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Two-particle response functions are a centerpiece of both experimental and theoretical quantum
many-body physics. Yet, due to their size and discontinuity structure, they are challenging to handle
numerically. Recently, two advances were made to tackle this problem: first, the overcomplete
intermediate representation (OIR), which provides a highly efficient compression of Green’s functions
in imaginary frequency, and second, partial spectral functions (PSFs), which allow for an efficient
evaluation in real frequency. We show that there is a two-to-one correspondence between PSFs and
OIR coefficients and exploit this fact to construct the OIR for three-or-more-particle propagators.
We then use OIR to fit and compress imaginary-frequency data obtained from the numerical
renormalization group (NRG), reaching a compression ratio of more than 400. Finally, we attempt
to match the OIR data to partial Green’s functions from NRG.Due to the overcompleteness, we
achieve only qualitative agreement.

I. INTRODUCTION

Green’s functions (GFs) are a critical tool for under-
standing the physics of quantum many-body systems.
One-particle GFs relate to spectral functions, amendable
to spectroscopy experiments, while higher-order, two-or-
more-particle GFs relate to linear and nonlinear response
functions. Naturally, they also form the basis of a smor-
gasbord of many-body frameworks [1]. While in analytic
calculations, we frequently mix GFs of all orders, higher-
order GFs are considerably more intricate when working
with them numerically. This comes down to two problems:
one of space and one of structure.

The first problem, space, is simply the curse of di-
mensionality: the memory required to naively store the
simultaneous movement of n quantum particles scales
exponentially in n. Current solutions have focused on
making the base of that exponent as small as possible:
when working in imaginary time, one can construct an
almost maximally compact basis, the so-called interme-
diate representation (IR) [2, 3]. For the dependence on
position and (real) time, quantics tensor trains provide
a controlled and, at least in some cases, very compact
representation [4, 5]. These and other [6] tensor trains
can also be used in an attempt to cure the exponential
scaling itself.

The second problem, the structure of many-body GFs,
is linked to the quantum nature of the underlying particles:
the (anti-)commutativity of bosons (fermions) causes dis-
continuities at equal-time planes. For higher-order GFs,
some of these planes run “diagonally” through the time
domain [7], which implies that any discretization given
by a direct product of the single-particle basis cannot
be compact. One can mitigate this by subtracting the

jumps, either numerically [8] or diagrammatically [9, 10],
but this still leaves non-analyticities in these locations.
Alternatively, one may elect to not store these GFs at all,
but compute them on-the fly, either stochastically [11] or
analytically [12].
Two recent approaches address the structure problem

directly: in Refs. [13, 14], the two-particle imaginary-
frequency GFs is represented as a sum of twelve separate
terms identified by their analytic form, each of which
is smooth. This admits the construction of an almost
maximally compact, albeit overcomplete, intermediate
representation (OIR). In Ref. [15], an arbitrary n-point
(⌈n/2⌉-particle) GFs, in real or imaginary frequencies, is
represented as a sum of n! terms. Each of these terms,
to be called partial Green’s functions (PGFs), is the con-
volution of a simple, system-independent integral kernel
with a partial spectral function (PSF). By computing the
PSFs, e.g., via exact diagonalization [16] or the numeri-
cal renormalization group (NRG) [17], and the resulting
PGFs separately rather than as a sum, one again can
work with more compact discretizations.

The natural questions arising from this, which we shall
address in Sec. II, are the following: is there a connection
between the OIR and PGFs? And, if so, can we use
the PGFs, which were derived for all orders [15, 18], to
construct the corresponding OIR, which has previously
only been done for two-particle quantities?

Having answered these questions in the affirmative, we
will move to a more subtle point in Sec. III: the coefficients
of the OIR are usually fitted while the PGFs are computed.
Since the OIR is overcomplete, there is an ambiguity in
exactly how we determine the coefficients, in other words,
the corresponding fitting problem is poorly conditioned.
This is no problem for the OIR itself. The question is,
when fitting the OIR in imaginary frequencies, do its
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constituents still match the original PGFs? Section IV
offers our conclusions and an outlook.

