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We provide an explicit solution of the problem of level-set percolation for multivariate Gaus-
sians defined in terms of weighted graph Laplacians on complex networks. The solution requires
an analysis of the heterogeneous micro-structure of the percolation problem, i.e., a self-consistent
determination of locally varying percolation probabilities. This is achieved using a cavity or message
passing approach. It can be evaluated, both for single large instances of locally tree-like graphs,
and in the thermodynamic limit of random graphs of finite mean degree in the configuration model
class.

PACS numbers: 89.75.Hc, 89.75.-k, 64.60.ah, 05.70.Fh

Introduction.—At its core, percolation describes a ge-
ometric phase transition, at which as a function of
the relative density of existing links in a lattice or a
graph — either by construction or after random re-
moval of a subset of edges or vertices — the system
either decomposes into a collection of finite clusters of
contiguously connected vertices, or on the contrary ex-
hibits a so-called giant connected component (GCC)
that occupies a finite fraction of vertices in the large
system limit[1]. Apart from an intrinsic interest in
percolation transitions and the critical singularities
associated with them, they are of relevance in many
other contexts. E.g., below the percolation threshold,
where a system conists of a collection of finite isolated
clusters, diffusive or hopping transport via edges of a
graph is clearly impossible, and such systems would
therefore be insulators. In a different context, the size
of an SIR epidemic can be mapped on the size of its
GCC in a perolcation problem where edge retention
probabilities are given by probabilities of transmit-
ting a disease before recovery [2–5]. This connection
has been exploited to formulate effective vaccination
strategies for diseases spreading through contact net-
works (e.g., [6–8]). More generally, percolation has
been studied to assess the robustness of complex net-
works, both natural and artificial, against random fail-
ures of their components or against targeted attacks
(e.g., [9–11]). At a more fundamental level, a non-
percolating system cannot support stable phases with
spontaneous macroscopic long range order at any non-
zero temperature (see for example [12]), and it has
been argued that gene regulatory networks would for
the same reasons not be able to support multi-cellular
life, if they were composed of small independent clus-
ters of interacting genes [13, 14].

There is a version of the percolation problem which
is of a radically different nature than the case of in-
dependent Bernoulli percolation just described. It is
concerned with the distribution of sizes of contiguous
clusters, over which a random field exceeds a given

level h. It has been studied over continuous spaces
(Rd) [15–21], over lattices (Zd) [20, 22–25], or over
random graphs [26–33]. Because of correlations be-
tween values of a random field at different points in
space — in important cases in fact long range corre-
lations — the problem is much harder than that of
independent Bernoulli percolation. Indeed, early on
Molchanov and Stepanov [15, 22] disproved the näıve
intuition according to which there would always ex-
ist a finite critical level hc, above which all contigu-
ous clusters for which the random field exceeds the
level h > hc would be bounded, whereas for h < hc

there would be an extensive giant connected compo-
nent (referred to as hGCC in what follows) over which
the random field exceeds the level h. While a range
of important results about level-set percolation have
been obtained over the years, including existence (e.g.
[15, 16, 20–24, 26]) and sharpness [20] of the percola-
tion transition, uniqueness (e.g. [28]) and extensivity
of the hGCC (e.g. [30, 32, 33]) in the percolating
phase, as well as critical exponents of the transition
on transient graphs (e.g. [31, 33]), significant gaps
remain. E.g., despite recent intense activity and con-
siderable progress in the study of level-set percolation
on random graphs [26–33], explicit solutions of this
problem that go beyond a characterization of the near
critical regime on regular trees do to the best our our
knowledge still elude us, in marked contrast to the
case of Bernoulli percolation on random graphs, for
which full solutions are meanwhile textbook material
(e.g., [34–36]). It is the purpose of the present letter
to fill this gap.

Level-Set Percolation for Gaussian Free Fields on

Random Graphs.—We consider a (random) graph of
N vertices on which a multivariate Gaussian field is
defined via

P (x) =
1

Z
exp

(

− S(x)
)

, (1)
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in which S(x) quadratic in the xi, i.e.,

S(x) =
1

2
µ
∑

i

x2
i +

1

4

∑

i,j

Kij(xi − xj)
2 (2)

with µ ≥ 0 and Kij = Kji > 0 for vertices of the
network connected by an edge. For µ = 0 the field
is referred to as massless. For the analysis of level-
set percolation on random graphs, it turns out to be
essential to be able to characterize its heterogeneous
micro-structure, i.e. the node dependent probabilites
of vertices in the graph to belong to the hGCC. This
can be done by adapting an approach developed in
[37, 38]. It is based on cavity or message passing
ideas specifically designed to analyse problems on lo-
cally tree-like graphhs. As, we are only interested in
heterogeneous percolation probabilities, a somewhat
simpler version outlined, e.g., in [39, 40] can be used.

