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Our understanding of phases of matter relies on symmetry breaking, one example being water ice whose
crystalline structure breaks the continuous translation symmetry of space. Recently, breaking of time translation
symmetry was observed in systems not in thermal equilibrium. The associated notion of time crystallinity has led
to a surge of interest, raising the question about the extent to which highly controllable quantum simulators can
generate rich and tunable temporal orders, beyond the conventional classification of order in static systems. Here,
we investigate different kinds of partial temporal orders, stabilized by non-periodic yet structured drives, which
we call rondeau order. Using a 13C-nuclear-spin diamond quantum simulator, we report the first experimental
observation of a – tunable degree of – short-time disorder in a system exhibiting long-time stroboscopic order.
This is based on a novel spin control architecture that allows us to implement a family of drives ranging from
structureless via structured random to quasiperiodic and periodic drives. Leveraging a high throughput read-out
scheme, we continuously observe the spin polarization over 105 pulses to probe rondeau order, with controllable
lifetimes exceeding 4 seconds. Using the freedom in the short-time temporal disorder of rondeau order, we show
the capacity to encode information in the response of observables. Our work broadens the landscape of observed
nonequilibrium temporal order, paving the way for new applications harnessing driven quantum matter.

Introduction. The quest to define notions of order and dis-
order as organising principles of the natural world is one of
the oldest endeavours of science and philosophy. The exis-
tence of water in solid, liquid, and gaseous forms is a matter
of everyday experience, but it also illustrates the complexity
of such notions. While liquid and gas phases lose their sharp
distinction at high pressure, the solid phase, ice, incorporates a
high degree of disorder in the location of the protons bonding
the oxygen ions: spatial order over long distances coexists with
disorder at short lengthscales.

The modern theory of phases and phase transitions, associ-
ated with the names of Landau, Ginzburg, and Wilson, has the
notion of symmetry and its breaking at its core [1, 2]; adding
topological forms of order [3], invisible to local symmetry,
completes our current understanding. For instance, through
its ordered crystalline lattice of oxygen ions, ice breaks the
translational symmetry of space. Yet, breaking translational
symmetry in time [4] is forbidden in thermal equilibrium [5, 6].

However, in settings where thermal equilibrium is not
reached, a notion of ‘time crystallinity’ can indeed be de-
fined. A prominent example is the discrete time crystal (DTC)
in periodically driven (Floquet) systems [7–20]: DTCs exhibit
long-range order in both space and time. In arguably their
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most robust form, the many-body localised DTC [7], this spa-
tiotemporal phenomenon is a manifestation of a new notion of
order, known as eigenstate order [13, 21], which can appear in
disordered and interacting quantum systems.

In this work, we extend the above two threads by devising
new types of partial temporal orders, including one we chris-
ten rondeau order: The rondeau is a pattern comprised of a
repeating principal theme (corresponding here to stroboscopic
long-time order) that alternates with one or more contrasting
variation themes (short-time disorder) [22]. Rondeau order
combines temporal disorder on short timescales with temporal
order on long ones. More precisely, stroboscopic order at spe-
cial points of the drive cycle coexists with – a tunable degree
of – disorder at all other times. This is in stark contrast to
the Floquet lore, where stroboscopic observations at arbitrary
points of the drive cycle all yield essentially the same tem-
poral order, and are distinguished only by the entirely regular
so-called micromotion within a drive cycle.

Specifically, we provide a genealogy of non-periodic but
structured drives that form such new types of partial temporal
order, shown in Fig. 1a with their corresponding Fourier spec-
tra. They interpolate between structureless random drives,
associated with full temporal disorder at the one end, and en-
compass deterministic quasiperiodic drives that can give rise
to quasicrystalline temporal order [23–26], at the opposite ex-
treme.

The key experimental aspect of this work is the explicit
demonstration of the existence of such orders in a macroscopic
system of interacting, hyperpolarized, 13C-nuclear spins at
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FIG. 1. Conceptualization, and experimental realization, of a time rondeau crystal: a, Tree diagram giving an overview of parametrically
(meta)stable equilibrium and nonequilibrium quantum matter (italics); tree branches show different types of drives and their spectral decom-
position (square boxes). The family of random multipolar drives we implement interpolates between structured random and quasiperiodic
drives (orange frame). Comparison of discrete time crystal (green box) and time rondeau crystal (orange box): while both temporal orders
show period doubling dynamics at stroboscopic times, 𝑡=𝑀𝑇 , the micromotion dynamics of the time rondeau crystal is (tunably) disordered.
b, Exemplary data set of experimental observation of rondeau order. Data represents single shot measurements of the driven 13C-nuclei with
𝜏=74.4 𝜇s, 𝑁+=200, 𝑁−=100 at 𝛾𝑦=0.98 𝜋 for a 0-RMD sequence. Upper Panel: Zoom into a window comprising 10 full stroboscopic cycles.
The signal flips sign after each full cycle; however, the point within one cycle where the signal flips is random, clearly indicating the coexistence
of long-range temporal order and short-range temporal disorder. Lower Panel: Full 16s data set comprising 720 pulses. The 1/𝑒 lifetime, 𝑇𝑒,
exceeds 170 periods, corresponding to 4 s or 𝐽𝑇𝑒≈2.6×103. c-d Experimental implementation: c, system comprising randomly placed dipolar
interacting 13C nuclear spins in diamond. Dashed lines indicate relevant dipole-dipole interactions. The nuclear spins are hyperpolarized by
optically pumped NV centers. d, Experimental implementation of random multipolar driving (RMD) protocol: 𝑛-RMD sequence consists of
randomly anti-aligning 𝑛-multipole sequences with equal probability (magenta/teal pulses). The 𝑛-multipole is constructed systematically from
the two monopoles, + and − (magenta/teal boxes), which are defined via a two-tone drive as follows (red/blue ovals). A spin-locking train,
consisting of 𝑁 spin-lock pulses (grey box), is interrupted after 𝑁± pulses by a 𝑦-pulse of angle 𝛾𝑦 (orange pulse).

room temperature [Fig. 1b]. Leveraging a new spin control
architecture based on an arbitrary-waveform generator with
extensive sequence memory (Methods), we are able to accu-
rately implement stable long drive protocols that realize a wide
spectrum of nonequilibrium time-dependent drives, including
structureless and structured random, quasiperiodic, and peri-
odic sequences. Such capability permits us to experimentally
investigate random multipolar drives (RMDs) [27] – a family
of structured random protocols with controllable heating chan-
nels, allowing for long spin polarization lifetimes. During the
long-lived metastable (prethermal) regime, we continuously
monitor the system exhibiting rigid stroboscopic oscillations
of local observables (like Floquet DTCs), but with a temporally
disordered micromotion [Fig. 1d].

For a family of structured RMDs, including the quasiperi-
odic Thue-Morse sequence, we observe robust stroboscopic
DTC order across a large parameter range, with long prether-
mal lifetimes comprising well over one hundred (∼170) cycles,
corresponding to > 4 s.

The Fourier spectrum of the micromotion reveals distinctive
dynamical features of the time rondeau crystal compared to or-
dinary DTCs: randomness in time traces of observables gives
rise to a smooth Fourier spectrum in stark contrast to isolated
peaks observed for periodic or quasiperiodic drives [Fig. 1a,
insets]. We demonstrate a parametrically controlled lifetime
of the prethermal temporal order, by changing the drive period
and analyzing imperfections of the applied pulses. We find
little to no dependence of the lifetime on the details of the
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drive, in agreement with numerical simulations and analyti-
cal predictions. This enables us to freely engineer the form
of the nondeterministic micromotion dynamics, without com-
promising the stability of the coexisting long-range temporal
DTC order.