II. PARTIAL GREEN’S FUNCTIONS AND
OVERCOMPLETENESS

In this section, we aim to connect two descriptions
of the multipoint GFs: (a) PSFs and PGFs [15], which
originate from considering all possible permutations of
operators, and (b) the OIR [13], which originates from
grouping terms in the Lehmann representation in imagi-
nary frequency by different kernels.
For completeness, we review two-point imaginary-

frequency GFs and the compression of such objects [2, 3]
in Secs. IIA and IIB. This sets the stage for our two
main results: (i) establishing a two-to-one connection
between PGFs and the terms in the OIR for the arbitrary
n-point case in Sec. II C, and (ii) using this to generalize
the overcomplete basis [13] to the general n-point case
and showing how to obtain the coefficients in Sec. IID.

A. Two-point partial Green’s functions

Let us start with the two-point GF in imaginary time for
simplicity. (Most of this material is well-known but serves
to introduce the topic and our notation.) Its definition is:

G̃(τ1, τ2) := −
∑
ψ

e−βEψ

Z
⟨ψ|T A1(τ1)A2(τ2)|ψ⟩, (1)

where Ai are fermionic operators; τi are imaginary (Eu-
clidean) times, which can be restricted to 0 ≤ τi ≤ β,
where β−1 is temperature; imaginary-time evolution is
governed by Ai(τ) = eHτAie

−Hτ , where H is the Hamil-
tonian; H|ψ⟩ = Eψ|ψ⟩ defines an eigenstate ψ and its
energy Eψ; Z := tr exp(−βH) is the grand canonical par-
tition function, and the chemical potential was absorbed
into the Hamiltonian.

The effect of the time-ordering symbol T on the expec-
tation value in Eq. (1) is to split it up into a sum over
two operator permutations:

G̃(τ1, τ2) =
∑
ψ

e−βEψ

Z

{
−⟨ψ|A1(τ1)A2(τ2)|ψ⟩, τ1 > τ2,

+⟨ψ|A2(τ2)A1(τ1)|ψ⟩, τ1 < τ2.

(2)

To condense the equations, we introduce the following
notation [15]: by 1̄2̄ ∈ {12, 21} we denote a permutation
of the indices 12. For the trivial permutation, e.g., we
have 1̄2̄ = 12, and so replace 1̄ with 1 and 2̄ with 2; for
the reversed one, we have 1̄2̄ = 21 and replace 1̄ with
2, and 2̄ with 1. By sgn(1̄2̄) we denote the sign of the
permutation, and by

∑
1̄2̄ the sum over all permutations,

1̄2̄ ∈ {12, 21}. Using this notation, Eq. (2) becomes:

G̃(τ1, τ2) =
∑
1̄2̄

G̃1̄2̄(τ1, τ2), (3)

where G̃12 and G̃21 are imaginary-time PGFs, defined as:

G̃1̄2̄(τ1, τ2) := −Θ(τ1̄ − τ2̄) sgn(1̄2̄)

×
∑
ψ

e−βEψ

Z
⟨ψ|A1̄(τ1̄)A2̄(τ2̄)|ψ⟩.

(4)

We define the Fourier transform of Eq. (1) as:

G(iν1, iν2) :=

∫ β

0

d2τ eiν1τ1+iν2τ2G̃(τ1, τ2), (5)

where iν1 and iν2 are fermionic imaginary or Matsubara
frequencies, iν ∈ { iπ

β (2k + 1)}, and k is some integer.

One can perform the Fourier transform by substituting
(u1, u2) ≡ (τ1̄ − τ2̄, τ2̄) into each PGF (4), which leads to:

G(iν1, iν2) =
∑
1̄2̄

G1̄2̄(iν1, iν2), (6)

with the PGFs (4) in Matsubara frequencies reading:

G1̄2̄(iν1, iν2) = βδiν1+iν2,0 sgn(1̄2̄)

×
∑
ψ

e−βEψ

Z
⟨ψ|A1̄

1

iν1̄ + Eψ −H
A2̄|ψ⟩.

(7)

In Eq. (7), we adopted the common convention of un-
derstanding the reciprocal 1/(z − H) as the resolvent
(z1−H)−1, where 1 is the identity.

