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Significance Statement 
Density functional theory (DFT) is a powerful tool for predicting the electronic band structures of 
functional materials. However, it is often difficult to intuit how major band structure features—such 
as band gap magnitude, location of band extrema, effective masses, etc.—arise from the underlying 
crystal chemistry of a material.  Here, we present a conceptual and computable framework to extract 
the chemical bonding origins of DFT-calculated band structures. As a key example, we explain the 
indirect band gap of silicon, revealing new insights to understand and engineer the position of its 
conduction band minimum. These calculation techniques can be broadly applied to reveal the crystal 
chemistry origins of electronic structure features in other optical, electronic, and magnetic materials.   
 
Abstract 
Chemical bonds give rise to electronic structure, but the complex bonding environments of crystals 
make it difficult to isolate which specific orbitals help to shape the overall electronic band dispersion. 
Here we present a systematic three-step approach to interpret how band dispersion arises from multiple 
orbital interactions in a 3D crystal. This process proceeds by determining 1) which orbitals contribute 
to a band, 2) how these orbitals bond across k-space, and 3) the strength of the orbital bonds. Applying 
this approach to silicon, we provide a revised interpretation for the origin of the silicon conduction 
band minimum at the low-symmetry Δ point along the Γ-X line. Specifically, we find that the dip in 
the silicon conduction band near X originates from a cosine shape along Γ-X arising from second 
nearest neighbor px–px bonding, combined with a positive linear slope due to first nearest neighbor  
s-s, s-px, and px–px interactions. Based on these insights, we illustrate how the bonding interactions can 
be tuned to morph the silicon band structure into the germanium band structure, and how short-range 
ordering can produce a direct band gap in a specific sequence of Si-Ge layers. Our 3-step process offers 
a general framework to extract the crystal chemistry origins of electronic structure features from DFT 
calculations, enabling a new paradigm of bonding-by-design.  
  



 

 

Introduction 

Silicon has an indirect band gap, with the valence band maximum (VBM) at the Γ point and the 
conduction band minimum (CBM) at a low-symmetry point ~85% of the way between the Γ and X points. 
This indirect band gap determines the essential electronic and optical properties of silicon, and thereby its 
performance in photovoltaic and electronic devices.(1–3) Although the low-symmetry CBM of silicon is a 
basic fact of semiconductor physics, it is not so simple to answer why silicon has an indirect band gap. 
Similar ‘why’ questions can be generally raised about the electronic structures of materials. Why does 
germanium have a CBM at the L point, despite also being a Group IV semiconductor in the diamond 
structure? Why does zincblende GaAs have a direct band gap, with such a light electron effective mass? 
Understanding how crystal chemistry influences band structure would enable the rational design of band 
structure for thermoelectrics, p-type transparent conducting oxides, topological insulators, and other 
advanced electronic materials.(4–6) However, without a conceptual framework to approach why questions, 
one must rely on simple heuristics to post-rationalize the chemical origins of band structure. The 
computational search of next-generation optoelectronic materials can therefore only proceed by brute-force 
screening via a “needle-in-a-haystack” approach (7–9), rather than by rational and intuitive design.  

Roald Hoffman presented a beautiful theoretical framework to examine how physics and chemistry 
meet in the solid-state (10, 11), arguing that chemists approach electronic structure from a bottom-up 
molecular hybridization approach, whereas physicists adopt a top-down planewave interpretation of 
electronic structure. Although Hoffman provided instructive tight-binding interpretations for how 1D 
periodic bonding interactions lead to k-dependent band structures, his insights are difficult to extrapolate to 
crystals in three dimensions, as 3D atomic environments offers many more potential orbital interactions 
than 1D crystals. In particular, in three dimensions there are more geometric degrees-of-freedom for 
bonding, there are more competing nearest-neighbor environments, and the phase-factor modulation 
becomes 3-dimensional in k-space—making it difficult to deconvolute the contributions of various orbital 
interactions to the overall band structure.  