System. Our experiment is performed at room temperature
on a single-crystal diamond doped with ∼1 ppm NV centres,
and hosting a natural abundance (1.1%) of 13C nuclei. We
utilize the randomly positioned network of 13C nuclear spins,
described by the Hamiltonian

𝐻dd =
∑︁
𝑘<𝑙

𝐵𝑘𝑙

[
3𝐼 𝑧

𝑘
𝐼 𝑧
𝑙
− 𝑰𝑘 · 𝑰𝑙

]
, (1)

where 𝑰𝑘 is the vector of spin-1/2 operators for nuclear spin
𝑘 , and the long-range dipole-dipole interaction decays as
𝐵𝑘𝑙∝1/𝑟3

𝑘𝑙
, with 𝑟𝑘𝑙 being the distance between two spins. The

interaction strength between 13C nuclear spins can be charac-
terized by their median coupling 𝐽=⟨𝐵𝑘𝑙⟩=0.66 kHz [28]. By
applying a chirped microwave drive, we transfer polarization
from optically-pumped NV centers to the 13C nuclear spins,
hyperpolarizing them. The density matrix of the initial state is
then 𝜌0∼𝜇𝐼 𝑧 (𝐼 𝑧=

∑
𝑘 𝐼

𝑧
𝑘
) with 𝑧-polarization fraction 𝜇≈1 %,

enhanced ∼998-fold over its thermal equilibrium value [29].
The experimental sequence is detailed in Fig. 1c: after 60 s

of hyperpolarization (Methods) the spins are tipped onto the
𝑥-𝑦 plane by applying a ( 𝜋2 )𝑦 pulse. We then deploy a two-
tone driving scheme consisting of a ‘fast’ and a ‘slow’ drive.
The ‘fast’ drive comprises short spin-lock ( 𝜋2 )𝑥 pulses (length
𝜏𝑥), interleaved with free evolution governed by 𝐻dd for a
time 𝑡free; the duration of one spin-lock cycle is 𝜏=𝜏𝑥+𝑡free
[Fig. 1c, grey spin-lock box]. We measure the polarization of
the spins in the 𝑥-𝑦 plane inductively through an RF coil during
the free evolution after each 𝑥-pulse (Methods); such readout
scheme allows us to track the polarization of the spins non-
destructively through repeated weak measurements [30]. As a
result, spin evolution can be traced over long times and hun-
dreds of thousands of pulses quasi-continuously and in a single
shot, a unique feature of our experiments compared to other
quantum simulation platforms [31–33]. Applying the ‘fast’
drive imprints an emergent 𝑈 (1)-symmetry associated with
the conservation of 𝐼 𝑥-polarization; this quasi-conservation
law enhances the lifetime of the 𝑥-polarized initial state by
over four orders of magnitude (compared to the bare nuclear
𝑇∗

2≈1/𝐽=1.5 ms) [28, 30] (Methods).
Temporal DTC order is realized using the ‘slow’ drive,

which consists of 𝑦-pulses of angle 𝛾𝑦=𝜋+𝜀 (length 𝜏𝑦 , or-
ange blocks in inset of Fig. 1c) with free evolution time 𝑡free
after every 𝛾𝑦 pulse, interspersed between trains of ‘fast’ spin-
lock cycles (grey blocks) at multiples of 𝜏. To implement
a structured random drive, we use RMD following the pro-
posal of Ref. [27]. We define two RMD monopoles (𝑛=0)
as follows: the + / − sequence consists of two spin-lock
trains of 𝑁+/− and 𝑁−𝑁+/− spin-lock cycles respectively,
with a single 𝑦-pulse in between [red/blue ovals, Fig. 1d];
both sequences have the same total duration of 𝑇 . Higher-
order 𝑛-multipole pairs, e.g., dipoles (𝑛=1: + − , − + ),
quadrupoles (𝑛=2: + − − + , − + + − ), etc., can be
recursively constructed by anti-aligning 𝑛−1-multipole pairs
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FIG. 2. Characteristics of rondeau order: a, Amplitude of discrete
Fourier transform (DFT) of the polarization micromotion dynamics
for Floquet DTC (pink) and 2-RMD (blue). In contrast to Floquet
DTCs, which feature only a single delta peak, the micromotion of the
time rondeau crystal has finite support on the entire frequency spec-
trum. b, Amplitude of DFT of the 2-RMD sequence that generated
the data in a. The Fourier amplitudes of the drive and micromotion
are mirror images of one another w.r.t. the 𝜈=𝜋/2 axis (referred to
as 𝜋-shifted). c, Fourier amplitudes for RMD sequences 𝑛=0, 1, 2
on a log-log scale. The dashed lines are linear fits to the data with
slopes 𝛼0=(0.0±0.1), 𝛼1=(1.0±0.1), and 𝛼2=(1.9±0.1) for 𝑛=0, 1, 2,
respectively. The different multipole orders show distinctive high-
frequency suppression in good agreement with the theoretical predic-
tions 𝛼𝑛=𝑛. Each RMD data point is averaged over 20 realizations
of the random drive; error bars indicate standard deviation; we set
𝜀=0.03𝜋; other parameters are as in Fig. 1.

together [magenta/teal boxes in Fig. 1c]; the 𝑛→∞ limit cor-
responds to a deterministic quasiperiodic Thue-Morse drive
[34–36]. Finally, for a fixed 𝑛, the complete structured RMD
is built out of placing the two sequences of a multipole pair ran-
domly in time [Fig. 1c, magenta/teal pulses in main protocol]
(Methods). Although it is disordered as we illustrate below,
the characteristic timescale 𝑇 remains fixed and hence defines
a "period" for the drive; we refer to times integer multiple of
𝑇 as stroboscopic, 𝑡=𝑀𝑇 , with 𝑀∈N the cycle number, and to
all other times – as micromotion.

Characteristics of rondeau order. We begin by analyz-
ing the two-tone drive in the fine-tuned case 𝛾𝑦=𝜋, where
each 𝑦-pulse fully inverts the polarization 𝐼 𝑥→ − 𝐼 𝑥 . In be-
tween two 𝑦-pulses, the 𝑥-polarization is protected due to the
emergent 𝑈 (1)-symmetry irrespective of its sign. Since both
monopoles include exactly one 𝑦-pulse, the system flips its po-
larization deterministically with period 2𝑇 , irrespective of the
specific choice of monopole pairs. Hence, it establishes long-
range temporal order like conventional DTCs. By contrast,
micromotion dynamics at non-stroboscopic times (𝑁+𝜏<(𝑡
mod 𝑇)<𝑁−𝜏) inherits randomness from the spin-flip oper-
ation: the polarization, which either flips sign or remains
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unchanged, depends on the monopole that has been applied.
In our experiment, we first confirm the coexistence of tem-

poral order and tunable micromotion disorder for 𝑛=0, and
show that they persist away from the fine-tuned limit. We
introduce imperfect polarization inversions by moving away
from the fine-tuned point, 𝛾𝑦=𝜋+𝜀, by a small but finite de-
viation (𝜀≠0). As shown in Fig. 1d, the system exhibits stro-
boscopic period-doubling behavior together with a disordered
micromotion for exceptionally long times: the signal persists
even after 𝑀>500 monopole sequences (𝐽𝑡≈104), correspond-
ing to a physical lifetime of more than 10 s. We also observe
a similar dynamical behavior for the entire family of 𝑛-RMD
protocols [SI].

