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Motivated by recent numerical studies reporting putative quantum paramagnetic behavior in spin-1/2 Heisen-
berg models on the maple-leaf lattice, we classify Abrikosov fermion mean-field Ansätze of fully symmetric
U(1) and Z2 quantum spin liquids within the framework of projective symmetry groups. We obtain a total of
17 U(1) and 12 Z2 algebraic PSGs, and, upon restricting their realization via mean-field Ansätze with nearest-
neighbor amplitudes (relevant to the studied models), only 12 U(1) and 8 Z2 distinct phases are obtained. We
present both singlet and triplet fields for all Ansätze up to third nearest-neighbor bonds and discuss their spinon
dispersions as well as their dynamical spin structure factors. We further assess the effects of Gutzwiller projec-
tion on the equal-time spin structure factors, and identify a U(1) Fermi surface spin liquid whose structure factor
most closely reproduces the one obtained from pseudo-fermion functional renormalization group calculations.

I. INTRODUCTION

Two-dimensional geometrically frustrated lattices have
long been a fertile playground for realizing quantum spin liq-
uids (QSLs). Indeed, Heisenberg models on the celebrated
kagome and triangular lattices are known to realize a vari-
ety of paramagnetic phases, including the exotic U(1) Dirac
and chiral QSLs [1–7]. A relatively new entrant in search of
QSL behavior is the maple-leaf lattice [8–19] [see Fig. 1(a)],
where the existence of a putative QSL phase sandwiched be-
tween magnetically ordered and a dimerized ground state in
the spin S = 1/2 Heisenberg antiferromagnet has been re-
ported by pseudo-fermion functional renormalization group
(pf-FRG) calculations [16]. A subsequent study of this model
employing neural quantum states and density matrix renor-
malization group (DMRG) approaches also hinted at the pos-
sible existence of an intermediate QSL phase [17]. Another
recent DMRG exploration of parameter space with ferromag-
netic couplings on triangle and dimer bonds [red and blue
bonds in Fig. 1(a), respectively] provided an inkling for an
island of spin liquidity surrounded by magnetic and dimer
orders [18]. The precarious locations of the reported QSL
phases on the maple-leaf lattice have naturally led to spec-
ulations concerning their possible origin from a nearby de-
confined quantum critical point. In similar spirit, it has re-
cently been shown that the inclusion of longer range Heisen-
berg couplings induces quantum paramagnetic phases [20].
While the aforementioned approaches provide evidence of
quantum paramagnetic behavior, which could putatively be a
QSL, they fall short of characterizing its precise microscopic
nature, i.e., gapless vs gapped, U(1) vs Z2 gauge structure,
etc. A powerful framework to systematically classify quantum
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spin liquids with different gauge groups is provided for within
a parton representation by the method of projective symmetry
groups [21, 22]. This framework has been extensively applied
on two- and three-dimensional lattices [23–48], and met with
wide success in describing the ground state and low-energy
behavior of quantum spin models [2, 6, 49–58].

To this end, we employ the projective symmetry group
(PSG) framework for fermionic partons to provide a system-
atic classification of fully symmetric QSL mean-field Ansätze
with different low-energy gauge groups [21]. We find a total
of 17 U(1) and 12 Z2 distinct algebraic PSGs on the maple-
leaf lattice. Upon restricting the (singlet) mean-field Ansätze
to first neighbor amplitudes only, a total of 12 U(1) and 8 Z2

states can be realized, while, if amplitudes up to third neigh-
bor are included, all U(1) andZ2 distinct states are realizable.
While our treatment principally focuses on singlet QSLs, in
general, we also provide the symmetry allowed triplet am-
plitudes thus enabling for a consideration of competing fer-
romagnetic and spin-orbit couplings in the original spin sys-
tem. The Hamiltonians featuring such couplings are likely to
be present and potentially relevant in describing natural min-
erals [59–62] and synthetic crystals [63–67] with maple-leaf
crystal geometries or distortions thereof. In two dimensions,
it is well known that including these triplet fields can lead to a
plethora of topologically nontrivial spinon models and possi-
bly spin nematic states [68–72].

The article is organized as follows. In Sec. II the projec-
tive group approach is explicated and complemented by the
symmetry operators on the maple-leaf lattice in Sec. III. A
synopsis of the projective symmetry group results is provided
in Sec. IV, succeeded by a mean field analysis of the PSG
candidate states in Sec. V. The latter Ansätze then enable us
to compute spinon bands as well as the static and dynamic
spin structure factors (Sec. VI). In Sec. VII, we conclude that
Heisenberg models on the maple-leaf lattice open up an arena
of elusive quantum paramagnetic phenomena awaiting further
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(a) (b)

FIG. 1. (a) An illustration of the maple-leaf lattice with corresponding lattices vectors T1 and T2. The small vectors inside the hexagon
correspond to a1 and a2 which describe the positions of the site u as explained in the main text. The three different colors stand for three
symmetry-inequivalent first nearest-neighbor bonds, whose labelling (within one unit cell) is specified in (b).

investigation and substantiation.

II. PROJECTIVE SYMMETRY GROUP APPROACH

In this section, we review the essential steps of the pro-
jective symmetry group (PSG) classification of effective low-
energy theories of QSLs [21, 22]. We start from a Heisenberg
model defined on a lattice

Ĥ =
∑
rr′

Jrr′ Ŝr · Ŝr′ , (1)

where Ŝr denotes the SU(2) spin-operator acting on the spin-
1/2 representation on site r. Due to the absence of magnetic
order in QSLs, a mean-field treatment must be carried out
within a parton representation of spin operators, and here we
adopt the representation in terms of two flavors of complex
fermions due to Abrikosov [73]

Ŝµ
r =

1

2

∑
αβ

f̂†rασ
µ
αβ f̂rβ , (2)

where the spinon operator f̂rα annihilates a fermion with spin-
α ∈ {↑, ↓} at site r and σµ (µ ∈ {x, y, z}) are the three
Pauli matrices. This mapping artificially enlarges the local
Hilbert space from the spin space C2 to the four-dimensional
fermionic Fock space. Hence, this mapping reproduces the
physical Hilbert space of the spin model only in the subspace
of single occupation nr = 1 for all sites, which correspond

to S2 = 3/4, while the unphysical states with nr = 0 or 2,
yield S2 = 0 which do not correspond to spin states. There-
fore, a correct description of the physical model needs to in-
corporate a constraint which forbids empty and doubly occu-
pied sites. The constrained model leads to a description of the
QSL state in terms of a gauge theory [74, 75]. The Heisenberg
Hamiltonian becomes quartic in terms of these fermions and a
Hubbard-Stratonovich transformation is employed to further
decouple the interacting model. We choose this decoupling to
neglect any magnetic terms, which then introduces the auxil-
iary fields

χrr′δαβ = 2
〈
f̂†rαf̂rβ

〉
,

∆rr′ϵαβ = −2
〈
f̂rαf̂rβ

〉
. (3)

To make further progress we will assume static fields in
a mean-field treatment [76]. Using Nambu-spinors ψ̂†

r =

(f̂†r↑, f̂r↓) one can write the Hamiltonian as

Ĥ =
∑
rr′

−3

8
Jrr′

[
(ψ̂†

rurr′ ψ̂r′ + h.c.)− 1

2
Tr[u†rr′urr′ ]

]
+
∑
r,µ

ψ̂†
raµ(r)σ

µψ̂r (4)

with a local multiplier field aµ(r) which ensures single occu-
pancy on the mean-field level, i.e.,〈∑

α

f̂†rαf̂rα

〉
= 1,

〈
f̂rαf̂rβ

〉
= 0 ∀ r. (5)
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The coupling matrices urr′ contain the mean-field amplitudes

urr′ =

(
χ†
rr′ ∆rr′

∆†
rr′ −χrr′

)
= ι̇α0

rr′τ
0 +

∑
µ

αµ
rr′τ

µ, (6)

which can be parameterized by four real coefficients
α0
rr′ , α

µ
rr′ ∈ R. Here, τ0 is the 2 × 2 identity matrix and

τµ are the Pauli matrices acting in Nambu space. In the pure
mean-field picture (in this context often referred to as zeroth
order mean-field [22]) the Hamiltonian Eq. (4) can be read-
ily solved. However, having relaxed the constraint may in-
clude some contributions from unphysical states. We will
mitigate this problem by constructing particular mean-field
Ansätze which are stable saddle-point solutions beyond the
zeroth order mean-field theory. To see which mean-field mod-
els are of interest, we consider the type of fluctuations which
are expected to induce gapless excitations beyond the pure
mean-field picture. Therefore, we re-examine the fermionic
representation of the spin operator in Eq. (2) which is in-
variant under a local U(1) transformation f̂rα → eι̇θ(r)f̂rα.
Within the physical subspace of single occupancy it is fur-
ther invariant under a particle-hole like transformation f̂rα →
cosϕ(r)f̂rα + sign(α) sinϕ(r)f̂†r,−α, where −α means flip-
ping the spin label and sign(↑) = +1, sign(↓) = −1. These
two transformations do not commute, as is manifest by con-
sidering their action on the spinor ψ̂r. The angles of a succes-
sive application of U(1), particle-hole and again U(1) trans-
formations can be regarded as Euler angles parameterizing
the group of rotations in 3 dimensional space, SO(3), which
is locally isomorphic to SU(2) [34]. It follows that in the
fermionic representation the Heisenberg Hamiltonian should
be invariant under a local SU(2) transformation [75]. Note
that this local freedom is different from the global spin rota-
tion invariance of the Heisenberg model. The gauge freedom
is implemented in our description by an action on the spinors
according to ψ̂r → Wrψ̂r with Wr ∈ SU(2). Equivalently,
one can act on the coupling matrices of a mean-field Ansatz
urr′ → W †

r urr′Wr′ . It is obvious that a generic coupling
matrix urr′ will break this local invariance. However, for a
particular choice of the mean-field decoupling there might ex-
ist a subgroup G ⊆ SU(2), called the invariant gauge group
(IGG), for which

urr′ =W †
r urr′Wr′ , Wr ∈ G (7)

is true. Note that such a subgroup always exists since for
Z2 ⊆ G Eq. (7) is trivially fulfilled. Different mean-field
Ansätze which are related not only by Eq. (7) but by a generic
SU(2) gauge transformation lead to an equivalent description
and, therefore, the elements of G merely put different labels
on the same physical state [22]. One can further show that
fluctuations over a given mean-field Ansatz are generated by
elements of its G [21]. In this work, we will consider the
scenarios of G ≃ U(1) and Z2

1. In the later case, the ex-

1 States with SU(2) IGG cannot be realized on the maple-leaf lattice given
its nonbipartite nature.

citations of the fluctuation-fields are gapped such that at suf-
ficiently low energies the mean-field Ansatz leads to a stable
saddle-point. In the U(1) case, however, stability arguments
are more subtle and need to be considered for each model sep-
arately [6, 52, 77–79].

The emergence of the local invariance has further implica-
tions regarding the symmetry properties of the model. As-
sume that we want to investigate if the system at hand has any
underlying symmetry. Such a symmetry would act on a mean-
field Ansatz as urr′ → OO(r)uO(r)O(r′)O

†
O(r′), where O is a

projective representation of the symmetry operation O acting
in Nambu space. Due to the local gauge freedom we say that
the system is invariant under a given symmetry operation if
we can find a suitable gauge transformation GO such that

urr′ = GO(O(r))uO(r)O(r′)G
†
O(O(r

′)),

GO(r) ∈ SU(2). (8)

This equation defines the PSG and in mathematical terms it is
the extension of the symmetry group (SG) by the IGG

PSG = IGG⋊ SG. (9)

PSGs provide a systematic way to classify and construct many
possible quantum states. This classification goes beyond the
Landau paradigm in the conventional sense [21, 22]. We will
make use of this method in the following section and construct
possible quantum spin liquid states for the maple-leaf lattice.

