 3

Nonadiabatic transition dynamics is crucial in understanding many important light-driven, 

photo-emission, charge transfer, and cavity modified phenomena in natural and artificial complex 

molecular systems in chemistry, materials, biology, quantum information and computation, 

environmental science, and so forth1-14.  In these systems, we often depict electrons by discrete 

electronic states and nuclei in continuous coordinate space.  Numerical simulations of such 

composite systems often employ two prevailing categories of practical dynamics approaches with 

independent trajectories.  The first category uses Born-Oppenheimer (BO) trajectories generated 

from different single potential energy surfaces (PESs).  The surface hopping approach pioneered 

by Tully and coworkers15-17 has been modified by various hopping algorithms18-29 for connecting 

two independent Born-Oppenheimer trajectories on two different adiabatic PESs.  The category of 

BO-trajectory-based dynamics often meets the challenge for nonadiabatic processes where the 

states remain coupled all the time, especially when the temperature is relatively low.  Another 

category utilizes the mean field trajectory in the spirit of the Ehrenfest theorem30.  In addition to 

the original Ehrenfest dynamics30 for nonadiabatic transitions31-33, a few Ehrenfest-like dynamics 

approaches34-54 have been developed since the Meyer-Miller mapping Hamiltonian model was 

proposed for treating both nuclear and electronic DOFs on the same footing34, 55.  Among these 

Ehrenfest-like dynamics approaches, the symmetrical quasi-classical (SQC) method for 

nonadiabatic dynamics45-47, 49, 50 is of particular interest.  In the latest version of the SQC method, 

Cotton and Miller introduced the triangle window function (TWF) approach for discrete electronic 

DOFs46, 49, 50.  The TWF approach was empirically proposed but reasonably accurate for electronic 

dynamics (in the frozen-nuclei limit) even in the weak state-state coupling region46.  In addition 

that the TWF approach offers the initial condition as well as the integral expression of the time-

dependent physical property for electronic DOFs, the independent quasi-classical trajectory is 
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generated from Ehrenfest-like dynamics of the Meyer-Miller mapping Hamiltonian34.  The SQC 

with TWF for nonadiabatic dynamics46, 47, 49 has widely been applied to various condensed-phase 

system-bath models as well as realistic molecular systems50, 56-65.  The category of mean field 

trajectory-based dynamics methods performs well in the nonadiabatic state-state coupling region, 

but is more difficult in capturing the bifurcation characteristic of the nuclear motion in the 

asymptotic region where the state-state coupling disappears.  In addition to the two major 

categories, there are some other methods using independent trajectories66-68. 

The unified phase space formulation with coordinate-momentum variables offers an exact 

interpretation of quantum mechanics to describe composite systems69-76, where the constraint 

coordinate-momentum phase space (CPS) representation is used for discrete (electronic) degrees 

of freedom (DOFs) while the infinite (Wigner) coordinate-momentum phase space representation 

is used for continuous (nuclear) DOFs.  The CPS representation (of discrete electronic DOFs) 

related to the quotient space U( ) / U( 1)F F   was first introduced to nonadiabatic dynamics by the 

sphere representation with coordinate-momentum variables in Section II of Ref 71 and by the 

simplex representation with action-angle variables in Appendix A of Ref 71.  It was shortly 

developed to a generalized phase space formulation, CPS with commutator variables73, 74 in spirit 

of refs 69-71, which is related to the quotient space U( ) / U( )F F r  (with 1 r F  ), namely the 

complex Stiefel manifold77-79.  The exact equations of motion (EOMs) of mapping coordinate-

momentum variables of CPS for the pure finite-state quantum system are linear75, which is superior 

to the conventional phase space approaches with angle variables80-83  used in physics for studying 

dynamics of composite systems.  The unified phase space formulation has recently led to a 

conceptually novel trajectory-based approach in the adiabatic representation of electronic states, 

nonadiabatic field (NaF) that is promising in faithfully describing both nuclear motion and 



 5

electronic coherence/dissipation84.  In the state-state coupling region, the nuclear EOMs of the 

independent trajectory of NaF involve an important nonadiabatic nuclear force term in addition to 

an adiabatic nuclear force term of a single electronic state (either stochastically with electronic 

weights or deterministically with the dominant electronic weight).  This is substantially different 

from the two conventional categories of nonadiabatic dynamics methods that involve either BO 

trajectories on different PESs or mean field trajectories. 

The NaF strategy84 has been applied to the framework of Ehrenfest dynamics30, fewest-switches 

surface hopping (FSSH)15, 16, and CPS with commutator variables71, 73-75, 85.  The investigation 

suggests that the nuclear EOMs of the NaF strategy should considerably improve over various 

surface hopping and Ehrenfest-like dynamics methods.  It also indicates that the key of the most 

successful NaF approach includes the exact phase space representation of discrete electronic 

DOFs84, which offers a consistent way in dealing with the other two critical properties of a 

trajectory-based quantum dynamics method75, namely, the initial condition of the trajectory and 

the integral expression for evaluation of the time-dependent physical property. 

  In the letter, we employ the triangular window function46, in addition to the original mapping 

kernel of the U( ) / U( 1)F F   CPS71, 72, to formulate a novel representation of discrete (electronic) 

DOFs, which is applied with the NaF strategy to offer a more consistent trajectory-based approach 

for studying nonadiabatic transition dynamics. 

Assume a coupled F-electronic-state Hamiltonian operator of the composite system 

  
, 1

ˆ ,
F

nm
n m

H H n m


  PR , (1) 

where  ,R P  are the coordinate and momentum variables for the nuclear DOFs, and

   1, , , Fn n    is the “complete” set of orthonormal electronic states  (F is in general infinite 



 6

when the set of electronic states is rigorously complete).  Consider the composite system in the 

frozen-nuclei limit of eq (1), where each element  ,nm nmH HR P  is constant and the 

Hamiltonian operator of eq (1) becomes 
, 1

ˆ
F

nm
n m

n mH H


  , which is the pure F-state quantum 

system.  A generalization of the idea of the exact weighted CPS representation of ref 75 implies 

that the integrand function on electronic mapping CPS is not limited to the product of the element 

of the mapping kernel and that of the inverse mapping kernel of electronic DOFs86.  The general 

phase space expression of the time correlation function between n m  and k l  reads 

 
   

 
 

ˆ ˆ

1

, ,, , ;

T

( ,

r

) d d d d , ; ;

iHt iHt
e

nm kl nm kl

n m e k l e

C t w F t





 
 

   x p Γ γ
γ γ x p Γ x p Γ γ


G

 (2) 

where  Tre  represents the trace over electronic DOFs,    (1) ( ) (1) ( ), , ,,, ,F Fpxx px p    are 

the mapping coordinate and momentum variables for discrete electronic DOFs, Γ  is the F F  

commutator matrix69, 73 that can be expressed by auxiliary coordinate-momentum variables, 

   ( ) ( ) ( ) ( )

1
/ 2

F
m m n n

mn k k k k k
k

s i i   


  Γ . (3) 

In eq (2), d d dF x p Γ  with ( ) (

1

)

,

d d dm m
k k

F

k m




 Γ  is the integral measure,  ;,,x p Γ γ  defines the 

phase space constraint that involves parameters γ ,  w γ  is the quasi-distribution of parameter 

vector γ , and , ( )nm klC t  is the time-dependent normalization factor.   , ,, ; ;nm kl tx p Γ γG  defines the 

integrand function on the phase space corresponding to n m  at time 0  and ˆ ˆiHt iHte k l e  at 

time t, which is a generalization of    1,, , ;,mn lkK tK x p Γ x p Γ , the  product of the element of the 
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mapping kernel and that of its inverse mapping kernel of our CPS formulations69-76, 79, 87. (The 

convention 1  is used for discrete electronic DOFs throughout the paper.) 

The general expression of the time correlation function eq (2) with trajectory-based dynamics 

becomes 

 
   

 
  
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, ,

ˆ ˆ

1
,0 0 0 0, ;
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( ) d d d d , ; ;,

iHt iHt
e

nm klnm kl t

n m e k l e

C t w F t






 

 
 

 x p Γ γ
γ γ x p Γ x p Γ γ
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
G

,  (4) 

where  0, , t 
x p Γ  denotes the trajectory on the phase space,   , 0

;,, ;nm kl t
t

 
x p Γ γG  defines the 

integrand function on the phase space corresponding to n m  at time 0  and ˆ ˆiHt iHte k l e   at 

time t  for trajectory dynamics, and , ( )nm klC t  is the time-dependent normalization factor of the 

trajectory-based dynamics approach.  The expression of eq (4) is a generalization of the formalisms 

in the CPS formulation69-76, 79, 87, where the trajectory is generated by the linear EOMs yielded 

from the symplectic structure of CPS. 

Our work of ref 86 presents a new class of isomorphic representations of the exact population-

population correlation function of the pure two-state quantum system (i.e., 2F  ).  Remarkably, 

the TWF approach (for discrete electronic DOFs) proposed by Cotton and Miller46, which is 

practically useful but generally believed to be ad hoc, is proved as a special case of the new class 

of phase space representations for exact population dynamics86.  The proof involves the projection 

of the TWF onto the U( ) / U( 1)F F   CPS for the two-state system and integral identities for the 

exact population-population correlation function.  Because the TWF approach is exact for 

population dynamics of the two-state system86 and reasonably accurate for that of the multi-state 

system (i.e., 3F  )46, it suggests that the triangle window function should be valuable for 
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developing a novel useful representation of discrete electronic DOFs (e.g., for nonadiabatic 

dynamics). 

Consider the pure F-state system of eq (1).  We focus on a special class of eq (4), 

 
   
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0 0 0

ˆ ˆ

1
,, 0 0 0 0 0, 0, ;

T

d , ,

r
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iHt iHt
e
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n m e k l e

C t w F





 
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  x p Γ γ
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G

. (5) 

Equation (5) includes four kinds of time correlation functions of electronic DOFs, namely, 

population-population ( andn m k l  ), population-coherence ( andn m k l  ), coherence-

population ( andn m k l  ), and coherence-coherence ( andn m k l  ) correlation functions.  

Commutator matrix Γ  can be constant, Γ 1 , where   is a scalar parameter and 1  is the 

identity matrix.  In this case, the constraint of CPS reads 

           
2 2

1

1, ; 1
2

F
n n

n
x p F  



     
 
x p  (6) 

with parameter  1/ ,F    , and 

  
       

, ;

1dd d , ;, ,dF F gg






 x p

x p x p x px p x p


  . (7) 

where    is the normalization factor71, 72, 75 

        
 

12 1
d

1 !
d , ;

F FF
F

 
 


  

 x p x p . (8) 

By employing a generalization of the weighted constraint phase space75, the expressions of time 

correlation functions read 

 
     
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1
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T
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r
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e
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
G

. (9) 
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For example, the CMM approach of ref 69 can be re-interpreted by eq (9) with    0w       

and      1
, 0 0 0 0, , ,; ,nm kl t t mn lk t tK K x p x x p xp pG , where  ,mnK x p  and  1 ,lk t tK  x p  are matrix 

elements of eqs (7)-(8) of ref 69 with phase space parameter 0 , respectively.  In this letter, we 

employ the TWF46 for the electronic correlation function.  The expressions read 

    
 
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where  
2

1( ) 1
1

F
F

Fw F
F

   


 and 
1 1/

0
d 1( )

F
w  


 . In the expression of 

ˆ ˆTr iHt iHt
e n n e m m e 

   of eq (10), 
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where 
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The time-dependent normalization factor reads 
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  , (13) 

whose initial value , (0)nn mmC  is 1. 

The TWF for n n , the population of n -th state at time 0 , is an indicator function, 
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 0 0SQC
0 0

1 if ( , )
( , )

0 otherwise
n

nnK


 


x p
x p


   , (14) 

where n  includes the following set of phase space points, 

 
    
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For any point ( , )x p  in ( , )n x p , the value of       2 2

1

1
2

F
n n

n
x p



  lies in region  1, F , so that 

the domain of   is  0,1 1/ F   . 

The TWF for ˆ ˆiHt iHte m m e , the population of m -th state at time t , is also an indicator 

function, 
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bin 1 if ( , )
( , )

0 otherwise
t t m

mm t tK
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x p
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
  , (16) 

where 
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k m x p

 
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Because functions SQC
0 0( , )nnK x p  and bin ( , )mm t tK x p  of eq (10) and eq (13) are always non-negative, 

the population-population correlation function remains positive-definite all the time for the choice 

of the electronic basis set  n  of eq (1).  The expression of eq (10) for the population-population 

correlation function is exact for only the pure two-state system. We note that the phase space 

formalism of eqs (10)-(11) is not the only option, and an alternative formulation derived for 

triangle window functions is presented in Section S5 of the Supporting Information. 
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Unfortunately, the SQC approach with either triangle or square window functions46, 88 does not 

lead to exact results for the other three kinds of electronic correlation functions even for the pure 

two-state case ( 2F  ).  It is crucial to construct the new phase space representation with the 

triangle window function used in eqs (14)-(15) for the initial condition such that the other three 

kinds of electronic correlation functions are exact.  Here, we employ the element of the mapping 

kernel of the U( ) / U( 1)F F   CPS71, 72 to accomplish the task. 

  In the expression of eq (10) for ˆ ˆTr iHt iHt
e n n e k l e 

   with k l , the population-coherence 

correlation function, 

   SQC SQC CMM
, 0 0 0 00 0, ( , ) ( , ); , ( , )nn kl tnt t nn lk tK Kwx p x x p xp p pxG  , (18) 

where 

   ( ) ( ) ( ) ( )CMM ( 1, )
2lk t t

l l k
t

k
t t tK x ip x ip x p  (19) 

is the element of the mapping kernel of the U( ) / U( 1)F F   CPS71, 72.  The time-dependent 

normalization factor of eq (5) is constant, , ( ) 1nn klC t  . 

