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This paper aims to establish a close connection between the Bardeen-Moshe-Bander phenomenon
and a p=2+3 spin-glass model with sextic confinement potential. This is made possible by the
unconventional power-counting induced by the effective kinetics provided by the disorder coupling
in the large N -limit. Because of the absence of epsilon expansion, our approach is more attractive
than the previous one and plays a relevant role in the signal detection issue in nearly continuous
spectra.
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a. Introduction. The Bardeen-Moshe-Bande (BMB)
phenomenon, first discovered thirty years ago, is a sur-
prising and important phenomenon in statistical field
theory, particularly in the study of critical phenomena.
In this phenomenon, the β-functions of the ϵ-expansion
of sextic O(N) models near 3D have a non-trivial large N
limit. In this limit, for D = 3, there exists an attractive
line of fixed points (FP) for the critical theory, starting
from the Gaussian fixed point and ending at some spe-
cial marginal (asymptotically safe) FP [1, 3]. To be more
precise the BMB phenomenon can be described shortly
by the following: Consider a critical sextic O(N) model,
with classical action in dimension D = 3− ϵ:

Scl[ϕ⃗ ] =
1

2

∫
dDx ϕ⃗(x) · (−∆)ϕ⃗(x)

+
g

3N2

∫
dDx (ϕ⃗ 2(x))3 , (1)

where x ∈ RD, ϕ⃗ := {ϕ1, · · · , ϕN}, and ∆ is the stan-
dard Laplacian over RD. The perturbative expansion
as usual is self-organized in a loop expansion, but due
to the special scaling of the sextic interaction, the loop
expansion stops at four loops. Indeed, a general Feyn-
man amplitude A(G) for some 1PI diagram G scales as
A(G) ∼ N−2V+F , where V is the number of vertices in-
volved in the corresponding diagram, and F is the num-
ber of faces i.e the closed cycles of fields indices, sharing
a factor N (see Figure 1). Furthermore, imposing the di-
mensional regularization [2], the tadpoles diagrams must
vanish

∫
dDp (p2)α = 0. Then, considering only the 1PI

diagrams, a moment of reflection shows that the number
of faces in leading order (LO) graphs depends on the fact
that V is

FLO =

{
3V
2 − 2 if V = 2n
3(V−1)

2 ifV = 2n+ 1
. (2)

∗vincent.lahoche@cea.fr
†dine.ousmanesamary@cea.fr

Then, we find that A(G) ∼ N−3 for V = 2, 3, and as
A(G) ∼ O(N−4) with V > 3. The computation of the
β-function leads to, taking into account similar quantum
corrections for anomalous dimension:

Nβ(g) = −2Nϵg + 12g2 − π2

2
g3 +O(1/N) , (3)

which has two fixed-point solutions: g± =
2
(
6±

√
36− π2Nϵ

)
/π2. By fixing the value of ϵ,

the fixed point does not make sense in the large N
limit, except if we assume that Nϵ = O(1) i.e ϵ := α/N ,
and the critical line seems to exist only for dimension
D ∈ [Dc(N), 3], where Dc(N) := 3− π2/36N . Since the
last decade, the BMB phenomenon has been explored
and generalized for different fields theories involving for
instance fermions and supersymmetry [5, 6]. Further-
more, a finite N origin has recently been investigated
using nonperturbative renormalization [4]. Note that
the BMB phenomenon isn’t all that new, and is widely
used in the literature. However, the connection we point
out in this paper with 2 + p spin glass is a novelty
that requires special attention. Furthermore, to our
knowledge, the first example in which the phenomenon
occurs naturally in constructing the large N limit,
without requiring physically disputable methods like
dimensional regularization is [7].
b. The model. The first model we consider in this

letter is a soft p = 2-spin model, corresponding to the
equilibrium probability distribution of the stochastic pro-
cess:

dqi
dt

= −
∑
j

Wijqj − ∂iV (q⃗ 2) + ηi(t) , (4)

where q⃗ ∈ RN , q⃗ 2 is the Euclidean square length, Wij

are the entries of a N × N Wigner symmetric ma-
trix of variance σ2, and ηi(t) is a Gaussian white noise
⟨ηi(t)ηj(t′)⟩ = 2Tδijδ(t− t′). The potential V (q⃗ 2) is de-
fined without arbitrary large spin configurations [8], and
includes a disorder contribution:

V (q⃗ 2) =

pM∑
n=1

an(q⃗
2)n

(2n)!Nn−1
+

∑
i1<···<ip

Ji1···ipqi1 · · · qip , (5)
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FIG. 1: Typically relevant two and four loops diagrams for
the critical sextic theory, for effective coupling (on left) and
anomalous dimension (on right). Solid edges materialize

scalar products ϕ⃗ · ϕ⃗, and vertices are sets of 3 solid edges
linked with a dotted edge. Propagators are the dashed edges.
A face is an alternate closed sequence of dashed and solid
edges.

where Ji1···ip is a random tensor with centered indepen-
dent entries and correlation function:

Ji1···ipJi′1···i′p =

(
2κp!