III. LATTICE AND TIME-REVERSAL SYMMETRIES

The site coordinates on the maple-leaf lattice can be generi-
cally described by r = xT1+yT2+u. We choose the Bravais
lattice vectors in the Cartesian basis as T1 = a

2 (3
√
3,−1) and

T2 = a
2 (−
√
3, 5), with lattice constant a; u denotes the posi-

tion of lattice sites within the unit cell. The unit cell is fixed
such that its center coincides with the center of a hexagon as
depicted in Fig. 1. Every site u in the unit cell can be written
as u = xua1+yua2 where a1 = a(0, 1) and a2 = a

2 (−
√
3, 1)

where xu, yu ∈ {0,±1}. Using the convention of Fig. 1 we
label these sites in a shorthand notation by u = {1, . . . , 6}.
The underlying symmetry group S of the maple-leaf lattice is
given by the wallpaper group P6 which can be generated by 4
operations: two translations (T1 and T2), inversion (I) and a
C3-rotation (R) (we adopt an anticlockwise rotation) 2. These
operations act on a lattice site at (x, y, u) by

T1(x, y, u)→ (x+ 1, y, u),

T2(x, y, u)→ (x, y + 1, u),

R(x, y, u)→ (−y, x− y,R(u)), (10)
I(x, y, u)→ (−x,−y, I(u)),
R−1(x, y, u)→ (y − x,−x,R−1(u)).

2 Instead of (I) and a C3-rotation, one can equivalently work with only a
single six-fold rotation C6. Note that this lattice lacks any reflection sym-
metry.
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wT wI θ θ̃I ρI(u) # of PSG class
0 0 3θ̃I θ̃I 0 1
0 1 nπ θ pI(u−1)π

3
, pI = 0, 1, 2, 3 8

1 0 nπ θ nIπδmod(u,2),0 4
1 1 nπ θ nIπδmod(u,2),0 4

TABLE I. The 17 U(1) PSG classes are listed here. n and nI are integers that can take values 0 or 1.

Within our convention of the unit cell the operationsR, I only
permute elements in u. Thus, one can compute their action on
the Bravais lattice (x, y) and on one unit cell u separately.
The mutual relations of Eq. (10) lead to the following set of
algebraic conditions

T1T2 = T2T1, (11)

I2 = 1, (12)
TiITi = I, (13)

R3 = 1, (14)

T−1
1 R = RT1T2, (15)

T−1
2 RT1 = R, (16)

R−1IRI = 1. (17)

These relations fix the underlying group structure. Note that
in case of the PSG, the identity 1 is defined only modulo the
invariant gauge group G.

Besides operations acting on the site index of a spinor,
we also include time-reversal symmetry T , which acts on an
Ansatz according to T (urr′ , aµr ) → −(urr′ , aµr ) [22]. This
leads to the additional conditions

T 2 = 1, (18)

T ST −1S−1 = 1. (19)

In Appendix A, we list all the precise conditions for the cor-
responding representation matrices GS(r) and GT (r).

IV. PSG SOLUTIONS

In this section, we present a set of gauge inequivalent rep-
resentation matrices for the group extensions G ≃ U(1), Z2.
The details of the construction are presented in Appendix B
for the U(1) case, and Appendix C for the Z2 case.

A. U(1) PSG solution

The generic form of U(1) PSG solution for any
symmetry operator O is given by GO(x, y, u) =
g3(ϕO(x, y, u))(ι̇τ

1)wO . Here, g3(ξ) should be read as
eι̇ξτ

3

, with ξ ∈ [0, 2π), and wO is an integer that takes the
values 0 and 1. Note that for O ∈ {T1, T2, R} consistent so-
lutions only exist for wO = 0. The solutions for ϕO(x, y, u)

are

ϕT1(x, y, u) = yθ, ϕT2(x, y, u) = 0, (20)

ϕR(x, y, u) = [xy − 1

2
x(x− 1)]θ, (21)

ϕI(x, y, u) = θ̃I(x+ y) + ρI(u), (22)
ϕT (x, y, u) = uπδwT ,0. (23)

The parameters in the above equations are given in Ap-
pendix B. In total, we enumerated 17 distinct U(1) PSG
classes which are listed in Table I.

B. Z2 PSG solution

In the Z2 case, the GO are generic SU(2) matrices. A set
of gauge inequivalent solutions is given by

GT1
(x, y, u) = ηyτ0, GT2

(x, y, u) = τ0, (24)

GR(x, y, u) = ηxy−
1
2x(x−1)τ0, (25)

GI(x, y, u) = ηx+yηu+1
I τ0, (26)

GT (x, y, u) = ηu+1
T I gT , gT ∈

{
τ0, ι̇τ2

}
. (27)

Taking only lattice symmetries into account, the number of the
gauge inequivalent Ansätze is classified by the integer (binary)
parameters η, ηI , yielding 22 = 4 distinct classes. Inclusion
of time-reversal leads to 22 × 4 = 16 PSG classes, as the
integer ηT I can take values 0 or 1. However, the solutions
with gT = τ0 and ηT I = 1 yield vanishing Ansätze, so we
can effectively consider a total of 22 × 3 = 12 PSG classes
which lead to fully symmetric QSLs.

V. SHORT RANGED MEAN-FIELD ANSÄTZE

In this section, we explicitly construct and discuss all mean-
field Ansätze for first nearest neighbors (1NN) amplitudes ac-
cording to the PSG symmetry conditions derived in the pre-
vious section. As shown in Fig. 1, there are three symmetry
inequivalent 1NN bonds, which are referred to as red, blue,
and green bonds in the remainder of the paper. Inserting the
gauge inequivalent PSG representationsGO in Eq. (8) enables
the construction of the mean-field matrices urr′ according to
the desired symmetry. A similar yet one-site condition can
be used for the Lagrange multiplier aµ(r). By an Ansatz, we
refer to the pair (urr′ , aµ(r)). We present the U(1) Ansätze
first, followed by the Z2 states in the later subsection. A con-
cise summary of the general transformation rules Eq. (8) for
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(a)

(b)

FIG. 2. (a) Illustration of SU(2) fluxes on the maple-leaf lat-
tice. Note that all fluxes are defined starting from the same lat-
tice site marked by a red star. The two stars are therefore thought
of as equivalent. (b) The green (blue) hexagon depicts the first
(extended) Brillouin zone. The extended Brillouin zone is ob-
tained via scaling by a factor of

√
7 and rotation by an angle ϕ =

arccos 5

2
√
7

w.r.t. the first Brillouin zone. The orange rectangular
region shows the reduced Brillouin zone corresponding to Ansätze
which double the unit cell along T1. The high symmetry points are
Γ(0, 0), X( 5π

14
√

3
, π
14
), M( π

7
√
3
, 3π

7
), Y (− 3π

14
√
3
, 5π
14
), K( 4π

7
√
3
, 8π
21
),

K′( 2π√
3
, 2π

3
) and M ′( 2π√

3
, 0).

the Z2 states is shown in Fig. 14. Appendix E contains the
results for mean-field models up to third nearest neighbors.

A. U(1) mean-field Ansätze

We divide the U(1) Ansätze in four classes labeled by UA,
UB, UC and UD corresponding to the different PSG labels

FIG. 3. Flux pattern for the Ansatz classes UA and UB. These
classes share the common property that all red bonds vanish. The
flux through the hexagons denoted by ϕh, and the blue bonds differ
for specific class members and are further specified in the main text.

(wT , wI) = (0, 0), (0, 1), (1, 0) and (1, 1), respectively.

1. wI = 0 and wT = 0 (class UA)

The Ansatz matrices for this class are given by

u121g = u341g = u561g = u231g = u451g = u611g = ι̇χ0
1gτ

0 + χ3
1gτ

3,

u141b = u361b = u521b = ι̇χ0
1bτ

0 + χ3
1bτ

3,

uuu
′

1r = 0, aµ(u) = 0,

2 tan−1

(
−χ

3
1b

χ0
1b

)
+ θ̃I = π.

(28)
Applying N successive translations along T1 will modify u141b
and u361b according to

u141b ≡ u(x,y,1),(x,y+1,4)

TN
1→ g3(−3Nθ̃I)u(x+N,y,1),(x+N,y+1,4)

= g3(−3Nθ̃I)u141b ,
u361b ≡ u(x,y,3),(x−1,y−1,6)

TN
1→ g3(3Nθ̃I)u(x+N,y,3),(x+N−1,y−1,6)

= g3(3Nθ̃I)u
36
1b

(29)

while all other bonds remain invariant. The realization of such
an Ansatz on a finite lattice needs the implementation of the
following constraint

θ̃I =
m

n
π, with m,n ∈ Z. (30)
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FIG. 4. Flux pattern for the Ansatz UB03. The arrows on the lines
denote the orientation of the bonds. The triangles are pierced by
nontrivial flux ϕbg which is defined for an anticlockwise rotation.
Triangles for which the circulation goes clockwise carry negative flux
−ϕbg and here drawn in blue.

Members of this class will be labeled as

UA[m,n]. (31)

Since uuu
′

1r = 0, all the red bonds vanish for 1NNs and the
only SU(2) flux ϕh [see Fig. 2(a) for the definition of the
different fluxes] piercing through the central hexagon as de-
picted in Fig. 3. The precise flux value is determined by the
mean-field parameters χ0/3

1g .

2. wI = 1 and wT = 0 (class UB)

We label this class as

UBnpI , (32)

where the classifying quantum numbers are n ∈ {0, 1}, and
pI ∈ {0, 1, 2, 3}. The coupling matrices are

u121g = u341g = u561g = ι̇χ0
1gτ

0 + χ3
1gτ

3,

u231g = u451g = u611g = −g3(pIπ/3)(u121g)†,
u141b = u361b = u521b = ι̇χ0

1bτ
0 + χ3

1bτ
3,

u141b = −ηg3(pIπ)u141b ,

uuu
′

1r = 0, aµ(u) = 0.

(33)

where we denote g3(nπ) = η. The spatial dependence of u141b
and u361b is given by

ηNu141b(x+N, y) = u141b(x, y),

ηNu361b(x+N, y) = u361b(x, y).
(34)

FIG. 5. Flux pattern for the Ansatz UB00. The green lines denote
bonds for which the coupling matrices are multiplied by −1.

Therefore, the realization of an Ansatz with η = −1 re-
quires a doubling of the unit cell. Like in the UA class, only
the loop operator corresponding to the hexagons is finite with

Pϕh
∝ g3((pI + 1)π). (35)

The gauge inequivalent Ansätze in this class are as follows:
For η = +1 with ϕh = 0 an Ansatz has to obey

u121g = u341g = u561g = u231g = u451g = u611g = χ1gτ
3,

u141b = u361b = u521b = ι̇χ0
1bτ

0 + χ3
1bτ

3,

uuu
′

1r = 0.

(36)

An appropriate gauge transformation sets χ0
1g = 0 and we

redefine χ3
1g = χ1g . This state is then labeled as UB03 and

shown in Fig. 4. Note that for 1NN pI = 3 and pI = 1 lead
to the same result.

For η = +1 with ϕh = π the Ansätze are

u121g = u341g = u561g = −u231g = −u451g = −u611g = χ1gτ
3,

uuu
′

1b = 0, uuu
′

1r = 0.
(37)

We label this state as UB00 where pI = 0. Notice that this
configuration corresponds to the π-flux hexagonal plaquette
singlet state as shown in Fig. 5. pI = 2 gives the same state
for 1NN.

For η = −1 an Ansatz with ϕh = π appears for pI = 0
labelled by UB10 and is given by

u121g = u341g = u561g = −u231g = −u451g = −u611g = χ1gτ
3,

u141b = u361b = u521b = ι̇χ0
1bτ

0 + χ3
1bτ

3, uuu
′

1r = 0,
(38)

and shown in Fig. 6. An Ansatz with pI = 2 is gauge equiva-
lent to UB10 for 1NN.
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FIG. 6. Flux pattern for the Ansatz UB10. The green and blue lines
denote where the coupling matrices are multiplied by a sign factor
−1. The arrows on the lines denote the orientation of the bonds. With
η = −1 one has a doubling of the unit cell which is enclosed by the
dashed lines. The triangles are pierced by nontrivial flux ϕbg which
is defined for an anticlockwise rotation. Triangles for which the cir-
culation goes clockwise carry negative flux −ϕbg and here drawn in
blue. The hexagons carry a π flux.