For a node i to belong to the hGCC, the Gaussian field
at i must itself exceed the specified level, i.e., xi ≥ h,
and it must be connected to the hGCC via at least
one of its neighbours. Introducing indicator variables
ni ∈ {0, 1} which signify whether i is (ni = 1) or is
not (ni = 0) in the hGCC, we require

ni = χ{xi≥h}

(

1−
∏

j∈∂i

(1− χ{xj≥h}n
(i)
j

)

)

, (3)

in which the first factor expresses the fact that the
Gaussian field at i must itself exceed the specified
level, i.e., xi ≥ h, while the second factor expresses
the fact that i is connected to the hGGC via at least
one neighbour. This requires that for at least one
j ∈ ∂i the Gaussian field must exceed the specified
level (xj ≥ h), and it must be connected to the hGCC
via one of its neighbours other than i (on the cavity
graph G(i) from which i and the edges connected to it
are removed); this is expressed by the cavity indicator

variable n
(i)
j taking the value n

(i)
j = 1.

For the cavity indicator variable n
(i)
j to take the value

1, it is required that on G(i) the node j is itself con-
nected to the hGCC via at least one of its neighbours
other than i. This entails that

n
(i)
j = 1−

∏

ℓ∈∂j\i

(

1− χ{xℓ≥h}n
(j)
ℓ

)

. (4)

Averaging Eqs. (3) and (4) over possible realiza-
tions of the Gaussian field x with joint PDF de-
scribed by Eqs. (1) and (2) is facilitated by the fact
that — conditioned on xi — the averages over the
(

χ{xj≥h}n
(i)
j

)

j∈∂i
in Eqs. (3) factor in j, if the graph

in question is a tree, and that such factorization be-
comes asymptotically exact on locally tree-like graphs
in the thermodynamic limit. Analogous factorization

is possible for averages over the
(

χ{xℓ≥h}n
(j)
ℓ

)

ℓ∈∂j\i
in

Eqs. (4), when conditioned on xj .

Performing the average over the Gaussian field x in

this way, we obtain gi = Ex[ni] = Exi

[

Ex[ni|xi]
]

from

Eq. (3) as

gi=Exi

[

χ{xi≥h}

(

1−
∏

j∈∂i

(

1− Ex

[

χ{xj≥h}n
(i)
j

∣

∣xi

]

)

)

]

(5)
by factorization of conditional expectations. Then,
using further conditioning, we have

Ex

[

χ{xj≥h}n
(i)
j

∣

∣xi

]

= Exj

[

χ{xj≥h}

∣

∣xi

]

×Ex

[

n
(i)
j

∣

∣{xj ≥ h}, xi

]

= Hj(h|xi) g
(i)
j (6)

where we have introduced

Hj(h|xi) = Exj

[

χ{xj≥h}

∣

∣

∣
xi

]

(7)

and

g
(i)
j = Ex

[

n
(i)
j

∣

∣{xj ≥ h}
]

. (8)

In Eq. (8) we have used the fact that for condi-

tional expectations of observables such as n
(i)
j per-

taining to the cavity graph Ex

[

n
(i)
j

∣

∣{xj ≥ h}, xi

]

=

Ex

[

n
(i)
j

∣

∣{xj ≥ h}
]

. Putting things together, we have

gi=ρ
h
i

(

1−Exi

[

∏

j∈∂i

(

1−Hj(h|xi)g
(i)
j

)
∣

∣

∣
{xi ≥ h}

]

)

(9)

with ρhi = Exi
[χ{xi≥h}].

Following an entirely analogous line of reasoning and
using the same sequence of conditionings, we can eval-

uate the g
(i)
j defined in Eq. (8) by evaluating the con-

ditional average of n
(i)
j using Eq. (4), giving

g
(i)
j =1− Exj

[

∏

ℓ∈∂j\i

(

1−Hℓ(h|xj)g
(j)
ℓ

)
∣

∣

∣
{xj ≥ h}

]

.