Given this complexity, creating tight-binding models in 3D structures requires a fundamental trade-
off between simplicity and interpretability. Simple tight-binding models are usually constrained to first 
nearest neighbors (1NN), where one first asserts a priori which bonds are considered. While the resulting 
models are usually easy to interpret, they may not be physically robust. In the case of silicon, achieving a 
CBM near the X point using 1NN tight-binding has relied on including an s* and/or d states beyond the 
standard sp atomic orbitals, which are arguably dubious in their physical relevance, as they do not reproduce 
or describe the precise physics of the actual excited states.(12–19) On the other hand, tight-binding models 
that consider further atomic neighbors, such as by interpolation from DFT band structures or fitting with 
many-NN, increases the accuracy of a tight-binding model but the model combinatorically explodes in the 
number of terms—precluding chemical interpretability(20–31).  This simplicity vs. interpretability trade-
off is also a central question in the machine-learning community, where powerful black-box models fail to 
deliver physical insights on their predictions.(32, 33)  

This paper aims to bridge the chemical intuition of Hoffman and the practical toolkit of DFT, so 
that we can better interpret the chemical origins of electronic structure in real materials. To do so, we start 
from a tight-binding interpolation of the DFT-calculated electronic structure using maximally localized 
Wannier functions (MLWFs).(34) From this tight-binding interpolation, we chemically interpret how band 
shapes in k-space derive from orbital interactions in real space. Our three-step process proceeds by 
determining: 1) Which orbitals contribute to a band—specifically, what are the orbital characters 



 

 

(eigenvectors) that contribute to the wavefunction. 2) How orbitals bond across k-space—where the real 
or imaginary nature of the phase factor (eik ̇ r) dictates the allowed bonding/antibonding/non-bonding 
interactions of orbitals in real space. 3) How strongly the orbitals bond—determined by the magnitudes of 
the tight-binding hopping parameters. These three steps systematically sieve through hundreds of TB 
parameters to build a sparse and physically robust model to interpret chemical bonding contributions to the 
electronic structure.  

Here, we begin with an illustrative 1D model system to emphasize the impact of multi-orbital and 
>1NN interactions on band structure. Then we apply our three-step process to build a concise and 
chemically robust tight-binding interpretation for how multiple orbital interactions combine to form a low-
symmetry CBM in Silicon. Specifically, we find that this low-symmetry CBM along the Γ-X line derives 
primarily from a cosine shape from 2NN px-px bonds, combined with a linear shape near X from 1NN orbital 
bonds. Finally, we present a new computational tool (https://viz.whsunresearch.group/tb/) to interactively 
execute our three-step process for any band and k-point in an electronic band structure. This tool enables 
us to precisely identify which bonds affect which segments of the silicon band structure. We then rationally 
tune these orbital interactions to morph the silicon band structure towards the germanium band structure, 
in accordance with the actual chemical differences between Si and Ge; and also rationalize how a specific 
Si-Ge short range ordering can promote a direct band gap. Altogether, our work serves as a general blueprint 
to extract the crystal chemistry origins of electronic band structure, and provides a pathway for rational 
band-structure engineering by chemical and structural design.  

 

Uncovering the chemistry in band structure 

All electronic properties of a material—including band gap, effective mass, band extrema location, 
etc.—are characterized by its band structure. The chemical origin of these electronic properties can be 
elucidated from accurate tight-binding interpolations of DFT-calculated electronic structure. Tight-binding 
decomposes a band structure into a summation of terms, similar to a Fourier decomposition, but with basis 
functions that correspond to physically-relevant orbital interactions.(35) This decomposition enables one 
to trace back which bonds manifest which specific band features of interest. 

In tight-binding, each band dispersion (shape in E-k space) is shaped from numerous pairwise bonds 
between atomic orbitals. In Equation 1, the overall shape of the band, !!(#) for band n, results from the 
sum of bond energies !!,#$(#)—which is the E-k shape of the bond between two Bloch orbitals α and β.  