Ansätze for η = −1 with ϕh = 0 appear for pI = 3 and are
labelled by UB13. The matrices are given by

u121g = u341g = u561g = u231g = u451g = u611g = χ1gτ
3,

uuu
′

1b = 0, uuu
′

1r = 0.
(39)

Such an Ansatz corresponds to the 0-flux hexagonal plaquette
singlet state. pI = 1 yields the same state for 1NN. This
state is effectively the same as for η = +1 as the mean-field
amplitudes on the blue bonds vanish. Notice that for both,
0- and π-flux, hexagonal singlet plaquette Ansätze the IGG is
SU(2).

3. wI = 0 and wT = 1 (class UC)

This class is labeled as

UCnnI (40)

with n, nI ∈ {0, 1}. We use the shorthand notation η =
g3(nπ) and ηI = g3(nIπ). The coupling matrices are de-
termined as

u121g = ηIu
23
1g = u341g = ηIu

45
1g = u561g = ηIu

61
1g = χ1gτ

3,

u141b = u361b = u521b = χ1bτ
3, u141b = ηηI(u

14
1b)

†,

u131r = u241r = ηu351r = u461r = ηu511r = u621r = χ1rτ
3,

a3(u) ̸= 0, a1, a2 = 0.
(41)

FIG. 7. Flux pattern (π, ∗, 0, ∗, ∗, π) for the Ansatz class UC01 given
by Eq. (44). The green lines denote where the coupling matrices are
multiplied by ηI = −1.

The spatial dependence is given by

ηNu141b(x+N, y) = u141b(x, y),

ηNu361b(x+N, y) = u361b(x, y),

ηNu241r(x+N, y) = u241r(x, y),

ηNu131r(x+N, y) = u131r(x, y),

ηNu461r(x+N, y) = u461r(x, y),

ηNu511r(x+N, y) = u511r(x, y),

(42)

while all other bonds are translation invariant. The Ansätze
for η = +1 and ηI = +1 are

u121g = u231g = u341g = u451g = u561g = u611g = χ1gτ
3,

u141b = u361b = u521b = χ1bτ
3,

u131r = u241r = u351r = u461r = u511r = u621r = χ1rτ
3,

a3(u) ̸= 0, a1, a2 = 0,

(43)

while for ηI = −1

u121g = −u231g = u341g = −u451g = u561g = −u611g = χ1gτ
3,

uuu1b = 0,

u131r = u241r = u351r = u461r = u511r = u621r = χ1rτ
3,

a3(u) ̸= 0, a1, a2 = 0.
(44)

In the notation of Eq. (40), the above two states are la-
belled as UC00 and UC01, respectively. Another way of
describing these states is by specifying their flux structures
(ϕh, ϕt1 , ϕt2 , ϕt3 , ϕt4 , ϕr). The definition of these different
fluxes is shown in Fig. 2. For the two previously discussed
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FIG. 8. Flux pattern (0, ∗, 0, ∗, ∗, π) for the Ansatz class UC10 given
by Eq. (45). The red lines denote where the coupling matrices are
multiplied by the sign factor η = −1. This sign factor leads to a
doubled unit cell which is enclosed by the dashed lines.

states this alternative notation leads to (0, 0, 0, 0, 0, 0) and
(π, ∗, 0, ∗, ∗, π), respectively. The ‘∗’-symbol indicates the
absence of a well defined flux operator of the associated loop.
Figure 7 shows the flux pattern of the UC01 class.

The mean-field amplitudes for the η = −1 Ansatz are given
by

u121g = u231g = u341g = u451g = u561g = u611g = χ1gτ
3,

u131r = u241r = −u351r = u461r = −u511r = u621r = χ1rτ
3,

uuu1b = 0, a3(u) ̸= 0, a1, a2 = 0,

(45)

for ηI = +1. This state is classified as UC10 with the associ-
ated flux pattern (0, ∗, 0, ∗, ∗, π) which is shown in Fig. 8. In
the case that ηI = −1 one finds

u121g = −u231g = u341g = −u451g = u561g = −u611g = χ1gτ
3,

u141b = u361b = u521b = χ1bτ
3,

u131r = u241r = −u351r = u461r = −u511r = u621r = χ1rτ
3,

a3(u) ̸= 0, a1, a2 = 0.
(46)

We will call this Ansatz UC11. It features the flux pattern
(π, 0, 0, 0, 0, 0), as depicted in Fig. 9.

4. wI = 1 and wT = 1 (class UD)

Members of this class are labeled as

UDnnI . (47)

FIG. 9. Flux pattern (π, 0, 0, 0, 0, 0) for the Ansatz class UC11 given
by Eq. (46). The red, blue and green lines denote the bonds in which
the coupling matrices are multiplied by a factor −1. The η = −1
factor leads to a doubled unit cell which is enclosed by the dashed
lines.

The transformation properties of the mean-field amplitudes
are

u121g = −ηIu231g = u341g = −ηIu451g = u561g = −ηIu611g = χ1gτ
3,

u141b = u361b = u521b = χ1bτ
3, u141b = −ηηIu141b ,

u131r = −u241r = ηu351r = −u461r = ηu511r = −u621r = χ1rτ
3,

aµ(u) = 0.
(48)

The spatial dependence is the same as that of the UC-class
[see Eq. (42)]. The following Ansätze are for η = +1 and
ηI = +1

u121g = −u231g = u341g = −u451g = u561g = −u611g = χ1gτ
3,

uuu
′

1b = 0,

u131r = −u241r = u351r = −u461r = u511r = −u621r = χ1rτ
3.

(49)
The ones corresponding to ηI = −1 are

u121g = u231g = u341g = u451g = u561g = u611g = χ1gτ
3,

u141b = u361b = u521b = χ1bτ
3,

u131r = −u241r = u351r = −u461r = u511r = −u621r = χ1rτ
3.

(50)

UD00 and UD01 denote the two states above with their asso-
ciated flux structures presented in Fig. 10 and Fig. 11, respec-
tively.
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FIG. 10. Flux pattern for the Ansatz class UD00 given by Eq. (49).
The red and green lines denote where the coupling matrices are mul-
tiplied by sign factors.

FIG. 11. Flux pattern for the Ansatz class UD01 given by Eq. (50).
The red lines denote where the coupling matrices are multiplied by
−1.

In the case of η = −1 the Ansätze for ηI = +1 are

u121g = −u231g = u341g = −u451g = u561g = −u611g = χ1gτ
3,

u141b = u361b = u521b = χ1bτ
3,

u131r = −u241r = −u351r = −u461r = −u511r = −u621r = χ1rτ
3,
(51)

FIG. 12. Flux pattern for the Ansatz class UD10 given by Eq. (51).
The red and green lines denote where the coupling matrices are mul-
tiplied by sign factors. The dashed lines enclose the doubled unit
cell.

while those belonging to ηI = −1 are

u121g = u231g = u341g = u451g = u561g = u611g = χ1gτ
3,

uuu
′

1b = 0,

u131r = −u241r = −u351r = −u461r = −u511r = −u621r = χ1rτ
3.
(52)

These states are labelled as UD10 (flux structure shown in
Fig. 12) and UD11 (flux structure shown in Fig. 13), respec-
tively.

Label 1NN Onsite
u1g u1b u1r

Z0002 χ1gτ
3 +∆1gτ

1 χ1bτ
3 +∆1bτ

1 χ1rτ
3 +∆1rτ

1 τ3

Z0102 χ1gτ
3 +∆1gτ

1 0 χ1rτ
3 +∆1rτ

1 τ3

Z1002 χ1gτ
3 +∆1gτ

1 0 χ1rτ
3 +∆1rτ

1 τ3

Z1102 χ1gτ
3 +∆1gτ

1 χ1bτ
3 +∆1bτ

1 χ1rτ
3 +∆1rτ

1 τ3

Z0012 ι̇χ1gτ
0 +∆1gτ

2 ∆1bτ
2 χ1rτ

3 +∆1rτ
1 τ3

Z0112 ι̇χ1gτ
0 +∆1gτ

2 ι̇χ1bτ
0 χ1rτ

3 +∆1rτ
1 τ3

Z1012 ι̇χ1gτ
0 +∆1gτ

2 ι̇χ1bτ
0 χ1rτ

3 +∆1rτ
1 τ3

Z1112 ι̇χ1gτ
0 +∆1gτ

2 ∆1bτ
2 χ1rτ

3 +∆1rτ
1 τ3

TABLE II. First nearest-neighbor symmetric Z2 mean-field Ansätze
as they are classified in the main text. The allowed mean-field ampli-
tudes for the three symmetry inequivalent bonds are listed for each
class, together with the allowed onsite terms.
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FIG. 13. Flux pattern for the Ansatz class UD11 given by Eq. (52).
The red and green lines denote where the coupling matrices are mul-
tiplied by sign factors. The dashed lines enclose the enlarged unit
cell.

B. Z2 mean-field Ansätze

All the Ansätze with IGG ≃ Z2 have been listed in Ta-
ble II. The corresponding sign structures, depicted in Fig. 14,
are given as

u121g = ηIu
23
1g = u341g = ηIu

45
1g = u561g = ηIu

61
1g = u1g

u141b = u361b = u521b = u1b

u131r = u241r = ηu351r = u461r = ηu511r = u621r = u1r.

(53)

The spatial dependence is the same as for the UC and UD
classes [see Eq. (42)]. We adopt the following labelling
scheme for the Z2 Ansätze:

ZηηIηT Iγ. (54)

Here, we denote the positive signs of the η-parameters by ‘0’
and the negative by ‘1’ accordingly. The γ label corresponds
to the representation of time-reversal, i.e., gT ∝ τγ .

The first four Ansätze in the Table II correspond to a homo-
geneous representation of time-reversal GT (x, y, u) = ι̇τ2.
Notice that the Z2 state labelled by Z0002 belongs to the
non-projective class, i.e., the linear representation of the space
group with uniform real hopping and s-wave pairing. From
the given structures of these four Ansätze one sees the connec-
tion to their parent U(1) states which is highlighted in Fig. 15.
Z0002, Z0102, Z1002 and Z1102 appear in the vicinity of the
U(1)-Ansätze labelled by UC00, UC01, UC10 and UC11, re-
spectively.

The next four Z2 Ansätze contain a site dependent repre-
sentation of time-reversal GT (x, y, u) = (−1)u+1ι̇τ2. The

connection to the parent U(1) states is not apparent here but
it can be established by using appropriate gauge transforma-
tions. Let us consider the Ansatz labelled by Z0012. First
all pairing terms have to be set equal to zero ∆1g = 0,
∆1b = 0 and ∆1r = 0 which restores the continuous
U(1) symmetry. Then, using a gauge transformation of the
form W (x, y, u) = −ι̇τ3δmod(u,2),0 transforms it into UC01.
On the other hand, it transforms into UD01 if one uses a
gauge transformation of the formW (x, y, u) = ι̇τ1δmod(u,2),0
which sets χ1g = 0. Therefore, UC01 and UD01 share the
same Z2 descendant given by Z0012. Similarly, one can
verify that UC00 and UD00 descent to Z0112, UC11 and
UD11 to Z1012, and UC10 and UD10 to Z1112. Finally,
for GT (x, y, u) = (−1)u+1τ0, Z2 Ansätze with first nearest
neighbour amplitudes cannot be realized.

VI. SPINON BANDS, DYNAMICAL AND STATIC SPIN
STRUCTURE FACTORS

In this section, we summarize the properties of the spinon
excitation spectrum and dynamical structure factors of dif-
ferent U(1) Ansätze. We adopt the gauge choice given in
Sec. V A. In Fig. 16, we present the spinon spectrum ob-
tained upon fixing the magnitude of the symmetry allowed
first-neighbor hoppings equal to unity, and all further neigh-
bor hoppings fixed to zero. We plot the energy along the high
symmetry path, which is Γ→M → K → Γ of the first Bril-
louin zone [green hexagon in Fig. 2(b)] for the Ansätze realiz-
able in a single unit cell and Γ→ X → M → Y → Γ→ M
of the reduced Brillouin zone [yellow rectangle in Fig. 2(b)]
for the Ansätze realizable in a doubled unit cell.