(10)

Equations (9) and (10) for the gi and the g
(i)
j can be

evaluated, once single-site marginals and joint den-
sities on adjacent sites of the Gaussian field defined
by Eqs. (1) and (2) are known; the latter are required
to evaluate the conditional probabilites Hj(h|xi) de-
fined in (7) (and similarly the Hℓ(h|xj) appearing
in Eq. (10)), while the former are required to evalu-
ate xi expectations in Eqs. (9) and xj expectations
in Eqs. (10), respectively. They are obtained by their
own cavity type analysis, which has in fact been per-
formed in [41] for single-site marginals of harmonically
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coupled systems on random graphs, and in [42, 43] in
the context of the spectral problem of sparse sym-
metric random matrices. All that is needed are the
(Gaussian) single-site marginals Pi(xi) of P (x), as
well as the corresponding single-site cavity margini-

nals P
(i)
j (xj) for j ∈ ∂i on the cavity graph G(i), in

terms of which joint densities on adjacent sites are eas-
ily obtained. Key identities needed in the analysis are
reproduced in the supplementary material [44] to this
letter. Single-site marginals and single-node cavity
marginals are fully characterized by their inverse vari-

ances (or precisions) ωi and ω
(i)
j , respectively. The lat-

ter are obtained by solving the the system (4) of cavity
self-consistency equations in [44]. The Hj(h|xi) and
the Hℓ(h|xj) can be expressed in closed form in terms
of error functions, but the conditional xi-expectation
of the product in Eq. (9) and similarly the conditional
xj-expectation of the product in Eq. (10) will have to
be evaluated numerically.

With all ingredients fully defined, Eqs. (10) constitute

a set of coupled self-consistency equation for the g
(i)
j .

They can be solved iteratively at given level h on large
instances of locally tree-like (random) graphs, starting
from random initial conditions. Using the solutions,
one obtains the node-dependent percolation probabil-
ities gi from Eqs. (9).

The value of the percolation threshold follows from
a linear stability analysis of Eqs. (10). They are al-

ways solved by g
(i)
j ≡ 0. This solution becomes un-

stable, indicating the percolation transition, where the
the largest eigenvalue of the Hessian of the r.h.s. of

Eq. (10) evaluated at g
(i)
j ≡ 0 exceeds 1. The Hessian

is a weighted version of a so-called non-backtracking
matrix, with non-zero elements

B(ij),(jℓ) = Exj

[

Hℓ(h|xj)
∣

∣

∣
{xj ≥ h}

]

(11)

for j ∈ ∂i and ℓ ∈ ∂j \ i, and B(ij),(kℓ) = 0 oth-
erwise. Performing an appropriately adapted weakly
non-linear expansion of Eqs. (10) as in [38], one ob-
tains site dependent percolation probabilities to linear
order in hc − h as

gi ≃ α (hc − h)
∑

j∈∂i

v
(i)
j (12)

where v =
(

v
(i)
j

)

is the Frobenius right eigen-
vector of corresponding to the largest eigenvalue
λmax(B)

∣

∣

h=hc
= 1 of the non-backtracking matrix

(11) evaluated at hc, normalized s.t. ||v||1 = 1, and
α is an amplitude given in Eq. (23) of the supplemen-
tary material, which also includes a derivation of the
O((hc − h)2) contribution to the gi [44].

Thermodynamic Limit.—For random graphs in the
configuration model class, i.e., the class of gaphs that

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
g
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FIG. 1. (color online) Distribution π(g) or local percola-
tion probabilities for a random graph with power law de-
gree distribution k ∼ k−3 for 2 ≤ k ≤ 100 at h = −1 and
µ = 0.1. We compare (i) results of a numerical simulation
of a single instance of a graph of N = 50, 000 vertices,
averaging over 5,000 realizations of Gaussian field config-
urations to obtain the PDF of the gi (yellow dots), with
(ii) results of a single instance cavity analysis for a graph
of the same size (red full line), and (iii) the result of an
analysis in the thermodynamic limit (black full line).

are maximally random subject to a given degree dis-
tribution pk = Prob(ki = k), one can analyse the
level-set percolation problem in the thermodynamic
limit of infinite system size. Assuming that a limit-
ing probability law for the joint distribution of the

cavity probabilities g
(i)
j and the cavity precisions ω

(i)
j

exists, probabilistic self-consistency compatible with

the self-consistency equations (10) for the g
(i)
j and

with Eqs. (4) of the supplementary material [44] for

the ω
(i)
j entails a self-consistency equation for the joint

PDF π̃(g̃, ω̃), which is documented as Eq. (12) of the
supplementary material. That equation is efficiently
solved by a population dynamics algorithm. The lim-
iting PDF of local percolation probabilities is then
evaluated from its solution.

In Fig. 1, we present an example of a distribution of
level-set percolation probabilities for a system with a
fat-tailed degree distribution, which shows that the
theoretical analyses agree very well with a numeri-
cal simulation. Simulations are, of course, affected by
sampling flucutations and by finite size effects (cre-
ating details depending on the specific single realiza-
tion of the generated random graph), while the sin-
gle instance cavity analysis is only affected by finite
size effects. Further results, both for different systems
and a range of values for the level h, can be found in
the supplementary material [44]. Remarkably, as also
documented in [44], for a massless Gaussian field the
marginal node dependent precisions ωi turn out to be
a very precise, although not exact, predictor for the
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node dependent percolation probabilities gi = gi(h)
at a given level h, which appears to be independent of
the graph type. This is particularly interesting as the
gi are much harder to evaluate than the ωi. However
that almost perfect correlation is lost for fields with
non-zero mass µ > 0.