(2p)!Np−1

) p∏
ℓ=1

δiℓi′ℓ , (6)

where κ is an arbitrary parameter. This model can be
studied analytically in the large N limit. For κ = 0,
it corresponds to the standard p = 2 soft spin model.
In this case, despite that the equilibrium dynamics solu-
tion does not exhibit a true spin glass phase and is noth-
ing but a ferromagnet in disguise, the out-of-equilibrium
problem is not so trivial and exhibits aging effects, for
instance, [8–10]. For λ ̸= 0, the spherically constrained
model can be solved as well using the replica technique
[11] at equilibrium. The equilibrium distribution Peq(q⃗ )
for given samples of J and W is Peq(q⃗ ) ∝ exp−H(q⃗ )/T ,
with H(q⃗ ) := 1

2

∑
i,j qiWijqj + V (q⃗ 2). In the rest of this

paper, we set T = 1. First, let us focus on the case
κ = 0. For N large enough, the spectrum for W becomes
deterministic, and goes toward the Wigner distribution
µW (λ) =

√
4σ2 − λ2/2πσ2. We furthermore introduce

the positive “generalized momenta” [12]: p := λ+2σ, so
that up the mass translation µ1 := a1 − 2σ, the Hamil-

tonian H(q⃗ ) ≍ H∞(ϕ⃗ ), with:

H∞(ϕ⃗ ) :=
1

2

pM∑
p

ϕ(p)(p+µ1)ϕ(p)+
∑
n=2

an(ϕ⃗
2)n

(2n)!Nn−1
. (7)

where ϕ(p) ≍
∑

i qiu
(λ)
i |λ=p−2σ, for some normalized

eigenvector u
(λ)
i ofW , and ϕ⃗ 2 := N

∫
dpρ(p)ϕ2(p), where

ρ(λ+2σ) ≡ µW (λ). Then, in the large N limit, the equi-
librium distribution looks like an ordinary field theory,
with nearly continuous momenta p and partition func-
tion:

Z∞[j] :=

∫
[dϕ] e−H∞(ϕ⃗ )+

∑
p ϕ(p)j(p) . (8)

c. Scaling and RG. Following [12, 14, 16], an un-
conventional Wilsonian RG [15] can be constructed by

IR UV

ρ(p)

p

Integrated out
Remaining

Λ 4σΛ′

RG step

FIG. 2: A typical RG step on the Wigner spectrum.

FIG. 3: LO contribution of order a4 to the self energy.

partially integrating out degrees of freedom in the parti-
tion function (8), from UV scales (large p) to IR scales
(small p) – see Figure 2. Note that there are three differ-
ences with ordinary RG: 1) The spectrum is not a power
law than in ordinary QFTs. 2) The spectrum is bounded.
3) The sums in the Hamiltonian H∞ are without dimen-
sion. Accordingly with [12, 17], a canonical notion of
dimension can be however defined for coupling regarding
the behavior of the RG flow. Indeed, fixing some cut-off
Λ on the spectrum, µ1 scales as p with respect to Λ under
distribution dilatation.
Now, let us consider the quantum correction to the

self-energy of order an (Figure 3). The corresponding
Feynman amplitude scale as A(G) ∼ (L1(Λ))

n−1, where

L1(Λ) ∼
∫ Λ

0
ρ(p)/Λ, and we define the canonical scaling

In(Λ) of the coupling an such that:

In(Λ)(L1(0,Λ))
n−1 ∼ Λ , (9)

and the canonical dimension as:

dn := Λ
d

dΛ
ln

(
Λ(L1(0,Λ))

1−n
)
. (10)

For the Wigner law, we get explicitly for the canonical

dimension d
(0)
n = (3 − n)/2 for Λ small enough (∀σ).