!!(#) = &Ψ%&()*(Ψ%&+ = ∑ ∑ -!#'
(-!$

' 	&Φ#(#)()*(Φ$(#)+$# = ∑ ∑ !!,#$(#)$#   Eqn. 1 

This equation substitutes the wavefunction, Ψ%&, as the sum of atomic Bloch orbitals, Φα, multiplied by 
their eigenvector weights, -!#' . From this, the bond energy,	!!,#$(#) , is the bond weight, -!#'

(-!$
' , 

multiplied by the bond run, which we name the Hamiltonian matrix element between Bloch orbitals α and 
β, &Φ#(#)()*(Φ$(#)+. The name ‘bond run’ is inspired by Hoffman’s discussion(10) that bands made from 
s orbital bonds ‘run up’ in energy from Γ to the Brillouin zone edge (from bonding to antibonding), while 
bands from p orbital bonds ‘run down’ from Γ to the Brillouin zone edge (from antibonding to bonding). 

 



 

 

To isolate the impact of atomic orbital bonds, the bond run—written as )#$(#) for brevity—can be 
reduced by substituting the Bloch orbitals as the sum of k-modulated atomic orbitals. This results in 
Equation 2, which is a sum over bonds between an atomic orbital α at 0# and atomic orbital β at 0$ + 2, 
where R is a translation vector. Each bond is the tight-binding hopping parameter	3#$(2)—the bond 
strength at k=0, multiplied by a phase factor, which modulates the bond strength for given k. 

&Φ#(#)()*(Φ$(#)+ ≡ )#$(#) = ∑ 3#$(2)	5)*∙,-!.-"./0/   Eqn. 2  

Here, the k-dependence of a bond run arises from the sum of phase factors 5)*∙,-!.-"./0, where 0# and 0$ 
are atomic orbital centers in the primitive unit cell. The sum of these weighted phase factors over translation 
vectors 2 dictate the sign and shape of the bond run—where negative sums indicate bonding at that k-point, 
and positive indicates anti-bonding. In general, the bond run can be of any complex phase, but when 
multiplied with the eigenvectors -!#'

(-!$
' , must be real. 

Our three-step process is grounded in these two fundamental equations. Step 1 is bond weight, which 
quantifies the orbitals that contribute to a band. Step 2 is the shape of the bond run, which describes how 
the bond-type (bonding, antibonding, or non-bonding) changes across k-space. While Step 3 is the 
amplitude of the bond run, dictated by the strength of the bond between two atomic orbitals α and β, 3#$(2).  

Eqn. 1 is the same theoretical starting point as the crystal orbital Hamiltonian population (36, 37) 
method, but the implementation of an analytical representation in Eqn. 2 (instead of a numerical 
calculation, for example as done through LOBSTER(38)) requires a tight-binding interpolation, which 
enables us to then break down the contributions from individual bonds. These analytical representations of 
each orbital wavefunction lets us visualize and further separate into NN or long-range interactions.   

To examine how multiple orbitals and further nearest-neighbor interactions manifest in both real 
space wavefunction and the reciprocal space bands, here we present an illustrative example on a one-
dimensional monatomic chain, with two orbitals (s and p) per atom. Traditionally, 2NN and further terms 
are neglected in simple TB models, but here we show how they could induce major qualitative changes to 
the band structure. The details of the derivation are in SI.1.  

Plotted in Figure 1a, the 1NN bond runs	)11  and )22 are cosine curves with extrema at the high 
symmetry points, but all other bond runs ()12 and 2NN bonds) have extrema at low symmetry points. Using 
Eqn. 1, we sum together the bond runs multiplied by their bond weight (orbital character) to find the band 
energy. For only 1NN, !3(6) is dominated by )22(6), which has extrema at high symmetry points. We 
next add 2NN interactions, with an exaggerated bond strength of half the 1NN, which results in a qualitative 
change in the overall band shape. This additional strong 2NN interaction pulls the bands together near 7/2 
while pushing them apart near Γ and 7, creating a low-symmetry band extremum reminiscent of silicon. 

When we ground our tight-binding intuition in 1D models, the 2NNs are so far away that their 
contributions tend to be small. However, in 3D crystals, atoms have much higher coordination numbers. 
These 2NNs are also much closer in 3D crystals than they are in 1D systems, meaning the 2NN contribution 
to the tight-binding interactions can be substantial. In the case of silicon, the twelve 2NNs are only 1.6× 
further than the four 1NNs, with a geometry that allows for strong overlap between p orbitals. By studying 
silicon, we will show how bonds of similar strength with different frequency of bond runs leads to band 
extrema away from high symmetry points. Thus, if there is a low symmetry band extremum on a band that 
does not have a band inversion, long-range interactions beyond 1NN are a likely culprit. 