The discrete Fourier transform (DFT) of the polarization
micromotion (Fourier frequency 𝜈) allows us to experimen-
tally verify the characteristic features of RMDs [37]. While
for 𝑛=0, the DFT spectrum is flat since the drive and micro-
motion are both temporally disordered, for a 2-RMD the DFT
spectrum is structured and smoothly distributed over all fre-
quencies, cf. Fig. 2a. The spectrum of the micromotion signal
reflects closely that of the 2-RMD used to generate it. The two
spectra are shifted with respect to each other [Fig. 2a,b], since
the polarization inversion introduces a (−1)𝑀 phase between
the signal and the drive, resulting in a 𝜋-shifted DFT [27]. This
feature is difficult to observe for 𝑛=0 since both spectra are triv-
ially flat; however, for more structured 𝑛-RMDs with 𝑛≥1, the
multipolar correlation imprints in their characteristic spectrum
an algebraic suppression 𝜈𝑛 for 𝜈→0 (Methods). This suppres-
sion shifts to 𝜈→𝜋 in the DFT of the micromotion, making the
distinctive 𝜋-shift feature experimentally measurable.

To test the predicted frequency law, we expose the system
to an 𝑛-RMD with 𝑛=0, 1, 2, and plot the DFT spectrum of the
micromotion signal on a log-log plot against a 𝜋-shifted 𝜈-axis,
cf. Fig. 2c. The three data sets can be fitted to a good agree-
ment by straight lines, and confirm the anticipated (𝜋−𝜈)𝑛
scaling behavior. This behavior of the micromotion DFT in
the time rondeau crystal comes in stark contrast to Floquet
DTCs, where the micromotion is trivially period-doubled as
is the stroboscopic dynamics, leading to a single delta peak
in the corresponding DFT spectrum (pink arrow, Fig. 2 a,b).
Such a comparison thus serves as a smoking gun for observing
novel types of temporal order beyond the conventional Floquet
DTC paradigm [27]. Conceptually, the above analysis shows
that the generalization of temporal order can be conveniently
understood in Fourier space.

Stability and Robustness. Since the time rondeau crystal
is metastable and eventually melts, it is essential to analyze
its lifetime and stability. The versatility of the driving pro-
tocols we implement allows us to efficiently scan over large
parameter regimes and test the rigidity of the stabilized or-
der against perturbations; we also have the ability to tune its
lifetime parametrically over a large time window, as we now
demonstrate.

Notice first that the long-range temporal order and the short-
range disorder actually share the same prethermal timescale,
as can be seen from the long-time behavior of the polarization
dynamics in Fig. 1d; let us, therefore, focus on the stroboscopic
dynamics. To map out the phase diagram of the time rondeau

FIG. 3. Occurrence of prethermal rondeau order: Normalized
Fourier amplitudes of stroboscopic dynamics as a function of flip
angle 𝛾𝑦 around 𝛾𝑦=𝜋 and frequency 𝜈. a, Fourier intensities for
monopole (𝑛=0) sequence, and b, 2D projection. c and d, same as
a and b but for the deterministic Thue-Morse (𝑛=∞) sequence. The
prethermal temporal order shows a stable stroboscopic period dou-
bling response over a large parameter regime, as indicated by the
strong response of the Fourier intensity at half the drive frequency.
Remarkably, the stability of the stroboscopic temporal order is in-
dependent of the RMD order 𝑛 (see SI for 𝑛=1, 2). Experimental
0-RMD data is averaged over 10 drive realizations. Other parameters
are as in Fig. 2.

crystal, we repeat the experiment for different values of the
deviation parameter 𝜀 from the perfect kick angle 𝜋, 𝛾𝑦=𝜋+𝜀,
keeping the period 𝑇 fixed. We then calculate the DFT spec-
trum of the stroboscopic dynamics obtained from a fixed but
long time window that comprises 720 pulses. Fig. 3a,b show
the stroboscopic Fourier spectrum for a wide range of kick an-
gles 0.5𝜋 ⪅ 𝛾𝑦 ⪅ 1.15𝜋, for a 0−RMD drive. We find a domi-
nant narrow peak centered around half the frequency (𝜈=𝜋/𝑇)
which spans over a finite range of kick angles (|𝜀 |⪅0.1 𝜋). This
confirms the rigidity of rondeau order against small perturba-
tions within this sufficiently long time window. For larger
perturbations, the peak gradually fades away, suggesting a
cross-over from rondeau to trivial order. These experimental
results are in excellent quantitative agreement with numerical
simulations [SI]. Remarkably, we observe similar behavior for
other multipolar orders: 𝑛=0, 1, 2,∞, see SI; hence, we find
that rondeau order is robust across the entire family of RMD
protocols. In particular, the Thue-Morse sequence (𝑛→∞)
allows us to experimentally observe a robust prethermal time
quasicrystal [Fig. 3c,d], which shows the suitability of our ex-
perimental platform to explore a wide range of temporal orders
across nonequilibrium matter [Fig. 1a].

Next, we quantify the parametric dependence of the decay
rate Γ𝑒 of the spin polarization against changes in the period
𝑇 and the deviation 𝜀 in the kick angle. We define Γ𝑒 as the
inverse 1/𝑒 lifetime of the polarization, i.e., the time when the
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FIG. 4. Controllable prethermal heating rate. a, depen-
dence of heating rate Γ𝑒−Γ0 (Γ0=Γ𝑒 |𝜀=0), on deviation 𝜀=𝛾−𝜋 for
monopole (𝑛=0, green circles) and Thue-Morse (𝑛=∞, pink trian-
gles) sequence; dashed line indicates power law ∝𝜀2 predicted by
numerical simulations [SI]. b, heating rate Γ𝑒 against period 𝑇 , while
simultaneously changing the deviation 𝜀 linearly in the period 𝜀=𝐵𝑇

to keep the ratio 𝜀/𝐽𝑇 fixed; we choose 𝐵/(𝐽𝜋)≈5.9 × 10−4, other
parameters are as in a; dashed line indicates power law ∝𝑇1 predicted
by simulations. The nonequilibrium heating processes are systemat-
ically suppressed with decreasing deviation 𝜀 and period 𝑁𝜏, across
the entire family of multipole orders (see SI for 𝑛=1, 2). Experimental
0-RMD data are averaged over 20 drive realizations. The experimen-
tal data are consistent with power-law suppression of heating as ∝𝜀2

and ∝𝑇 , respectively, as predicted in the dephasing limit [SI].

absolute value of the signal first drops below 1/𝑒 of its initial
value. Note that, even for perfect kicks (𝜀=0), the polarization
can still decay at a rate Γ0 due to the approximate character
of the emergent U(1) quasi-conservation law; Γ0 can be sys-
tematically suppressed by, for instance, increasing the number
of spin-lock trains 𝑁 per monopole [28]. Our data shows that
deviations from this limiting case enhance the decay quadrat-
ically, Γ𝑒−Γ0∝𝜀2, see Fig. 4a. At the same time, we observe a
linear suppression of Γ𝑒 for small 𝐽𝑇 shown in Fig. 4b, regard-
less of the multipolar order 𝑛 used in the drive (a deviation for
𝐽𝑇≪1 is observed due to uncertainty in the calibration of the
𝛾𝑦 pulse, see SI). Both decay laws match our numerical sim-
ulations (grey dashed) with good accuracy, which can also be
analytically justified by modeling the dynamics in a dephasing
limit, see SI.