Random Regular Graphs.—Specializing to random
regular graphs (RRGs) with uniform couplings, more
explicit results can be obtained. The key observation
is that in the thermodynamic limit all nodes and all
edges of the system are equivalent. Hence the self-
consistency equation for the uniform cavity precisions
on a RRG of degree c (or cRRG) reads

ω̃ = µ+ (c− 1)
Kω̃

K + ω̃
. (13)

This equation is solved by

ω̃±=
1

2

[

µ+K(c−2)±
√

[µ+K(c−2)]2+4Kµ
]

, (14)

the relevant (physical) solution being ω̃ = ω̃+. This
entails a self-consistency equation for the uniform cav-

ity percolation probabilities g
(i)
j ≡ g̃ of the form

g̃ = 1− Ex

[(

1−H(h|x) g̃
)c−1∣

∣

∣
{x ≥ h}

]

, (15)

in which H(h|x) is a conditional expectation of the
type defined in Eq. (7), evaluated on the cRRG, and
x ∼ N (0, 1/ω), with

ω = µ+ c
Kω̃

K + ω̃
(16)

the uniform single-site precision on the cRRG. Equa-
tion (15) is a simple scalar equation for g̃ which is
easily solved numerically. It always has the trivial so-
lution g̃ = 0, which becomes unstable below a critical
value hc of the level h which follows from a linear sta-
bility analysis of Eq. (15) and is given as the solution
of

(c− 1)Ex

[

H(h|x)
∣

∣

∣
{x ≥ h}

]

= 1 . (17)

From the solution of Eq. (15) at h < hc one obtains

g = ρh
(

1− Ex

[(

1−H(h|x) g̃
)c∣
∣

∣
{x ≥ h}

])

, (18)

with ρh = Ex[χ{x≥h}], as the value of the percola-
tion probability at level h. Percolation probabilities
thus computed as functions of the level h are shown
in Fig. 2 for cRRGs with uniform K = 1 and µ = 0
for three different values of c ≥ 4. For the range
of c values shown critical percolation thresholds hc

are decreasing with increasing c, but, as shown in

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
h

0.0

0.2

0.4

0.6

0.8

1.0

g

FIG. 2. (color online) Percolation probability g as a func-
tion of the level h for cRRGs with c = 4, 12, and 20. The
steepness of the curves increases with c. Critical levels hc

as obtained from Eq. (17) are indicated as vertical dashed
lines. For the three values of c shown here, they decrease
with increasing c, and they agree perfectly with results of
a numerical solution of Eq. (15).

Fig. 2 of the supplementary material, there is non-
monotonicity of hc as a function of c in the range
c ∈ {3, 4, 5}.

Summary and Discussion.—In this paper we pre-
sented an explicit solution of the problem of level-set
percolation of Gaussian free fields on locally tree-like
random graphs, both for finite large instances and in
the thermodynamic limit of infinite system size for
random graphs in the configuration model class with
finite mean degree. The former requires the simulta-
neous solution of a set self-consistency equations for
locally varying single-node cavity percolation proba-

bilities g
(i)
j and for the locally varying single node cav-

ity precisions ω
(i)
j . The latter instead requires solv-

ing a nonlinear integral equation for their joint PDF
π̃(g̃, ω̃). Though we have restricted ourselves to a uni-
form mass parameter µ, such a restriction is not a mat-
ter of principle and can easily be relaxed. We found
our results to be in excellent agreement with simula-
tions. Simplifications are possible in the case of RRGs
for which the uniform single-node cavity percolation

probabilities g
(i)
j ≡ g̃ are obtained as solutions of a sin-

gle scalar equation, from which in turn a single scalar
equation for the uniform percolation probability g is
easily derived. While our methods are non-rigorous,
they are expected to be exact in the large system limit,
a fact that should be amenable to rigorous proof. It
is hoped that some the methods and heuristics used
in the present paper could be useful for the analysis
of wider classes of level-set percolation problems.

It would be interesting to investigate, whether the ap-
proach of [38] which is also capable of giving distri-
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butions of the sizes of finite clusters, both in the non-
percolating and in the percolating phase can be car-
ried over to the present case of level-set percolation. A
second as yet unsolved problem concerns the stability
analysis of the integral equation (12) of the supple-
mentary material, which could in principle allow one
to obtain critical percolation levels hc for configura-
tion model networks directly in the thermodynamic
limit. We hope to address some of these open prob-
lems in the near future.