• UC00: This state is described by uniform hopping pat-
tern and thus its spectrum is that of the maple-leaf lat-
tice band structure [11]. This state has a Dirac point at
the center of the Brillouin zone [Fig. 16(a)]. However,
the presence of the Dirac like dispersion is an artifact of
fixing all first-neighbor hoppings to one. In general, for
other choices of hoppings the spectrum can be gapped
or feature a Fermi surface.

• UC01: The spectrum consists of three doubly degener-
ate bands [Fig.16(b)]. The Fermi level is such that the
lower half of the middle band is filled which gives rise
to a Fermi surface.

• UD00: A nodal Fermi surface is observed in this Ansatz
[Fig. 16(e)]. However, this is not a robust generic prop-
erty as it gets gapped out upon varying the hopping am-
plitudes.

• UD11: This state consists of quasi-flat bands and fea-
tures a nodal Fermi surface [Fig. 16(h)] for the given
choice of parameters. It can nonetheless be completely
gapped out for other choices of hopping amplitudes.

• UC10, UC11, UD01, UD10, UB03, and UB10: These
states comprise of gapped excitations for a generic
choices of hopping parameters, however, among these
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FIG. 14. Transformation pattern for the first neighbor bonds. The labeling convention is that site 1 sits at the twelve o’clock position and
increases counterclockwise (cfr Fig. 1). The form of the independent Ansatz matrices u12

1g, u
14
1b and u13

1r for the Z2 states is given in Table IV
and their transformation rules are depicted in (a), (b), and (c), respectively. Different shadings of the color encode the different phase factors
η, ηI and their products.

FIG. 15. Different PSG classes and the connection between the par-
ent U(1) and their descendent Z2 states.

the UB03 Ansatz shows Dirac dispersion for some
choices of hopping parameters.

Further characterization can be made by studying the spin-
spin correlations via the spin structure factors. Here, we con-

sider both the dynamical and equal-time structure factors, and
for the latter also assess the impact of Gutzwiller projection.
We first discuss the dynamical structure factor (DSF) as de-
fined in Eq. (G1) [see Appendix G for details]. In Fig. 17,
we show the DSF for different U(1) Ansätze along the high
symmetry directions Γ → M ′ → K ′ → Γ of the extended
Brillouin zone. For the UC00 state [see Fig. 17(a)], we no-
tice the appearance of low-energy intensity around the Γ-point
which is expected due to the presence of a Dirac point. In
addition, there appear two principal dispersive variations in
intensity. Among these, the dispersive continuum at lower en-
ergy occurs due to the scattering process from the three filled
bands to the first empty band, while the intensity variation at
higher energy is due the scattering from the filled bands to the
dispersive uppermost empty band. For the UC01 state [see
Fig. 17(b)], the dome like variation at lower energies is due to
the contribution from excitations near the Fermi surface. Be-
sides, there appears a flat strong intensity ontinuum at higher
energies on a diffuse low intensity background, and this can
be ascribed to scattering processes between the lowest (filled)
mode and the highest (empty) mode. As the UC10 state con-
sists of all quasi-flat modes, this reflects in the observed flat
continuum [see Fig. 17(c)]. Similar inferences can be drawn
for UC11, UD10 and UD11, shown in Figs. 17(d), (g) and (h),
respectively. However, due to the presence of few dispersive
modes above and below the Fermi level, a very low intensity
diffusive background can be noted for UC11. For UD11, the
remnant finite intensity down to zero energy at the Γ point is
due to the excitations around the Fermi surface. Similar con-
sequence of the nodal Fermi surface can also be found in case
of UD00 state [see Fig. 17(e)]. Here, the horizontal intensi-
ties at ω ≈ 3, 4.5, 6, are due to the excitations between the
quasi-flat bands in the segment MK.

While the calculation of the DSF is performed at the mean-
field level given the numerical complexities involved, one can
still assess the effects of gauge fluctuations beyond mean-field
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FIG. 16. Spinon band structures for the different U(1) Ansätze with
nearest neighbor hoppings only, corresponding to the gauge shown
in the manuscript figures. The magnitude of the symmetry allowed
hoppings is set to one. The gray line marks the Fermi level.

in the equal-time (frequency integrated) structure factor which
is given by

S(k) =
1

Ns

∑
i, j

eι̇k·(ri−rj)⟨Ψ|Ŝi · Ŝj |Ψ⟩ , (55)

Here, the wave function |Ψ⟩ is defined by Gutzwiller-
projecting the fermionic wave function to spin space, i.e., en-
forcing single fermionic occupation of each lattice sites. The
Gutzwiller projection is treated numerically by means of a
suitable Monte Carlo framework [80]. The results obtained
with and without projection are compared in Fig. 18 and 19 for
the variousU(1) Ansätze. The unprojected S(k) show a rather
featureless ring of intensity encircling the extended Brillouin
zone. The effects of gauge fluctuations introduced by the
Gutzwiller projection are pronounced and one observes the
appearance of well-defined momentum modulated features in
the projected structure factors. These are triangulated patterns

around the K ′ points, featuring either a homogeneous inten-
sity distribution or soft maxima at the triangular vertices. This
pattern is qualitatively similar to that of the dimerized hexag-
onal singlet state of Ref. [18]. It is interesting to note that
the projected S(k) of the UC01 state most closely resembles
that obtained from a recent pf-FRG calculation [16] within
the QSL phase, possibly hinting at the UC01 Fermi surface
state providing a description of the spin liquid nature. Other
states with similar structure factors are gappedU(1) QSLs and
therefore unstable [81]. A generic feature of all Ansätze is the
absence of pinch points in their projected S(k) in contrast to
the Dirac spin liquid on the kagome lattice [58].

VII. DISCUSSION AND OUTLOOK

In this work we have performed a projective symmetry
group classification of spin-1/2 symmetric quantum spin liq-
uids with different gauge groups on the maple-leaf lattice.
Employing the Abrikosov fermion representation we obtain
17 U(1) and 12 Z2 distinct PSGs. The restriction of mean-
field Ansätze to short-range (first-neighbor) singlet ampli-
tudes, of relevance to concerned models, leads to only 12
U(1) and 8 Z2 distinct phases. In light of recent numerical
studies pointing to QSL ground states in extended S = 1/2
Heisenberg models on the maple-leaf lattice, our classifica-
tion thus sets the stage for future works aimed at character-
izing their precise microscopic nature. The Gutzwiller pro-
jected static structure factors for the different variational states
could be compared to those obtained from unconstrained nu-
merical approaches to narrow down and identify promising
candidate ground states. Subsequently, it would be worth-
while to perform a variational Monte Carlo study towards op-
timizing the corresponding Gutzwiller projected wave func-
tions and assess the energetic competitiveness of the U(1)
and Z2 states for Hamiltonian parameter regimes displaying
QSL ground states. The evidence of a U(1) Dirac spin liquid
ground state on the triangular lattice [6, 7] and on its 1/4-site
depleted version, the kagome lattice [2, 3], poses the inter-
esting question concerning the potential stability of the Dirac
state under a periodic site depletion. Viewed from this per-
spective, it would be interesting to gauge its stability on the
maple-leaf lattice which is an intermediate depletion density,
being a 1/5-site depletion of the triangular lattice. An alter-
nate treatment of these Ansätze would be their analysis within
the pseudo-fermion functional renormalization group frame-
work [82] by using the low-energy effective vertex functions
(instead of the bare couplings) within a self-consistent Fock-
like mean-field scheme to compute low-energy theories for
emergent spinon excitations [83, 84]. Within the parameter
space of nearest-neighbor couplings, a QSL has been located
between magnetic and dimer orders, which fuels the specula-
tion of its possible origin from a proximate deconfined quan-
tum critical point, and the scenario of a gapless spin liquid
as a plausible candidate. Furthermore, since Ref. [20] reports
nonmagnetic behavior arising from quantum melting of non-
coplanar orders in a S = 1/2 J1-J2-J3 Heisenberg model, it
would be important to extend the current analysis to classify
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FIG. 17. Dynamical structure factor plotted along the high-symmetry path [see Fig. 2(b)] in the extended Brillouin zone for a system size of
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FIG. 18. Equal-time spin structure factors of the UB and UC states (with all symmetry allowed hopping amplitudes set to one), as obtained
with the unprojected and projected fermionic wave functions within VMC. The color plot shows the isotropic structure factor S(k) in the
kx − ky plane. The momenta are in units of 2π. The results have been obtained on a 6 × 12 × 12 (= 864)-site finite cluster with all the
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FIG. 19. Equal-time spin structure factors of the UD states (with all symmetry allowed hopping amplitudes are set to one), as obtained with
the unprojected and projected fermionic wave functions within VMC. The color plot shows the isotropic structure factor S(k) in the kx − ky

plane. The momenta are in units of 2π. The results have been obtained on a 6× 12× 12 (= 864)-site finite cluster with all the symmetries of
the lattice. The red hexagons with solid (dashed) lines delimits the first (extended) Brillouin zones.
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chiral spin liquids. Given the recent reporting of QSL behav-
ior in a model featuring mixed ferro- and antiferromagnetic
couplings [18], the incorporation of symmetry allowed triplet
fields in the projected wave functions would prove essential to
accurately capture the ground state behavior. Finally, it would
be interesting to identify the respective parent QSLs whose
potential instabilities yield the plethora of dimer orders that
have been reported in the generalized parameter space of the
nearest-neighbor Heisenberg model.

VIII. ACKNOWLEDGMENTS

Y.I. thanks S. Bhattacharjee, M. Gembé, P. Ghosh, L. Gre-
sista, C. Hickey, T. Müller, J. Naumann, K. Penc, R. Sama-
jdar, H.-J. Schmidt, P. Schmoll, S. Trebst, and A. Wietek
for helpful discussions and collaboration on related projects.
J.S. received financial support from the Theory of Quan-
tum Matter Unit of the Okinawa Institute of Science and
Technology Graduate University (OIST). The work of Y.I.
was performed, in part, at the Aspen Center for Physics,
which is supported by National Science Foundation Grant
No. PHY-2210452. The participation of Y.I. at the As-
pen Center for Physics was supported by the Simons Foun-
dation. The research of Y.I. was carried out, in part, at
the Kavli Institute for Theoretical Physics in Santa Bar-
bara during the “A New Spin on Quantum Magnets” pro-
gram in summer 2023, supported by the National Science
Foundation under Grant No. NSF PHY-1748958. Y.I. ac-
knowledges support from the ICTP through the Associates
Programme and from the Simons Foundation through Grant
No. 284558FY19, IIT Madras through the Institute of Em-
inence (IoE) program for establishing QuCenDiEM (Project
No. SP22231244CPETWOQCDHOC), and the International
Centre for Theoretical Sciences (ICTS), Bengaluru, India dur-
ing a visit for participating in the program Frustrated Met-
als and Insulators (Code No. ICTS/frumi2022/9). Y.I. ac-
knowledges the use of the computing resources at HPCE, IIT
Madras. The work in Würzburg was supported by DFG Grant
No. 258499086-SFB 1170 and the Würzburg-Dresden Clus-
ter of Excellence on Complexity and Topology in Quantum
Matter, Grant No. 390858490-EXC 2147. F. F. and R. T.
thank IIT Madras for a Visiting Researcher position under the
IoE program which facilitated the completion of this work.
F.F. acknowledges support by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) for funding
through TRR 288 – 422213477.