When the initial electronic density matrix includes the coherence term, n m  (where n m ), 

in the expression of eq (10) for both the coherence-population (where n m  and k l ) and 

coherence-coherence (where n m  and k l ) correlation functions, 

   coh CMM CMM
, 0 0 0 0 0 0; , (, ( , ) ( , ), )nm kl t t nm mn lk t tw K Kp x px p x x p x pG  , (20) 

where coh SQC SQC
0 0 00 0 0

,
( ,) )6( , ( , )

5 inm ii
i n m

w w K


  x px p x p  involves the triangle window functions for 

the n -th and m -th states at time 0 . The time-dependent normalization factor , ( ) 1nm klC t   for 

n m  is also a constant. 
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The new electronic representation of eq (10) for evaluation of the electronic density matrix at 

time t, which is denoted as the CPS with triangle window functions (CPS-TW) approach.  It has 

three important properties: 

1) In the frozen-nuclei limit, the representation of the electronic population-population 

correlation is exact for the two-state system ( 2F  ) and is expected to be reasonably accurate 

for the multi-state system ( 3F  ).  (See more discussion in ref 86.) 

2) The representation of the other three kinds of correlation functions yields the exact frozen-

nuclei limit for all cases ( 2F  ).  (See more discussion in Section S4 of the Supporting 

Information.) 

3) Regardless of the approach for dealing with nuclear DOFs, the expression of the electronic 

population-population correlation (eq (10)) is always positive-definite for all cases ( 2F  ). 

In comparison to the exact CPS representations of electronic DOFs, the third property (of the 

CPS-TW approach) is indispensable for solving the negative population problem of phase space 

mapping dynamics methods for general F-state systems, e.g., as shown in Figures 4 and 7 of ref 73 

and in Figure S12 of the Supporting Information of ref 84. 

By employing the CPS-TW approach instead of the exact CPS representations for electronic 

DOFs, in addition to using the infinite Wigner coordinate-momentum phase space for nuclear 

DOFs, we obtain the expression of the correlation function for both electronic and nuclear DOFs 
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P x
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. (21) 

Here,  Trn  represents the trace over nuclear DOFs,  ,WA R P  and  ,WB R P  are the Wigner 

phase space functions of nuclear operators ˆ
nucA  and ˆ

nucB , respectively.  For instance, 
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   ˆ, d exp2 2W nucA A i    R P Δ R Δ R Δ Δ P  .  Provided that eq (21) is the integral 

expression of the time-dependent property, we propose a new variant of the NaF approach, namely, 

NaF with triangle window functions (NaF-TW), in the adiabatic representation. 

Consider the full Hamiltonian of nuclei and electrons of the system 

  1 1
el

1 1ˆ ˆ ˆ ˆ ˆ ˆ
2 2

ˆ ( ) ( ) ( )k k k
k

T TH H E      P M P R P M RP R R  , (22) 

where  diag jmM  is the diagonal nuclear mass matrix,  el
ˆ ˆH R  is the electronic Hamiltonian 

that includes the kinetic energy of electrons and all the electrostatic potential among electrons and 

nuclei, and  ( )kE R  denotes the adiabatic PES of the k-th adiabatic electronic state, ( )k R .  The 

expression of the right-hand side (RHS) for the full Hamiltonian operator of eq (22) was first 

employed for phase space mapping methods for non-adiabatic dynamics in refs 75, 89.  The non-

adiabatic coupling vector in the adiabatic representation is   ( )( ) n
mn m

 


Rd R R
R

, of which 

the J-th component is    J
mnd R .  Note that    Ji d R  is a Hermitian matrix of electronic DOFs 

and that vector  i d R  implies a non-abelian gauge field75, 90.  Assume that    1,, ,n Fn    

are effectively complete to describe the process and that the gauge field tensor, 

   ( ) ( )
( ) ( )

ele[ , ]
J I

I J

I J

i i i i i
R R

     
 

d d d d , is close to zero and may be ignored with caution.  

Following the procedure for the derivation of NaF in ref 84, it is straightforward to obtain the EOMs 

of NaF-TW, 

 

       eff

1

nonadia

,

( ) ( )
occj

i

E



 





  R

V R PR R
R M P
P f R R

g g



 

   , (23) 
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where      i pR R Rg x  ,  ,px   are electronic mapping variables in the adiabatic 

representation, P  is the kinematic nuclear momentum of the adiabatic representation47, 73, 75, 84 

(equivalently, the mapping diabatic momentum75, 84), the elements of the effective potential matrix, 

 effV , are functions of nuclear phase space variables,  

     eff 1( ) ( ),nk n nk nkV E i   R M P d RR P   , (24) 

and the nonadiabatic nuclear force reads 

  nonadia ( ) ( )( ) ( ) ( ) klk l lk
k l

E E 


    f R RR R d R    . (25) 

In eq (25), ( )kl R  is the element in the k -th row and l -th column of the matrix, 

  
  †

†
1 / 3 / 3
Tre

F 



 

ρ ggR
gg

1  
 

  . (26) 

The 1 / 3F  term of eq (26) corresponds to the parameter value, 1/ 3 , suggested in ref 46.  (Please 

see more discussion in Section S3 of the Supporting Information).  The nonadiabatic nuclear force, 

eq (25) intrinsically accounts for nonadiabatic transition processes in the state-state coupling 

region and disappears in the region where the state-state coupling vanishes.  Its importance in the 

nuclear EOMs has been demonstrated by the applications to a few benchmark condensed phase 

model systems84.  Following ref 84, the adiabatic nuclear force 
occ

( )jER R  of eq (23) is 

contributed from the single-state adiabatic nuclear force that has the largest weight, i.e., 

 ( )k kk jj
k j k

E h  


 
  





 R R    with the Heaviside function   {1 if 0 else 0}h y y  .  That is, 

the contribution of adiabatic force ingredients with smaller weights is neglected.  We focus on this 

approach of the single-state adiabatic nuclear force from the dominant weight, although other 

approaches are also possible84.  The NaF mapping energy (on phase space) in the adiabatic 
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representation,     
occ

1
NaF

1, , , ( )
2 j

TH E P MP x p R RPR R  , is conserved by rescaling the 

adiabatic kinematic nuclear momentum P (that is equivalent to the mapping diabatic momentum75, 

84) along the momentum vector after the integration of the EOMs of eq (23) as well as when the 

largest weight is switched84.  If it is impossible to conserve the NaF energy when the largest weight 

is switched, the switching is prohibited, with no change of P , and the single-state adiabatic nuclear 

force is still contributed by the gradient of the previously occupied adiabatic PES.  The algorithm 

of NaF-TW is described in detail in Section S1 of the Supporting Information. 

We consider a series of typical benchmark condensed phase and gas phase nonadiabatic model 

systems where numerically exact results are available, which have been used for testing the 

numerical performance of approximate dynamics methods in refs. 73, 75, 84.  The latest SQC 

approach with triangle window functions of ref 49 (which is denoted as SQC-TW), the conventional 

Ehrenfest dynamics30, the fewest-switches surface hopping (FSSH)16 algorithm described in ref 21, 

and the original NaF (with 1 / 2  ) of ref 84 are also tested for comparison.  The initial condition 

for nuclear DOFs is sampled from the Wigner distribution on nuclear coordinate-momentum phase 

space, which takes care of nuclear quantum effects in all the trajectory-based nonadiabatic 

dynamics methods for fair comparison.  All simulations are performed in the adiabatic 

representation.    When exact results are available in only the diabatic representation, the diabatic 

initial condition is transformed to its adiabatic counterpart, and dynamics results in the adiabatic 

representation are transformed back to the corresponding diabatic results. 

We first consider standard system-bath models, where the system is bilinearly coupled with 

harmonic bath DOFs of a dissipative environment in the condensed phase.  The coupling imparts 

a substantial influence from the bath environment and yields the reduced dynamics of the system 

across a broad spectrum ranging from coherent to dissipative regimes. Such models serve as 



 16

pivotal tools for understanding important processes governing electron/exciton energy transfer 

dynamics in the realm of chemical and biological reactions.  Methodologies that yield numerically 

exact results for condensed phase system-bath models, most in the diabatic representation, include 

quasi-adiabatic propagator path integral (QuAPI)91-93 and more efficient small matrix PI 

(SMatPI)94, 95, hierarchy equations of motion (HEOM)96-100, (multi-layer) multi-configuration 

time-dependent Hartree [(ML-)MCTDH]101-103, time-dependent density matrix renormalization 

group (TD-DMRG)104, and so forth.  We use the two-site spin-boson model and the seven-site 

Fenna–Matthews–Olson (FMO) monomer model for testing trajectory-based nonadiabatic 

dynamics methods. 

Figure 1 investigates four typical spin-boson models at low temperature, which range from weak 

to strong system-bath coupling.  Three hundred discrete bath modes are utilized for the Ohmic 

spectral density.  Initially, the (nuclear) bath DOFs are at thermal equilibrium and the system is in 

the diabatic excited state.  (Please see more numerical details in Section S2-A of the Supporting 

Information.)  In comparison to numerically exact data, while Ehrenfest dynamics produces the 

worst results, FSSH performs better but does not capture the correct asymptotic behavior for a 

relatively long time.  In contrast, SQC-TW, NaF, and NaF-TW yield results that are in overall 

good agreement with exact data. 

Figure 2 considers the seven-site FMO monomer model related to the photosynthetic organism 

of green sulfur bacteria.  One hundred discrete bath modes per site are employed for the Debye 

spectral density.  At time 0t  , the (nuclear) bath DOFs are at thermal equilibrium at 77 K and 

the first site is occupied.  Both Ehrenfest dynamics and FSSH perform poorly even for relatively 

short time and fail to even qualitatively capture the steady-state behavior in the long-time limit.  In 

comparison, SQC-TW, NaF, and NaF-TW show much better performance and are capable of  
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Figure 1. Panels (a-d): The population difference between State 1 and State 2,  D t , as a function 

of time for the four spin-boson models with the Ohmic spectral density at the inverse temperature 

5  . Panels (e-h): The modulus of the off-diagonal (coherence) element of the reduced 

electronic density matrix, 1 2 ( )t , as a function of time.  Panels (a-d) or (e-h) represent the results 

of the spin-boson models with parameters  0.1,  1c   , 0.4,  1c    , 0.1,  2.5c   , 

and  0.4,  2.5c   , respectively.  Black points: (exact results produced by) eHEOM.  Cyan 

long-dashed lines: Ehrenfest dynamics.  Orange short-dashed lines: FSSH. Green solid lines: NaF.  

Purple solid lines: SQC-TW.  Red solid lines: NaF-TW.  Converged results are obtained using 

three hundred discrete bath modes. For SQC-TW, the expression of the population-population 

correlation function is equivalent to that of ref 49 of Cotton and Miller, while eqs (10) and (18)-

(19) are used for the population-coherence correlation function because its SQC expression with 

triangle window functions of ref 49 is not exact for even the pure two-state system.  More details 

of the parameters of the spin-boson models and the simulations are described in Section S2-A of 

the Supporting Information. 
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Figure 2. The initially occupied site is Site 1.  Panel (a): The population dynamics of the seven-

site FMO monomer model at temperature 77 K. The red, blue, green, orange, purple, brown and 

cyan solid lines represent the population of Sites 1-7, respectively.  Panel (b): Dynamics of the off-

diagonal (coherence) terms of the reduced electronic density matrix of the same model.  The red, 

blue, green, and purple solid lines illustrate 1 2 ( )t , 1 3 ( )t , 1 5 ( )t  and 34 ( )t , respectively.  
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The exact results produced by HEOM are presented by dashed lines in corresponding colors. Sub-

panels (a1-a5) or Sub-panels (b1-b5) denote the results of NaF-TW, SQC-TW, NaF( 0.5  ), 

Ehrenfest dynamics, and FSSH, respectively.  One hundred discrete bath modes for each site are 

employed to obtain converged results. For SQC-TW, eqs (10) and (18)-(19) are used for the 

population-coherence correlation function because its SQC expression with triangle window 

functions for the multi-state system is not available in the literature. More details of the FMO 

model and the simulations are depicted in Section S2-A of the Supporting Information. 

 

reasonably describing the evolution of both electronic population and “coherence”, from the fast 

relaxation behavior at short time to the asymptotic behavior at long time. 

In either of the two types of system-bath models, the performance of NaF-TW is comparable to 

that of SQC-TW.  This implies that triangle functions for electronic DOFs are not limited to 

Ehrenfest-like dynamics of the SQC approach, and also work well for NaF dynamics.  Both NaF-

TW and NaF outperform FSSH, which suggests that the NaF strategy is superior to conventional 

SH approaches in studying systems where the electronic states remain coupled all the time. 

We then consider two typical models of cavity quantum electrodynamics (cQED), where the 

matter system is tightly coupled to the vacuum field in a confined optical cavity10, 105-107.  The first 

atom-in-cavity model involves two atomic energy levels, and the second one includes three energy 

levels.  The highest energy level is initially occupied.  More details of the models and initial 

conditions are described in Supporting Information S2-B.  Figure 3 shows that both Ehrenfest 

dynamics and FSSH lead to significant deviation since a relatively short time and meet challenges 

in capturing the re-coherence around 1800t   a.u.  In contrast, SQC-TW, NaF, and NaF-TW yield 

much more accurate data for population dynamics of all energy levels and are capable of semi-
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quantitatively describing the short time behavior, as well as the re-absorption and re-emission 

processes around 1800t   a.u.  The comparison between NaF and NaF-TW demonstrates that NaF 

dynamics performs robustly well, regardless of whether CPS or CPS-TW is used for the electronic 

representation.  The performance of NaF-TW matches, if not exceeds, that of the SQC-TW 

approach where mean-field trajectories are employed.  