Micromotion Engineering. The controllably long lifetimes
of rondeau order suggest potential for diverse applications.
Specifically, in Fig. 5 we demonstrate versatile micromotion
engineering for data encoding, using the sign of the rigid 𝑥-
polarization values + and − as classical states to represent
bits 0 and 1. We encode binary information in the sequential
arrangement of the two monopole drives + and − . Since
𝑁+>𝑁− , measuring the micromotion of the 𝑥-polarization at
half-integer periods (2ℓ+1)𝑇/2 (ℓ∈N) is sensitive to polariza-
tion values before/after the 𝛾𝑦-kick for the + / − unitary; this
allows us to read-off the sign of the corresponding monopole.
This paper’s title can then be encoded within the micromotion
dynamics of a time rondeau crystal in a 7-bit encoding system
[Fig. 5a]. In the experiment, which operates in the dephasing
limit [SI], we find that the heating rate of the string-encoded
drive aligns closely with the Thue-Morse sequence [Fig. 5b].
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FIG. 5. ‘Experimental observation of a time rondeau crystal:
Temporal Disorder in Spatiotemporal Order’ encoded inside the mi-
cromotion of a time rondeau crystal using ASCII encoding scheme.
a, micromotion that encodes the word "Disorder" in ASCII encoding
scheme is shown in full detail: ‘D’ corresponds to 1000100, ‘i’ corre-
sponds to 1101001, etc. Light-green lines are 𝑥-projection signals of
13C nuclear spin polarization measured at half-integer periods [see
text]. Brown (orange) dots indicate that the micromotion is posi-
tive (negative) and that the bit encoded is 1 (0). We can artificially
engineer the order of + / − pulses to encode arbitrary information
into the micromotion, as the heating is well suppressed even for a
structureless random drive. b, Full dataset of 𝑥-projection signal of
the string-encoding sequence (green). The lifetime of the engineered
micromotion is comparable to the lifetime of the quasiperiodic Thue-
Morse sequence (grey), demonstrating full controllability of micro-
motion without reducing the lifetime of the signal. Here 𝛾𝑦=𝜋 and
𝜃𝑥=𝜋/2.

Hence, we can fully manipulate the micromotion without com-
promising the lifetime of the underlying spatiotemporal or-
der [38].

While Fig. 5 represents a proof-of-concept, the message
size encoded can be significantly longer, continuing as long
as the signal remains above the noise floor, here for 𝑡≈36.2s.
Moreover, the continuous measurements can facilitate encod-
ing akin to pulse code modulation [39], enhancing capacity.
Assuming a clock cycle of 𝜏=86.8𝜇s, we estimate the ability
to encode >1.9×102 characters (see SI), offering interesting
new avenues for spatiotemporal memories [40, 41].

Conclusion and outlook. Our experiments open a promis-
ing new avenue to investigate temporal order, demonstrat-
ing, for the first time, long-lived stable coexistence of long-
range temporal order and micromotion disorder at short
timescales. Going beyond state-of-the-art techniques for con-
trolling and probing nonequilibrium quantum matter, we are
able to identify and implement random structureless and struc-
tured, quasiperiodic, and periodic drives that give rise to a
wide range of temporal orders, including time-crystalline, time



6

quasi-crystalline, and rondeau order – all in a single quantum
simulation platform. The versatile structure of our drive pro-
tocol allows us to map out the stability diagram and explore
the robustness against external perturbations.

Unlike ordinary DTC order, rondeau order allows for great
tunability of the temporal spectral micromotion response, at a
moderate cost on the lifetime of the temporal order. In fact,
in our experiments, we observe no dependence of the lifetime
on the details of the driving sequence. Therefore, we can
engineer arbitrary micromotion dynamics, beyond the RMD
sequences considered before, without loss in signal quality, see
e.g., Fig 5. This enhanced tunability can boost potential appli-
cations of temporal order, like quantum sensing [42, 43], cat
state preparation [44], or topological transport [45]. Specifi-
cally, the tunability of the power spectrum in our experiment
may facilitate the creation of frequency-selective, DTC-based
quantum sensors. Moreover, spin-lock lifetimes here are in-
fluenced by relaxation from NV electrons [46]; we instead
anticipate significantly longer rondeau lifetimes in alternate
systems based on photoexcited triplet electrons [47, 48]. Fi-
nally, although our experiment focused on nuclear spins in
diamond, the underlying concept is immediately applicable to
a wide swathe of quantum simulator platforms.
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METHODS

Setup

Experiments here employed a single crystal diamond with ∼
1ppm NV centres and natural abundance (1.1%) of 13C nuclei.
The diamond sample, immersed under water, is mounted in a

8mm 7inch glass sample tube, such that the [100] face is
parallel to external magnetic field with magnitude 𝐵0. The
tube is, in turn, attached to a carbon-fiber rod, using two O-
rings, and mounted the rod to a belt-drive actuator (Parker)
that “shuttles” that sample rapidly between fields used for 13C
hyperpolarization (𝐵0=38mT) and 13C interrogation (𝐵0=7T).

The 13C nuclei are hyperpolarized for 𝑡pol=60s via NV cen-
ters at low magnetic field (38mT) via a CW laser illumination
and chirped microwave protocol described in Ref. [49], and
following a spin-ratchet polarization transfer mechanism de-
scribed previously in Refs. [50, 51]. The hyperpolarization
setup uses multi-laser excitation and has been described pre-
viously [52]. At high field (𝐵0=7T), the 13C nuclei are sub-
sequently subjected to the random multipolar drives, with the
13C Larmor precession being sampled in windows between the
spin-locking sequences (Fig. 1c).

Spin control architecture

A particular innovation in the current experiments is the de-
sign of a new spin control infrastructure that facilitates versatile
spin control. Hundreds of thousands of pulses are typically
applied, and while in previous experiments [30], the pulses
needed to be all identical due to memory and other technical
limitations, here we significantly lift this constraint. We ac-
complish this by constructing a new NMR spectrometer fully
based on a high-speed large-memory Arbitrary Wave Gener-
ator (AWG) (Tabor P9484M). The AWG is employed to con-
struct the RF pulses, which are then amplified by a Traveling-
Wave Tube (Herley) amplifier and delivered to the RF coil via
a cross-diode based transmit/receive (T/R) transcoupler (Tec-
mag). The rapid sampling rate (up to 9GS/s) and substantial
onboard memory (16GB) of the AWG, along with the ability to
use onboard Numerically Controlled Oscillators (NCOs), pro-
vides a versatile control toolbox; in principle, any sequence of
RF pulses can be applied to the spins, comprising over >64000
unique building blocks, and any larger combination thereof.

In addition, the AWG is also used as a fast digitizer to rapidly
sample (here at 1GS/s) the 13C Larmor precession between
the pulses. The inductively measured signal is amplified via a
chain of low-noise amplifiers (ARR and Pasternack) through
the T/R transcoupler prior to digitization. Using the same
onboard NCOs can now down-shift the precession signals to
obtain in-phase and quadrature components. This allows us to
interrogate the x-projection and y-projection of the 13C nuclear
spins directly in their rotating frame.