This power counting matches with the standard power
counting of a 3D field theory, because for p small enough,
ρ(p) ∼ √

p. In addition with Λ corrections arising be-
cause of the shape of the Wigner laws, there are also cor-
rections occurring by the 1/N expansion of the Wigner
law [18], and dn looks like a series by fixing Λ:

dn = d(0)n +
1

N
d(1)n +O(1/N2) . (11)

We get in the deep IR, for σ = 0.51, d
(1)
n = 791Λ(n−1)

3645 +

1 The integrals have to be suitably regularized because of the IR
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O(Λ3/2) and d
(0)
n = 3−n

2 + 3
20 (n− 1)Λ +O(Λ3/2).

d. Perturbative β-functions. In (7) we set pM = 3
and we compute the LO β-function accordingly with the
standard BMB argument. Indeed, the power counting
shows that quadratic and quartic couplings are relevant,
and counter-terms could be defined in perturbation the-
ory to fine-tune these couplings to zero, following the
computation done in [19], and the relevant Feynman di-
agrams for 1PI 6 and 2-points functions for sextic cou-
plings and anomalous dimension are again given by Fig-
ure 1. To simplify the computation, we decide to use the
standard Wetterich formalism [16, 20] by adding a regu-
lator ∆Λ := 1

2

∑
p ϕ(p)RΛ(p)ϕ(p) in the effective action,

and in the deep IR RΛ(p) is equivalent to the Litim type
regulator2 RΛ(p) ∼ (Λ− p)θ(Λ− p), where θ is the stan-
dard Heaviside function [21]. All the diagrams involves
powers of the 1-face integral (µ1 ≪ 1):

I2(µ1,Λ) :=

∫ 2

0

dp
ρ(p)

(p+ µ1 +RΛ(p))2
. (12)

The typical spacing between eigenvalues being of order
1/N i.e. of the same order as the effects we are aiming
to compute. We can therefore use Wigner distribution in
our computation, and we get (assuming again Λ ≪ 1):

I2(µ1,Λ) =
16
√
2

3π
√
Λ

+O(Λ0,
√
µ1) . (13)

In the rest, we use the standard mass scheme to compute
RG equations. Because of the critical condition, the zero
momenta 6-points effective vertex function can be com-
puted as:

N3Γ
(6)
Λ = Na3 −A(Λ)a23 +B(Λ)a33 +O(N−1) , (14)

and furthermore, the wave function renormalization Z is
defined from the self energy Σ(p) as the first derivative
with respect to the external momenta p, for p = 0: Z :=
1−Σ′(0) = 1−C(Λ)a23N

−2+O(N−3). From perturbation
theory we get: A = I2/(10Λ), B = I32/900 and C = 0.
Note that the vanishing of C is a consequence of the
choice of the regulator. Then, equation (14) defines the
effective coupling u3 = a3 − (Aa23 −Ba33)N

−1 +O(N−2).
We then define the dimensionless coupling u3 =: ū3I3(Λ),
and the β function follows [2]: β := Λdū3

dΛ . To compute
the RHS of this relation, we have to keep in mind that
we focus on the deep IR regime Λ ≪ 1, and because the
spacing between eigenvalues is of order 1/N [24], Λ =
cN−1. In particular, I3(Λ) = π2/32 + O(Λ), computed

divergences.
2 This expression holds only in the deep IR, and has to be modi-
fied in the deep UV because of the boundary conditions for the
effective average action, see [16].

2
5

2
3 1

Exponential regime Perturbative FP line Nonperturbative regime1
lnN

α

FIG. 4: Summary of the different IR regimes

with the Wigner law. We get:

β =−
(

3

10
+

1

N

1582

3645

)
Λū3

+

√
2π

40
ū2
3

[
1− 8ū3

405

]
Λ−3/2

N
+O((ΛN)−2) . (15)

Because the typical spacing between eigenvalues is δ ∼
N−1, we set Λ = cN−α in the deep IR, assuming
c = O(1). This allows us to characterize three differ-
ent regimes. Using (2), we get that Feynman amplitudes
scales as A(G) ∼ Nω(G) with:

ω(G) =
(3α− 2)V (G)− 4α+ (1 + α)θV=2n+1

4
, (16)

where θA = 1 if A is true and 0 otherwise. Hence, as α ≤
2/3, the contributions of higher order diagrams decrease
in the large N limit. Another interesting point is for α =
2/5, for which the dimensional and LO loop contributions
have the same size (i.e. α = −3α/2 + 1). For α ≤ 2/3,
we find a marginal fixed line3:

ū
(±)
3 =

405

16

1±

√
1− 64

√
2c5/2

135π
N1−5α/2

 . (17)

For α ≥ 2/5 = 0.4, the fixed point line is arbitrary close

to ū∗
3 := 40.5 as c = O(1), and c ≪ (π

√
2/192)

2
5Nα− 2

5 .
Finally for α < αc(N), the fixed point solution break
down, with:

αc(N) :=
2

5
− K

lnN
, K := ln

(
135π

64
√
2
c5/2

)
. (18)

Above this value, the dimensional contribution
−3Λū3/10 dominates the flow and ū3 ∼ exp

(
− 3

10Λ
)

(exponential regime). Figure 4 summarizes the different
regions. Note that, as α > 2/3 (nonperturbative
regime) higher order contribution cannot be discarded,
and nonperturbative techniques are required to prove
whether the fixed line exists or not.