The third set of tests focuses on the linear vibronic coupling model (LVCM) that captures the 

characteristic of the pivotal conical intersection (CI) region of the molecular system in various 

photo-driven phenomena.  We use two LVCMs where MCDTH results in the diabatic 

representation are available.  The first test case involves the two-electronic-state LVCM with three 

nuclear modes and that with 24 nuclear modes of refs. 108, 109, which mimic the S1/S2 conical 

intersection of the pyrazine molecule.  The initial condition is set as the cross-product of the 

vibronic ground state and the excited electronically diabatic state (S2) 108, 109.  The second test case 

employs a 3-electronic-state 2-nuclear-mode LVCM of the Cr(CO)5 molecule, where the initial 

condition is the cross-product of a Gaussian nuclear wave-packet and the first excited 

electronically diabatic state as described in ref 110.  More details of the LVCMs are demonstrated 

in Section S2-C of the Supporting Information.  Figure 4 shows the results of the population 

dynamics in all these LVCM cases.  FSSH, NaF and NaF-TW significantly outperform Ehrenfest 

dynamics.  While FSSH performs slightly better for the 2-state 24-mode case of pyrazine in Figure 

4(b), NaF and NaF-TW are overall superior for the 2-state 3-mode case of pyrazine in Figure 4(a) 

as well as for the 3-state 2-mode LVCM of the Cr(CO)5 molecule.  NaF-TW considerably improves 

over SQC-TW for the peaks of long time dynamics of the pyrazine molecule in Figures 4(a-b) and 

for the population oscillation behavior when the evolution crosses or re-crosses the CI region of 

the realistic gas phase molecular system as shown in Figures 4(c-e). 
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Figure 3. Panels (a-e): Results for the population dynamics of the two-level atom-in-cavity model. 

The red and blue solid lines represent the population of State 1 and that of State 2, respectively, 

while the dashed lines in corresponding colors demonstrate the exact results. Panels (f-j): Results 

of the population dynamics of the three-level atom-in-cavity model.  The red, blue and green solid 

lines represent the population of State 1, State 2 and State 3, respectively, while the dashed lines 

in corresponding colors demonstrate the exact results.  Panels (a-e) or (f-j) present the results of 

Ehrenfest, FSSH, NaF ( 0.5  ), SQC-TW, and NaF-TW, respectively.  The exact results are 

obtained from refs 111, 112.  Four hundred standing-wave modes for the optical field are used to 

obtain converged data.  More details of the models as well as the simulations are presented in 

Section S2-B of the Supporting Information. 
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Figure 4. Panels (a-b) denote the population dynamics of the second state of the 2-state LVCM 

with 3 modes for the pyrazine molecule108 and that with 24 modes for the same molecule109, 

respectively.  Panels (c-e) denote the population dynamics of States 1-3 of the 3-state 2-mode 

LVCM for the Cr(CO)5 molecule110, respectively.  Cyan dashed lines: Ehrenfest dynamics.  

Orange dashed lines: FSSH.  Green solid lines: NaF ( 0.5  ).  Purple solid lines: SQC-TW.  Red 

solid lines: NaF-TW.  In Panels (a-b), black solid lines represent exact results produced by 

MCTDH113.  In Panels (c-e), black solid lines with black points denote exact results obtained from 

ref 110. 

 

Finally, we test typical gas phase models with one anharmonic nuclear DOF where asymptotic 

regions are involved.  The first case includes the coupled three-electronic-state photo-dissociation 

models of Miller and coworkers38.  Numerical details are presented in Section S2-D of the 

Supporting Information.  We focus on Model 3, which is the most challenging.  Its nuclear 

momentum distribution in the long time limit produced by the numerically exact discrete variable 

representation (DVR) method114 includes one peak in the higher momentum region and another 

one in the lower momentum region, while that yielded by Ehrenfest dynamics has only one peak 

and entirely misses the two-peak characteristic in the asymptotic region.  Figure 5 demonstrates 

the results of Model 3.  Although SQC-TW noticeably outperforms Ehrenfest dynamics for the 

electronic population dynamics, it leads to a broader asymptotic nuclear momentum distribution 

with only one peak.  This indicates that SQC-TW with mean field trajectories is not capable of 

qualitatively capturing the two peaks in the nuclear momentum distribution in the long time limit, 

which is a consequence of the bifurcation nature of the nuclear motion in the asymptotic region 

where the nonadiabatic coupling vanishes.  As shown in Figure 5, NaF-TW is superior to SQC-
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TW and yields results similar to those of FSSH and NaF, which are close to exact data by DVR.  

The second case involves Tully’s standard scattering models16, among which the extended 

coupling region (ECR) model is the most challenging one.  More details are presented in Section 

S2-E of the Supporting Information.  Quantum dynamics of the ECR model involves both the 

nuclear wavepacket that transmits forwardly and the one that reflects backwardly in asymptotic 

regions.  The dramatic bifurcation characteristic has considerable influence on both electronic and 

nuclear dynamics.  The performance of Ehrenfest dynamics is poor for the ECR model.  Figure 6 

shows that SQC-TW improves over Ehrenfest dynamics, but is incompetent in reproducing the 

sharp step-like change in the transmission/reflection probability on State 2 as a function of the 

momentum of the center of the initial nuclear gaussian wavepacket.  In comparison, NaF-TW, as 

well as NaF and FSSH, leads to reasonably accurate electronic dynamics for the ECR model.  

Figure 5(e) and Figure 5(f) demonstrate that, while SQC-TW does not perform well in describing 

nuclear dynamics for the ECR model, NaF-TW yields a much more accurate nuclear momentum 

distribution in the asymptotic region in comparison to the exact DVR data.  Although NaF-TW 

and SQC-TW share the same CPS-TW expression of eq (21) for the electronic correlation function, 

the comparison in Figures 5-6 suggests that NaF dynamics (of NaF-TW) is more consistent than 

Ehrenfest-like dynamics (of SQC-TW) in describing the correct correlation between electronic and 

nuclear dynamics. 
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Figure 5. Panels (a-e) denote the population dynamics of the third photo-dissociation model of ref 

38, where the black, red, and blue solid lines represent the population of States 1-3, respectively, 

and the exact results produced by DVR are presented by the dashed lines in corresponding colors. 

Panel (f) presents the nuclear momentum distribution in the asymptotic (long time) limit ( 200t   

fs), where the cyan dashed, orange dashed, green solid, purple solid, and red solid lines represent 

the results of Ehrenfest dynamics, FSSH, NaF( 0.5  ) , SQC-TW, and NaF-TW, respectively. 

The exact nuclear momentum distribution obtained by DVR is presented in the black solid line. 
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Figure 6. Panels (a-b) denote the transmission probability on (adiabatic) State 1 and that on State 

2 for Tully’s ECR model.  Panels (c-d) denote the reflection probability on (adiabatic) State 1 and 

that on State 2 for the same model.  Panels (e) and (f) present the asymptotic nuclear momentum 

distribution for the initial momentum 0 20P   of the center of the nuclear Gaussian wavepacket 

and that for 0 40P  , respectively.  Cyan dashed lines: Ehrenfest dynamics.  Orange dashed lines: 

FSSH.  Green solid lines: NaF ( 0.5  ).  Purple solid lines: SQC-TW.  Red solid lines: NaF-TW.  

Black points: Exact results by DVR.   

 

In comparison to the exact CPS formulation for discrete (electronic) DOFs, although the CPS-

TW representation of the population-population correlation function (i.e., the population dynamics) 

is exact for only the pure two-state system86, its applications to three-state or multi-state 

nonadiabatic systems (e.g., in Figures 2, 3(f-j), 4(c-e), and 5) are also reasonably accurate in 

practice.  Because the CPS-TW expression of the population dynamics is always positive-definite 

irrespective of the number of electronic states and the approximation of nuclear dynamics, the 

advantage of the CPS-TW representation helps NaF-TW outperform NaF in the cases of Figure 

5(f) and Figure 6. 

In summary, since the unified phase space formulation with coordinate-momentum variables 

offers a powerful tool for studying composite systems, we construct the CPS-TW representation 

for discrete (electronic) DOFs and employ it with the recently developed NaF strategy.  It leads to 

the NaF-TW approach for nonadiabatic transition dynamics.  We test the performance of NaF-TW 

extensively for a series of standard benchmark condensed phase and gas phase nonadiabatic 

systems where numerically exact data are feasible for comparison.  NaF-TW is competent in 

capturing the dynamical correlation between electronic and nuclear DOFs in a reasonably accurate 
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manner.  The performance of NaF-TW is similar to that of the SQC approach with mean field 

trajectories49 in (molecular) systems where the electronic states remain coupled all the time.  More 

importantly, NaF-TW significantly outperforms the SQC approach in (molecular) systems where 

the evolution involves the asymptotic region where the state-state coupling disappears.  The 

comprehensive benchmark numerical tests in the main text as well as in the Supporting 

Information suggest that NaF dynamics is overall superior to conventional surface hopping 

dynamics and Ehrenfest-like dynamics in a broad region. 

Because the CPS formulation and CPS-TW representation can be used for the interpretation of 

discrete quantum states of light atoms or those of high-frequency vibrational DOFs, the NaF 

strategy can be employed to study nuclear quantum effects in proton/hydrogen transfer processes17, 

48, 115.  It is expected that further development of NaF-TW and the CPS formulations “in ever-

increasing levels of abstraction” will lead to a promising and robust trajectory-based approach for 

investigating nonadiabatic transition phenomena and dynamic processes with important quantum 

effects in complex/large composite systems in chemistry, biology, materials, environmental 

science, quantum information, quantum computation, and so forth. 

 

 ASSOCIATED CONTENT 

Supporting Information.  

Supporting Information is available free of charge via the Internet at the ACS website. 

Supporting Information includes five sections: Numerical details for initial sampling and finite 

time integrator; Simulation details for models in the main text; Comparisons of different NaF-

TW strategies; Proof of exact time correlation functions involving coherence terms for pure 



 31

multi-electronic-state systems; Alternative phase space formulations derived from triangle 

window functions. (PDF) 

 

 AUTHOR INFORMATION 

Corresponding Author 

*E-mail: jianliupku@pku.edu.cn 

ORCID 

Xin He: 0000-0002-5189-7204 

Xiangsong Cheng: 0000-0001-8793-5092 

Baihua Wu: 0000-0002-1256-6859 

Jian Liu: 0000-0002-2906-5858 

Notes 

The authors declare no competing financial interests. 

 ACKNOWLEDGMENT 

This work was supported by the National Science Fund for Distinguished Young Scholars Grant 

No. 22225304.  We acknowledge the High-performance Computing Platform of Peking University, 

Beijing PARATERA Tech Co., Ltd., and Guangzhou supercomputer center for providing 

computational resources.  We thank Youhao Shang, Haocheng Lu, and Bingqi Li for useful 

discussions.  We also thank Bill Miller for having encouraged us to investigate the window 

function approach. 

 
Reference 

1. Polli, D.;  Altoe, P.;  Weingart, O.;  Spillane, K. M.;  Manzoni, C.;  Brida, D.;  Tomasello, 
G.;  Orlandi, G.;  Kukura, P.;  Mathies, R. A., et al., Conical Intersection Dynamics of the Primary 