 

 

 
Figure 1: Multiple bonds combine to form band energy with a monoatomic s+p 1D tight-binding model. When adding 2NNs, 
band extrema at low-symmetry k-points manifest.  In (a), the bond runs, weights, and energies are plotted for onsite (orbital 
energy), 1NN, and 2NN bond contributions to the second band, !#. The bond energies sum to create the band energy, where the 
orange/blue projection is the orbital character, |#$/&|. To make them real, $%$&(') and −$#'$( )#'&(  are plotted for the *+ bonds. 
On the right, 2NN terms are added, perturbing the bond weights and band energies to create a low symmetry extremum off-X.   

In (b), the real part of the  ,#
!
" 	 wavefunction is plotted to highlight the real-space bonding implicit in band structure. The orbital 

at each atom is determined by the phase factor, .*
!
"∙, , multiplied by the orbital coefficients, #$ = 0.49 and #& = −0.87$. The 

nonzero bond energies are written and circled in red on the reciprocal-space plots. 

In our ambition to eventually design band structure from the underlying bonds, we need to first 
elucidate the orbital and bonding nature at the specific k-point of a band. The key term linking real space 
chemical bonding with reciprocal space bandstructure is the phase factor 5)*∙/ , manifesting in the 
wavefunction as Ψ!'(r) = ∑ 5)*∙/--!#' <#(= − ?#)#,4 . For a given k-vector, the combined coefficient 
5)*∙/- 	-!#'  for each atomic orbital @ dictates the bond type (bonding, antibonding, or non-bonding) between 
atomic orbitals in real space (Step 2). If the complex phases of neighboring orbitals are orthogonal (e.g. 
real and imaginary), they do not interact and are non-bonding. If they are nonorthogonal (e.g. real and real, 
or imaginary and imaginary), they are bonding or antibonding, depending on the signs of the wavefunction. 

In Figure 1b, we illustrate the relationship between the phase factor and the real-space 

Ψ3
.
/ 	wavefunction at k = X/2, which corresponds to a 4-unit cell superstructure in real space. Across the 4 

atoms in Figure 1b, the phase factor 5)
0
1∙/ modulates as +1, +i, –1, and –i. Because -3' coefficients are real 

and positive for s orbitals, whereas they are imaginary and negative for p orbitals, we see that the real part 

of Ψ3
.
/ 	has s orbitals on atoms 1 and 3; and p orbitals on atoms 2 and 4. Therefore, the only 1NN interaction 

is s-p antibonding. The sign switching between atoms 1 and 3 gives 2NN s-s antibonding, and the sign 
switching between atoms 2 and 4 give 2NN p-p bonding. This example visualizes how the chemical bonding 
in real space implicitly derives from each k-point of a band in reciprocal space.  
 

  



 

 

Detangling the Silicon band structure 
Although silicon has been studied for decades, the crystal chemistry origins of its low-symmetry 

conduction band minimum still lack satisfactory explanation. Tight-binding (TB) models fitted with only 
1NN incorrectly produce a conduction band minimum at Γ. (12, 13) While Vogl produced a CBM off-X 
with an additional excited s* state, he acknowledges that “The inclusion of some such excited states in any 
minimal basis set is physically important–although the precise physics of the actual excited states need not 
be faithfully and quantitatively reproduced.”(14) Indeed, while the sps* model fits the Γ-X line, it sacrifices 
the accuracy of the rest of the conduction band structure along nearly every other k-path—especially the 
Λ2, Σ3, and Σ1 bands and the W1 conduction band points, as detailed further in SI.2. 

Since band structure arises from the complex interactions between multiple orbitals, it is often 
possible to have multiple non-unique solutions that fit a singular band feature. Following Vogl, others have 
included additional orbital states to their tight-binding models—for example Jancu et. al. and others added 
d states, producing a reasonable fit of the lowest conduction bands but again with little physical insight 
regarding the additional parameters.(15–19) Tight-binding models with >1NN were also fit (often with s* 
states) for silicon and zinc-blende semiconductors with varying degrees of 2NN contribution.(20–28, 31)  

From a model-building perspective, it is not satisfactory to include terms ad hoc just to match a 
single band structure feature—rather, a term that is physically valid should improve the fit of all band 
energies throughout the entire Brillouin Zone. This is especially important if one aims to later engineer and 
design the band structure by modifying chemical interactions, which requires one to accurately identify the 
true chemical origin of band features.  