Acknowledgements.—It is a pleasure to thank Guil-
laume Conchon-Kerjan for bringing this problem to
my attention and for explaining his earlier results.
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[28] A. Abächerli and J. Černý, Electr. J. Probab. 25, 1

(2020).
[29] A. Drewitz, A. Prévost, and P.-F. Rodriguez, Prob.

Theor. and Rel. Fields 183, 255 (2022).
[30] G. Conchon-Kerjan, Electron. J. Probab. 28, 1

(2023).
[31] A. Drewitz, A. Prévost, and P.-F. Rodriguez, Invent.

Math. 232, 299 (2023).
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[38] R. Kühn and T. Rogers, Europhys. Lett. 118, 68003

(2017).
[39] Y. Shiraki and Y. Kabashima, Phys. Rev. E 82,

036101 (2010).
[40] H. Bonneau, I. Tishby, O. Biham, E. Katzav, and
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[44] R. Kühn, (2024).



ar
X

iv
:2

40
4.

05
50

3v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  8

 A
pr

 2
02

4

Supplementary Material — Level-Set Percolation of Gaussian
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Abstract

These notes contain supplementary material for the letter. We provide the key Gaussian identities needed
for the evaluation of the cavity equations and formulate the probabilistic self-consistency equation for the
joint probability distribution of cavity percolation probabilities and cavity precisions in the thermodynamic
limit for random graphs in the configuration model class. We report examples of level dependent distribu-
tions of percolation probabilities for an Erdős-Rényi (ER) graph and for a graph with a power-law degree
distribution, as well as a rather surprising finding relating local level-set percolation probabilities with local
marginal precisions for the case of massless Gaussian fields. Moreover, we evaluate degree dependent criti-
cal thresholds hc for random regular graphs. We also provide an asymptotic analysis of the general single
instance cavity equations in the vicinity of the percolation threshold hc.

1 Gaussian Identities

The averages and conditional averages of indicator functions appearing in the theory require the evaluation of
expectations over node-dependent single-site marginals of the multivariate Gaussian defined by Eqs. (1), (2) of
the letter, as well as averages over conditional distributions of such Gaussians, conditioned w.r.t. the value of
the multivariate Gaussian on a neighbouring site.

Their evaluation uses cavity type reasoning of the same form used to compute single-node marginals and self-
consistency equations for single-node cavity marginals as used before in the context of the theory of harmonically
coupled systems on graphs [1] or the theory of sparse random matrix spectra [2, 3]. We collect key identities
here.

For a free multivariate Gaussian field on a graph with joint Gaussian density given by Eqs. (1), (2) of the letter,
all marginals are themselves Gaussian, and of the form

Pi(xi) =
1

Zi

exp
(

− 1

2
ωix

2
i

)

(1)

with Zi =
√

2π/ωi and ωi denoting their precisions (inverse variances). On a tree, and approximately on a
locally tree-like graph, we have

Pi(xi) ∝ exp
(

− 1

2
µx2

i

)

∏

j∈∂i

∫

dxj exp
(

− 1

2
Kij(xi − xj)

2
)

P
(i)
j (xj) , (2)

in which the P
(i)
j (xj) are the marginals of the xj , j ∈ ∂i, on the cavity graph G(i). Given that the cavity

marginals must themselves be Gaussian, and denoting by ω
(i)
j their precisions, the xj integrals in Eq. (2) entail

that the marginal precisions ωi are given by [1–3]

ωi = µ+
∑

j∈∂i

Kijω
(i)
j

Kij + ω
(i)
j

, (3)

1
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with the ω
(i)
j still to be determined. Following an analogous line of reasoning for the P

(i)
j (xj) , one can conclude

that the ω
(i)
j must satisfy the self-consistency equations

ω
(i)
j = µ+

∑

ℓ∈∂j\i

Kjℓω
(j)
ℓ

Kjℓ + ω
(j)
ℓ

. (4)

Equations (3) and (4) become asymptotically exact on locally tree like graphs in the thermodynamic limit.