 32

Photoisomerization Event in Vision. Nature 2010, 467, 440-U88. 
http://dx.doi.org/10.1038/nature09346 
2. Martinez, T. J., Seaming Is Believing. Nature 2010, 467, 412-413. 
http://dx.doi.org/10.1038/467412a 
3. Domcke, W.;  Yarkony, D. R.; Köppel, H., Conical Intersections: Theory, Computation 
and Experiment. World Scientific: Singapore, 2011. 
4. Scholes, G. D.;  Fleming, G. R.;  Olaya-Castro, A.; van Grondelle, R., Lessons from Nature 
About Solar Light Harvesting. Nat. Chem. 2011, 3, 763-774. 
http://dx.doi.org/10.1038/Nchem.1145 
5. Maiuri, M.;  Ostroumov, E. E.;  Saer, R. G.;  Blankenship, R. E.; Scholes, G. D., Coherent 
Wavepackets in the Fenna-Matthews-Olson Complex Are Robust to Excitonic-Structure 
Perturbations Caused by Mutagenesis. Nat. Chem. 2018, 10, 177-183. 
http://dx.doi.org/10.1038/Nchem.2910 
6. Smith, M. B.; Michl, J., Singlet Fission. Chem. Rev. 2010, 110, 6891-6936. 
http://dx.doi.org/10.1021/cr1002613 
7. Scholes, G. D.; Rumbles, G., Excitons in Nanoscale Systems. Nat. Mater. 2006, 5, 683-
696. http://dx.doi.org/10.1038/nmat1710 
8. Long, R.;  Prezhdo, O. V.; Fang, W.-H., Nonadiabatic Charge Dynamics in Novel Solar 
Cell Materials. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1305. 
http://dx.doi.org/10.1002/wcms.1305 
9. Wang, Y.-C.;  Ke, Y.; Zhao, Y., The Hierarchical and Perturbative Forms of Stochastic 
Schrodinger Equations and Their Applications to Carrier Dynamics in Organic Materials. Wiley 
Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1375. http://dx.doi.org/10.1002/wcms.1375 
10. Garcia-Vidal, F. J.;  Ciuti, C.; Ebbesen, T. W., Manipulating Matter by Strong Coupling to 
Vacuum Fields. Science 2021, 373, eabd0336. http://dx.doi.org/10.1126/science.abd0336 
11. Mei, J.;  Leung, N. L. C.;  Kwok, R. T. K.;  Lam, J. W. Y.; Tang, B. Z., Aggregation-
Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718-11940. 
http://dx.doi.org/10.1021/acs.chemrev.5b00263 
12. Ye, Z.;  Lin, X.;  Wang, N.;  Zhou, J.;  Zhu, M.;  Qin, H.; Peng, X., Phonon-Assisted up-
Conversion Photoluminescence of Quantum Dots. Nat. Commun. 2021, 12, 4283. 
http://dx.doi.org/10.1038/s41467-021-24560-4 
13. Xu, Y.;  Liang, X.;  Zhou, X.;  Yuan, P.;  Zhou, J.;  Wang, C.;  Li, B.;  Hu, D.;  Qiao, X.;  
Jiang, X., et al., Highly Efficient Blue Fluorescent Oleds Based on Upper Level Triplet–Singlet 
Intersystem Crossing. Adv. Mater. 2019, 31, 1807388. http://dx.doi.org/10.1002/adma.201807388 
14. Hammes-Schiffer, S., Theoretical Perspectives on Non-Born-Oppenheimer Effects in 
Chemistry. Philos. Trans. Royal Soc. A 2022, 380, 20200377. 
http://dx.doi.org/10.1098/rsta.2020.0377 
15. Tully, J. C.; Preston, R. K., Trajectory Surface Hopping Approach to Nonadiabatic 
Molecular Collisions: The Reaction of H+ with D2. J. Chem. Phys. 1971, 55, 562-572. 
http://dx.doi.org/10.1063/1.1675788 
16. Tully, J. C., Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990, 93, 
1061-1071. http://dx.doi.org/10.1063/1.459170 
17. Hammes-Schiffer, S.; Tully, J. C., Proton Transfer in Solution: Molecular Dynamics with 
Quantum Transitions. J. Chem. Phys. 1994, 101, 4657-4667. http://dx.doi.org/10.1063/1.467455 



 33

18. Zhu, C. Y.;  Nobusada, K.; Nakamura, H., New Implementation of the Trajectory Surface 
Hopping Method with Use of the Zhu-Nakamura Theory. J. Chem. Phys. 2001, 115, 3031-3044. 
http://dx.doi.org/10.1063/1.1386811 
19. Craig, C. F.;  Duncan, W. R.; Prezhdo, O. V., Trajectory Surface Hopping in the Time-
Dependent Kohn-Sham Approach for Electron-Nuclear Dynamics. Phys. Rev. Lett. 2005, 95, 
163001. http://dx.doi.org/10.1103/physrevlett.95.163001 
20. Wang, L.;  Akimov, A.; Prezhdo, O. V., Recent Progress in Surface Hopping: 2011-2015. 
J. Phys. Chem. Lett. 2016, 7, 2100-2112. http://dx.doi.org/10.1021/acs.jpclett.6b00710 
21. Peng, J.;  Xie, Y.;  Hu, D.;  Du, L.; Lan, Z., Treatment of Nonadiabatic Dynamics by on-
the-Fly Trajectory Surface Hopping Dynamics. Acta Phys.-Chim. Sin. 2019, 35, 28-48. 
http://dx.doi.org/10.3866/PKU.WHXB201801042 
22. Barbatti, M., Nonadiabatic Dynamics with Trajectory Surface Hopping Method. Wiley 
Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 620-633. http://dx.doi.org/10.1002/wcms.64 
23. Tully, J. C., Perspective: Nonadiabatic Dynamics Theory. J. Chem. Phys. 2012, 137, 
22A301. http://dx.doi.org/10.1063/1.4757762 
24. Granucci, G.;  Persico, M.; Spighi, G., Surface Hopping Trajectory Simulations with Spin-
Orbit and Dynamical Couplings. J. Chem. Phys. 2012, 137, 22A501. 
http://dx.doi.org/10.1063/1.4707737 
25. Cui, G.; Thiel, W., Generalized Trajectory Surface-Hopping Method for Internal 
Conversion and Intersystem Crossing. J. Chem. Phys. 2014, 141, 124101. 
http://dx.doi.org/10.1063/1.4894849 
26. Mai, S.;  Marquetand, P.; Gonzlez, L., A General Method to Describe Intersystem Crossing 
Dynamics in Trajectory Surface Hopping. Int. J. Quantum Chem. 2015, 115, 1215-1231. 
http://dx.doi.org/10.1002/qua.24891 
27. Subotnik, J. E.;  Jain, A.;  Landry, B.;  Petit, A.;  Ouyang, W.; Bellonzi, N., Understanding 
the Surface Hopping View of Electronic Transitions and Decoherence. Annu. Rev. Phys. Chem. 
2016, 67, 387-417. http://dx.doi.org/10.1146/annurev-physchem-040215-112245 
28. Martens, C. C., Surface Hopping by Consensus. J. Phys. Chem. Lett. 2016, 7, 2610-2615. 
http://dx.doi.org/10.1021/acs.jpclett.6b01186 
29. Kapral, R., Surface Hopping from the Perspective of Quantum-Classical Liouville 
Dynamics. Chem. Phys. 2016, 481, 77-83. http://dx.doi.org/10.1016/j.chemphys.2016.05.016 
30. Ehrenfest, P., Bemerkung über Die Angenäherte Gültigkeit Der Klassischen Mechanik 
Innerhalb Der Quantenmechanik. Z. Phys. 1927, 45, 455-457. 
http://dx.doi.org/10.1007/BF01329203 
31. Delos, J. B.;  Thorson, W. R.; Knudson, S. K., Semiclassical Theory of Inelastic Collisions. 
I. Classical Picture and Semiclassical Formulation. Phys. Rev. A 1972, 6, 709-720. 
http://dx.doi.org/10.1103/PhysRevA.6.709 
32. Billing, G. D., On the Applicability of the Classical Trajectory Equations in Inelastic 
Scattering Theory. Chem. Phys. Lett. 1975, 30, 391-393. http://dx.doi.org/10.1016/0009-
2614(75)80014-5 
33. Micha, D. A., A Self-Consistent Eikonal Treatment of Electronic Transitions in Molecular 
Collisions. J. Chem. Phys. 1983, 78, 7138-7145. http://dx.doi.org/10.1063/1.444753 
34. Meyer, H.-D.; Miller, W. H., A Classical Analog for Electronic Degrees of Freedom in 
Nonadiabatic Collision Processes. J. Chem. Phys. 1979, 70, 3214-3223. 
http://dx.doi.org/10.1063/1.437910 



 34

35. Sun, X.;  Wang, H.; Miller, W. H., Semiclassical Theory of Electronically Nonadiabatic 
Dynamics: Results of a Linearized Approximation to the Initial Value Representation. J. Chem. 
Phys. 1998, 109, 7064-7074. http://dx.doi.org/10.1063/1.477389 
36. Wang, H.;  Song, X.;  Chandler, D.; Miller, W. H., Semiclassical Study of Electronically 
Nonadiabatic Dynamics in the Condensed-Phase: Spin-Boson Problem with Debye Spectral 
Density. J. Chem. Phys. 1999, 110, 4828-4840. http://dx.doi.org/10.1063/1.478388 
37. Stock, G.; Muller, U., Flow of Zero-Point Energy and Exploration of Phase Space in 
Classical Simulations of Quantum Relaxation Dynamics. J. Chem. Phys. 1999, 111, 65-76. 
http://dx.doi.org/10.1063/1.479254 
38. Coronado, E. A.;  Xing, J.; Miller, W. H., Ultrafast Non-Adiabatic Dynamics of Systems 
with Multiple Surface Crossings: A Test of the Meyer-Miller Hamiltonian with Semiclassical 
Initial Value Representation Methods. Chem. Phys. Lett. 2001, 349, 521-529. 
http://dx.doi.org/10.1016/s0009-2614(01)01242-8 
39. Golosov, A. A.; Reichman, D. R., Classical Mapping Approaches for Nonadiabatic 
Dynamics: Short Time Analysis. J. Chem. Phys. 2001, 114, 1065-1074. 
http://dx.doi.org/10.1063/1.1332812 
40. Bonella, S.;  Montemayor, D.; Coker, D. F., Linearized Path Integral Approach for 
Calculating Nonadiabatic Time Correlation Functions. Proc. Natl. Acad. Sci. 2005, 102, 6715-
6719. http://dx.doi.org/10.1073/pnas.0408326102 
41. Stock, G.; Thoss, M., Classical Description of Nonadiabatic Quantum Dynamics. In Adv. 
Chem. Phys., Rice, S. A., Ed. John Wiley and Sons, Inc.: 2005; Vol. 131, pp 243-375. 
42. Ananth, N.;  Venkataraman, C.; Miller, W. H., Semiclassical Description of Electronically 
Nonadiabatic Dynamics Via the Initial Value Representation. J. Chem. Phys. 2007, 127, 084114. 
http://dx.doi.org/10.1063/1.2759932 
43. Tao, G.; Miller, W. H., Semiclassical Description of Electronic Excitation Population 
Transfer in a Model Photosynthetic System. J. Phys. Chem. Lett. 2010, 1, 891-894. 
http://dx.doi.org/10.1021/jz1000825 
44. Huo, P.;  Miller, T. F.; Coker, D. F., Communication: Predictive Partial Linearized Path 
Integral Simulation of Condensed Phase Electron Transfer Dynamics. J. Chem. Phys. 2013, 139, 
151103. http://dx.doi.org/10.1063/1.4826163 
45. Cotton, S. J.; Miller, W. H., Symmetrical Windowing for Quantum States in Quasi-
Classical Trajectory Simulations: Application to Electronically Non-Adiabatic Processes. J. Chem. 
Phys. 2013, 139, 234112. http://dx.doi.org/10.1063/1.4845235 
46. Cotton, S. J.; Miller, W. H., A New Symmetrical Quasi-Classical Model for Electronically 
Non-Adiabatic Processes: Application to the Case of Weak Non-Adiabatic Coupling. J. Chem. 
Phys. 2016, 145, 144108. http://dx.doi.org/10.1063/1.4963914 
47. Cotton, S. J.;  Liang, R.; Miller, W. H., On the Adiabatic Representation of Meyer-Miller 
Electronic-Nuclear Dynamics. J. Chem. Phys. 2017, 147, 064112. 
http://dx.doi.org/10.1063/1.4995301 
48. Kananenka, A. A.;  Hsieh, C. Y.;  Cao, J. S.; Geva, E., Nonadiabatic Dynamics Via the 
Symmetrical Quasi-Classical Method in the Presence of Anharmonicity. J. Phys. Chem. Lett. 2018, 
9, 319-326. http://dx.doi.org/10.1021/acs.jpclett.7b03002 
49. Cotton, S. J.; Miller, W. H., Trajectory-Adjusted Electronic Zero Point Energy in Classical 
Meyer-Miller Vibronic Dynamics: Symmetrical Quasiclassical Application to Photodissociation. 
J. Chem. Phys. 2019, 150, 194110. http://dx.doi.org/10.1063/1.5094458 