We can now separate the system-dependent part of
Eq. (7) into PSFs ρ12 and ρ21, defined as [15]:

ρ1̄2̄(ϵ) := sgn(1̄2̄)
∑
ψ

e−βEψ

Z
⟨ψ|A1̄δ(ϵ+ Eψ −H)A2̄|ψ⟩,

(8)
where δ is the Dirac delta generalized to operator argu-
ments: δ(z −H) =

∑
ϕ δ(z − Eϕ)|ϕ⟩⟨ϕ|. This permits us

to represent the PGFs (7) as a simple convolution:

G1̄2̄(iν1, iν2) = βδiν1+iν2,0

∫
dϵ

ρ1̄2̄(ϵ)

iν1̄ − ϵ
. (9)

From the next section onward, we will assume that
the integral can be restricted to some finite interval
[−ϵmax, ϵmax], or, equivalently, that H is bounded. (This
restriction can be relaxed.)
Inserting the PSFs (8) into the (full) GF (6) yields

G(iν1, iν2) = βδiν1+iν2,0

∫
dϵ

[
ρ12(ϵ)

iν1 − ϵ
+
ρ21(ϵ)

iν2 − ϵ

]
. (10)

Observing iν2 = −iν1 and changing variables ϵ→ −ϵ in
the second term, we can condense Eq. (10) to a single
convolution, the spectral representation of G:

G(iν1, iν2) = βδiν1+iν2,0

∫
dϵ

ρ′(ϵ)

iν1 − ϵ
, (11)
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where ρ′ is the (full) spectral function:

ρ′(ϵ) = ρ12(ϵ)− ρ21(−ϵ). (12)

We shall make note of this fact: the sum of two PSFs
forms the argument for a single convolution in the spectral
representation of the imaginary-frequency GF.
For illustration, consider the case that A1 = d and

A2 = d† are the annihilation and creation operators for
a fermion in some spin-orbital, respectively, and β = ∞.
Then, ρ12(ϵ) and −ρ21(ϵ) are nonzero for ϵ ≥ 0 only and
yield the particle- and hole-side of the spectral function
ρ′(ϵ), respectively.

B. Intermediate representation for two-point
Green’s functions

The numerical transformation (11) between ρ′(ϵ) and
G(iν) is lossy. This is evident from the singular value
expansion of the corresponding kernel [19, 20]:

1

iν − ϵ
=

∞∑
ℓ=0

Uℓ(iν)Sℓ Vℓ(ϵ), (13)

where {Uℓ} are the left-singular functions, which form
an orthonormal set in imaginary frequencies, {Vℓ} are
the right-singular functions, which form an orthonormal
set in real frequencies. Sℓ are the singular values, which
for a kernel of finite support [−ϵmax, ϵmax] decay faster
than exponentially with ℓ [21, 22], epitomizing the loss
of significance from the real to imaginary frequencies. Vℓ
are bounded in [−ϵmax, ϵmax].

This loss of information allows for an extremely compact
representation of the Matsubara GF [2], called the IR.
Inserting Eq. (13) into Eq. (11) yields:

G(iν1, iν2) ≈ βδiν1+iν2,0

L−1∑
ℓ=0

gℓUℓ(iν1), (14)

where gℓ = Sℓ
∫
dϵVℓ(ϵ)ρ

′(ϵ) is a basis expansion coeffi-
cient. The number of coefficients needed to represent
a given GF with a relative error of at most ε scales as
L ∼ log(βϵmax) log(ε

−1) [21].
The expansion coefficients gℓ can also be inferred from

imaginary-frequency data using sparse sampling [3]. The
kernel (13) determines a set of L frequencies V2 =
{iν1, . . . iνL} such that Eq. (14) can be turned into a
well-conditioned least-squares problem:

min
gℓ

∑
iν∈V2

∣∣∣∣G(iν,−iν)−
L−1∑
ℓ=0

gℓUℓ(iν)

∣∣∣∣2. (15)

A similar procedure exists for imaginary-time data.
Once we obtained the GF in the IR, its analytic

continuation to real frequencies is trivial: ρ′(ϵ) =∑∞
ℓ=0 Vℓ(ϵ)gℓ/Sℓ, though one must regularize this expres-

sion heavily due to the rapid decay of the singular val-
ues. Note that, in an “observed” imaginary-frequency

GF G(iν,−iν), the two PSFs are combined according to
Eq. (11). Thus, the IR, which relies on a decomposition
of the kernel (13), invariably mixes the PSFs, and only
the full GF, rather than the partial ones, are accessible.