Appendix A: Generic gauge conditions

The algebraic conditions Eqs. (11)–(19) written in terms of
PSG representations yield

GT1
(x, y, u)GT2

(x− 1, y, u)

G−1
T1

(x, y − 1, u)G−1
T2

(x, y, u) = eι̇θτ
3

/ητ0 (A1)

GI(x, y, u)GI(−x,−y, I(u)) = eι̇θIτ
3

/ηIτ
0 (A2)

G−1
T1

(x+ 1, y, u)GI(x+ 1, y, u)

G−1
T1

(−x,−y, I(u))G−1
I (x, y, u) = eι̇θ̃Iτ

3

/ηIx
τ0 (A3)

G−1
T2

(x, y + 1, u)GI(x, y + 1, u)

G−1
T2

(−x,−y, I(u))G−1
I (x, y, u) = eι̇θIy τ

3

/ηIyτ
0 (A4)

GR(x, y, u)GR(y − x,−x,R2(u))

GR(−y, x− y,R(u)) = eι̇θRτ3

/ηRτ
0 (A5)

G−1
R (−y, x− y,R(u))GT1

(−y, x− y,R(u))
GR(−y − 1, x− y,R(u))

GT1
(x+ 1, y + 1, u)GT2

(x, y + 1, u) = eι̇θRxτ
3

/ηRx
τ0

(A6)

G−1
R (−y, x− y,R(u))G−1

T2
(−y, x− y + 1, R(u))

GR(−y, x− y + 1, R(u))GT1
(x+ 1, y, u) = eι̇θRy τ

3

/ηRy
τ0

(A7)

G−1
R (−y, x− y,R(u))GI(−y, x− y,R(u))

GR(y, y − x,RI(u))GI(−x.− y, I(u)) = eι̇θRIτ
3

/ηRIτ
0

(A8)

GT (x, y, u)GO(x, y, u)

G−1
T (O−1(x, y, u))G−1

O (x, y, u) = eι̇θT Oτ3

/ηT Oτ
0 (A9)

[GT (x, y, u)]
2 = eι̇θT τ3

/ηT τ
0, (A10)

where on the right-hand side of the equations the entry corre-
sponds to the U(1) extension and the second entry denotes the
Z2 case.

Appendix B: U(1) PSG

The canonical form of a U(1) Ansatz is given by,

uij = ι̇Imχijτ
0 + Reχijτ

3 (B1)

Correspondingly, the loop operators take the form PC =

uijujk . . . uli = eι̇ξτ
3 ≡ g3(ξ). The structure of the gauge

transformation which keeps the canonical form intact is

GO(x, y, u) = g3(ϕO(x, y, u))(ι̇τ
1)wO , (B2)

where wO can take values 0, 1 and O ∈ {T1, T2, R, I, T }.

1. Lattice Symmetries

For O ∈ {T1, T2}, there are three cases (i): (wT1 , wT2) =
(0, 0), (ii): (wT1

, wT2
) = (1, 0) and (iii): (wT1

, wT2
) =

(1, 1). The cases (ii) and (iii) can not satisfy Eq. (A7) and
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Eq. (A6), respectively. Therefore, we need to consider only
case (i), i.e., wT1

= wT2
= 0. Using the local gauge freedom

one can choose

ϕT1
(x, 0, u) = ϕT2

(x, y, u) = 0. (B3)

Using this, Eq. (A1) gives

GT1 = g3(yθ), GT2 = τ0. (B4)

Let us now define ∆iϕO(x, y, u) = ϕO(x, y, u) −
ϕO[T

−1
i (x, y, u)]. With this definition and Eq. (B4) we can

recast Eq. (A3) and Eq. (A4) as

∆1ϕI(x, y, u) = θ̃I + (1− (−1)wI )yθ,

∆2ϕI(x, y, u) = θIy
.

(B5)

Generally, all solutions must obey the following consistency
relation

∆1ϕO(x, y, u) + ∆2ϕO[T
−1
1 (x, y, u)]

= ∆2ϕO(x, y, u) + ∆1ϕO[T
−1
2 (x, y, u)].

(B6)
For O = I and insertion of Eq. (B5) in the above relation
yields

(1− (−1)wI )θ = 0, (B7)

which means for wI = 1 we have 2θ = 0. Note that there
is no constraint on θ for wI = 0. Substituting this back in
Eq. (B5), we obtain the following solution for ϕI

ϕI(x, y, u) = xθ̃I + yθIy + ρI(u) (B8)

where ρI(u) = ϕI(0, 0, u). Using this solution (B8) in
Eq. (A2) gives

ρI(u) + (−1)wIρI(I(u)) = θI ,

(1 + (−1)wI )θ̃I = (1 + (−1)wI )θIy
= 0,

(B9)

which implies 2θ̃I = 2θIy
= 0 for wI = 1, while there is no

constraint on θ for wI = 0. From Eq. (A6) and Eq. (A7) one
obtains relations similar to Eq. (B5)

∆1ϕR(x, y, u) = yθ + (−1)wR((1− x)θ − θRx
),

∆2ϕR(x, y, u) = (−1)wR(xθ + θRy
).

(B10)

The consistency condition (B6) for O = R imposes the fol-
lowing restriction on θ

(1− (−1)wR)θ = 0, (B11)

which means for wR = 1, 2θ = 0, while there is again no
constraint on θ for wR = 0. Substituting this in Eq. (B10),
yields the following solution for ϕR

ϕR(x, y, u) = x

[
y − (−1)wR

2
(x− 1)

]
θ

− (−1)wR(xθRx
− yθRy

) + ρR(u).

(B12)

Notice that wR = 1 does not satisfy Eq. (A5). Furthermore,
Eq. (A5) gives the following condition for wR = 0

ρR(u) + ρR(R
2(u)) + ρR(R(u)) = θR. (B13)

Under a local gauge transformation W (x, y, u), the pro-
jective representation GO transforms as GO(x, y, u) →
W †(x, y, u)GO(x, y, u)W [O−1(x, y, u)]. A local gauge
transformation of the form

W (x, y, u) = g3(xξx + yξy) (B14)

does not change the structure of the GTi besides a negligible
global phase which has no consequence on the Ansätze. It
will, however, modify the phases θRx , θRy , θ̃I and θIy such
that we can use a suitable choice to set

θRx
= θRy

= 0. (B15)

Then Eq. (A8) yields

for wI = 0:

θ̃I = θIy =
1

3
(θ + 2πp), p = 0, 1, 2. (B16)

and for wI = 1:

θ̃I = θIy = θ, (B17)

ρI(u)− ρR(u) + (−1)wI (ρI(IR−1(u)) + ρR(I(u))) = θRI .
(B18)

Inserting Eq. (B16) and Eq. (B17), the solution for ϕI can be
rewritten as

ϕI(x, y, u) =
1

3
(θ+2πp)(x+y)δwI ,0+θ(x+y)δwI ,1+ρI(u).

(B19)
Furthermore, we are left with a sublattice-dependent gauge
transformation of the form

W (x, y, u) = g3(ξu). (B20)

Under such a transformation ρR,u transforms for u ∈ {1, 3, 5}
as

ρ̃R(1) = −ξ1 + ρR(1) + ξ5,

ρ̃R(3) = −ξ3 + ρR(3) + ξ1,

ρ̃R(5) = −ξ5 + ρR(5) + ξ3.

(B21)

We choose ξ1, ξ3 and ξ5 such that ρ̃R(1) = ρ̃R(3) = ρ̃R(5) =
ρR. This requires

ξ1 = ρR(1) + ξ5 − ρR,
ξ3 = ρR(1) + ρR(3) + ξ5 − 2ρR,

3ρR = ρR(1) + ρR(3) + ρR(5).

(B22)

Substituting Eq. (B13) in the last condition of the above equa-
tions, gives 3ρR = θR which implies

ρR =
1

3
(θR + 2πpR), with pR = 0, 1, 2. (B23)
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One can fix ρ̃R(2) = ρ̃R(4) = ρ̃R(6) = ρR similarly by the
following choices

ξ2 = ρR(2) + ξ6 − ρR,
ξ4 = ρR(4) + ρR(2) + ξ6 − 2ρR.

(B24)

Note that we are still left with unfixed ξ5 and ξ6. With a suit-
able gauge choice, one can set ρI(1) = 0. Let us fix the other
ρI(u) separately for wI = 0 and wI = 1:

a. wI = 0

In this case, using Eq. (B23), the relations given in Eq. (B9)
and Eq. (B18) are rewritten as

ρI(u) + ρI(I(u)) = θI ,

ρI(u) + ρI(IR−1(u)) = θRI .
(B25)

These two relations lead to

ρI(1) = ρI(3) = ρI(5) = 0,

ρI(2) = ρI(4) = ρI(6) = θI .
(B26)

b. wI = 1

In this case, using Eq. (B23), the relations given by Eq. (B9)
and Eq. (B18) are rewritten as

ρI(u)− ρI(I(u)) = θI ,

ρI(u)− ρI(IR−1(u)) = θRI + 2ρR.
(B27)

leading to

ρI(u) =
pI(u− 1)π

3
, with pI = 1, 2, 3. (B28)

This completes the gauge fixing procedure of the lattice group
operations.

2. Time-reversal

We proceed in finding the PSG solutions for time-reversal
symmetry. Using Eq. (A9) with O ∈ {T1, T2}, one gets

∆1ϕT (x, y, u) = θTx + [1− (−1)wT ]yθ

∆2ϕT (x, y, u) = θTy
.

(B29)

The consistency condition (B6) for O = T gives

[1− (−1)wT ]θ = 0, (B30)

which implies for wT = 1 that 2θ = 0. A solution for GT
can be obtained from Eq. (B29) as

ϕT (x, y, u) = xθTx
+ yθTy

+ ρT (u) . (B31)

Let us consider the remaining conditions for wT = 0 and
wT = 1 separately:

a. wT = 0

In this case, Eq. (A10) yields

2θTx = 2θTy = 0, ρT (u) =
θT
2

+ πnT (u), (B32)

with nT (u) = 0, 1.

From Eq (A9) with O = R we obtain

θTx = θTy , 3θTx = 0, (B33)

ρT (u)− ρT (R−1(u)) = θT R. (B34)

From Eq. (B32) and Eq. (B33) it follows

θTx
= θTy

= 0. (B35)

Finally, Eq (A9) with O = I gives

ρT (u)− (−1)wIρT (I(u)) = θT I . (B36)

Using Eq. (B32), Eq. (B34) and Eq. (B36), we can fix ρT (u)
as

ρT (1) = ρT (3) = ρT (5) = 0, (B37)
ρT (2) = ρT (4) = ρT (6) = π. (B38)

If wI = 0, one can set ρI(u) = θI/2, i.e., independent of the
sublattice u by using a sublattice dependent gauge transfor-
mation of the form W (x, y, u) = g3(θI/2)δmod(u,2),0 without
altering our previous results. As in the case of the lattice sym-
metries, a global phase has no impact and we can conveniently
set ρI(u) = 0.

b. wT = 1

Here, Eq. (A10) does not yield any constraint. From
Eq (A9) with O = R, and using the fact that 2θ = 0 for
wT = 1, we obtain

θTx = θTy , 3θTx = 0, (B39)

ρT (u)− ρT (R−1(u)) = θT R + 2ρR(u). (B40)

Furthermore, Eq (A9) with O = I for wI = 0 yields

2θTx
=

2

3
(θ + 2pπ) =⇒ θTx

=
1

3
(θ + 2pπ) + nπ, (B41)

ρT (u)− ρT (I(u)) = θT I + 2ρI(u). (B42)

Eq. (B39) and Eq. (B41) require θ = nπ. Using Eq. (B40)
and Eq. (B42), we can fix ρT (u) for wI = 0 as

ρT (u) ∈ {0, θT I − θ′T R, θ
′
T R, θT I ,−θ′T R, θT I + θ′T R},

(B43)

θ′T R = θ′T R + 2ρR =
2p′T Rπ

3
, p′T R = 0, 1, 2 (B44)

2θT I + 2θI = 0 =⇒ θT I = −θI + nIπ, nI = 0, 1.
(B45)
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Eq. (A9) with O = I for wI = 1 yields

ρT (u) + ρT (I(u)) = θT I +2ρI(u) = θT I +
2pI(u− 1)π

3
.