 35

50. Cotton, S. J.; Miller, W. H., A Symmetrical Quasi-Classical Windowing Model for the 
Molecular Dynamics Treatment of Non-Adiabatic Processes Involving Many Electronic States. J. 
Chem. Phys. 2019, 150, 104101. http://dx.doi.org/10.1063/1.5087160 
51. Saller, M. A. C.;  Kelly, A.; Richardson, J. O., On the Identity of the Identity Operator in 
Nonadiabatic Linearized Semiclassical Dynamics. J. Chem. Phys. 2019, 150, 071101. 
http://dx.doi.org/10.1063/1.5082596 
52. Gao, X.;  Sailer, M. A. C.;  Liu, Y.;  Kelly, A.;  Richardson, J. O.; Geva, E., Benchmarking 
Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic 
Molecular Dynamics. J. Chem. Theory. Comput. 2020, 16, 2883-2895. 
http://dx.doi.org/10.1021/acs.jctc.9b01267 
53. Runeson, J. E.; Richardson, J. O., Generalized Spin Mapping for Quantum-Classical 
Dynamics. J. Chem. Phys. 2020, 152, 084110. http://dx.doi.org/10.1063/1.5143412 
54. Saller, M. A. C.;  Kelly, A.; Geva, E., Benchmarking Quasiclassical Mapping Hamiltonian 
Methods for Simulating Cavity-Modified Molecular Dynamics. J. Phys. Chem. Lett. 2021, 12, 
3163-3170. http://dx.doi.org/10.1021/acs.jpclett.1c00158 
55. Stock, G.; Thoss, M., Semiclassical Description of Nonadiabatic Quantum Dynamics. Phys. 
Rev. Lett. 1997, 78, 578-581. http://dx.doi.org/10.1103/PhysRevLett.78.578 
56. Liang, R.;  Cotton, S. J.;  Binder, R.;  Hegger, R.;  Burghardt, I.; Miller, W. H., The 
Symmetrical Quasi-Classical Approach to Electronically Nonadiabatic Dynamics Applied to 
Ultrafast Exciton Migration Processes in Semiconducting Polymers. J. Chem. Phys. 2018, 149, 
044101. http://dx.doi.org/10.1063/1.5037815 
57. Tang, D.;  Fang, W.-H.;  Shen, L.; Cui, G., Combining Meyer-Miller Hamiltonian with 
Electronic Structure Methods for on-the-Fly Nonadiabatic Dynamics Simulations: Implementation 
and Application. Phys. Chem. Chem. Phys. 2019, 21, 17109-17117. 
http://dx.doi.org/10.1039/c9cp02682g 
58. Peng, J.;  Xie, Y.;  Hu, D.; Lan, Z., Analysis of Bath Motion in MM-SQC Dynamics Via 
Dimensionality Reduction Approach: Principal Component Analysis. J. Chem. Phys. 2021, 154, 
094122. http://dx.doi.org/10.1063/5.0039743 
59. Hu, D.;  Xie, Y.;  Peng, J.; Lan, Z., On-the-Fly Symmetrical Quasi-Classical Dynamics 
with Meyer−Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical 
Intersections. J. Chem. Theory. Comput. 2021, 17, 3267-3279. 
http://dx.doi.org/10.1021/acs.jctc.0c01249 
60. Zheng, J.;  Peng, J.;  Xie, Y.;  Long, Y.;  Ning, X.; Lan, Z., Study of the Exciton Dynamics 
in Perylene Bisimide (PBI) Aggregates with Symmetrical Quasiclassical Dynamics Based on the 
Meyer-Miller Mapping Hamiltonian. Phys. Chem. Chem. Phys. 2020, 22, 18192-18204. 
http://dx.doi.org/10.1039/d0cp00648c 
61. Zheng, J.;  Xie, Y.;  Jiang, S.;  Long, Y.;  Ning, X.; Lan, Z., Initial Sampling in Symmetrical 
Quasiclassical Dynamics Based on Li-Miller Mapping Hamiltonian. Phys. Chem. Chem. Phys. 
2019, 21, 26502-26514. http://dx.doi.org/10.1039/c9cp03975a 
62. Xie, Y.;  Zheng, J.; Lan, Z., Performance Evaluation of the Symmetrical Quasi-Classical 
Dynamics Method Based on Meyer-Miller Mapping Hamiltonian in the Treatment of Site-Exciton 
Models. J. Chem. Phys. 2018, 149, 174105. http://dx.doi.org/10.1063/1.5047002 
63. Zheng, J.;  Xie, Y.;  Jiang, S.;  Long, Y.;  Ning, X.; Lan, Z., Ultrafast Electron Transfer 
with Symmetrical Quasi-Classical Dynamics Based on Mapping Hamiltonian and Quantum 
Dynamics Based on Ml-Mctdh. Chinese J. Chem. Phys. 2017, 30, 800-810. 
http://dx.doi.org/10.1063/1674-0068/30/cjcp1711210 



 36

64. Hu, Z.; Sun, X., All-Atom Nonadiabatic Semiclassical Mapping Dynamics for 
Photoinduced Charge Transfer of Organic Photovoltaic Molecules in Explicit Solvents. J. Chem. 
Theory. Comput. 2022, 18, 5819-5836. http://dx.doi.org/10.1021/acs.jctc.2c00631 
65. Hu, Z.;  Liu, Z.; Sun, X., Effects of Heterogeneous Protein Environment on Excitation 
Energy Transfer Dynamics in the Fenna–Matthews–Olson Complex. J. Phys. Chem. B 2022, 126, 
9271-9287. http://dx.doi.org/10.1021/acs.jpcb.2c06605 
66. Truhlar, D. G., Effective Potentials for Intermediate-Energy Electron Scattering: Testing 
Theoretical Models. In Chemical Applications of Atomic and Molecular Electrostatic Potentials, 
Politzer, P.; Truhlar, D. G., Eds. Springer US: Boston, MA, 1981; pp 123-172. 
67. Yonehara, T.; Takatsuka, K., Phase-Space Averaging and Natural Branching of Nuclear 
Paths for Nonadiabatic Electron Wavepacket Dynamics. J. Chem. Phys. 2008, 129, 134109. 
http://dx.doi.org/10.1063/1.2987302 
68. Tao, G., Coherence-Controlled Nonadiabatic Dynamics Via State-Space Decomposition: 
A Consistent Way to Incorporate Ehrenfest and Born-Oppenheimer-Like Treatments of Nuclear 
Motion. J. Phys. Chem. Lett. 2016, 7, 4335-4339. http://dx.doi.org/10.1021/acs.jpclett.6b01857 
69. Liu, J., A Unified Theoretical Framework for Mapping Models for the Multi-State 
Hamiltonian. J. Chem. Phys. 2016, 145, 204105. http://dx.doi.org/10.1063/1.4967815 
70. Liu, J., Isomorphism between the Multi-State Hamiltonian and the Second-Quantized 
Many-Electron Hamiltonian with Only 1-Electron Interactions. J. Chem. Phys. 2017, 146, 024110. 
http://dx.doi.org/10.1063/1.4973708 
71. He, X.; Liu, J., A New Perspective for Nonadiabatic Dynamics with Phase Space Mapping 
Models. J. Chem. Phys. 2019, 151, 024105. http://dx.doi.org/10.1063/1.5108736 
72. He, X.;  Gong, Z.;  Wu, B.; Liu, J., Negative Zero-Point-Energy Parameter in the Meyer-
Miller Mapping Model for Nonadiabatic Dynamics. J. Phys. Chem. Lett. 2021, 12, 2496-2501. 
http://dx.doi.org/10.1021/acs.jpclett.1c00232 
73. He, X.;  Wu, B.;  Gong, Z.; Liu, J., Commutator Matrix in Phase Space Mapping Models 
for Nonadiabatic Quantum Dynamics. J. Phys. Chem. A 2021, 125, 6845-6863. 
http://dx.doi.org/10.1021/acs.jpca.1c04429 
74. Liu, J.;  He, X.; Wu, B., Unified Formulation of Phase Space Mapping Approaches for 
Nonadiabatic Quantum Dynamics. Acc. Chem. Res. 2021, 54, 4215-4228. 
http://dx.doi.org/10.1021/acs.accounts.1c00511 
75. He, X.;  Wu, B.;  Shang, Y.;  Li, B.;  Cheng, X.; Liu, J., New Phase Space Formulations 
and Quantum Dynamics Approaches. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1619. 
http://dx.doi.org/10.1002/wcms.1619 
76. Wu, B.;  He, X.; Liu, J., Phase Space Mapping Theory for Nonadiabatic Quantum 
Molecular Dynamics. In Volume on Time-Dependent Density Functional Theory: Nonadiabatic 
Molecular Dynamics, Zhu, C., Ed. Jenny Stanford Publishing: New York, 2022. 
77. Nakahara, M., Geometry, Topology, and Physics. 2 ed.; Institute of Physics Publishing: 
Bristol, 2003. 
78. Atiyah, M. F.; Todd, J. A., On Complex Stiefel Manifolds. Math. Proc. Cambridge Philos. 
Soc. 1960, 56, 342-353. http://dx.doi.org/10.1017/s0305004100034642 
79. Shang, Y.;  Cheng, X.; Liu, J., (to be submitted).  
80. Stratonovich, R. L., On Distributions in Representation Space. Zh. Eksp. Teor. Fiz. 1956, 
31, 1012.  



 37

81. Bargueño, P.; Miret–Artés, S., Dissipative and Stochastic Geometric Phase of a Qubit 
within a Canonical Langevin Framework. Phys. Rev. A 2013, 87, 012125. 
http://dx.doi.org/10.1103/physreva.87.012125 
82. Peñate‐Rodríguez, H. C.;  Dorta‐Urra, A.;  Bargueño, P.;  Rojas‐Lorenzo, G.; Miret‐
Artés, S., A Langevin Canonical Approach to the Dynamics of Chiral Systems: Populations and 
Coherences. Chirality 2013, 25, 514-520. http://dx.doi.org/10.1002/chir.22155 
83. Peñate‐Rodríguez, H. C.;  Dorta‐Urra, A.;  Bargueño, P.;  Rojas‐Lorenzo, G.; Miret‐
Artés, S., A Langevin Canonical Approach to the Dynamics of Chiral Systems: Thermal Averages 
and Heat Capacity. Chirality 2014, 26, 319-325. http://dx.doi.org/10.1002/chir.22326 
84. Wu, B.;  He, X.; Liu, J., Nonadiabatic Field on Quantum Phase Space: A Century after 
Ehrenfest. J. Phys. Chem. Lett. 2024, 15, 644-658. http://dx.doi.org/10.1021/acs.jpclett.3c03385 
85. Lang, H.;  Vendrell, O.; Hauke, P., Generalized Discrete Truncated Wigner Approximation 
for Nonadiabatic Quantum-Classical Dynamics. J. Chem. Phys. 2021, 155, 024111. 
http://dx.doi.org/10.1063/5.0054696 
86. Cheng, X.;  He, X.; Liu, J., A Novel Class of Phase Space Representations for Exact 
Population Dynamics of Two-State Quantum Systems. Chinese J. Chem. Phys. submitted.  
87. Shang, Y. On Quantum Phase Space Mapping Theory and Trajectory-Based Dynamics 
Approaches. B. S. Thesis, (Advisor: Liu, J.), Peking University, China, 2022. 
88. Miller, W. H.; Cotton, S. J., Communication: Wigner Functions in Action-Angle Variables, 
Bohr-Sommerfeld Quantization, the Heisenberg Correspondence Principle, and a Symmetrical 
Quasi-Classical Approach to the Full Electronic Density Matrix. J. Chem. Phys. 2016, 145, 081102. 
http://dx.doi.org/10.1063/1.4961551 
89. Lang, H. Quantum Dynamics of Chemical Systems with Large Number of Degrees of 
Freedom: Linearized Phase Space Methods and Quantum Simulations. Ph.D. Dissertation, 
(Advisor: Ruprecht Karl University of Heidelberg, Heidelberg, Baden-Württemberg, Germany, 
2022. 
90. Das, A., Field Theory. World Scientific: Singapore, 2019. 
91. Makarov, D. E.; Makri, N., Path Integrals for Dissipative Systems by Tensor Multiplication. 
Condensed Phase Quantum Dynamics for Arbitrarily Long Time. Chem. Phys. Lett. 1994, 221, 
482-491. http://dx.doi.org/10.1016/0009-2614(94)00275-4 
92. Makri, N.; Makarov, D. E., Tensor Propagator for Iterative Quantum Time Evolution of 
Reduced Density Matrices. II. Numerical Methodology. J. Chem. Phys. 1995, 102, 4611-4618. 
http://dx.doi.org/10.1063/1.469509 
93. Makri, N.; Makarov, D. E., Tensor Propagator for Iterative Quantum Time Evolution of 
Reduced Density Matrices. I. Theory. J. Chem. Phys. 1995, 102, 4600-4610. 
http://dx.doi.org/10.1063/1.469508 
94. Makri, N., Small Matrix Path Integral with Extended Memory. J. Chem. Theory. Comput. 
2021, 17, 1-6. http://dx.doi.org/10.1021/acs.jctc.0c00987 
95. Makri, N., Small Matrix Disentanglement of the Path Integral: Overcoming the 
Exponential Tensor Scaling with Memory Length. J. Chem. Phys. 2020, 152, 041104. 
http://dx.doi.org/10.1063/1.5139473 
96. Tanimura, Y.; Kubo, R., Time Evolution of a Quantum System in Contact with a Nearly 
Gaussian-Markoffian Noise Bath. J. Phys. Soc. Jpn. 1989, 58, 101-114. 
http://dx.doi.org/10.1143/JPSJ.58.101 