At the other end of the spectrum, one can perform a tight-binding interpolation directly from DFT—
which obtains the tight-binding parameters from a Fourier transformation of the k-dependent orbital 
Hamiltonian. This tight-binding interpolation circumvents the need to assume which interactions are 
present, but the resulting many-NN TB models can have hundreds of non-trivial interactions, which is too 
complex to interpret chemically. Sanchez-Portal, and later Qian et al, applied a TB interpolation which 
includes many NNs to silicon finding a low symmetry minimum along the Γ-X line with only a sp basis, 
indicating that s* and d states are not required to reproduce the minimum off X.(29, 39) Since then, a 
reasonable TB interpolation of silicon has been achieved many times using MLWFs and other methods, but 
a simple chemical understanding has still not yet been detangled from the hundreds of hopping parameters 
found from the interpolation.  

Here, we apply our three-step process to build a chemical interpretation for the low symmetry 
conduction band minimum in silicon along the Δ1 band. Details of our MLWF parameters and process are 
discussed in SI.3. Our 3-step process is implemented as follows: Step 1) We determine which orbitals 
contribute to the Δ1 band—finding that it is >80% px orbital character, with the remaining character being 
s orbitals. Step 2), we determine how the orbitals bond across k-space—finding from the bond runs that the 
second nearest neighbor px-px is the only interaction that decreases the band energy at the X point. Step 3) 
we determine how strongly the orbitals bond—showing that the 2NN px–px bond has large hopping 
parameters and high coordination which makes it a significant influence on the band structure.  

Finally, individual chemical bonds are assessed for their contribution to the total shape of the Δ1 
band. From this, we determine that the low-symmetry conduction band minimum of silicon manifests from 
a linear shape of the 1NNs near X, combined with the cosine shape of the 2NN px–px bond. Crucially, 
including the 2NN px–px bond not only improves the Δ1 band, but the band structure across all other high-
symmetry lines (details in SI.2), validating its physical significance in creating the low-symmetry Si CBM.  



 

 

1) Orbital character of bands 

First, we determine which orbitals in the Δ1 band are present to bond. In a sp model, silicon in the 
diamond structure has eight orbitals, four for each of the two atoms in the primitive cell. This amounts to 
72 Hamiltonian matrix elements—8 onsite, 32 1NN, and 32 2NN interactions. After symmetry and group 
theory considerations, a wavefunction along the Γ–X line will have either s + px orbitals or py + pz orbitals. 
With only s and px orbitals are on the Δ1 band, the 72 matrix elements can be reduced to 8 unique elements.  

To separate the character of these bands, it is important to use atomic orbitals. If sp3 hybridized 
orbitals were used, it would be difficult to deconvolute the mixing of all four orbitals from each atom. While 
hybridized orbitals can serve well in simple molecular systems, momentum-dependent crystal 
wavefunctions rarely reduce to the hybridized symmetry of simple molecular wavefunctions and require 
the generalized framework of atomic orbitals. 

Figure 2 plots positive (red) and negative (green) isosurfaces for the real part of the complex 
wavefunctions in one of each of the four doubly-degenerate bands at X. For all the X1 bands, the first atom 
in the basis set has only px orbitals and the second atom has only (distorted) s orbitals. Away from X, the 
X1 degeneracy splits into Δ1 (CBM band) and Δ2 bands with s and px orbital character, while the X4 bands 
remain degenerate. In Silicon, tight-binding analysis of the Δ1 conduction band character shows it is 
predominantly (>80%) px orbital character. The X1 antibonding wavefunction is mainly 1NN s-px 
antibonding and 2NN px–px bonding. Importantly, the 2NN px–px interaction is the only one that is bonding 
along the x-direction and contributes to lowering the energy at X.  