It is straightforward to demonstrate — again following the same line of reasoning — that bi-variate Gaussian
marginals for two adjacent nodes on the graph are of the form

Pij(xi, xj) =
1

Zij

exp
(

− 1

2
Kij(xi − xj)

2 − 1

2
ω
(j)
i x2

i −
1

2
ω
(i)
j x2

j

)

, (5)

with

Zij =

√

(2π)2

(Kij + ω
(j)
i )(Kij + ω

(i)
j )−K2

ij

(6)

by normalization. It is then an elementary computation to obtain conditional distributions from the joint pdf
Eq. (5),

Pj(xj |xi) =
1

√

2π

Kij+ω
(i)
j

exp

(

− 1

2

(

Kij + ω
(i)
j

)

(

xj −
Kijxi

Kij + ω
(i)
j

)2
)

. (7)

The above results allow one to evaluate

ρhi = Exi
[χ{xi≥h}] = H(

√
ωih) (8)

and similarly

Hj(h|xi) = Exj

[

χ{xj≥h}

∣

∣

∣
xi

]

= H

(

√

Kij + ω
(i)
j

(

h− Kijxi

K + ω
(i)
j

)

)

, (9)

where

H(z) =

∫ ∞

z

dx√
2π

exp
(

− 1

2
x2
)

=
1

2
erfc
(

z/
√
2
)

. (10)

With these results, all ingredients of the self-consistency equations (10) of the letter as well as expressions for
the local percolation probabilities gi given by Eq. (9) of the letter are well defined once a solution to Eqs. (4)

for the ω
(i)
j has been obtained.

2 Thermodynamic Limit

We now proceed to analyse Gaussian level-set percolation in the thermodynamic limit of infinite system size for
random graphs in the configuration model class, i.e., for the class of graphs that are maximally random subject
to a given degree distribution pk = Prob(ki = k). We take their mean degree 〈k〉 =∑k kpk to be finite.

Assuming that a probability law for the joint distribution of the cavity probabilities g
(i)
j and the cavity pre-

cisions ω
(i)
j with probability density π̃(g̃, ω̃) in the thermodynamic limit exists, probabilistic self-consistency

simultaneously compatible with self-consistency equations (4) above for the ω
(i)
j , and with the self-consistency

equations (10) of the letter for the g
(i)
j , i.e., with

g
(i)
j =1− Exj

[

∏

ℓ∈∂j\i

(

1−Hℓ(h|xj)g
(j)
ℓ

)∣

∣

∣
{xj ≥ h}

]

. (11)
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allows one to obtain the PDF π̃(g̃, ω̃) as follows. One averages the right hand sides of Eqs. (4) and (11) over

all realizations for which ω
(i)
j ∈ (ω̃, ω̃ + dω̃] and g

(i)
j ∈ (g̃, g̃ + dg̃] to obtain (see e.g. [4] for a similar line of

reasoning)

π̃(g̃, ω̃)=
∑

k

k

〈k〉pk
∫ k
∏

ℓ=1

dπ̃(g̃ℓ, ω̃ℓ)

〈

δ
(

ω̃−Ωk−1

)

δ

(

g̃−
(

1−Ex

[

k−1
∏

ℓ=1

(

1−Hℓ(h|x) g̃ℓ
)
∣

∣{x ≥ h}
])

)

〉

{Kℓ}

(12)

in which

Ωq = Ωq({ω̃ℓ}) = µ+

q
∑

ℓ=1

Kℓω̃ℓ

Kℓ + ω̃ℓ

, (13)

and

Hℓ(h|x) = Exℓ

[

χ{xℓ≥h}

∣

∣

∣
x
]

= H

(

√

Kℓ + ω̃ℓ

(

h− Kℓx

Kℓ + ω̃ℓ

)

)

, (14)

is the probability that the Gaussian field on the ℓ-th node adjacent to a node with Gaussian field x (to which it
is coupled via Kℓ) does itself exceed the value h. In Eq.(12), k

〈k〉pk is the probability for a random neighbour of

a node to have degree k, and the expectation w.r.t. x is evaluated for x ∼ N (0, 1/Ωk), while 〈. . . 〉{Kℓ} denotes
an average over the Kℓ. Moreover, we have introduced the shorthand dπ̃(g̃ℓ, ω̃ℓ) = dg̃ℓdω̃ℓ π̃(g̃ℓ, ω̃ℓ). Equation
(12) is very efficiently solved by a population dynamics algorithm. From the solution we obtain

π(g, ω) =
∑

k

pk

∫ k
∏

ℓ=1

dπ̃(g̃ℓ, ω̃ℓ)

〈

δ
(

ω−Ωk

)

δ
(

g−Ex[χx≥h]
(

1− Ex

[

k
∏

ℓ=1

(

1−Hℓ(h|x) g̃ℓ
)∣

∣{x ≥ h}
])

〉

{Kℓ}

.(15)

for the limiting joint distribution of single-site percolation probabilities gi and single site precisions ωi. In this
equation, we once more have x ∼ N (0, 1/Ωk).

3 Results

Here we collect a couple of results obtained for the Gaussian level-set percolation problem for random graphs in
the configuration model class. Results can of course only indicate general trends and not be exhaustive, given
the countless variations that could be contemplated.