 38

97. Yan, Y.-A.;  Yang, F.;  Liu, Y.; Shao, J., Hierarchical Approach Based on Stochastic 
Decoupling to Dissipative Systems. Chem. Phys. Lett. 2004, 395, 216-221. 
http://dx.doi.org/10.1016/j.cplett.2004.07.036 
98. Xu, R.-X.;  Cui, P.;  Li, X.-Q.;  Mo, Y.; Yan, Y., Exact Quantum Master Equation Via the 
Calculus on Path Integrals. J. Chem. Phys. 2005, 122, 041103. 
http://dx.doi.org/10.1063/1.1850899 
99. Shao, J., Stochastic Description of Quantum Open Systems: Formal Solution and Strong 
Dissipation Limit. Chem. Phys. 2006, 322, 187-192. 
http://dx.doi.org/10.1016/j.chemphys.2005.08.007 
100. Moix, J. M.; Cao, J., A Hybrid Stochastic Hierarchy Equations of Motion Approach to 
Treat the Low Temperature Dynamics of Non-Markovian Open Quantum Systems. J. Chem. Phys. 
2013, 139, 134106. http://dx.doi.org/10.1063/1.4822043 
101. Meyer, H.-D.;  Manthe, U.; Cederbaum, L. S., The Multi-Configurational Time-Dependent 
Hartree Approach. Chem. Phys. Lett. 1990, 165, 73-78. http://dx.doi.org/10.1016/0009-
2614(90)87014-i 
102. Thoss, M.;  Wang, H.; Miller, W. H., Self-Consistent Hybrid Approach for Complex 
Systems: Application to the Spin-Boson Model with Debye Spectral Density. J. Chem. Phys. 2001, 
115, 2991-3005. http://dx.doi.org/10.1063/1.1385562 
103. Wang, H.; Thoss, M., Multilayer Formulation of the Multiconfiguration Time-Dependent 
Hartree Theory. J. Chem. Phys. 2003, 119, 1289-1299. http://dx.doi.org/10.1063/1.1580111 
104. Ren, J. J.;  Li, W. T.;  Jiang, T.;  Wang, Y. H.; Shuai, Z. G., Time-Dependent Density 
Matrix Renormalization Group Method for Quantum Dynamics in Complex Systems. Wiley 
Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1614. http://dx.doi.org/10.1002/wcms.1614 
105. Haugland, T. S.;  Ronca, E.;  Kjønstad, E. F.;  Rubio, A.; Koch, H., Coupled Cluster Theory 
for Molecular Polaritons: Changing Ground and Excited States. Phys. Rev. X 2020, 10, 041043. 
http://dx.doi.org/10.1103/PhysRevX.10.041043 
106. Toida, H.;  Nakajima, T.; Komiyama, S., Vacuum Rabi Splitting in a Semiconductor 
Circuit Qed System. Phys. Rev. Lett. 2013, 110, 066802. 
http://dx.doi.org/10.1103/PhysRevLett.110.066802 
107. Guerin, W.;  Santo, T.;  Weiss, P.;  Cipris, A.;  Schachenmayer, J.;  Kaiser, R.; Bachelard, 
R., Collective Multimode Vacuum Rabi Splitting. Phys. Rev. Lett. 2019, 123, 243401. 
http://dx.doi.org/10.1103/PhysRevLett.123.243401 
108. Schneider, R.; Domcke, W., S1-S2 Conical Intersection and Ultrafast S2->S1 Internal 
Conversion in Pyrazine. Chem. Phys. Lett. 1988, 150, 235-242. http://dx.doi.org/10.1016/0009-
2614(88)80034-4 
109. Krempl, S.;  Winterstetter, M.;  Plöhn, H.; Domcke, W., Path-Integral Treatment of Multi-
Mode Vibronic Coupling. J. Chem. Phys. 1994, 100, 926-937. http://dx.doi.org/10.1063/1.467253 
110. Worth, G. A.;  Welch, G.; Paterson, M. J., Wavepacket Dynamics Study of Cr(CO)5 after 
Formation by Photodissociation: Relaxation through an (E ⊕  A) ⊗ e Jahn–Teller Conical 
Intersection. Mol. Phys. 2006, 104, 1095-1105. http://dx.doi.org/10.1080/00268970500418182 
111. Hoffmann, N. M.;  Schafer, C.;  Rubio, A.;  Kelly, A.; Appel, H., Capturing Vacuum 
Fluctuations and Photon Correlations in Cavity Quantum Electrodynamics with Multitrajectory 
Ehrenfest Dynamics. Phys. Rev. A 2019, 99, 063819. 
http://dx.doi.org/10.1103/PhysRevA.99.063819 
112. Hoffmann, N. M.;  Schäfer, C.;  Säkkinen, N.;  Rubio, A.;  Appel, H.; Kelly, A., 
Benchmarking Semiclassical and Perturbative Methods for Real-Time Simulations of Cavity-



 39

Bound Emission and Interference. J. Chem. Phys. 2019, 151, 244113. 
http://dx.doi.org/10.1063/1.5128076 
113. Worth, G. A.;  Beck, M. H.;  Jackle, A.; Meyer, H.-D.The MCTDH Package, Version 8.2, 
(2000). H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). O. Vendrell and H.-D. Meyer 
Version 8.5 (2013). Version 8.5 contains the ML-MCTDH algorithm. See http://mctdh.uni-hd.de. 
(accessed on November 1st, 2023) Used version: 8.5.14.  
114. Colbert, D. T.; Miller, W. H., A Novel Discrete Variable Representation for Quantum 
Mechanical Reactive Scattering Via the S-Matrix Kohn Method. J. Chem. Phys. 1992, 96, 1982-
1991. http://dx.doi.org/10.1063/1.462100 
115. Topaler, M.; Makri, N., Quantum Rates for a Double Well Coupled to a Dissipative Bath: 
Accurate Path Integral Results and Comparison with Approximate Theories. J. Chem. Phys. 1994, 
101, 7500-7519. http://dx.doi.org/10.1063/1.468244 

 



 1 

Supporting Information:  

Nonadiabatic Field with Triangle Window  

Functions on Quantum Phase Space 

 

Xin He, Xiangsong Cheng, Baihua Wu, and Jian Liu* 

Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational 

Chemistry, College of Chemistry and Molecular Engineering,  

Peking University, Beijing 100871, China 

 

 

 

 

 

 

AUTHOR INFORMATION 

Corresponding Author 

* Electronic mail: jianliupku@pku.edu.cn 



 2 

S1: Numerical Details 

Within the phase space framework, the trajectory-based quantum dynamics methods for 

nonadiabatic systems feature three key aspects: the initial condition, the time correlation function, 

and the equations of motion of trajectories. The main text of this paper introduces NaF-TW 

dynamics, which employs the triangle window (TW) functions for the time correlation functions. 

This feature makes NaF-TW dynamics distinguished from the original NaF dynamics. In this 

section, we present the numerical details of NaF-TW dynamics, NaF dynamics, and SQC-TW 

dynamics. 

 

S1-A: Initial Conditions for NaF-TW, NaF and SQC-TW Dynamics 

In NaF dynamics, the initial values of electronic phase space variables, ( ) ( )( )0 , 0x p  in the 

diabatic representation or ( ) ( )( )0 , 0x p  in the adiabatic representation, are uniformly sampled on 

the CPS, which is the 2F -dimensional sphere corresponding to ( ), ;γx p . In NaF-TW or SQC-

TW dynamics, the initial values of electronic phase space variables, ( ) ( )( )0 , 0x p  in the diabatic 

representation (and similarly for ( ) ( )( )0 , 0x p  in the adiabatic representation), are sampled from 

the quantized submanifold 
occj  according the following procedure. We define the action 

variables { }e  and angle variables { }θ  as  

 
( ) ( )( )

( )

2 2( ) ( ) ( )

( ) ( ) ( )

1
2
arctan

k k k

k k k

e x p

p xθ

= +

=
 . (S1) 
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The initial values of { }( )
0 , 1, ,ke k F=   are sampled via Cotton’s algorithm which is described in 

ref 1, and those of { }( )
0 , 1, ,k k Fθ =   are uniformly sampled on [0, 2 )π . The sampled ( ) ( )( )0 , 0e θ  

is then transformed back to ( ) ( )( )0 , 0x p  according to eq (S1). 

The NaF-TW, NaF, and SQC-TW dynamics also vary in their treatment of the initial condition 

of the commutator matrix (0)Γ  in the diabatic representation (or (0)Γ  in the adiabatic 

representation). For NaF-TW dynamics in the main text, (0)Γ  (or (0)Γ ) is set to γ I , termed the 

scalar approach. Meanwhile, for NaF dynamics and SQC-TW dynamics, the initial commutator 

matrix is given by  

 ( ) ( ) ( )( ) ( ) ( )( )( ) occ

2 2

,
10 0 0
2

n n
nm n j nmx p δ δ Γ = + − 

 
  (S2) 

in the diabatic representation, or 

 ( ) ( ) ( )( ) ( ) ( )( )( ) occ

2 2

,
10 0 0
2

n n
nm n j nmx p δ δ Γ = + − 

 


    (S3) 

in the adiabatic representation. This approach is referred to as the full commutator matrix approach. 

As mentioned in the main text, when the initial sampling is done in the diabatic representation, the 

phase space variables ( ) ( )( )0 , 0x p  as well as the commutator matrix (0)Γ  are transformed to the 

adiabatic representation in order to perform the NaF dynamics.  

 

S1-B: Numerical Integrator for Trajectory Dynamics 

Numerical Integrator for NaF-TW and NaF 

Numerical integrators are employed in the realization of NaF and NaF-TW dynamics. There are 

six steps in one time step t∆ , updating the nuclear coordinates R , kinematic momentum P , 
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electronic phase variables i= +g x p  , and commutator matrix Γ  in the adiabatic representation. In 

this part, we describe the six steps in details. 

Step 1: Propagate the nuclear kinematic momentum within half a time step 2t∆  

 ( )occ ( ) nona/2 dia( ) ( )
2t t j tt tE tt+∆ + − +
∆

← ∇RP P R f ,  (S4) 

where 
occ

( )j tE−∇R R  represents the state-specific force evolving on the occ ( )j t -th state, and 

( ) ( )nonadia ( ) ( ) ( ) ( ) klk t l t lk t
k l

t tE E ρ
≠

 = − − ∑f R R d R   stands for the state-dependent nonadiabatic 

force. Here ( )tρ  denotes the quasi-density matrix, which is 

 †1( ) ( ) ( ) ( )
2

t t t t−= g g 

 ρ Γ   (S5) 

for NaF, and 

 ( ) † † 31 / 3 / (T( ) ( ) ( ) ( ) /r) et t tF t t += − g g 1g g    ρ   (S6) 

for NaF-TW. 

Step 2: Propagate the nuclear coordinate within a full time step t∆  

 1
/2tt tt t t−

∆ ∆+ +← + ∆R R M P .  (S7) 

Step 3: Propagate phase variables of electronic DOFs within a full time step t∆  according to 

 /2( , ; )t t t tt t tt+∆ ∆+ +∆← ∆g U R P g

  .  (S8) 

Here, ( ) ( )( ) ( ) ( ) ( )( )eff, ; exp ,t t t i t t t ∆ = − ∆ U R P V R P  denotes the unitary short time propagator 

within a full-time step t∆  in the adiabatic representation. Moreover, in the case of NaF, the 
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equation of motion for Γ  reads ( ) ( ) ( ) ( )eff eff, ,i  = − V VR P RΓ PΓ Γ

   , leading to the propagator 

within a full time step, 

 / /
†

2 2( , ; ) ( , ; )t t tt t t t t tt t t t+∆ +∆ ∆ ∆+ + +∆ ∆← ∆Γ U R P Γ U R P    .  (S9) 

In cases where it is more convenient to utilize potential energy surfaces in the diabatic 

representation, the short time propagator in the adiabatic representation can be replaced with 

( ) ( ) ( )† expt t t t tti+∆ +∆∆ − T R V R T R , where ( )T R  represents the diabatic-to-adiabatic 

transformation matrix with elements ( ) ( )|nm mT n φ=R R  and ( )V R  denotes the diabatic 

potential energy surfaces matrix. 

Step 4: Update occ ( )j t  to a new occupied state occ ( )j t t+ ∆  based on the switching strategy, i.e., 

select the state with the largest weight. Following this, rescale P  if oocc cc( ) ( )j j tt t+ ∆ ≠ , 

 
( )

occNaF /2
/2 /2 1

/2 /2

( ), , , ( )
/ 2

t t t tt t t t t
t t

j t t t
t t T

t t t t

H E+ + + + +∆ +∆ ∆ ∆ ∆ ∆
∆ ∆ −

∆
+

+ ∆
+

+

−
←

R P x p R
P P

P PM


.  (S10) 

If ( )
occNaF /2 ( ), , , ( )t t t t t tt t t t j t tH E +∆ ∆ ∆ ∆+ + + ∆ +∆+ <R P x p R , the switching of the adiabatic nuclear force 

component is frustrated.  In such a case we keep oocc cc( ) ( )j j tt t+ ∆ =  and the rescaling step eq 

(S10) is skipped. 

Step 5: Propagate the nuclear kinematic momentum within the other half time step 2t∆  

 ( )occ/ ( ) nonad a2 i( ) ( )
2t t j t t tt t tE tt t+ + +∆ +∆∆ ∆← + + + ∆
∆

−∇RP P R f .  (S11) 

Step 6: Finally, rescale the nuclear kinematic momentum P  again to ensure energy conservation 

in the mapping variables: 
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( )

occNaF 0 0 0 0 (
1

), , , ( )
/ 2
j t t t

t t T
t

t t
t tt t

H E ∆
∆ ∆ −

∆

+∆ +
+ +

+ ∆+

−
←

R P x p R
P

PM
P

P


.  (S12) 

If ( )
occ0 0 0 0 ( )NaF , , , ( )t tj t tH E ∆+∆ +<R P x p R , it indicates that the time step size t∆  is relatively large 

for the integrator from time t to time t t+ ∆ .  In such a case, one should then choose a smaller time 

step size t∆  and repeat Steps 1-6 for the update of ( ), , ,t t t tt t t t∆ ∆+ + +∆ ∆+R P x p  from ( ), , ,t t t tR P x p .  

The time step size t∆  should be adjusted in the region where the sum of adiabatic and nonadiabatic 

nuclear force terms is large.  

The rescaling of P  alongside its direction is used in the numerical propagators in order to ensure 

the energy conservation. In similar virtue, in Steps 1 and 5, nonadiaf  of eq (S4) and eq (S11) can also 

be replaced by its projected component nonadia
⊥f  perpendicular to P , i.e., 

 nonadia
nonadia nonadia
⊥ ⋅

−
⋅

=
Pff

P
f P

P
. (S13) 

 

Numerical Integrator for SQC-TW and Ehrenfest Dynamics 

In contrast to the aforementioned NaF integrator, SQC-TW and Ehrenfest dynamics employ the 

mean force picture rather than the nonadiabatic force picture. In this picture, the integrator includes 

Steps 1, 2, 3, and 5 of the NaF/NaF-TW integrator. Unlike NaF/NaF-TW, for SQC-TW and 

Ehrenfest dynamics, the full nuclear force (i.e., the time derivative of P ) in Steps 1 and 5 is defined 

as 

 ( ) ( )mf
,

( ) ( ) ( ) ( ) ( ) klk t kl k t l t lk t
k l

t tE E E ρδ∇ = = − + − ∑ RP f R R R d R

  . (S14) 
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For SQC-TW, †1( ) ( ) ( ) (0)
2

t t t= −g g



  Γρ , where the commutator matrix Γ  does not evolve with 

time. This is corresponding to the ‘zero-point energy adjustment’ treatment of the SQC-TW 

approach of Cotton and Miller in ref 2. (It should be noted that only the population-population 

correlation functions are corresponding to ref 2, and we propose the formulations of other kinds of 

time correlation functions; see the main text.) For Ehrenfest dynamics, †1( ) ( ) ( )
2

t t t= g g  ρ  is used. 