(B46)
This together with Eq. (B42) gives

ρT (u) ∈ {ρ1, θT I−ρ1, ρ1, θT I−ρ1,−ρ1, θT I−ρ1} (B47)

Notice that the wT = 1 solution for GT has a spatial depen-
dence. To remove this, similar to the wT = 0 case, we use a
gauge transformation of the formW (x, y, u) = g3(ξ(x, y, u))
with

ξ(x, y, u) =
θTx

(x+ y)

2
, (B48)

which yields the following

ϕ̃T (x, y, u) = ρT (u), (B49)

ϕ̃R(x, y, u) = [xy − 1

2
x(x− 1)]nπ + ρR(u) + nTx

πx,

(B50)

ϕ̃I(x, y, u) = nπ(x+ y) + ρI(u), nTx
= 0, 1. (B51)

This can be set to zero using a gauge transformation of the
form W (x, y, u) = g3((x+y)nTxπ). Furthermore, for wT =
1 we can choose a sublattice-dependent gauge transformation
of the form W (x, y, u) = g3(ξ(u)) with

ξ(u) =
ρT (u)

2
, (B52)

so that ρT (u) = 0. The advantage of such a choice is that the
mean-field amplitudes contain only real hopping values. For
wI = 0, in the new gauge we obtain

ρT (u) = 0, ρR(u) = ρR −
θ′T R

2
, (B53)

ρI(u) = θIδmod(u,2),0 − (−1)mod(u,2) θT I

2
. (B54)

Using Eq. (B45) one can rewrite Eq. (B54) as

ρI(u) =

(
−θI + nIπ

2

)
δmod(u,2),1

+

(
3θI − nIπ

2

)
δmod(u,2),0.

(B55)

For wI = 1, in the this gauge we obtain,

ρT (u) = 0, ρR(u) = ρR, (B56)

ρI(u) =
pI(u− 1)π

3
+
θT I

2
. (B57)

As the global phases do not have any impact on the Ansätze
we can discard them. For example, in Eq. (B53) and Eq. (B57)
we could set ρR − θ′

T R

2 = 0 and θT I
2 = 0, respectively. As

a summary, all the gauge inequivalent choices are listed in
Table I.

Appendix C: Z2 PSG

1. Lattice symmetry

Using the local gauge redundancy, the relation Eq. (A1)
leads to the solution for the projective gauge matrices for
O ∈ {T1, T2} as follows

GT1(x, y, u) = ηyτ0, GT2(x, y, u) = τ0 (C1)

Using Eq. (A3) and Eq. (A4) gives

GI(x, y, u) = ηxIx
ηyIy

gI(u). (C2)

The cyclic condition given by Eq. (A2) for I gives

gI(u)gI(I(u)) = ηIτ
0. (C3)

After coordinate transformation (x, y, u) → R−1(x, y, u)
Eq. (A6) and Eq. (A7) can be written as

GR(x, y, u) = ηRx
ηy−x+1GR(x− 1, y, u),

GR(x, y, u) = ηRyη
xGR(x, y − 1, u).

(C4)

These relations yield the solution for GR as follows

GR(x, y, u) = ηxRx
ηyRy

ηxy−
1
2x(x−1)gR(u). (C5)

The cyclic condition Eq. (A5) for R yields

gR(u)gR(R
2(u))gR(R(u)) = ηRτ

0. (C6)

Exploiting Eq. (A8) leads us to the following constraints

ηIx
= ηIy

= η,

gI(R(u))gR(RI(u))gI(I(u)) = ηRIgR(R(u))

=⇒ gI(u)gR(I(u))gI(IR−1(u)) = ηRIgR(u).

(C7)

Further simplification can be obtained if we consider the
gauge

W (x, y, u) = ηxxη
y
yτ

0. (C8)

We find that the above transformation does not change the
structure of the translational gauges except for a global sign
modification. This sign can yet be absorbed by a redefinition
including these modified signs. It can further be seen that the
gauge transformation Eq. (C8) modulates GR as

G̃R(x, y, u) =W †(x, y, u)GR(x, y, u)WR−1(x,y,u)

= (ηxηyηRx
)x(ηyηRy

)yηxy−
1
2x(x−1)gR(u).

(C9)
Setting ηy = ηRy

and ηx = ηyηRx
, the result becomes

G̃R(x, y, u) = ηxy−
1
2x(x−1)gR(u). (C10)

Hereafter, we shall omit the tilde symbol. The representation
GI does not get modified by the gauge transformation. We
can also exploit a sublattice dependent gauge transformation
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W (x, y, u) = W (u) for further fixing the g matrices as fol-
lows

gR(u) = ηRτ
0. (C11)

In the above, we have used Eq. (C6). The remaining sign fac-
tor ηR which is global can be neglected. The gI-matrices can
be fixed using the above equation and Eq. (C3) and Eq. (C7)
as follows.

gI(1) = gI(3) = gI(5) = τ0, (C12)

gI(2) = gI(4) = gI(6) = ηIτ
0. (C13)

This completes the gauge fixing of the lattice symmetry oper-
ations in the Z2 case.

2. Time-reversal

Here, we find a PSG representation for time-reversal sym-
metry. Using Eq. (A9) for O ∈ {T1, T2} the solution for
GT (x, y, u) can be written as

GT (x, y, u) = ηxTx
ηyTy

gT (u). (C14)

Eq. (A10) leads to the following condition

[gT (u)]
2 = ηT τ

0. (C15)

From Eq. (A9) for O = I and substituting Eq. (C2) and
Eq. (C12) we have

GT (x, y, u)GI(x, y, u)

G−1
T (−x,−y, I(u))G−1

I (x, y, u) = ηT Iτ
0

=⇒ gT (I(u)) = ηT IgT (u) . (C16)

Similarly for O = R and substituting Eq. (C10) we find

GT (x, y, u)GR(x, y, u)

G−1
T (y − x,−x,R−1(u))G−1

R (x, y, u) = ηT Rτ
0,

=⇒ ηyTx
ηy−x
Tx

gT (u)gR(u)g
−1
T (R−1(u))g−1

R (u) = ηT Rτ
0,

=⇒ ηTx
= ηTx

= 1, (C17)

and gT (R−1(u)) = ηT RgT (u). (C18)

Further simplification using Eq. (C16) and Eq. (C16) yields
the concise solution for PSG representation of time-reversal
symmetry

GT (x, y, u) = ηu+1
T I gT . (C19)

Appendix D: Z2 Ansätze before time-reversal

This appendix contains all different symmetry relations that
are needed to construct up to third nearest neighbor mean-field
Hamiltonians. The definitions of the different u−matrices are
shown in Fig. 1 for the first neighbor bonds, and for the second

and third neighbor bonds in Fig. 20 and Fig. 21, respectively.
For every range of neighbor bonds we find three symmetry
inequivalent bonds that are colored green, red and blue. For
each color we fix one Ansatz whereas the allowed form varies
for different PSGs and can be found in Table IV. All the other
are related by the underlying symmetries of the lattice.

1. 1NN

a. Green 1NN bonds (u1g)

For the green colored bonds we fix the Ansatz matrix u121g .
Applying a chain of symmetry operations induces all symme-
try related bonds

u121g
R−→ u341g

R−→ u561g
IR−−→ u451g

R−→ u611g
R−→ u231g. (D1)

Using the PSG representations yields

u121g = u341g = u561g = ηIu
45
1g = ηIu

61
1g = ηIu

23
1g. (D2)

b. Blue 1NN bonds (u1b)

Similarly to the green bonds, operating with the chain of
transformations yields for the blue bonds

u141b
R−→ u361b

R−→ u521b
IR−−→ u251b

R−→ u411b
R−→ u631b ,

u141b
T2I−−→ (u141b)

†.
(D3)

This results in

u141b = u361b = u521b = ηηIu
25
1b = ηηIu

41
1b = ηIu

63
1b

u141b = ηηI(u
14
1b)

† (D4)

c. Red 1NN bonds (u1r)

For the red bonds we have

u131r
R−→ u351r

R−→ u511r
IR−−→ u461r

R−→ u621r
R−→ u241r

u151r
R−→ u311r

R−→ u531r
IR−−→ u421r

R−→ u641r
R−→ u261r

u1351r
R−→ u3511r

R−→ u5131r
IR−−→ u4621r

R−→ u6241r
R−→ u2461r .

(D5)

This yields,

u131r = ηu351r = ηu511r = u461r = u621r = u241r

u151r = u311r = u531r = ηu421r = u641r = ηu261r

u1351r = ηu3511r = ηu5131r = ηu4621r = u6241r = ηu2461r

(D6)

On the other hand inclusion of translations gives the following
constraints

u351r
T1−→ (u511r)

† T2−→ u1351r

u131r
T−1
2−−−→ u5131r

T−1
1−−−→ (u311r)

†

u3511r

T−1
2−−−→ u511r

T−1
1−−−→ (u151r)

†

(D7)



21

FIG. 20. Symmetry inequivalent Ansatz matrices u13
2g, u

12
2b and u14

2r [see Table IV for the Z2 states] for the second neighbor bonds transform
as depicted in (a), (b), and (c), respectively. Different shadings of the colors encode the different phase factors η, ηI and their products.

6

FIG. 21. Symmetry inequivalent Ansatz matrices u14
3g, u

16
3b and u13

3r [see Table IV for the Z2 states] for the third neighbor bonds transform as
depicted in (a), (b), and (c), respectively. Different shadings of the colors encode the different phase factors η, ηI and their products.

yielding

u1351r = ηu131r, u
15
1r = η(u131r)

†. (D8)

The results of this appendix are also summarized in Fig. 14.

2. 2NN and 3NN

Instead of showing the explicit symmetry relations we only
state the results for the second and third neighbors after insert-
ing the PSG representations. A summary of these results are
shown in Fig. 20 for the second neighbors and in Fig. 21 for
the third neighbors. The second neighbors matrices are given

by

u132g = u352g = u512g = u462g = u622g = u242g,

u122b = ηu342b = ηu562b = ηIu
45
2b = ηIu

61
2b = ηIu

23
2b ,

u142r = ηu362r = ηu522r = ηIu
41
2r = ηIu

63
2r = u252r.

(D9)

The third neighbor matrices are

u143g = u363g = u523g = ηIu
41
3g = ηIu

63
3g = ηIu

25
3g

u163b = u323b = u543b = ηIηu
43
3b = ηIu

65
3b = ηIηu

21
3b

u153r = u313r = ηu532r = ηu423r = ηu643r = ηu263r

(D10)
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{wI , wT } {n, pI}
1NN 2NN 3NN Onsite

u1g u1b u1r u2g u2b u2r u3g u3b u3r

{1, 0} {0, 0} ι̇τ0, τ3 0 0 0 ι̇τ0, τ3 0 0 ι̇τ0, τ3 0 0
{1, 0} {0, 1} ι̇τ0, τ3 ι̇τ0, τ3 0 0 ι̇τ0, τ3 ι̇τ0, τ3 ι̇τ0, τ3 ι̇τ0, τ3 0 0
{1, 0} {0, 2} ι̇τ0, τ3 0 0 0 ι̇τ0, τ3 0 0 ι̇τ0, τ3 0 0
{1, 0} {0, 3} ι̇τ0, τ3 ι̇τ0, τ3 0 0 ι̇τ0, τ3 ι̇τ0, τ3 ι̇τ0, τ3 ι̇τ0, τ3 0 0
{1, 0} {1, 0} ι̇τ0, τ3 ι̇τ0, τ3 0 0 ι̇τ0, τ3 ι̇τ0, τ3 0 ι̇τ0, τ3 0 0
{1, 0} {1, 1} ι̇τ0, τ3 0 0 0 ι̇τ0, τ3 0 ι̇τ0, τ3 ι̇τ0, τ3 0 0
{1, 0} {1, 2} ι̇τ0, τ3 ι̇τ0, τ3 0 0 ι̇τ0, τ3 ι̇τ0, τ3 0 ι̇τ0, τ3 0 0
{1, 0} {1, 3} ι̇τ0, τ3 0 0 0 ι̇τ0, τ3 0 ι̇τ0, τ3 ι̇τ0, τ3 0 0
{wI , wT } {n, nI} u1g u1b u1r u2g u2b u2r u3g u3b u3r Onsite
{0, 1} {0, 0} τ3 τ3 τ3 τ3 τ3 τ3 τ3 τ3 τ3 τ3

{0, 1} {0, 1} τ3 0 τ3 τ3 τ3 0 0 τ3 τ3 τ3

{0, 1} {1, 0} τ3 0 τ3 τ3 τ3 0 τ3 τ3 τ3 τ3

{0, 1} {1, 1} τ3 τ3 τ3 τ3 τ3 τ3 0 τ3 τ3 τ3

{1, 1} {0, 0} τ3 0 τ3 τ3 τ3 0 0 τ3 τ3 τ3

{1, 1} {0, 0} τ3 τ3 τ3 τ3 τ3 τ3 τ3 τ3 τ3 τ3

{1, 1} {0, 0} τ3 τ3 τ3 τ3 τ3 τ3 0 τ3 τ3 τ3

{1, 1} {0, 0} τ3 0 τ3 τ3 0 τ3 τ3 τ3 τ3 τ3

{wI , wT } {θ̃I} u1g u1b u1r u2g u2b u2r u3g u3b u3r Onsite
{0, 0} {mπ/n} ι̇τ0, τ3 ι̇τ0, τ3 0 0 ι̇τ0, τ3 ι̇τ0, τ3 τ3 ι̇τ0, τ3 0 0

TABLE III. Symmetric U(1) mean-field Ansätze up to third nearest neighbours. See Appendix E for the sign structure.