Figure 1 shows the distribution π(g) for the massless Gaussian field at levels h = −1, h = −0.5 and h = 0
on an ER graph of mean degree 〈k〉 = 2 and for a system with power law degree distribution pk ∼ k−3 for
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Figure 1: (color online) Left panel: Distribution π(g) of local percolation probabilities at levels h = −1 (blue,
rightmost curve), h = −0.5 (red, middle curve), and h = 0 (green, leftmost curve) for an ER graph with mean
degree 2, evaluated in the thermodynamic limit. (Right panel:) distributions for the same values of h are
displayed for a graph with power law degree distribution, pk ∼ k−3 for 2 ≤ k ≤ 125.
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2 ≤ k ≤ 125 in the thermodynamic limit. In the first case, the original graph contains finite components,
generating a δ-peak at 0 in π(g), whereas in the latter it doesn’t. In both cases, the center of mass, i.e. the
average percolation probability of the distributions decreases with increasing value of h as expected. However,
the shape of the distributions also changes markedly with the level h, thus carrying information that goes far
beyond the respective average percolation probabilities.
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Figure 2: (color online) (Left panel:) Scatterplot of local level set percolation probabilities gi at levels h = −0.5
against local single node precisions ωi for a massless Gaussian field defined on an ER graph with mean degree 2
of size N = 100, 000 (blue dots), and for a a graph of the same size with power law degree distribution pk ∼ k−3

for 2 ≤ k ≤ 125 (red dots). The inset shows a zoom into the region of small ω region. (Right panel:) The same
data for the massless Gaussian field on the ER graph of mean degree 2 (blue dots) are displayed together with
data obtained for a system of the same type, but now for a Gaussian field with mass parameter µ = 0.1 (red
dots).

In Fig. 2 we display a scatterplot of marginal level-set percolation probabilities gi versus marginal Gaussian
precisions ωi for the same systems. The results suggest that — remarkably — the gi are up to very small
uncertainties determined by the ωi, and the relation between the two appears to be even insensitive to the
underlying graph structure, with the curve for the graph with power-law distributed degrees overlapping with
that for the ER graph, but extending it to larger ω and g values. The inset shows that there is, however, some
dispersion of the gi at given ω which is a bit more pronounced for the graph with power-law distributed degrees,
so the ωi cannot be taken as exact predictors. The figure also shows that the nearly perfect correlation between
the gi and the ωi disappears if the Gaussian field acquires a non-zero mass µ > 0.

4 Random Regular Graphs

It is easy to convince oneself that in the case of random regular graphs with degree distribution pk = δk,c
and uniform couplings Eq. (12) is self-consistently solved by π̃(g̃, ω̃) = δ(g̃ − g̃0)δ(ω̃ − ω̃0), where ω̃0 must be a
solution of Eq. (13) of the letter, i.e., ω̃0 = ω̃+, and g̃0 must be a solution of Eq. (15) of the letter, respectively.

This allows one to obtain percolation probabilities as a function of the level h. An example for 3 different mean
degrees is shown in Fig. 2 of the letter. In Fig. 3 below we reproduce results of the stability analysis that produce
the c dependent critical levels hc(c) for for a range of degrees ranging from 3 to 20.
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Figure 3: Critical levels hc for Gaussian level-set percolation on cRRGs with K = 1 and µ = 0 as a function of
c, showing non-monotonic behaviour at small c. The line is a guide to the eye.

5 Cavity Equations in the Vicinity of the Percolation Transition

For h . hc it is expected that the cavity probabilities g
(i)
j , hence the site-dependent percolation probabilities

gi will be small. Following [4], we assume an expansion of the g
(i)
j in Eqs. (10) of the letter in powers of

0 ≤ ε = hc − h ≪ 1 of the form
g
(i)
j = εa

(i)
j + ε2b

(i)
j + ε3c

(i)
j + . . . (16)

and we expand the Hℓ(h|xj) appearing on the r.h.s. of these equations in a Taylor series at hc,

Hℓ(h|xj) = Hℓ(hc|xj) +H ′
ℓ(hc|xj)(h− hc) +

1

2
H ′′

ℓ (hc|xj)(h− hc)
2 + . . . . (17)

Inserting these expansions into Eqs. (10) and collecting powers of ε we obtain

O(ε) : a
(i)
j =

∑

ℓ∈∂j\i

B(ij),(jℓ)a
(j)
ℓ (18)