 

Figure 2: The crystal wavefunctions 
at the X point in silicon with the X1 
conduction band highlighted to show 
orbitals and bond type. Each of the 
four doubly degenerate bands is 
accompanied by the present 1NN 
bond and the plotted real part of a 
wavefunction. The atom sites are 
spheres colored to indicate the z-
coordinate. The red and green show 
the positive and negative isosurfaces 
of the real wavefunction, where 
neighboring same color lobes are 
bonding and different color lobes are 
antibonding. Bonding lobes often 
mesh together while antibonding 
lobes are distorted apart. By looking 
closer at the X1 band, we determine 
1NN and 2NN bond-types, where the 
2NN px – px interaction is the only 
bonding along the x-direction. 

 

Although these arguments explain the lowering of the Δ1 band energy at X, the actual CBM is at a 
low-symmetry point ~85% of the way from Γ to X. The corresponding real-space wavefunction for at this 
k-point in fact spans multiple unit cells. We next visualize the real-space bonding across this long-range 
wavefunction, so that we can directly observe these critical 2NN interactions.    



 

 

2) Visualizing the k-dependence of chemical bonds  
At a low symmetry k-point, the long-range wavefunction in real space modulates between bonding, 

non-bonding, and anti-bonding. The bond-type depends on the k-point modulation of the atomic orbitals by 
the phase factor 5)'∙42. When constructing the electron density by ψ*ψ, this phase factor is lost, meaning 
that chemical bonding (which results when atomic wavefunctions of the same phase overlap) is not a 
quantum mechanical observable. Hence, methods to evaluate chemical bonds using the relative energies 
and slopes of the charge density are necessarily indirect.  

On the other hand, by constructing the supercell corresponding to a low-symmetry k-point, and 
then plotting the long-range wavefunction, we visualize chemical bonding directly. Bonding is then 
determined by the phase and sign of the orbitals. That is, if neighboring orbitals have orthogonal phase (e.g. 
real and imaginary), they do not interact and are nonbonding. Whereas when neighboring orbitals have 
nonorthogonal phase (e.g. real and real), they will be bonding for same-sign isosurface lobes or antibonding 
for opposite-sign lobes. This analysis is the same as we used for the model system in Figure 1b, but can 
now be applied to DFT calculations of materials. This brings the crystal bonding schematics used by 
Woodward (40), Snyder (41), and others (10, 42, 43) to a computable and generalizable scale.  

This visualization is applied to Silicon in Figure 3, where the smallest supercell of the real crystal 
wavefunctions for three different k-points are plotted. Along the Δ1 band the s orbital coefficient is real and 
positive, while the px orbital coefficient is imaginary and negative. To create the full wavefunction, the 
orbital coefficient is multiplied by the phase factor to determine the phase of the orbital on atom at center 
2 as 	-#' 	5)*∙/	which is expanded for the	Δ1 band as	A(-1'( + B(-2'(C(cos(# ∙ 2) + B sin(# ∙ 2)). Now, the 
oscillation of orbital character between s and px in the real wavefunction is seen as the s orbital changes as 
(-1'( cos(# ∙ 2) and the px orbital as −(-2'( sin(# ∙ 2). We plot this in the ‘Total’ column of Fig 3 with 
vertical lines, where the color represents the s vs. px character on the atom.  

Figure 3: Crystal wavefunctions describe variation in 2NN bond-types along the Δ1 band. The orbital on an atom is colored to 
indicate s orbitals (yellow), spx hybridized orbitals (blue), and px orbitals (purple). Atom 1 of the two-atom basis is color white while 
Atom 2 is gray. Positive (green) and negative (red) isosurfaces of the real crystal wavefunction in their smallest repeatable 
supercell are plotted to inspect bond-type. The total column shows how the phase factor dictates orbital character and the other 
columns allow for visualizing the 2NN bond type. 



 

 

To isolate the 2NN bonds, Figure 3 shows the orbitals for Atom 1 (white) and Atom 2 (gray) of the 
silicon primitive cell separately. The real-space oscillation in the x-direction of the conventional unit cell 
(corresponding to the {110} direction of the primitive cell, visualized here) reveals that only bonds with an 
interatomic displacement along the x-direction change bond-type along the Γ – X line. All four 1NN around 
an atom have the same x-translation of |0.25N|, while the twelve 2NNs split into eight with an x-translation 
of |0.5a| and four with no x-translation.  