To create the rondeau order using this new capabil-
ity, we first create two waveforms, which correspond
to + and − . + and − are defined as: 𝑁∓

𝜋
2 𝑥

pulses, 𝑦-pulse
of angle 𝛾𝑦 , and 𝑁±

𝜋
2 𝑥

pulses, with free evolution time 𝑡free
after every pulse (𝑁+=200, 𝑁−=100). We then generated the
sequence by placing the two waveforms, + and − , in the de-
sired order of application. To read out the signal of the 13C
nuclear spins after each pulse, we first wait for 𝑡ring-down≈12𝜇s
to account for any pulse ring-down, followed by inductive de-
tection for 𝑡acq=12𝜇s. Thus, in total, the spacing in between
the pulses is 𝑡free = 𝑡ring-down + 𝑡acq.
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Random multipolar drives

Temporal order is realized using the ‘slow’ drive, which fol-
lows a structured RMD sequence. More precisely, the protocol
includes two elementary building blocks𝑈±

0 of equal duration
𝑇 :

𝑈±
0 = (𝑈𝑥𝑈dd)𝑁−𝑁±𝑈𝑦𝑈dd (𝑈𝑥𝑈dd)𝑁± , (M 1)

where 𝑈𝑥 = exp(−𝑖𝜃𝑥 𝐼𝑥), 𝑈𝑦 = exp
(
−𝑖𝛾𝑦 𝐼𝑦

)
, 𝑈dd =

exp(−𝑖𝜏𝐻dd). We neglect the dipole-dipole interaction when
𝑥, 𝑦-pulses are applied, as the Rabi frequency Ω is much larger
than the median coupling 𝐽, Ω>10𝐽. In the main text, we
use + / − to denote𝑈+

0 /𝑈−
0 for simplicity. 𝑈𝑥𝑈dd implements

a spin-lock pulse and a free evolution governed by 𝐻dd, and
𝑈𝑦 implements the polarization inversion. Trains of spin-
lock cycles generate the emergent 𝑈 (1) symmetry required
for the quasi-conservation of the polarization. Note that dif-
ferent numbers of spin-lock pulses are deployed before 𝑈𝑦 in
these two trains. Hence, polarization flips at different times if
different blocks are applied to the system.

For Floquet protocols, the system propagates deterministi-
cally with, for instance, only 𝑈+

0 . In contrast, for 𝑛=0 random
multipolar driving, the two operators (or monopoles) are ran-
domly selected to evolve our system. Since this selection is
random in time, its DFT is trivially flat. Note that the specific
construction of 𝑈±

0 already embeds a certain structure in the
protocol, for instance, polarization flips precisely once within
a period. For comparison, in completely structureless ran-
dom drives, polarization flip may happen at any time, which
normally melts the long-range temporal order rapidly.

Higher order multipolar operators of order 𝑛 can be recur-
sively constructed as 𝑈±

𝑛=𝑈
∓
𝑛−1𝑈

±
𝑛−1, by anti-aligning 𝑛−1-

multipole pairs together. The length of an 𝑛-multipole se-
quence grows exponentially in 𝑛 as 2𝑛𝑇 . In complete analogy,
the 𝑛−RMD protocol consists of a sequential application of a
random selection of 𝑈±

𝑛 with equal probability. In the limit
𝑛→∞, the protocol becomes deterministic and quasiperiodic
in time. It indeed corresponds to the Thue-Morse sequence,
which has also been extensively studied in the context of, for
instance, quasi-crystals and number theory [34, 53].

Prethermal order

Generic time-dependent many-body systems do not obey
the energy conservation law. Therefore, they tend to absorb
energy from the external drive, and eventually heat up to-
wards a featureless state at infinite temperature. In Floquet
systems, heating can be significantly suppressed if there is a
notable mismatch between the local energy scale and the ex-
ternal driving frequency, for instance, in the high-frequency
regime [54]. This can result in an exceptionally long-lived
prethermal regime before notable heating happens [55–58],
and dynamics therein can be approximated by a static quasi-
conserved effective Hamiltonian 𝐻eff . It can be perturbatively
constructed, for instance, by using a Floquet Magnus expan-
sion or high-frequency expansion [59, 60].

For ergodic interacting many-body systems, the existence
of the effective Hamiltonian implies that, during the prether-
mal regime, local properties of the system can be captured
by a prethermal canonical ensemble 𝜌pre∼𝑒−𝛽eff𝐻eff ; here 𝛽eff
denotes the prethermal temperature that is determined by the
energy density of the initial state [56]. If 𝛽eff is sufficiently
low and 𝐻eff allows for spontaneous symmetry breaking to
occur at a finite temperature, 𝜌pre can exhibit equilibrium spa-
tial ordering. Additionally, if regular polarization inversion is
further introduced by the drive, as described in the last sec-
tion, prethermal non-equilibrium time crystalline order can
form [61, 62].

This prethermal phenomenon can be generalized to other
time-dependent protocols even in the absence of strict tem-
poral periodicity. One typical example is quasiperiodically
driven systems where at least two drive frequencies are incom-
mensurate with each other [23–26, 63–67]. Prethermalization
also occurs in RMD systems, where the driving spectrum has
continuous support over the entire range of frequencies due to
temporal randomness [68].

The temporal multipolar correlation of RMD protocols sig-
nificantly modifies the Fourier spectrum of the random drive
sequence: It has been shown in Ref. [68] that the envelope
of the spectrum follows

∏𝑛
𝑗=1 [1 − cos

(
2 𝑗−1𝜈

)
]1/2 with 𝜈 the

Fourier frequency. This expression indicates an algebraic sup-
pression 𝜈𝑛 for 𝜈→0. Since it is these low-frequency modes
that normally produce the dominant contribution to heating,
heating can be algebraically suppressed in the high-frequency
regime. The algebraic scaling exponent also has an explicit
dependence on the multipolar order. One can also construct
effective Hamiltonians by generalizing the Floquet-Magnus
expansion, and using linear response theory to analyse the
heating behavior more systematically [36].

If the temporal randomness only weakly perturbs the system,
the RMD protocol indeed leads to a prethermal plateau, that
can feature either equilibrium or non-equilibrium ordering,
very similar to Flqouet systems. However, the RMD protocol
introduced in the last section is designed such that temporal
randomness in polarization inversion strongly changes the be-
havior of the micromotion of the system. As illustrated in the
main text, this RMD protocol results in rondeau order, beyond
the conventional Floquet paradigm.

It is worth noting that, although those prethermal orders
eventually melt, their stability and lifetime can be paramet-
rically controlled, permitting direct experimental observation
with our current nuclear spin setup. Throughout, we estimate
the lifetime via the 1/𝑒 decay time𝑇𝑒 defined as the time where
the absolute value of the signal is closest to 1/𝑒 of its initial
value 𝑆0, i.e.,

𝑇𝑒 = argmin
𝑡>0

| |𝑆(𝑡) | − 𝑆0/𝑒 | . (M 2)

This feature may also be exploited to study interesting appli-
cations [see main text].
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Discrete Fourier Transform

In the main text, we use two different discrete Fourier
transforms. For the micromotion we consider the discrete
Fourier transform of the digitized micromotion extracted at
times (2ℓ + 1)𝑇/2 (ℓ∈N):

DFTmicro (𝜔𝑘) =
1
𝑀

𝑀−1∑︁
ℓ=0

𝑒−𝑖𝜔𝑘ℓsgn (𝑆((2ℓ + 1)𝑇/2)) ,

(M 3)
where 𝜔𝑘 = 𝑘2𝜋/𝑀 , 𝑘 = 0, . . . , 𝑀 −1 and sgn (𝑆(𝑡)) = +1 or
−1 depending on whether 𝑆(𝑡) > 0 or 𝑆(𝑡) < 0, respectively.