C. Partial Green’s functions in the n-point case

Let us repeat the calculation in Sec. II A for the n-point
GF. Its definition is:

G̃(τ ) := (−1)n−1
∑
ψ

e−βEψ

Z
⟨ψ|T A1(τ1) · · ·An(τn)|ψ⟩,

(16)
where τ = (τ1, . . . , τn) collects imaginary (Euclidean)
times, which we again restrict to τi ∈ [0, β], and T again
orders operators by imaginary time.
The Fourier transform of Eq. (16) is defined as:

G(iν) :=

∫ β

0

dnτ eiν1τ1+...+iνnτnG̃(τ ), (17)

where iν = (iν1, . . . , iνn) collects fermionic Matsubara
frequencies. Using a similar reasoning as in the two-point
case (6), one finds after a lengthy calculation [15, 16]:

G(iν) =
∑
1̄...n̄

G1̄...n̄(iν). (18)

Instead of two PGFs as in the two-point case (7), we have
n! PGFs:

G1̄...n̄(iν) = βδν sgn(1̄ . . . n̄)

×
∑
ψ

e−βEψ

Z
⟨ψ|A1̄

n−1∏
i=1

[
1∑i

k=1 iνk̄ + Eψ −H
Ai+1

]
|ψ⟩,

(19)

where δν is equal to one if the sum of all frequencies in
ν is zero and equal to zero otherwise, 1̄ . . . n̄ is a per-
mutation, and sgn denotes its sign. The resolvent in
Eq. (19) contains sums of fermionic frequencies; for even
i, this gives a bosonic Matsubara frequency, iω ∈ { iπ

β (2k)},
where k is some integer. As bosonic Matsubara frequen-
cies can be exactly zero, one must either avoid the poles
Eq. (19) by carefully taking limits or treat these terms
separately [13, 15, 18].

Instead of just two as in Eq. (8), we now have n! PSFs:

ρ1̄...n̄(ϵ1, . . . , ϵn−1) = sgn(1̄ . . . n̄)

×
∑
ψ

e−βEψ

Z
⟨ψ|A1̄

n−1∏
i=1

[
δ(ϵi + Eψ −H)Ai+1

]
|ψ⟩.

(20)

Inserting the PSFs (20) into the Fourier transform (19),
we again find convolutions:

G1̄...n̄(iν) = βδν

×
∫

dn−1ϵ ρ1̄...n̄(ϵ1, . . . , ϵn−1)

(iν1̄ − ϵ1) · · · (iν1̄ + . . .+ iνn−1 − ϵn−1)
.

(21)
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r 1̄2̄3̄4̄ 4̄3̄2̄1̄ coset

1 1234 4321 A
2 1243 3421 B
3 1324 4231 C
4 1342 2431 B
5 1423 3241 C
6 1432 2341 A
7 2134 4312 B
8 2143 3412 A
9 2314 4132 C
10 2413 3142 C
11 3124 4213 B
12 3214 4123 A

TABLE I. Each semi-PGF or semi-PSF with representation
index r [14] (first column) combines the contribution from a
pair of permutations, 1̄2̄3̄4̄ (second column) and its reverse
4̄3̄2̄1̄ (third column), from the permutation group S4. The
4!/2 = 12 pairs are further grouped into three cosets (fourth
column). In each coset, the 1̄2̄3̄4̄ permutations are related by
cyclicity [15]; see Sec. III C for details.