O(ε2) : b
(i)
j =

∑

ℓ∈∂j\i

B(ij),(jℓ)b
(j)
ℓ −

∑

ℓ∈∂j\i

B′
(ij),(jℓ)a

(j)
ℓ

−1

2

[

∑

ℓ,ℓ′∈∂j\i

B
(2)
(ij),(jℓ)(jℓ′)a

(j)
ℓ a

(j)
ℓ′ −

∑

ℓ∈∂j\i

B
(2)
(ij),(jℓ)(jℓ)

(

a
(j)
ℓ

)2
]

(19)

O(ε3) : c
(i)
j =

∑

ℓ∈∂j\i

B(ij),(jℓ)c
(j)
ℓ −

∑

ℓ∈∂j\i

B′
(ij),(jℓ)b

(j)
ℓ +

1

2

∑

ℓ∈∂j\i

B′′
(ij),(jℓ)a

(j)
ℓ

−
[

∑

ℓ,ℓ′∈∂j\i

B
(2)
(ij),(jℓ)(jℓ′)a

(j)
ℓ b

(j)
ℓ′ −

∑

ℓ∈∂j\i

B
(2)
(ij),(jℓ)(jℓ)a

(j)
ℓ b

(j)
ℓ

]

+
1

3!

[

∑

ℓ,ℓ′,ℓ′′∈∂j\i

B
(3)
(ij),(jℓ)(jℓ′)a

(j)
ℓ a

(j)
ℓ′ a

(j)
ℓ′′

−3
∑

ℓ,ℓ′∈∂j\i

B
(3)
(ij),(jℓ)(jℓ′)(jℓ′)a

(j)
ℓ

(

a
(j)
ℓ′

)2
+ 2

∑

ℓ∈∂j\i

B
(3)
(ij),(jℓ)(jℓ)(jℓ)

(

a
(j)
ℓ

)3
]

(20)

in which
B

(2)
(ij),(jℓ)(jℓ′) = Exj

[

Hℓ(h|xj)Hℓ′(h|xj)
∣

∣

∣
{xj ≥ h}

]

∣

∣

∣

hc

. (21)
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and
B

(3)
(ij),(jℓ)(jℓ′)(jℓ′′) = Exj

[

Hℓ(h|xj)Hℓ′(h|xj)Hℓ′′(h|xj)
∣

∣

∣
{xj ≥ h}

]

∣

∣

∣

hc

. (22)

are non-zero elements of second and third order generalizations of the non-backtracking operator defined in
Eq. (11) of the letter, while the B′

(ij),(jℓ) and the B′′
(ij),(jℓ) are first and second h-derivatives of the non-zero

elements of B, all evaluated at hc.

Following [4], we can obtain a more compact representation of the above relations by introducing a 2M =
∑

i ki-

dimensional vector a =
(

a
(i)
j

)

. Equation (18) then states that a is the Frobenius (right)-eigenvector of B
corresponding to the eigenvalue λmax(B) = 1. Setting a = αv with v normalized to ||v||1 = 1 and an amplitude
α to be determined and denoting by u

T the corresponding Frobenius (left) eigenvector of B, i.e. u
T = u

TB,
with u

T
v = 1, Eq. (19) yields

α = −2
u
TB′

v

uTB(2)v ⊗ v − uT B̃(2)(vv)
(23)

Here we use the notation (ab) to denote a vector with components given by the product of components of a

and b, i.e., (ab)
(j)
ℓ = a

(j)
ℓ b

(j)
ℓ and an analogous construction for a vector (abc) constructed from three vectors,

and B̃(2) to denote the matrix obtained by restricting B(2) to be diagonal in the second pair of indices.

In order to obtain the O(ε2) contribution to the g
(i)
j we rewrite Eq. (19) as

(I−B)b = −αB′
v − α2

2

(

B(2)
v ⊗ v − B̃(2)(vv)

)

. (24)

It is solved by

b = (I−B)+
[

− αB′
v − α2

2

(

B(2)
v ⊗ v − B̃(2)(vv)

)

]

+ βv , (25)

in which (I − B)+ is the Moore-Penrose pseudoinverse of (I − B) and β a coefficient to be determined from
Eq. (20). Indeed, writing Eq. (25) as b = w + βv, thereby defining w, multiplying Eq. (20) by u

T yields

0 = −u
TB′

w +
α

2
u
TB′′

v − α
[

u
TB(2)

v ⊗w − u
T B̃(2)(vw)

]

+
α3

3!

[

u
TB(3)

v ⊗ v ⊗ v − 3uT B̃(3)
v ⊗ (vv) + 2uT ˜̃B(3)(vvv)

]

+β
[

− u
TB′

v − αuTB(2)
v ⊗ v + αuT B̃(2)(vv)

]

, (26)

which is easily solved for β, thereby completely determining b. (Note that Eq. (23)) can be used to simplify the
coefficient of β in the last equation to u

TB′
v).
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