For the stroboscopic evolution we consider the discrete
Fourier transform of the signal extracted at stroboscopic times
ℓ𝑇 (ℓ∈N):

DFTstrobo (𝜔𝑘) =
1
𝑀

𝑀−1∑︁
ℓ=0

𝑒−𝑖𝜔𝑘ℓ𝑆(ℓ𝑇) . (M 4)

Note, that the Fourier amplitude is defined as the absolute
value of the DFT, (Fourier amplitude=|DFT|), in contrast to
the Fourier intensity (i.e., the power spectrum) which is defined
as the absolute value squared.
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S1. EXPERIMENT

A. Inhomogeneity of pulses

Due to the finite-size of the sample and the restriction in
the coil design, the RF coil in our apparatus (described in
Supplementary Figure 2 of [43]) is incapable of applying per-
fectly homogeneous transverse magnetic field to the sample.
To quantify the inhomogeneity, we show the change in the de-
cay rate of the discrete time crystal (DTC) order engineered
using two frequency drive described in [30] as we incremen-
tally change the length of the 𝛾𝑦 pulse. Fig. S1 shows the
region of length 1.8 𝜇s where the decay of the DTC remains
approximately constant. This region of plateau indicates that
the inhomgeneity of the pulses is ≈ 1.8 𝜇s/100 𝜇s = 1.8%, be-
cause the 13C nuclear spins in the same sample feels different
magnetic fields depending on their positions. Here, 100 𝜇s is
used to approximately deduce the length of the 𝜋-pulse.

B. Maximum length of encoding

To obtain a conservative estimate of the maximum-length
encoding that can be obtained in our experimental setup, we
first fit the decay of the 13C nuclear spins’ signal generated
by Thue-Morse sequence (described in Fig. 1a as 𝑛 → ∞) to
a biexponential function, as we empirically observed that the
biexponential function (dotted blue line in Fig. S2) fit the raw
data (green points in Fig. S2) well with high fidelity. We further
assume that the decay time of any string-encoded time rondeau
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Fig. S1. Change in the decay time of the DTC while varying
length of 𝛾y (experiment). Change in the decay time of the DTC
while varying the length of 𝛾𝑦 near 𝜋. Plateau of length 1.8 𝜇s
indicates the inhomogeneity of the 𝛾𝑦 pulse applied to the sample.

crystal is comparable to that of the Thue-Morse sequence, as
shown for one example in main text Fig. 5.

Fig. S2 shows that at 𝑡hit ≈ 36.2𝑠, the signal is estimated
to hit the noise-floor. With 𝑡hit as our bandwidth, we can en-
code up to 198 characters, which corresponds to approximately
1.3 × 103 number of cycles. For future applications, we can
improve the bandwidth by increasing the initial signal with
better hyperpolarization of the 13C nuclear spins. We can fur-
ther improve the bandwidth by increasing the Rabi-frequency
using a RF coil with higher Q-factor and filling factor, as short,
high power pulses decreases the decay caused by dipole-dipole
coupling during the pulses.

S2. SIMULATIONS

A. Model

The experiment is performed in a strong magnetic
field (∼7 T). The Hamiltonian reported on in the main text,
Eq. (1), describe the relevant dipole-dipole interaction in a
rotating frame that removes this strong magnetic field. In this
section, we briefly report on the derivation of this rotating
frame.

The lab frame Hamiltonian of the interacting system of 13C-
nuclear spins is given by,

Hlab (𝑡) = 𝜔𝐿 𝐼𝑧 + 𝐻dd,lab + 𝐻𝑥,lab (𝑡) + 𝐻𝑦,lab (𝑡) , (S 1)
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Fig. S2. Estimating the maximum length of encoding. Green
points indicate normalized signal of the 13C nuclear spins when Thue-
Morse sequence described in the main text Fig. 1a (𝑛 → ∞) is applied.
Dotted blue line fits the signal of 13C nuclear spins to a biexponential
function. From the fit, the signal is estimated to hit the noise floor
(black dotted line) at 𝑡hit ≈ 36.2s ≈ 1.3 × 103𝑇 . We can thus encode
up to 198 characters, using 7-bit ASCII encoding scheme.

where 𝜔𝐿 is the Larmor frequency, and

𝐻dd =
∑︁
𝑘<𝑙

𝐽𝑘𝑙
[
3𝑟−2

𝑘𝑙 (𝑰𝑘 · 𝒓𝑘𝑙) (𝑰𝑙 · 𝒓𝑘𝑙) − 𝑰𝑘 · 𝑰𝑙
]
,

is the magnetic dipole-dipole interaction with the vector 𝒓𝑘𝑙
connecting the two spins 𝑘 and 𝑙. The time-dependent terms
in Eq. (S 1) are given by 𝐻𝑥,lab (𝑡) = Ω cos(𝜔𝐿𝑡)Θ𝑥 (𝑡)𝐼𝑥 and
𝐻𝑦,lab (𝑡) = Ω cos(𝜔𝐿𝑡)Θ𝑦 (𝑡)𝐼𝑦 , with Θ𝑥,𝑦 (𝑡) being step func-
tions that implement the sequence described in Fig. 1. Per-
forming a co-moving frame transformation with respect to the
magnetic field and a rotating wave approximation we arrive at

Hlab (𝑡) = 𝐻dd + Θ𝑥 (𝑡)Ω𝐼𝑥 + Θ𝑦 (𝑡)Ω𝐼𝑦 , (S 2)

with the secular dipole-dipole interaction

𝐻dd =
∑︁
𝑘<𝑙

𝐽𝑘𝑙
[
3𝐼 𝑧

𝑘
𝐼 𝑧
𝑙
− 𝑰𝑘 · 𝑰𝑙

]
,

where all terms that do not commute with the 𝐼𝑧 field are
cancelled, thus arriving at the Hamiltonian reported in Eq. (1).

Note that in general, the interaction term (𝐻dd) is also
present during the application of the 𝑥 and 𝑦 pulses. However,
since the Rabi-frequency (Ω) is much larger than the median
coupling (𝐽 ≪ Ω), we ignore the impact of interactions when
the pulses are applied for numerical simplicity. This results in
the unitary evolution Eq. (M 1).

B. Algorithm

The algorithm we use to numerically simulate the system is
similar to that used in Ref. [30]. Spins are placed on a pseudo-
random graph (among the majority of 12C spins which carry
no total nuclear spin, the position on the diamond lattice of
13C spins with total spin-1/2 is random), coupled with long-
range dipole-dipole interactions, see Eq. (1). The pseudo-
random graph is generated with the procedure designed in
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Fig. S3. Comparison of experimental and simulated phase dia-
gram. Intensity of Fourier transform of stroboscopic dynamics for
monopole (𝑛 = 0), a, and Thue-Morse sequence (𝑛 = ∞), b, similar
to main text Fig. 3; and corresponding simulations in c and d, respec-
tively. The simulation results align perfectly with the experimental
observation. The strong response of the Fourier intensity at 𝜈 = 𝜋/𝑇
is a clear signature for period doubling dynamics that are stable in
a large parameter regime, 𝛾𝑦 ≈ 𝜋 ± 0.1𝜋. The stability seems to be
independent of the multiple order (𝑛). Parameters are as in main text
Fig. 3.