Here, conservation of energy implies that reversing a per-
mutation ī→ n+ 1− i together with the order of energies
ϵi → −ϵn−i leaves the integral kernel (the denominator of
above equation) invariant. Similarly as in the two-point
case where two PSFs can be combined to the full spec-
tral function through Eq. (12), we can combine pairs of
PSFs to what we shall call semipartial spectal functions
(semi-PSFs):

ρ′1̄...n̄(ϵ1, . . . , ϵn−1) := ρ1̄...n̄(ϵ1, . . . , ϵn−1)

+ (−1)n−1ρn̄...1̄(−ϵn−1, . . . ,−ϵ1).
(22)

Correspondingly, the semipartial Green’s function (semi-
PGF) is defined as:

G′
1̄...n̄(iν) := βδν

×
∫

dn−1ϵ ρ′1̄...n̄(ϵ1, . . . , ϵn−1)

(iν1̄ − ϵ1) · · · (iν1̄ + . . .+ iνn−1 − ϵn−1)
,

(23)

which equals the full GF for n = 2. Otherwise, the (full)
GF can be expressed in terms of the semi-PGFs:

G(iν) =
∑′

1̄...n̄

G′
1̄...n̄(iν), (24)

where the primed sum
∑′

runs over n!/2 inequivalent
permutations obtained under the equivalence 1̄2̄ . . . n̄ ≡
n̄ . . . 2̄1̄. Table I summarizes the corresponding terms in
the primed sum for the case n = 4.

D. Overcomplete intermediate representations for
the n-point Green’s function

Equations (22) to (24) allow us to construct a compact
basis for an arbitrary n-point GF. The crucial observation,

made for three- and four-point functions in Ref. [13], is
that, to generalize a compact basis from the two- to the
n-point GF, we must expand the semi-PGFs instead of
the full GF [23].

Indeed, replacing the kernels in Eq. (23) with their
truncated singular-value expansion (13) yields:

G′
1̄...n̄(iν) ≈ βδν

L−1∑
ℓ1=0

· · ·
L−1∑

ℓn−1=0

× Uℓ1(iν1̄) · · ·Uℓn−1
(iν1̄ + . . .+ iνn−1) g1̄...n̄,ℓ,

(25)

where g are again a set of basis coefficients, given by:

g1̄...n̄,ℓ = Sℓ1 · · ·Sℓn−1
ρ′1̄...n̄,ℓ, (26)

ρ′1̄...n̄,ℓ =

∫
dn−1ϵVℓ1(ϵ1) · · ·Vℓn−1

(ϵn−1)ρ
′
1̄...n̄(ϵ). (27)

This is the IR of an arbitrary n-point GF. Since the
basis coefficients (26) are multiplied by the quickly decay-
ing singular values Sℓ, we need to store only O(nLn−1)
coefficients [24], where L ∼ log(βϵmax) log(ε

−1). Equa-
tions (25) to (27) were previously derived for the three-
and four-point case [13]. Table I relates the pairs of
permutations indexing of the representations to the rep-
resentation index used in Ref. [14]. Importantly, we now
have a formula for arbitrary n.

A brief comment about bosonic arguments in Eq. (25)
is in order: as alluded to in Sec. II C, whenever a sum
of fermionic frequencies is exactly zero, additional terms
appear. One can show that these terms can be formally ab-
sorbed by augmenting the one-particle basis Uℓ in Eq. (25)
[13]. Numerically, this augmentation is usually not neces-
sary as the additional basis functions are almost linearly
dependent on the other basis functions [14].

We note that the construction (25) is in principle inde-
pendent of the actual form of the basis function used. In
particular, one can replace the underlying IR basis by a
finite sum over real [25] or complex [26, 27] poles:

G1̄...n̄(iν) ≈ βδν

×
∑

p1,...,pn−1

ρ1̄...n̄,p1...pn−1

(iν1̄ − ϵp1) · · · (iν1̄ + . . .+ iνn−1 − ϵpn−1
)
,

(28)

where ρ1̄...n̄,p and ϵp for p = 1, . . . , L are now parameters
to be fitted, either directly for each semi-PGF or in the
overcomplete sense (see below).