{ηT , gT } {η, ηI}
1NN 2NN 3NN Onsite

u1g u1b u1r u2g u2b u2r u3g u3b u3r

{+, ι̇τ2} {+,+} τ1,3 τ1,3 τ1,3 τ1,3 τ1,3 τ1,3 τ1,3 τ1,3 τ1,3 τ3

{+, ι̇τ2} {+,−} τ1,3 0 τ1,3 τ1,3 τ1,3 0 0 τ1,3 τ1,3 τ3

{+, ι̇τ2} {−,+} τ1,3 0 τ1,3 τ1,3 τ1,3 0 τ1,3 τ1,3 τ1,3 τ3

{+, ι̇τ2} {−,−} τ1,3 τ1,3 τ1,3 τ1,3 τ1,3 τ1,3 0 τ1,3 τ1,3 τ3

{−, ι̇τ2} {+,+} ι̇τ0, τ2 τ2 τ1,3 τ1,3 ι̇τ0, τ2 τ2 τ2 ι̇τ0, τ2 τ1,3 τ3

{−, ι̇τ2} {+,−} ι̇τ0, τ2 ι̇τ0 τ1,3 τ1,3 ι̇τ0, τ2 ι̇τ0 ι̇τ0 ι̇τ0, τ2 τ1,3 τ3

{−, ι̇τ2} {−,+} ι̇τ0, τ2 ι̇τ0 τ1,3 τ1,3 ι̇τ0, τ2 ι̇τ0 τ2 ι̇τ0, τ2 τ1,3 τ3

{−, ι̇τ2} {−,−} ι̇τ0, τ2 τ2 τ1,3 τ1,3 ι̇τ0, τ2 τ2 ι̇τ0 ι̇τ0, τ2 τ1,3 τ3

{−, τ0} {+,+} ι̇τ0, τ2 τ3 0 0 ι̇τ0, τ1,2,3 τ1,2,3 τ1,2,3 ι̇τ0, τ1,2,3 0 0
{−, τ0} {+,−} ι̇τ0, τ2 ι̇τ0 0 0 ι̇τ0, τ1,2,3 ι̇τ0 ι̇τ0 ι̇τ0, τ1,2,3 0 0
{−, τ0} {−,+} ι̇τ0, τ2 ι̇τ0 0 0 ι̇τ0, τ1,2,3 ι̇τ0 τ1,2,3 ι̇τ0, τ1,2,3 0 0
{−, τ0} {−,−} ι̇τ0, τ2 τ3 0 0 ι̇τ0, τ1,2,3 τ1,2,3 ι̇τ0 ι̇τ0, τ1,2,3 0 0

TABLE IV. SymmetricZ2 mean-field Ansätze up to third nearest neighbours. The sign configurations on the second and third nearest neighbour
bonds can be found in Eq. (D9) and Eq. (D10).

Bond type Representative bond rα ← r′β Parameters for the bond uα
rα,r′

β
(α = 0, x, y, z) Stabilizer

Onsite bond (0, 0, 1)← (0, 0, 1) (αh, 0, 0, 0, 0, βp, γp, δp)
NN bond type “g” (0, 0, 1)← (0, 0, 2) (a1g,h, b1g,h, c1g,h, d1g,h, a1g,p, b1g,p, c1g,p, d1g,p) None
NN bond type “b” (0, 0, 1)← (0, 1, 4) (a1b,h, b1b,h, c1b,h, d1b,h, a1b,p, b1b,p, c1b,p, d1b,p) I
NN bond type “r” (0, 0, 1)0 ← (0, 1, 5) (a1r,h, b1r,h, c1r,h, d1r,h, a1r,p, b1r,p, c1r,p, d1r,p) None

2nd NN bond type “g” (0, 0, 1)← (0, 0, 3) (a2g,h, b2g,h, c2g,h, d2g,h, a2g,p, b2g,p, c2g,p, d2g,p) None
2nd NN bond type “b” (0, 0, 1)← (−1, 0, 6) (a2b,h, b2b,h, c2b,h, d2b,h, a2b,p, b2b,p, c2b,p, d2b,p) None
2nd NN bond type “r” (0, 0, 1)← (1, 1, 4) (a2r,h, b2r,h, c2r,h, d2r,h, a2r,p, b2r,p, c2r,p, d2r,p) I
3nd NN bond type “g” (0, 0, 1)← (0, 0, 4) (a3g,h, b3g,h, c3g,h, d3g,h, a3g,p, b3g,p, c3g,p, d3g,p) I
3nd NN bond type “b” (0, 0, 1)← (0, 1, 6) (a3b,h, b3b,h, c3b,h, d3b,h, a3b,p, b3b,p, c3b,p, d3b,p) None
3nd NN bond type “r” (0, 0, 1)← (−1, 0, 5) (a3r,h, b3r,h, c3r,h, d3r,h, a3r,p, b3r,p, c3r,p, d3r,p) None

TABLE V. Definition for bond parameters for the representative bonds. The last column lists the spatial symmetry operation (either none or
the twofold rotation I) that maps the bond to itself up to translation.
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Appendix E: U(1) mean-field Ansätze up to 3NN

In analogy to the previous appendix we present here the
U(1) mean-field models up to third nearest neighbors. The
initial form of one of the Ansätze is determined by the under-
lying PSG.

a. wI = 0 and wT = 0 (class UA)

u121g = u341g = u561g = u231g = u451g = u611g = ι̇χ0
1gτ

0 + χ3
1gτ

3

u141b = u361b = u521b = ι̇χ0
1bτ

0 + χ3
1bτ

3

uuu
′

1r = 0, u141b = g3(−θ̃I)(u141b)†.
(E1)

uuu
′

2g = 0

u122b = g3(−3θ̃I)u342b = g3(−3θ̃I)u562b = ι̇χ0
2bτ

0 + χ3
2bτ

3

u232b = u452b = u612b = g3(2θ̃I)u
12
2b

u142r = g3(−3θ̃I)u362r = g3(−3θ̃I)u522r = ι̇χ0
2rτ

0 + χ3
2rτ

3

u142r = g3(θ̃I)(u
14
2r)

†.
(E2)

u143g = u363g = (u253g)
† = χ3gτ

3r

u163b = u323b = u543b = ι̇χ0
3bτ

0 + χ3
3bτ

3

u213b = u433b = g3(3θ̃I)u
65
3b = g3(3θ̃I)u

16
3b

uuu
′

3r = 0.

(E3)

b. wI = 1 and wT = 0 (class UB)

u121g = u341g = u561g = ι̇χ0
1gτ

0 + χ3
1gτ

3

u231g = u451g = u611g = −g3(pIπ/3)(u121g)†

u141b = u361b = u521b = ι̇χ0
1bτ

0 + χ3
1bτ

3, u141b = −ηg3(pIπ)u141b
uuu

′

1r = 0.
(E4)

uuu
′

2g = 0

u122b = ηu342b = ηu562b = ι̇χ0
2bτ

0 + χ3
2bτ

3

u232b = u452b = u612b = −g3(pIπ/3)(u122b)†

u142r = ηu362r = ηu522r = ι̇χ0
2rτ

0 + χ3
2rτ

3, u142r = −ηg3(pIπ)u142r.
(E5)

u143g = u363g = (u253g)
† = ι̇χ0

3gτ
0 + χ3

3gτ
3, u143g = −g3(pIπ)u143g

u163b = u323b = u543b = ι̇χ0
3bτ

0 + χ3
3bτ

3

u213b = u433b = ηu653b = −ηg3(pIπ/3)(u163b)†

uuu
′

3r = 0.
(E6)

c. wI = 0 and wT = 1 (class UC)

In the following η = g3(θ = nπ) and ηI = g3(θI = nIπ).

u121g = ηIu
23
1g = u341g = ηIu

45
1g = u561g = ηIu

61
1g = χ1gτ

3

u141b = u361b = u521b = χ1bτ
3, u141b = ηηI(u

14
1b)

†

u131r = u241r = ηu351r = u461r = ηu511r = u621r = χ1rτ
3.

(E7)

u132g = u242g = u352g = u462g = u512g = u622g = χ2gτ
3

u122b = ηIu
23
2b = ηu342b = ηIu

45
2b = ηu562b = ηIu

61
2b = χ2bτ

3

u142r = ηu362r = ηu522r = χ2rτ
3, u142r = ηηI(u

14
2r)

†.
(E8)

u143g = u363g = u253g = χ3gτ
3, u143g = ηI(u

14
3g)

†

u163b = ηηIu
21
3b = u323b = ηηIu

43
3b = u543b = ηIu

65
3b = χ3bτ

3

u133r = ηu243r = u353r = ηu463r = u513r = u623r = χ3rτ
3.

(E9)

d. wI = 1 and wT = 1 (class UD)

u121g = −ηIu231g = u341g = −ηIu451g = u561g = −ηIu611g = χ1gτ
3

u141b = u361b = u521b = χ1bτ
3, u141b = −ηηIu141b

u131r = −u241r = ηu351r = −u461r = ηu511r = −u621r = χ1rτ
3.
(E10)

u132g = −u242g = u352g = −u462g = u512g = −u622g = χ2gτ
3

u122b = −ηIu232b = ηu342b = −ηIu452b = ηu562b = −ηIu612b = χ2bτ
3

u142r = ηu362r = ηu522r = χ2rτ
3, u142r = −ηηIu142r.

(E11)

u143g = u363g = u253g = χ3gτ
3, u143g = −ηIu143g

u163b = −ηηIu213b = u323b = −ηηIu433b = u543b = −ηIu653b = χ3bτ
3

u133r = −ηu243r = u353r = −ηu463r = u513r = −u623r = χ3rτ
3.
(E12)

The symmetry allowed mean-field amplitudes on the refer-
ence bonds up to third nearest-neighbor are tabulated in Ta-
ble III.
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{wI , wT } {n, pI}
1NN 2NN 3NN

(a, b, c, d)1b (a, b, c, d)2r (a, b, c, d)3g
{1, 0} {0, 0}

= (−a, c, b,−d)1be−ι̇(n+pI)π = (−a, c, b,−d)2re−ι̇(n+pI)π = (−a, c, b,−d)1be−ι̇pIπ

{1, 0} {0, 1}
{1, 0} {0, 2}
{1, 0} {0, 3}
{1, 0} {1, 0}
{1, 0} {1, 1}
{1, 0} {1, 2}
{1, 0} {1, 3}
{wI , wT } {n, nI} (a, b, c, d)1b (a, b, c, d)2r (a, b, c, d)3g
{0, 1} {0, 0}

= (−a∗, c∗, b∗,−d∗)1b(−1)n+nI = (−a∗, c∗, b∗,−d∗)2r(−1)n+nI = (−a∗, c∗, b∗,−d∗)1b(−1)nI{0, 1} {0, 1}
{0, 1} {1, 0}
{0, 1} {1, 1}
{1, 1} {0, 0}

= (−a, c, b,−d)1b(−1)n+nI = (−a, c, b,−d)2r(−1)n+nI = (−a, c, b,−d)1b(−1)nI{1, 1} {0, 1}
{1, 1} {1, 0}
{1, 1} {1, 1}
{wI , wT } {θ̃I} (a, b, c, d)1b (a, b, c, d)2r (a, b, c, d)3g

{0, 0} {mπ/n} = (−a∗, c∗, b∗,−d∗)1be−ι̇θ̃I = (−a∗, c∗, b∗,−d∗)2reι̇θ̃I = (−a∗, c∗, b∗,−d∗)3g

TABLE VI. Spatial constraints for symmetric U(1) mean-field Ansätze up to third nearest neighbours. The parameters (b, c, d)1g , (b, c, d)1r ,
(b, c, d)2g , (b, c, d)2b, (b, c, d)3b, (b, c, d)3r are not spatially constrained and hence not listed. Note that time-reversal constraints (namely,
when wT = 0 all bonds with “1r”, “2g”, “3r” vanish) are not listed in this table.