Ref. [30]: Spin locations are drawn one-by-one randomly in a
3D cube with edge length 𝑑. Note that the dipole-dipole cou-
pling strongly depends on the distance of the spins, 𝐽𝑘ℓ ∝ 𝑟3

𝑘ℓ
.

Thus, if two spins are placed close to one another they will in-
teract strongly effectively decoupling from their environment;
to avoid this scenario a spin-location is only accepted if the
distance to all other spins is at least 𝑟min. Likewise, if a spin
is located far a way from all other spins, it also effectively
decouples from all other spins. To make maximal use of the
given number of spins, we ensure that each spin has a distance
of at most 𝑟max to at least one of the other spins. We choose
𝑟min = 0.9 and 𝑟max = 1.1.

In the simulations, unless otherwise noted, we initialize
all spins in the all 𝑥-polarized pure state. We perform time
evolution according to the protocols described by Fig. (1) and
Eq. (M 1) using exact-diagonalization provided by the QuSpin
python library [69, 70]. As mentioned above, 𝑥 and 𝑦 pulses
can be treated as instantaneous pulses for numerical efficiency.
Although not shown here, we also have performed simulations
with finite-time pulses and indeed, found no notable difference
in the observed dynamics.

C. Comparison of Experiment and Simulations

Equipped with this algorithm we can now support the exper-
imental findings with corresponding numerical simulations.
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Fig. S4. Lack of initial state dependence in time rondeau crystal.
Normalized 𝐼𝑥 polarization as a function of time for different delay
times 𝑡𝑑 . The initial state is subject to free-induction-decay caused
by applying the dipole-dipole interactions (𝐻dd, Eq. (1)) for a time
𝑡𝑑 , indicated by colorbar. The time evolution is independent of the
initial decay time 𝑡𝑑 , indicating that the formation of temporal order
is independent of the initial state. We use 𝛾𝑦 = 𝜋; other parameters
are as in Fig. 1

Let us emphasize that, in the experiment, the diamond sample
normally contains hundreds of NV-centers each surrounded by
thousands of spins, and hence the precise numerical simulation
of its dynamics is far beyond the reach of classical computa-
tional power. Yet, we find good qualitative agreement between
simulations with 14 spins and experiments for both the phase
diagram and decay rate scaling: In Fig. S8, we compare the
experimentally obtained phase diagram (cf. Fig. 3) with sim-
ulation results. The simulations align perfectly well with the
experimental measurements, indicating a similar regime of
stability and a lack of dependence on the stability of the drive
sequence. In addition, in Fig. S5, we present results for the
heating rate Γ𝑒. Again, we find good qualitative agreement.
Specifically, both simulation and experiment are consistent
with a power law of the heating rate Γ𝑒 − Γ0 ∝ 𝜀2 and Γ𝑒 ∝ 𝑇

for small 𝜀 and 𝑇 , see Fig. S5a, b and c, d, respectively.

D. Dephasing limit and low drive frequency regime

As outlined in the main text, our experimental results and the
corresponding numerical simulations of the heating rate do not
match with earlier theoretical predictions [27]. In Ref. [27], a
power law suppression of heating rate Γ𝑒 ∝ 𝑇𝛽 is predicted in
the high-frequency regime, 𝐽𝑇≪1. The exponent 𝛽 increases
notably with the multipole order 𝑛. This happens because of
the stronger low-frequency suppression of the driving spec-
trum at higher 𝑛, as confirmed in the DFT spectrum, cf. Fig. 2.
However, using a ‘slow drive’, our experiments are performed
in a low- to intermediate-frequency regime (𝐽𝑇>1). There-
fore, we find little to no dependence on the multipole order 𝑛
in our experiments, see Fig. 4.

The parametric dependence of the lifetime (inverse heating
rate) versus 𝑇 and 𝜀 can be understood in a dephasing limit as
follows. The imperfection in the 𝑦-pulses, 𝜀 ≠ 0, results in an
imperfect polarization inversion 𝐼 𝑥 → − cos(𝜀)𝐼 𝑥 + sin(𝜀)𝐼 𝑧 .
Only the x̂-polarization can be prethermnally protected by the
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Fig. S5. Experimental and simulated lifetime dependence. a, heat-
ing rate dependence on the deviation (𝜀 = 𝛾𝑦 − 𝜋), for monopole (𝑛 =

0, green circles) and Thue-Morse (𝑛 = ∞, pink triangles); gray lines
indicate power law 𝜀2. Data is same as displayed in Fig. 4a . b, corre-
sponding numerical simulation; dashed lines indicate power law fits
with exponent 1.9± 0.2 and 2.0± 0.2 for monopole and Thue-Morse
sequence, respectively. c, dependence of heating rate on period 𝑇 ,
while simultaneously varying 𝜀 = 𝐵𝑇 ; gray lines indicate power law
𝑇1. Data is same as displayed in Fig. 4b. d, corresponding numer-
ical simulation; dashed lines indicate power law fits with exponents
1.1 ± 0.1 for both monopole and Thue-Morse sequence. The simula-
tion results are in good quantitative agreement with the experimental
results. The extracted power laws are consistent with the dephasing
limit predictions [see text], Γ𝑒 − Γ0 ∝ 𝜀2 and Γ𝑒 ∝ 𝑇 for the scaling
with small detuning (𝜀) and period (𝑇), respectively. Parameters are
as in main text Fig. 4.

fast drive, and other components are rapidly echoed out be-
tween two 𝑦-pulses. Therefore, the signal after one full cycle
is given by 𝐼 𝑥 → − cos(𝜀)𝐼 𝑥 , leading to the period-doubling
oscillations at stroboscopic times with an overall weakly de-
caying amplitude. Factoring in the intrinsic heating rate (Γ0)
due to imperfect quasi-conservation of 𝐼 𝑥 , the amplitude after
𝑀 periods can be approximated as |𝐼 𝑥 | ∝ cos(𝜀)𝑀𝑒−Γ0𝑀𝑇 .
The independence of the heating rate on the multipolar order
𝑛 follows immediately: the above heating only depends on the
number 𝑀 of 𝑦-pulses applied within one period 𝑇 , which is
the same for all sequences.

Considering small detuning values (𝜀 ≪ 1), we can ex-
pand the above equation as |𝐼 𝑥 | ∝ (1 − 𝜀2/2)𝑀𝑒−Γ0𝑀𝑇 ≈
𝑒−𝑀𝜀2/2−Γ0𝑀𝑇 . Upon recasting this equation as |𝐼 𝑥 | ∝
𝑒−Γ𝑒𝑀𝑇 , one finds a power law scaling for the heating rate,
Γ𝑒 − Γ0 ∝ 𝜖2. The numerical simulations are consistent with
this exponent, see Fig. S5b.

In addition, if Γ0 is sufficiently small compared to the above
heating rate due to the inversion imperfection, and using the
dependence 𝜀 = 𝐵𝑇 , one finds Γ𝑒 ≈ Γ𝑒−Γ0 ∝ 𝑇 . The numeri-
cal simulations are consistent with this linear dependence, see
Fig. S5d.