As in the two-point case, sparse sampling can be used
to infer the basis coefficients (an example can be seen in
Fig. 1). To this end, one constructs a sampling frequency
set Vn (e.g., by taking the direct product of V2 for all the
possible permutations) and turns Eqs. (24) and (25) into
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FIG. 1. Sparse sampling points for the OIR basis, with β =
100/D, ϵmax = D, ε = 10−3, plotted in ω = 0 plane.

a least-squares problem:

min
g

∑
iν∈Vn

∣∣∣∣G(iν)− β
∑′

1̄...n̄

L−1∑
ℓ1=0

· · ·
L−1∑

ℓn−1=0

× Uℓ1(iν1̄) · · ·Uℓn−1
(iν1̄ + . . .+ iνn−1) g1̄...n̄,ℓ

∣∣∣∣2,
(29)

which can be solved in O(n!L⌈2.5(n−1)⌉) time [14].
Given the basis coefficients g in Eqs. (26) and (27),

we can invert these two equations to perform analytic
continuation. However, we emphasize again that, since
pairs of PSFs are combined in the imaginary-frequency
GF [Eq. (22)], only semi-PSFs can be inferred.

Another, more practical problem is the following: since
Uℓ form a basis for the two-point GF, the basis expansion
(25) is overcomplete for L→ ∞, since any one permuta-
tion already spans the full space, yet we sum over n!/2
permutations. For finite L, the basis functions formally
do not have this issue, but they are still almost linearly
dependent, which implies that the least-squares problem
(29) is ill-conditioned. This in turn means that the ba-
sis coefficients g strongly depend on the regularization
scheme for the least-squares problem (25). This does not
hinder the ability of the basis to compress, inter- and
extrapolate imaginary-frequency data [13, 14, 28]. How-
ever, it is a problem for analytic continuation, since it is
unclear if the fitted coefficients have any connection to
the semi-PSFs. Exploring this is the subject of Sec. III.

III. MATCHING THE OVERCOMPLETE
INTERMEDIATE REPRESENTATION AND

PARTIAL GREEN’S FUNCTIONS FROM DATA

In this section, we first compress imaginary-frequency
data computed with NRG, and then compare the fitted

functions (36) with the exact expressions (38).

We use the particle-hole symmetric single-impurity An-
derson model (SIAM) with a flat hybridization. Its Hamil-
tonian is:

H = Ud†↑d
†
↓d↓d↑ −

1
2U(d†↑d↑ + d†↓d↓)

+ V
∑
pσ

(c†pσdσ + d†σcpσ) +
∑
pσ

ϵpc
†
pσcpσ,

(30)

where dσ and cpσ annihilate a spin-σ electron on the im-
purity and in the bath with momentum p, respectively.
Further, U is the interaction strength, V is the hopping
amplitude between impurity and bath, taken to be con-
stant, and ϵp is the energy of the corresponding bath level,
taken uniformly distributed in the interval ϵp ∈ [−D,D].
We use U = 0.2D, temperature β−1 = 10−2D, and a
hybridization strength ∆ = 0.04D, defined as∑

ϵ

π|Vϵ|2δ(ω − ϵ) = ∆Θ(D − |ω|). (31)

A. Compression

In the following, we illustrate the efficient compres-
sion of the Matsubara impurity two-particle GF. Its def-
inition in imaginary time follows from Eq. (16) with
(A1, A2, A3, A4) = (d↑, d↑

†, d↑, d↑
†). In NRG, we com-

pute this object as a sum of 4! PGFs, each of which is
obtained by convolving a kernel and a PSF.

To specify on which Matsubara frequencies we store
G(iν), let us first define the particle–hole convention:

ν1, ν2, ν3, ν4 7→ ν = −ν2, ν′ = ν3, ω = ν1 + ν2, (32)

where ν and ν′ are fermionic Matsubara frequencies and
ω bosonic Matsubara frequencies. We can now create a
three dimensional box with axes ν, ν′, and ω. We fill this
frequency box with equidistant points in all dimensions.
Each point is defined by a specific set of frequencies. The
fermionic frequencies range from −199πβ to 199πβ and the

bosonic frequencies from −200πβ to 200πβ .

Figure 2(a,b) shows G(iν) from NRG in the ν, ν′ plane
for (a) iω = 0 and (b) iω = 20πβ . There are non-trivial

structures along the horizontal, vertical, and diagonal
directions, which arise by summing the different PGFs.
The diagonal of zero elements exemplifies why it is difficult
to compress these objects. In fact, this figure was created
with 8.04 million data points, occupying more than 6GB.