 

Numerical Integrator for FSSH Dynamics 

FSSH dynamics employs the adiabatic force picture rather than the nonadiabatic force picture, 

where the full nuclear force in Step 1 and Step 5 (of the numeric integrator of NaF/NaF-TW) is 

occadia ( )( ) ( )j t tt E∇= = − RP f R  instead. While in this approach, Step 4 (of the numeric integrator of 

NaF/NaF-TW) is replaced with the famous Fewest-Switches-Surface-Hopping algorithim3, 4 (i.e., 

the eq (S51) of the Supporting Information of ref 5) to determine a new occupied state occ ( )j t t+ ∆ . 

The detailed description of the numerical integrator for FSSH dynamics can be found in Section 

S7 of the Supporting Information of ref 6. 

 

S2: Model Details 

S2-A: Reduced Dynamics for System-Bath Models. 

For system-bath models, the system is always bilinearly coupled with harmonic bath DOFs of a 

dissipative environment in the condensed phase. The system-bath coupling, representing the 

substantial influence from the bath environment, governs the dynamics of the system across a 

spectrum ranging from coherent to dissipative regimes. These models serve as pivotal tools for 



 8 

understanding the electron/exciton dynamics in chemical and biological reactions. Numerically 

exact results of the spin-boson model can be achieved by quasi-adiabatic propagator path integral 

(QuAPI)7-9 and more efficient small matrix PI (SMatPI)10, 11, hierarchy equations of motion 

(HEOM)12-16, (multi-layer) multi-configuration time-dependent Hartree [(ML-)MCTDH] 17-19, and 

time-dependent density matrix renormalization group (TD-DMRG)20. 

Within this study, we test two distinctive models: the two-site spin-boson models and the seven-

site Fenna–Matthews–Olson (FMO) Monomer model: 

Spin-Boson Model: The two-site spin-boson models stand as a fundamental prototype for 

comprehension of electron transfer and energy transport phenomena. The Hamiltonian for spin-

boson models reads ˆ ˆ ˆ ˆ
B SB SH H H H= + +  with employing the environment bath part ˆ

BH , the linear 

coupling term ˆ
S BH −  and the system part ˆ

SH  as 

 

( )

( )

( ) ( )

2 2 2

1

1

1ˆ ˆ ˆ
2

ˆ ˆ 1 1 2 2

ˆ 1 1 2 2 1 2 2 1

b

b

N

B j j j
j

N

SB j j
j

S

H P R

H c R

H

ω

ε

=

=

= +

= −

= − + ∆ +

∑

∑   (S15) 

Here ε  denotes the energy bias while ∆  signifies the tunneling between states 1  and 2 . The 

bath is discretized into a series of quantum harmonic oscillators, with { }ˆ
jP , { }ˆ

jR , { }jω  and { }jc  

representing the mass-weighted momentum, coordinate, frequencies and the coupling coefficients 

of the j-th oscillator, respectively. For spin-boson models, we adopt the discretization scheme 

proposed in refs 21, 22 for the Ohmic spectral density ( ) ( )exp /
2 cJ πω αω ω ω= −  with the Kondo 

parameter α  and the cut-off frequency cω , as depicted below: 
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ln 1
1

,   1,

+1

,
j c

b

c
j j

b

b

j

j
c

N

N
N

ω ω

αωω

  = − −  +  =
 =

 . (S16) 

In our simulation, we investigate four specific spin-boson models outlined in ref 23. These models 

span a range of system-bath coupling strengths from weak to strong (small to large α ), and the 

cut-off frequency cω  from low to high. Additionally, all simulations are conducted at low 

temperatures ( 5β = ) and utilize three hundred discrete bath modes to characterize the Ohmic 

spectral density within the spin-boson models. 

FMO Monomer Model: The FMO complex derived from green sulfur bacteria serves as a prototype 

system crucial for investigating photosynthetic organisms24-31. Specifically referencing ref 28, the 

FMO monomer employs a site-exciton model, encompassing a seven-site structure coupled with a 

harmonic bath, whose three parts of Hamiltonian alternatively reads, 

 

( )2 2 2

1 1

1 1

,
, 1

ˆ ˆ

ˆ

12410 87.7 5.5 5.9 6.7 13.7 9.9
87.7 12530 30.8 8.2 0.7 11.8 4.3
5.5 30.8 12210 53.5 2.2 9.6 6.0
5.9 8.2 53.5 12320 70.7 17.0 63.3

6.7 0.7 2.

ˆ

2

ˆ / 2

ˆ

b

b

NF

B
n j

NF

SB j
n j

F

S S nm
n m

nj j nj

nj

H

H c n n

H H

P R

n m

R

ω
= =

= =

=

+

− − − −
−

− − −
= − − − −

−

=

=

=

−

∑∑

∑∑

∑

1cm
70.7 12480 81.1 1.3

13.7 11.8 9.6 17.0 81.1 12630 39.7
9.9 4.3 6.0 63.3 1.3 39.7 12440

−

 
 
 
 
 
 
 − −
 
− − − 

 − − − 

.  (S17) 
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Here the variables { }ˆ ˆ,nj njP R  denote the mass-weighted momentum and coordinate of the j-th 

quantum harmonic oscillator for the bath on n-th site, and the bath frequencies { }jω  and system-

bath coupling coefficients { }jc  are determined by discretizing the spectral density. Specifically, 

we utilize the Debye spectral density ( ) ( )2 22 /c cJ ω λω ω ω ω= +  for each site, with parameters 

135 cmλ −=  for the bath reorganization energy and 1106.14 cmcω
−=  for the characteristic 

frequency. The discretization scheme employed here is based on refs 18, 32, 33: 

 
( )

tan , 1,
2 2 1

2 , 1,
1

,

,

b

b

j c
b

j j
b

N

N

j j
N

c j
N

π πω ω

λω

 = − = + 

= =
+





. (S18) 

A challenging temperature 77KT =  is investigated as studied in our previous work34. The first 

site of the system is initially occupied, and the bath DOFs are sampled from the Wigner 

distributions of the corresponding harmonic oscillators. In the FMO monomer model, one hundred 

discrete bath modes per site (totaling 100bN = ) are used to represent the continuous Debye 

spectral density. 

We consider the decoupled initial condition for both spin-boson models and FMO monomer 

model, where the system is in the excited state and the bath modes are at the thermal equilibrium 

(i.e., the quantum Boltzmann distribution for the pure bath Hamiltonian operator). Specially, the 

bath modes are sampled from the corresponding Wigner distribution 

 ( )
( ) ( )2 2 2

1
, exp

2

bN

W j j j
j j

P R
Q
βρ ω
ω=

 
∝ − + 

  
∑R P   (S19) 
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with ( )
( )tanh / 2

2Q
ω

βω
β
ω

=




 as the quantum corrector35. For both the spin-boson models and the 

FMO monomer model, we use the exact results obtained from our previous work23 using 

HEOM/extended HEOM (eHEOM)36, 37 for comparison. 

 

S2-B: Cavity Quantum Electrodynamic for Atom-in-Cavity Models. 

 It has been observed that several significant phenomena manifest in cavity quantum 

electrodynamics (cQED), particularly under conditions where matter is tightly coupled to the 

vacuum field within a confined optical cavity38-41. In the main text, we examine benchmark cQED 

models featuring a multi-level hydrogen atom confined within a one-dimensional lossless cavity42-

45. The atomic system is coupled to multi-cavity-modes, whose Hamiltonian is described by F 

atomic energy levels: 

 ( ) ( )2 2 2
0

1 1 1

1ˆ ˆ ˆ ˆ
2

F N N F

n j j j j j j nm
n j j n m

H n n P R r R n mε ω ω λ µ
= = = ≠

= + + +∑ ∑ ∑ ∑ ,  (S20) 

where nε  is the atomic energy level of the n-th atomic state, and we employ a three-state model 

with the energy levels 1 0.6738ε = − , 2 0.2798ε = − , 3 0.1547ε = − , and nmµ  denotes the 

transitional dipole moment with nonzero values 12 1.034µ = − , 23 2.536µ = −  (all in atomic units).  

The first model involves full three atomic levels, and the second one is a reduced two-level model 

where only the two lowest levels are considered. The variables ˆ ˆ, ,j j jR P ω  denote the canonical 

coordinate, canonical momentum, and frequency of the j -th optical field mode, respectively, and 

the atom-optical field interaction reads 

 ( ) 0
0

0

2 sin 1 ,, ,j
j rr j

L L
Nπλ

ε
 = = 
 

 ,  (S21) 
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where L , 0ε  and 0r  denote the volume length of cavity, the vacuum permittivity, and the location 

of the atom, respectively. We fix 236200L =  a.u. and 0 / 2r L= , and employ four hundred 

standing-wave modes for the optical field, with the frequency jω  of the j -th mode set to /j c Lπ  

(Here 137.036c =  a.u. denotes the light speed in vacuum). Initially, the highest atomic level is 

excited, while all cavity modes remain in the vacuum state. Subsequently, spontaneous emission 

occurs, releasing a photon that traverses the cavity and reflects back to interact with the atom. This 

sequence is followed by re-absorption and re-emission process. We compare our results with 

benchmark data obtained from truncated configuration interaction calculations, as reported in refs 

42, 43. 

 

S2-C: Dynamics around Conical Intersection for Linear Vibronic Coupling Models.   

The linear vibronic coupling model (LVCM) is a straightforward yet powerful model that 

simulates molecular systems, particularly those where the conical intersection (CI) region is 

pivotal, such as in light-induced processes. In the diabatic representation, the Hamiltonian of 

LVCM is expressed as 

 ( ) ( ) ( )2 2

1 1 1 1

ˆ ˆ ˆ ˆˆ
2

N F N F N
n nm

k k n k k k k
k n k n m k

kH P R E R n n R n mω κ λ
= = = ≠ =

   = + + + +   
   

∑ ∑ ∑ ∑ ∑ ,  (S22) 

where nE  ( )1,...,n F=  is the vertical excitation energy of the n-th state, while ˆ
kP  and ˆ

kR  

( )1,...,k N=  denote dimensionless weighted normal-mode momentum and coordinate of the k-th 

nuclear DOF, respectively, with the corresponding frequency kω . Additionally, the parameters 

( )n
kκ  and ( )nm

kλ  represent the linear coupling coefficients of the k-th nuclear vibronic DOF with the 

diagonal and off-diagonal elements of the electronic density, respectively.  
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In our first case study, we explore two versions of the linear vibronic coupling model (LVCM) 

applied to the S1/S2 conical intersection of the pyrazine molecule. One LVCM variant includes 

three nuclear modes, while the other incorporates 24 nuclear modes. Detailed parameters for these 

models can be found in refs 46, 47. The initial state consists of the cross-product between the vibronic 

ground state and the electronically excited diabatic state (S2). Furthermore, we investigate a typical 

three-electronic-state LVCM with two nuclear modes for the Cr(CO)5 molecule, as detailed in ref 

48. Here, the initial condition comprises the cross-product of the first electronically excited diabatic 

state and a Gaussian nuclear wave-packet. The Gaussian wave-packet is centered at the minimum 

point of the ground state of the Cr(CO)6 molecule, where a carbonyl group dissociates. The width 

of each mode is determined by the corresponding vibrational frequencies. While we employ the 

diabatic representation for initializing and evaluating dynamical properties, consistent with the 

approach in MCTDH, we switch to the adiabatic representation for real-time dynamics to ensure 

fair comparison among different non-adiabatic dynamics methods. The parameter lists for the 

LVCMs applied to both the pyrazine and Cr(CO)5 molecules can be found in the Supporting 

Information, specifically in Tables S2-S4 of ref 49. 

 
S2-D: Photodissociation Dynamics of Gas Phase Models with One Nuclear Degree of 

Freedom.   

We further test NaF and NaF-TW for gas phase models with asymptotic regions.  We consider 

the coupled three-electronic-state photodissociation models of Miller and coworkers 50.  Each PES 

is described by a Morse oscillator and the coupling terms are depicted by Gaussian functions: 

 
( ) ( )

( ) ( ) ( )2

2
1 ,   1, 2,3.

,  , 1, 2,3;  and .

i i

ij ij

R R
ii i i

R R
ij ji ij

V R D e C i

V R V R A e i j i j

β

α

− −

− −

 = − + = 

= = = ≠
 , (S23) 



 14 

where the detailed parameters match those of Model III as described in ref 50. The Wigner 

distribution for nuclear DOF is 
2 2( ) /( , ) em R R P m

W R P e ω ωρ − − −∝ , where 20000m =  a.u. is the mass of 

the nuclear DOF, 0.005ω =  a.u. is the vibrational frequency of ground state, and eR  denotes the 

center of wavepacket. The initial occupation is in the first electronic diabatic state. Numerically 

exact results for the models can be obtained by the discrete variable representation (DVR) 

approach51. 

S2-E: Nonadiabatic Scattering Dynamics of Tully’s Models.   