{η, ηI}
1NN 2NN 3NN

(ah, bh, ch, dh, ap, bp, cp, dp)1b (ah, bh, ch, dh, ap, bp, cp, dp)2r (ah, bh, ch, dh, ap, bp, cp, dp)3g

{±,±} = ηηI× = ηηI× = ηI×
(−a∗

h, c
∗
h, b

∗
h,−d∗h, ap,−cp,−bp, dp)1b (−a∗

h, c
∗
h, b

∗
h,−d∗h, ap,−cp,−bp, dp)2r (−a∗

h, c
∗
h, b

∗
h,−d∗h, ap,−cp,−bp, dp)3g

TABLE VII. Spatial constraints for symmetric Z2 mean-field Ansätze up to third nearest neighbours. The parameters (b, c, d)1g , (b, c, d)1r ,
(b, c, d)2g , (b, c, d)2b, (b, c, d)3b, (b, c, d)3r are not spatially constrained (but are still constrained by time-reversal symmetry) and hence not
listed. Note that time- reversal constraints are not listed in this table.

Appendix F: Symmetric mean-field Ansätze including triplet
terms up to 3NN

The most general mean-field Hamiltonian for fermionic
spinons is written as

H =
∑

i=0,x,y,z

Hi (F1)

with

Hi =
∑
rα,r′β

Hi
rα,r′β

,

Hi
rα,r′β

= Tr[ταΨrαu
(i)
rα,r′β

Ψ†
r′β
],

(F2)

where Ψ̂rα =

(
f̂rα,↑ f̂†rα,↓
f̂rα,↓ −f̂†rα,↑

)
. For the bond rα ← r′β ,

we use eight complex numbers ah, bh, ch, dh, ap, bp, cp, dp to
parametrize the 16 real parameters in u(i)rα,r′β

:

u
(0)
rα,r′β

= ι̇Reahτ
0 − Reapτ

1 − Imapτ
2 − Imahτ

3,

u
(x)
rα,r′β

= Rebhτ
0 + ι̇(Rebpτ

1 − Imbpτ
2 + Imbhτ

3),

u
(y)
rα,r′β

= Rechτ
0 + ι̇(Recpτ

1 − Imcpτ
2 + Imchτ

3),

u
(z)
rα,r′β

= Redhτ
0 + ι̇(Redpτ

1 − Imdpτ
2 + Imdhτ

3).

(F3)

More explicitly, we have

H0
rα,r′β

=ι̇a∗h(f̂
†
rα,↑f̂r′β ,↑ + f̂†rα,↓f̂r′β ,↓)

+ ap(f̂
†
rα,↑f̂

†
r′β ,↓
− f̂†rα,↓f̂

†
r′β ,↑

) + h.c.,

Hx
rα,r′β

=− b∗h(f̂
†
rα,↓f̂r′β ,↑ + f̂†rα,↑f̂r′β ,↓)

− ι̇b∗p(f̂
†
rα,↑f̂

†
r′β ,↑
− f̂†rα,↓f̂

†
r′β ,↓

) + h.c.,

Hy
rα,r′β

=− ι̇c∗h(f̂
†
rα,↓f̂r′β ,↑ − f̂

†
rα,↑f̂r′β ,↓)

− c∗p(f̂
†
rα,↑f̂

†
r′β ,↑

+ f̂†rα,↓f̂
†
r′β ,↓

) + h.c.,

Hz
rα,r′β

=− d∗h(f̂
†
rα,↑f̂r′β ,↑ − f̂

†
rα,↓f̂r′β ,↓)

+ ι̇d∗p(f̂
†
rα,↑f̂

†
r′β ,↓

+ f̂†rα,↓f̂
†
r′β ,↑

) + h.c.,

(F4)
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We define in Table V the bond parameters for the represen-
tative bonds up to 3NN. All other bonds can then be obtained
by performing certain PSG operation from these bonds. Table
V serves as the reference to map the terms and parameters in
Tables III, IV, and VI, VII.

Note that for onsite bond, we only have four complex pa-
rameters that are possibly nonzero, αh, βp, γp, δp, due to
fermion anticommutativity and hermiticity of the Hamilto-
nian.

1. U(1) Ansätze

Note that for U(1) PSG Ansätze, we only have hopping bi-
linears and no pairing, therefore the parameters with subscript
“p” (hence the τ1 and τ2 terms) vanish. We then simplify the
notation of the hopping parameters by omitting the subscript
“h” (i.e., (a, b, c, d) := (ah, bh, ch, dh)) and write

u
(0)
rα,r′β

= ι̇Reaτ0 − Imaτ3,

u
(x)
rα,r′β

= Rebτ0 + ι̇Imbτ3,

u
(y)
rα,r′β

= Recτ0 + ι̇Imcτ3,

u
(z)
rα,r′β

= Redτ0 + ι̇Imdτ3.

(F5)

The spatial constraints for these parameters are summarized
in Table VI.

Effect of time-reversal for U(1) Ansätze:

• When wT = 0: TRS forbids bonds connecting sub-
lattices with same sublattice parity, therefore all bonds
with “1r”, “2g”, and “3r” are constrained to vanish by
the PSG classes;

• When wT = 1: TRS forbids the appearance of ι̇τ0

in all bonds. This means that we have the TRS
constraints (Rea,Reb,Rec,Red) = (0, 0, 0, 0) while
(Ima, Imb, Imc, Imd) are not constrained by TRS.

2. Z2 Ansätze

The spatial constraints for the parameters of the Z2 Ansätze
are summarized in Table VI.

Effect of time reversal for Z2 Ansätze:

• When {ηT , gT } = {+, ι̇τ2}, the constraints
of TRS is the same across all bond types:
coefficient in front of τ0,2 vanish, meaning
(Reah,Rebh,Rech,Redh, Imap, Imbp, Imcp, Imdp) =
(0, 0, 0, 0, 0, 0, 0, 0) while the
other eight real components,
(Imah, Imbh, Imch, Imdh,Reap,Rebp,Recp,Redp),
are not constrained by TRS.

• When {ηT , gT } = {−, ι̇τ2}: the constraints of TRS is
no more the same across all bond types:

– For the Onsite bonds, NN bond type “r”, 2nd
NN bond type “g”, and 3nd NN bond type
“r”: coefficient in front of τ0,2 vanish, meaning
(Reah,Rebh,Rech,Redh, Imap, Imbp, Imcp, Imdp) =
(0, 0, 0, 0, 0, 0, 0, 0) while the
other eight real components,
(Imah, Imbh, Imch, Imdh,Reap,Rebp,Recp,Redp),
are not constrained by TRS.

– For the NN bond types “g”, “b”, the 2nd NN bond
types “b”, “r”, and 3nd NN bond types “g”, “b”,
the coefficient in front of τ1,3 vanish, meaning
(Imah, Imbh, Imch, Imdh,Reap,Rebp,Recp,Redp) =
(0, 0, 0, 0, 0, 0, 0, 0) while the
other eight real components,
(Reah,Rebh,Rech,Redh, Imap, Imbp, Imcp, Imdp),
are not constrained by TRS.

Appendix G: Spin Structure Factor

The dynamical spin structure factor is defined as

Sλλ
′
(q, ω) =

∫ +∞

−∞

dτeι̇ωτ

2πN
∑
i,j

eι̇q·rij ⟨Ŝλ
i (τ)Ŝ

λ′

j (0)⟩

(G1)
where λ, λ′ ∈ {x, y, z}, rij = ri − rj . and Ŝz

i (τ) =

eι̇Ĥτ Ŝz
i e

−ι̇Ĥτ . Due to the presence of the spin-rotational
symmetry, it is sufficient to consider the longitudinal compo-
nents only, i.e.,

Szz(q, ω) =
∫ +∞

−∞

dτeι̇ωτ

2πN
∑
i,j

eι̇q·rij ⟨eι̇Ĥτ Ŝz
i e

−ι̇Ĥτ Ŝz
j ⟩.

(G2)
This, in terms of fermion operators reads as

Szz(q, ω) =
∫ +∞

−∞

dτeι̇ωτ

8πN
∑
i,j

eι̇q·rijσz
αασ

z
ββ

×
∑
α,β

⟨eι̇Ĥτ f̂†i,αf̂i,αe
−ι̇Ĥτ f̂†j,β f̂j,β⟩.

(G3)

For the U(1) Ansätze, ↑ and ↓ sectors are decoupled. As a
result, the basis contains only annihilation operators in each
sector. Consider a unitary matrix U such that U†ĤU =
diag(ϵ1, ϵ2, . . . , ϵN ), where N is the total number of sites.
Consequently, the basis vectors will transform as f̂i,α =

Uiµξ̂µ,α and Eq. (G3) can be recast as

Szz(q, ω) =
∫ +∞

−∞

dteι̇ωτ

8πN
∑

i,j,µ,µ′ν,ν′

eι̇q·rijσz
αασ

z
ββ

× U∗
i,µUi,µ′U∗

j,νUj,ν′

×
∑
α,β

⟨eι̇Ĥτ ξ̂†µ,αξ̂µ′,αe
−ι̇Ĥτ ξ̂†ν,β ξ̂ν′,β⟩.

(G4)

The scattering mechanism is as follows. At time τ =
0, a pair of excitations is created by removing a fermion
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with a state (ν′, β) from the filled bands (i.e., bellow the
fermi level) and creating a fermion with a state (ν, β) at
the empty bands (i.e., above the fermi energy) followed by
the annihilation of the pair of excitations at time τ . Thus,
⟨eι̇Ĥτ ξ̂†µ,αξ̂µ′,αe

−ι̇Ĥτ ξ̂†ν,β ξ̂ν′,β⟩ gives

e−ι̇(ϵν−ϵν′ )τ × δ(ν′, µ)δµ′,νδα,β . (G5)

Note that ϵν is independent of spin index because of spin sym-
metry. Substitution of the Eq. (G5) in Eq. (G4), yields

Szz(q, ω) = 1

2N
∑

i,j,µ,ν

eι̇q·rijδ(ω − ϵν + ϵµ)

× U∗
i,µUi,νU

∗
j,νUj,µnµ(1− nν).

(G6)

Here, nγ = 1
eβ(ϵγ−ϵF )+1

with Fermi energy ϵF . At absolute
zero temperature, i.e., β = ∞, Eq. (G6) can be written using
a step function θ(x) as follows

Szz(q, ω) = 1

2N
∑

i,j,µ,ν

eι̇q·rijδ(ω − ϵν + ϵµ)

× U∗
i,µUi,νU

∗
j,νUj,µθ(ϵF − ϵµ)θ(ϵν − ϵF ).

(G7)
Now, the equal-time momentum resolved spin-spin correla-
tion function can be calculated from the above equation as
Szzeqt(q) =

∑
ω Szz(q, ω). Thus,

Szzeqt(q) =
1

2N
∑

i,j,µ,ν

eι̇q·rijU∗
i,µUi,νU

∗
j,νUj,µ

× θ(ϵF − ϵµ)θ(ϵν − ϵF ).
(G8)
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[64] A. Aliev, M. Huvé, S. Colis, M. Colmont, A. Dinia,
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