Using the OIR, we were able to compress these 6GB to
565 kB or about 0.2% of its original size. For this, we esti-
mate ϵmax = D and choose ε = 10−3, which gives a linear
basis size of L = 15. The number of basis coefficients
of the OIR is 11, 952. To fit the data, we use Eq. (29),
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FIG. 2. Four-point GF for the SIAM (30) on Matsubara
frequencies in the particle-hole convention for (a) ω = 0 and
(b) ω = 20π

β
. (c,d) The reconstructed data from the OIR fit

for the same bosonic frequencies as in (a,b), with sampling
frequencies indicated as gray dots. (e,f) Corresponding relative
error.

which for the four-point GF reads:

min
g

∑
iν∈V4

∣∣∣∣G(iν)− ∑′

1̄2̄3̄4̄

L−1∑
ℓ=0

L−1∑
m=0

L−1∑
ℓ′=0

× Uℓ(iν1̄)Um(iν1̄ + iν2̄)Uℓ′(−iν4̄) g1̄2̄3̄4̄,ℓmℓ′

∣∣∣∣2,
(33)

where V4 are the sparse sampling points, indicated as
gray dots in Fig. 2(c,d). We write Eq. (33) as an ordinary
least-squares problem with the loss function [13, 14]:

L = ∥G− Eg∥2, (34)

where G is the target data, in our case obtained through
NRG, and E is the design matrix. We use an LSMR
solver with loss function (34) to obtain the coefficients g.
The fitting procedures takes less than one minute on a
six-core Ryzen 3600 CPU.

To assess the error of this process, we first evaluate on
the sparse sampling points by multiplying them with the
corresponding design matrix E. This yields the predicted

values of the GF on the sampling points, the so-called
in-sample relative error, which was 9.95×10−4, consistent
with the accuracy goal of ε = 10−3. We also construct
E for the full frequency box of the NRG data with the
sampling frequencies removed, yielding an out-of-sample
relative error of 4.86× 10−3. The relative error

|G(iν)− E(iν)g|/||g||∞ (35)

is plotted in Fig. 2(e,f), where the in-sample errors (loca-
tions of the dots) are below the accuracy goal, as expected,
and the out-of-sample errors, away from the dots, are
slightly higher but still comparable to the accuracy goal,
indicating an absence of overfitting. This means that
we reduce the necessary frequency points from 8,040,000
points (which span the Matsubara box) to 19,282 sparse
sampling points, while maintaining the same information
up to the desired accuracy.

B. Comparing partial Green’s functions

As outlined above, there is a two-to-one correspondence
between the summands in the OIR and PGFs from NRG.
Let us write this explicitly for the case of the two-particle
GF, where the OIR (25) involves twelve semi-PGFs:

G(iν) ≈
∑′

1̄...4̄

G′
1̄...4̄(iν), (36)

each of which is given by a basis expansion from a set of
coefficients:

G1̄...4̄(iν) = βδν

×
∑
ℓℓ′m

Uℓ(iν1̄)Um(iν1̄ + iν2̄)Uℓ′(−iν4̄)g1̄2̄3̄4̄,ℓmℓ′ .
(37)

In the OIR, the coefficients g1̄2̄3̄4̄,ℓ and hence the decom-
position (36) is fitted from imaginary-frequency data via
a fitting problem similar to Eq. (29). This is enough to
allow for a compressed representation and interpolation.

If the Hamiltonian is solved with, e.g., exact diagonal-
ization [16] or NRG [17], then the “true” decomposition
into semi-PGFs and, if desired, the “true” fitting coeffi-
cients obtained from the semi-PSFs (cf. Eqs. (26), (27))
can be computed:

G′
1̄...4̄(iν) = βδν

∫
d3ϵ ρ′1̄2̄3̄4̄(ϵ1, ϵ2, ϵ3)

(iν1̄ − ϵ1)(iν1̄ + iν2̄ − ϵ2)(−iν4̄ − ϵ3)
.