3 It is not a fixed line, because of its scale dependency, but the β
function vanishes along it.
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FIG. 5: The three relevant effective sextic interactions, that
we denote respectively as λ, λ′, and u3 (as previously).

e. 2+3 spin glasses. Let Zn
∞ be the averaging

of the replicated partition function [10, 22], Zn
∞ =

exp
(
−
∑n

α=1 H∞(ϕ⃗α)−W∞ +
∑

p,α ϕα(p)jα(p)
)
,

where Greek letters are for replica indices, and

W∞ :=
κ

(2p)!Np−1

∑
α,β

∑
p

(ϕα(p)ϕβ(p))
p . (19)

We consider the case p = 3, again in the critical regime,
where quartic and quadratic local counter-terms are ad-
justed to cancel the corresponding asymptotically rele-
vant observables. Note that in the expression above,
the replica symmetry is explicitly broken because of the
source terms [10, 23]. To deal with multi-replica ver-
tices, we change our notation and adopt the convention
that nodes marked with the same color on a vertex or on
a graph have the same replica indices. Figure 5 shows
the three interactions we can construct at the leading
order, with three faces (all of them scales as N−2). Fig-
ure 6 shows typical contributions for the couplings λ and
λ′, involving multi-replica vertices. The β-functions can
be computed from the same method as before, and with
some efforts, we get Z = 1 again and (again, bares are
for dimensionless couplings):

βu3
= β +

√
2π

40

Λ−3/2

N

(
λ̄2

2
− 2λ̄ū3

)
−

√
2π

2025

Λ−3/2

N

(
λ̄3

4
+ 3λ̄2ū3 − 3λ̄ū2

3

)
+O((ΛN)−2) ,

(20)

βλ = − 3

10
Λλ̄+

√
2π

2025

Λ−3/2

N

λ̄3

16
+O((ΛN)−2) , (21)

βλ′ = − 3

10
Λλ̄′ +

√
2π

80

Λ−3/2

N
λ̄2 +O((ΛN)−2) . (22)

The equation (21) can be easily solved, and in the win-
dows of momenta α ∈ [α(N), 2/3], λ̄ is almost constant
for N large enough λ̄ ≈ λ̄(0)/0.55, the initial condition
being assumed in the IR regime, so that the equation
(21) makes sense. Analyzing the zeros of βu3

, we get
three fixed lines in the large N limit (but focusing on the
interval α ∈ [α(N), 2/3]), depending on the value of λ̄ as
Figure 7 shows. In Figure 8 we show the corresponding

FIG. 6: Relevant contributions for βλ and βλ′ (respectively on
the middle and the left) and for Σ (on right). Nodes marked
with the same color have the same replica index.

�� �� �� �� ��� ��� ���
λ

��

��

��

��

��

��

��

FIG. 7: Fixed lines in the space (ū3, λ̄), in the large N limit,
for α = 2/5 (red curve) and α = 1/2 (purple curve).

critical exponents and their dependency on λ̄. The red
line corresponds to the critical exponents along the un-
bounded fixed-line. It is in the positive region, and the
line is repulsive. The two last curves correspond to the
critical exponents along the two pieces of the bounded
fixed lines. The upper part (until the red dot on Fig-
ure 7) corresponding to the purple curve in Figure 8 has
a positive exponent and the second part below the dot
(blue curve) has a negative exponent, and behaves as a
global attractor. The discontinuity line between the fixed
lines, corresponding to the trajectory of the red dot is a
discontinuity line reminiscent of first-order phase transi-
tion.

f. Conclusion. To summarize this letter, we showed
that the effective kinetics occurring in the large N limit
for p-spin glasses involving a matrix-like disorder allows
an intriguing connection with the BMB phenomenon for
sextic theories. For p = 2, with a sextic confining poten-
tial, we show the existence of a fixed line in the IR, in the
domain α ∈ [αc(N), 2/3]. The same kind of phenomenon
occurs for the 2 + 3 spin model, and the transition be-
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θμ

FIG. 8: Dependency of the critical exponents θµ (µ = 1, 2, 3)
with respect to λ̄ along the two pieces of the bounded fixed
line (blue and purple curves) and along the unbounded line
(red curve). (α = 2/3).

tween the symmetric or broken replica phase is recovered.
Nonperturbative techniques seem however to be required
to investigate the deep IR regime α ∈ (2/3, 1), which will
be the topic of a forthcoming work. The same kind of
phenomena is expected for the effective field theories we
recently considered for signal detection issues in nearly
continuous spectra [12, 13], and we plan to investigate
this point for future work.
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