We investigate the performance of trajectory dynamics for Tully’s three models4 for 

nonadiabatic scattering dynamics, namely, the single avoided crossing (SAC) model, the dual 

avoided crossing (DAC) model and the extended coupling region (ECR) model. The results of the 

ECR model are demonstrated in the main text. The ECR model poses a formidable challenge for 

mapping-based methods, involving some trajectories that transmit forward while others reflect—

a complex scenario inadequately described within mean-field approximations. The Hamiltonian 

of ECR model reads 

 

( )

( )

( ) ( ) ( ) ( ) ( )[ ]

11 0

22 0

12 21 2BR BR

V R E
V R E

V R V R C e h R e h R−

= +

= −

= = − + −

,  (S24) 

where 00.9,  0.1,  0.0006B C E= = = − , and ( )h R  represents the Heaviside function. Initially, the 

system with mass 2000m = a.u. occupies in the electronic adiabatic ground state, and the nuclear 

wavefunction ( ) ( ) ( )2
0 0 0/2R R iP R RR e αψ − − + −∝  leads to the corresponding Wigner distribution 

( ) ( ) ( )2 2
0 0 /, R R P P

W R P e α αρ − − + −∝ . The center of the wavefunction, denoted by 0R , is positioned at 

13− , with a width parameter of 1α = . The initial momentum is set to 0P  varying from 2 to 50. 
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In addition, we also provide supplemental results of trajectory-based dynamics for the SAC 

model and the DAC model4. The SAC model reads 

 

( ) ( ) ( )

( ) ( )

( ) ( ) 2

| |
11

22 11

12 21

1 sgnB R

DR

V R A e R
V R V R

V R V R Ce

−

−

= −

= −

= =

.  (S25) 

with 0.01,  1.6,  0.005,  1.0A B C D= = = = , and initial 0 3.8R = − ; and the DAC model reads 

 

( )

( )

( ) ( )

2

2

11

22 0

12 21

0
BR

DR

V R

V R Ae E

V R V R Ce

−

−

=

= − +

= =

.  (S26) 

with 00.1,  0.28,  0.015,  0.06,  0.05A B C D E= = = = =  and initial 0 10R = − . Other parameters 

keep the same as those used in the ECR model. Figure S1 presents the transmission probabilities 

of the SAC and the DAC models. For the SAC model, the results of all methods are close to each 

other. For the DAC model, the phase space dynamics (NaF, SQC-TW and NaF-TW) slightly 

outperform Ehrenfest dynamics and FSSH dynamics, especially in the high kinematic energy 

region where 0 20P > . 
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Figure S1. Panels (a-b) describe the transmission probability on (adiabatic) State 1 and that on 

State 2 for Tully’s SAC model. Panels (c-d) present the transmission probability on (adiabatic) 

State 1 and that on State 2 for Tully’s DAC model. Black points: Exact results produced by DVR. 

Cyan long-dashed lines: Ehrenfest dynamics. Orange short-dashed lines: FSSH. Green, purple, 

and red solid lines respectively illustrate NaF, SQC-TW, and NaF-TW dynamics. 

 

S2-F: Electron Transfer Rate in Condensed Phase 

We apply NaF-TW to calculate the electron transfer rate in condensed phase. We adopt the 

model employed in refs 52, 53, which elucidates a two-level system coupled with a solvent bath: 

 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,ˆ , , ,s s s b s sH R P HH R P+= R P .  (S27) 
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Here,  

 

( )

( )

2 2 2

2 2

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ, 1 1
2 2 2

1 1 ˆ ˆ 2 2
2 2
1 2 2 1

s s s s s s s

s s s

H R P P R c R

R c R

ε

ε

 = + + Ω + 
 

 + − + Ω − 
 

+∆ +

,  (S28) 

 ( )
2

2 2
2

1

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,
2 2

bN
n

b s s n n n s
n n

cH R P P R Rω
ω=

  = + +     
∑R P ,  (S29) 

where { }ˆ ˆ,s sP R  denote the nuclear momentum and coordinate of the reaction DOF, respectively, 

and { } )ˆ ( 1,ˆ, ,n n bnP R N=   represent those of solvent bath DOFs. The frequencies { }nω  and the 

coefficients { }nc  ( 1, ), bn N=   for solvent bath are obtained by discretizing the Ohmic spectral 

density with the Kondo parameter 69.49 10α −= ×  and the cut-off frequency 43.5 10cω
−Ω= = ×  

a.u. The reorganization energy 22.39 10λ −= ×  a.u., the coupling 55 10−∆ = ×  a.u., and the 

parameter / 2sc λ= Ω .  One hundred discrete bath DOFs are utilized in the calculations. 

The electron transfer rate is obtained from54 

 ( )
0

d Re FFk Ct t
∞

= ∫ ,  (S30) 

where the flux-flux correlation function is given by 

 ( ) ˆ ˆˆ ˆˆTr iH
FF

t iHt
nFe FeC t ρ −=    ,  (S31) 

with the flux operator defined as ( )ˆ 1 2 2 1F i= ∆ − . The initial density ˆnρ  for nuclear DOFs 

reads  
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 ( ) ( )2 2 2 2 2 2

1

ˆ ˆ ˆ ˆ ˆˆ exp / 2 exp / 2 / 2
bN

n n n n s s s s
n

P R P R c Rρ β ω β
=

   ∝ − + − +Ω +   
 

∑ ,  (S32) 

with the temperature set at 300 K.  

Given the scenario of weak coupling and relative high temperature, the Marcus electron transfer 

theory55 is anticipated to perform reasonably well and is utilized as a benchmark. We also present 

the results from ref 53 obtained using an earlier version of SQC. Figure S2 depicts the relationship 

between the electronic transfer rate k  and the bias ε . The results obtained from NaF-TW exhibit 

strong agreement with Marcus theory in both the normal and inverted regimes, and they show 

slightly better agreement compared to those of SQC in ref 53.  

 

Figure S2. The electronic transfer rate k  against /ε λ . Blue dashed line: Marcus theory. Red 

points: NaF-TW. Purple hollow squares: SQC taken from ref 53.  
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S3: Comparison of Different NaF-TW Strategies 

In this section, we compare two NaF-TW strategies. The first, as presented in the main text, 

employs the scalar scheme for the initial condition of the commutator matrix, with the quasi-

density matrix used as ( ) † †1 / 3 / Tr 3/eF  = −+  gg gg 1    ρ . In the second approach, denoted as 

NaF-TW2, we may alternatively employ the full commutator matrix scheme, with the quasi-

density matrix used as †1
2

−= gg  

ρ Γ . NaF-TW and NaF-TW2 schemes exhibit nearly comparable 

performance across all benchmark models. In Figure S3 and S4, we compare their performance 

using the spin-boson model and LVCM model of pyrazine, respectively. 
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Figure S3. Comparison of the population dynamics (panels (a-d)) and coherence dynamics (panels 

(e-h)) of NaF-TW and NaF-TW2 for four spin-boson models discussed in the main text. The 

parameters for the models in panels (a-h) are consistent with those detailed in Figure 1 of the main 
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text. Red lines indicate: NaF-TW. Blue lines with hollow squares: NaF-TW2. Exact numerical 

results are denoted by black points. 

 

Figure S4. Comparisons of NaF-TW and NaF-TW2. Panels (a-b) depict the population dynamics 

of the second state of the 2-state LVCM with 3 modes for pyrazine 46 and that with 24 modes for 

the same molecule47, respectively. Red lines: NaF-TW. Blue lines with hollow squares: NaF-TW2. 

Black lines: Exact numerical results produced by MCTDH 56. 

 

S4: Proof of Exact Time Correlation Functions Involving Coherence Terms for Pure Multi-

Electronic-State Systems 
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In the main text, we have proposed a set of expressions of time correlation functions involving 

coherence terms, as shown in eqs (10), (12), (14)-(15) and (18)-(21). For pure multi-electronic-

state systems, one can utilize the transformation eq (S1) to obtain the expression of population-

coherence correlation functions: for k l≠ , 
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 , (S33) 

where  

 ( ) ( ) ( ) ( )S ( ) ( )SQ ) (C QC, 1 2 k
nn nn

k k

k k

K e e eK h h ′

′≠

≡ = − − −∏e θ e   (S34) 

and 

 
( ) ( )CMM ( ) ( ) ( )( , )
l kl k

k
i

l e eK e θ θ−=e θ  (S35) 

are derived from substituting eq (S1) into eqs (14)-(15) and eq (19) of the main text. 

For n m≠ , the coherence-population and coherence-coherence correlation functions read 
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 .  (S36) 

The exact time correlation functions read 

 ˆ *ˆTr ( ) ( )iHt i
kn m

Ht
e ln m e k l e t t−  =  U U ,  (S37) 
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where the time evolution operator ˆiHte−  is represented by a unitary matrix ( ) i tt e−= VU .  In this 

section, we prove that the correlation functions eqs (S33) and (S36) for pure electronic DOFs are 

exact, when the equations of motion of mapping variables read 

 i= −g Vg ,  (S38) 

whose solution reads 

 ( ) 0 0
i t

t et −≡= Vg U g g . (S39) 

Corresponding to eq (S39), the time evolution of off-diagonal (i.e., l k≠ ) elements of CMM 

kernel reads 
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e θ x p
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. (S40) 

 

1) the exact population-coherence correlation functions for pure electronic dynamics: 

When only electronic DOFs are involved, using eq (S40), and also utilizing that for any 

( )
0 , 1, ,k k Fθ =  , and integer m , 

 
( )
0 ( ) ( )

0 0 0 0

2 2

0 0
2d d

kim k k
m me

π πθ θ πδ δ θ= =∫ ∫ ,  (S41) 

the population-coherence correlation functions eq (S33) undergo the following transformation, 
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Then, using the properties that for l k≠ , 
1

* 0( ) ( )
F
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r

t t
=

=∑U U  and that for any r s n≠ ≠ , 
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equation (S42) is transformed to 

 
( )

( )
( )

SQC * ( )
2( )

0

* SQC ( ) ( )
02

0
0 0

1

0
0)

0

0(
(

2

2

( ) ( ) ( )

) ( )

d

2

( )2d

r
nnFn

n r n
ln nnF

F

lr kr

n

r

kn

K t t

t t K

e
e

e e
e

=
−

≠
−

−

= −
−

∑∫

∫

e e U U

eU U e
.  (S44) 

Cotton and Miller had obtained the following integrals in ref 1, 
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and 
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Substituting eqs (S45) and (S46) into eq (S44), we obtain 
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Thus, the population-coherence correlation functions are the same to the exact quantum results. 

 

2) the exact coherence-population correlation functions and coherence-coherence correlation 

functions for pure electronic dynamics: 

Utilizing eqs (S40)-(S41), for eq (S36) with n m≠ , we can also derive 

 

( ) ( )

( ) ( )
( )

( )

( ) ( )
0 0

( ) ( )
0 0

0 0 0 0
0 02

0

)

0 0 0
0

SQC
CMM CMM

( ), 0

SQC
( ) ( )

(, 0

* (

,

)
0

( )

*

02

0
1

12d d , , ,
5 2 2

( ) ( ) ( )

( )

    ( ) (

12d d ,
5

)

2 2

1( ) ( 2d)

m n

r s

t tF

F

F

lr

k
ii

mn

k

lF ii n m

im nii
F ii n m

n

s

k

is

r

l

s

m

r

K K K
e

e

K

e

t t

t

e e e

e e

t

θ θ

θ θ

π

π

−

−

=

−

=

−

=

−

=

=

−

×

∫

∑

∑∫

∑

e θ e θ e θ e θ

e θ e θ

U U

eU U
( )

)0
0

SQC
( ) (

(
0

0
2

,
0)2

( )
5 F

m nii

ii n m

K e e
e=

−
−

∑∫
e

. (S48) 

we can derive that 
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Substituting eq (S49) into eq (S48), we obtain 
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so that the coherence-population correlation functions and coherence-coherence correlation 

functions are also exact for pure electronic dynamics. 

 

S5: Alternative Phase Space Formulations Derived from Triangle Window Functions  

We can transform the integrations on the action space of SQC-TW approach to integrations on 

single CPS surfaces. Observing that one phase space point at any time t always lies on a particular 
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The transformation ( ){ } ( ){ }0 0
i ie eλ  leads to ( ){ } ( ){ }i i

t te eλ  at any time t . We can then explicitly 

rewrite the integrals involved in the population-population correlation functions of electronic 

DOFs of the triangle window framework of Cotton and Miller1, 2, 57, 
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where the time-dependent boundaries 1h  and 2h  rely on the indexes n  and m , 
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monotonically increasing on the integrating domain of λ , we analytically evaluate that 
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Here, 2 1( , ; ; )F a b c z  is regularized hypergeometric function. Transforming back to the constraint 

phase space variables, the population-population correlation functions for electronic DOFs read 
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and the generalized weight function is 
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 (S58) 

for general F -state systems, which depends both on the values of 0 0 0( , )e x p  and ( , )t t te x p . 

Denoted as the Squeezed SQC (sqz) approach, within this formulation, the initial sampling is on 

the U( ) / U( 1)F F −  CPS denoted by ( ), ;γx p , and the formulation involves a time-dependent 

denominator for population-population correlation terms.  
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Particularly, for the case 2F = , we derive ( )( 2); neφ λ λ= , and correspondingly 

( )
{ }

2
sqz sqz

, 0 0 , 0 0 0 2( ) ( )
0

1
( , ; , ) ( ( , ); ( , )) 2

2 n ,mi
nn mm t t nn mm t t t n m

t

F
w w

e e

γ+
≡ = −x p x p e x p e x p . This 2F = case of the 

formalism has been validated as a representation for exact population dynamics for pure two-state 

systems in ref 58. 
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