In fact, also the bending-up of the experimental curve in the
regime 𝑇 → 0 that is observed in the experimental data shown
in Fig. S5c, can be understood as follows. First, let us reiterate
on the fact that in the experiment there is a finite uncertainty
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Fig. S6. Simulated heating rates, approaching the high-frequency
(𝑇 → 0) regime. Heating rate for 𝑛 = 0 (green circles), 𝑛 = 1 (orange
squares), 𝑛 = 3 (cyan hexagons) and Thue-Morse (𝑛 = ∞, pink trian-
gles) obtained from numerical simulations with (𝑁+, 𝑁−) = (10, 5).
Gray dashed and dash-dotted lines are guides to the eye, correspond-
ing to power laws ∼ 𝑇 and ∼ 𝑇3, respectively. We observe a de-
pendence of the heating rate on the multipole order 𝑛, unlike in
the experiments, and corresponding simulations, shown in the main
text (see also Fig. S5). This indicates that a dependence of the heating
rate on the drive protocol occurs in the high-frequency limit. Note
that the period values here are at least one order of magnitude smaller
than the experimentally accessible regime, see Fig. 4. Other param-
eters are as in Fig. S5.

in determining the pulse-angle 𝛾 = 𝜋, see Fig. S1. Thus, we
should rather consider 𝜀 = Δ𝜀+𝐵𝑇 whereΔ𝜀 is the uncertainty
in 𝜀. This modifies Γ𝑒 − Γ0 ∝ (Δ𝜀)2/𝑇 + 2𝐵Δ𝜀 + 𝐵2𝑇 which
reaches a minimum where it flattens. Eventually, we expect
the rate to start increasing for sufficiently small 𝑇 ; however,
let us stress, that in general Γ0 also depends on the period 𝑇 ,
since it controls the spin-locking lifetime.

Finally, let us point out that the starting point for this anal-
ysis – the dephasing limit – is expected to break down in the
high-frequency regime, where we expect that the decay rate
explicitly depends on the multipolar order [27]. However, this
high-frequency regime is currently inaccessible in our exper-
iments due to Rabi frequency limits on the 13C nuclei, which
puts a lower limit on the pulse-duration needed to achieve the
(𝜋/2)𝑥 and 𝛾𝑦 pulses; thus, putting a lower limit on the period
𝑇 that is experimentally achievable. Note, however, that this is
not a fundamental constraint and can be overcome by employ-
ing higher Q-factor RF coils and increasing the sample filling
factor (currently <10%). While exploring this regime is be-
yond the reach of the present experiment, we can still perform
numerical simulations to demonstrate the occurrence of this
phenomenon. In Fig. S6, for a small driving period, the heating
rate can be different for various multipole order (𝑛). Interest-
ingly, the power law scaling exponents shown in Fig. S6 do not
follow the prediction in Ref. [27], where the exponent 2𝑛 + 1
is predicted for locally interacting many-body systems. We at-
tribute this discrepancy to the presence of long-range interac-
tions in the experimental system (in contrast to the short-range
model studied in Ref. [27]), but we leave a proper analysis to
future work.
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Fig. S7. Comparison Floquet and RMD-sequence: Time evolution
of polarization for different kick angles 𝛾, for a, monopole (𝑛 = 0)
and b, Floquet sequence. There is little difference in the stability
regime of the two orders. However, the RMD signal is non-periodic
in contrast to the periodic Floquet DTC response. Parameters are as
in Fig. 3.

S3. PROPERTIES OF PRETHERMAL TEMPORAL
ORDER

For the sake of completeness, let us mention that, in the
regime 𝛾𝑦 ≈ 𝜋, the observed dynamics for all RMD-sequences
satisfy the required properties of prethermal temporal order:

1. Stable spatiotemporal symmetry breaking as indicated
by the long-lived period doubling dynamics in Fig. 1d.

2. Robustness to perturbations, specifically, the persis-
tence of temporal order for finite detuning (𝜀 = 𝛾 − 𝜋),
as demonstrated in Fig. 3.

3. Parametrically controlled long-lived prethermal lifetime
as demonstrated in Fig. 4b.

4. Independence of initial state: In Fig. S4, we demonstrate
that due to the quasi-conserved 𝐼𝑥-polarization, the tem-
poral order is independent of the initial state, as long as
the initial state has a finite 𝐼𝑥-polarization. Specifically,
we tune the effective temperature of the initial state by
exposing the spins to evolution under dipole-dipole in-
teractions only, for a finite waiting time (𝑡𝑑). This leads
to an exponential decay in the waiting time of the initial
polarization. After this initial decay period we apply
the RMD-sequence (see Fig. 1). We observe that the re-
sulting 𝐼𝑥-polarization dynamics are independent of the
initial decay time, up to an overall multiplicative factor
stemming from the initial decay, see Fig. S4.
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Fig. S8. Phase diagram for different multipole orders. Intensity
of Fourier transform—defined as the absolute value squared of the
discrete Fourier transform (DFT), |DFT|2—of stroboscopic dynamics
for monopole (𝑛 = 0, a), dipole (𝑛 = 1, b), quadrupole (𝑛 = 2, c), and
Thue-Morse sequence (𝑛 = ∞, d). No difference is observed between
the different monopole orders, in agreement with the expectation that
𝑛 > 0 corresponds to an interpolation between 𝑛 = 0 and 𝑛 = ∞.
Parameters are as in main text Fig. 3.
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Fig. S9. Tunable lifetime for different multipole orders. Same as
main text Fig. 4 for monopole (𝑛 = 0), dipole (𝑛 = 1), quadrupole (𝑛 =

2) and Thue-Morse (𝑛 = ∞) RMD sequence. a, Heating rate as a
function of 𝑦-pulse deviation, 𝜀 = 𝛾𝑦−𝜋. b, Heating rate as a function
of the period 𝑇 , while simultaneously changing the detuning 𝜀 = 𝐵𝑇 .
The heating rate in the observed parameter regime is independent of
the multipole order 𝑛. Parameters are as in main text Fig. 4.

S4. ADDITIONAL DATA SETS

A. Direct Comparison with Floquet DTCs

In Fig. S7, we contrast the real-time evolution of a single-
shot 0-RMD sequence with a Floquet sequence at different
kick-angles 𝛾. While there is no difference in the stability of
the observable polarization lifetime, the non-stroboscopic mi-
cromotion dynamics of the two sequences are clearly distinct:
The periodicity of the Floquet drive is mirrored in the extracted
signal; by contrast, the 0-RMD sequence displays disordered
non-stroboscopic dynamics.

B. Stability of Rondeau Order for Different Multipolar Drives

We briefly report on the stability of different multipole or-
ders 𝑛 = 0, 1, 2 and Thue-Morse. As indicated in the main
text, we observe no difference in terms of stability or heating
rate for the different multipole orders, see Fig. S8 and Fig. S9,
respectively. These results are consistent with the dephasing
limit arguments above, which is independent of the multipole
order 𝑛.


	Experimental observation of a time rondeau crystal: Temporal Disorder in Spatiotemporal Order
	Abstract
	References
	Experiment
	Inhomogeneity of pulses
	Maximum length of encoding

	Simulations
	Model
	Algorithm
	Comparison of Experiment and Simulations
	Dephasing limit and low drive frequency regime

	Properties of prethermal temporal order
	Additional Data sets
	Direct Comparison with Floquet DTCs
	Stability of Rondeau Order for Different Multipolar Drives