(38)
Figure 3 compares the fitted and “true” semi-PGFs

for the SIAM (30). For the OIR, the same fitting pa-
rameters were used as in Sec. IIIA, with the exception
of ϵmax = 2D + U = 2.2. Each of the twelve pairs of
panels depicts a single summand of the OIR (37) on the
left and the corresponding NRG semi-PGF on the right,
cf. Table I. The comparison is made for bosonic frequency
ω = 0, which exhibits the largest deviations, and plot-
ted in the ν, ν′ plane in the particle-hole convention (32).
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FIG. 3. Comparison of semi-PGFs for the four-point GF of the SIAM. Each of the twelve pairs of panels depicts a semi-PGF
when fitted from the OIR through Eq. (33) and then expanded using Eq. (37) on the left side and compares it to the exact
result from NRG (38) on the right side, cf. Table I. The values are normalized by the maximum value per panel and plotted for
ω = 0 and ν and ν′ ranging from -100 to 100 in the particle-hole convention (32).

There is qualitative agreement for r = 1, 2, 6, 7, 8, 12 and
discrepancy for r = 3, 4, 5, 9, 10, 11. This suggests that
the loss function (34), together with early stopping regu-
larization performed by the LSMR, adversely affects the
decomposition.

C. Cosets

The OIR is, by design, overcomplete, so that a naive
fitting problem is poorly conditioned. In other words, the
fitting parameters are partially ambiguous. One source of
ambiguity is the relation between PSFs whose operator
arguments are cyclic permutations of one another, see
Eq. (25) in Ref. [15]. For instance, the PSFs (in the

present notation) for the permutations 1234 and 2341
obey:

ρ2341(ϵ2 − ϵ1, ϵ3 − ϵ1,−ϵ1) = −e−βϵ1ρ1234(ϵ1, ϵ2, ϵ3).

(39)

This partitions the permutations (and the corresponding
PSFs) into three cosets, which cannot be related through
either cyclic permutation or reversal of the arguments.
We call these cosets A, B, C, and enumerate their elements
in Table I.
Figure 4 shows the comparison of OIR and PGFs, de-

composed only on the level of the cosets. As in Fig. 3,
we find merely partial qualitative agreement, albeit a
somewhat better match. This suggests that the cyclic
permutation ambiguity is not the main source for the
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FIG. 4. Comparison of PGFs between OIR and NRG, as
in Fig. 3, where each row now depicts the sum over a coset
(group of representations as defined in Table I).

ill-conditioning of the fitting problem. We conjecture
that this is due to the fact that the exponential factor in
Eq. (39) may be poorly represented by the truncated IR
expansion, which, if true, would lift the ambiguity.

IV. CONCLUSIONS

We showed that, using the OIR, it is possible to com-
press data for two-particle Green’s functions computed
from NRG and reconstruct it to the desired accuracy. For
example, with an accuracy goal of ε = 10−3, we achieved a
data compression by a factor of 400 and an out-of-sample

relative error of 4.86× 10−3.
Further, we derived a two-to-one correspondence be-

tween the n! PGFs, which can be obtained from exact
diagonalization or NRG, and the n!/2 semi-PGF of the
OIR. For a two-particle (n = 4) GF of the single-impurity
Anderson model, we compared the 12 semi-PGFs of the
OIR to their corresponding pair of NRG PGFs, and find a
qualitative match but quantitative differences. A further
restriction of the 12 semi-PGF to only three cosets is pos-
sible, by grouping together terms corresponding to cyclic
permutations. Again, we find only a qualitative match
between the OIR and the original NRG data. Either the
regularization used in the fitting procedure needs to be
improved to better reflect the nature of the semi-PGFs
or the overcompleteness of the OIR has to be mitigated
for obtaining a better match.
Since the OIR fitting process introduces qualitative

differences in the PGFs and analytic continuation is an ill-
conditioned problem to begin with, it seems unlikely that
the present scheme allows for an analytic continuation
of two-particle GFs to real frequencies within reasonable
error margins. Whether recent progress in understanding
the analytic continuation of higher-order correlators [29]
can, notwithstanding, help with the analytic continuation
of the OIR is an interesting topic for future studies.
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[5] M. K. Ritter, Y. Núñez Fernández, M. Wallerberger,
J. von Delft, H. Shinaoka, and X. Waintal, Quantics
tensor cross interpolation for high-resolution parsimonious
representations of multivariate functions, Phys. Rev. Lett.
132, 056501 (2024).
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