The plotted wavefunctions can be used to visually determine bond-type at specific k-points. As an 
example, we describe some interactions for the 2NN with an x-translation. At k = X, the alternating sign for 
the px orbitals on Atom 2 allows [red + red] or [green + green] lobes to be nearest, resulting in bonding. At 
k = 0.87X, the supercell size increases, each atom has a complicated mixture of orbitals, the wavelike 
oscillation between s and px orbital character is most apparent (caused by the orbital coefficients being 
different phases), and the px orbitals are bonding on average. At k = 5

3
7, the Atom 1 switches between s and 

px orbitals, while Atom 2 maintains spx orbitals.  While the s orbitals on Atom 1 do not appear at this 
isosurface value, their sign yields antibonding. For Atom 2, the red and green spx lobes are always closest, 
also yielding antibonding. While not pictured, at k = Γ, s-s is bonding, s-p is non-bonding, and p-p is 
antibonding, for both 1NN and 2NN. All the s-s and s-p interactions for both 1NN and 2NN lead to a higher 
energy at the X point than at Γ, with the major exception of the 2NN px–px interaction—which sweeps from 
most antibonding at Γ to most bonding at X, resulting in a lower band energy at X. 
 
3) Strength of hopping parameters 

Based on intuition built from 1D models, we would anticipate the hopping parameters for 1NNs to 
generally be much larger than for 2NNs. However, here we find that the 2NN bonds are very important in 
silicon, as shown in Table 1 by the hopping parameters from our atomic-like Wannier TB interpolation. 
When including bond multiplicity, the twelve 2NN px–px parameters sum as 8366(110) + 4366(011) =
2.00eV, which is 4× larger than the four 1NN px–px parameters !!!("#

"
#
"
#). Combined with the dominant 

orbital character being px, the 2NN px–px contributes significantly to the energy of the Δ1 wavefunctions. 
Other tight-binding models which have included 2NN parameters either did not include a 366(110)	term, 
or they were ~10× smaller than our MLWF-derived result.(20–28) An exception to this is Grosso and 
Piermarocchi who fit a 366(110) about 2× larger than our result in Table 1.(31) In all these cases, the 2NN 
contributions have not been individually analyzed for their role in shaping the CBM. 

Table I. Silicon hopping parameters (eV) from MLWF used to reconstruct the Δ1 band. 

$$ $% %$$(&'
&
'
&
')  %$((

&
'
&
'
&
')  %(((

&
'
&
'
&
')  %(((&&') %((('&&) 

-5.467 1.650 -1.639 1.075 0.126 0.117 -0.267 

The small hopping parameter between 1NN px–px orbitals can be understood from the geometry as 
discussed by Slater.(44) The hopping parameter between two px orbitals is given by T33227 + (1 − T3)3228, 
where T is the direction cosine in the U direction. If the px-px lobes are facing each other (like ∞-∞) then 
there is perfect σ bonding, where l = 1, whereas if px-px lobes are parallel (like 8-8) then l = 0 and there is 
perfect π bonding. Because 3227  and 3228   have opposite sign, an intermediate orientation between 
perfectly aligned (∞-∞) and perfectly parallel (8-8), will result in the hopping parameter canceling to zero.  



 

 

In the tetrahedral coordination environment of the diamond structure, 1NN have  T3 = 5

9
, such that 

the 3227  and 3228   components nearly cancel. The 2NN have four neighbors with T3 = 0 , meaning 	
these	366(011)	parameters are entirely X bonding, while the other eight neighbors have T3 = 5

3
, allowing 

the stronger Y  antibonding to compensate for the weaker X  bonding in the 	
366(110)	parameters. In the next section we put together how the orbital character, bond run, and bond 
strength combine to form the total band dispersion.  

 

Steps 1+2+3: The low-symmetry Δ1 minimum in silicon 

Finally, we rationalize the total shape of the silicon Δ1 band dispersion from individual bonds and 
determine which bonds are necessary to capture the correct qualitative band shape. Each bond contributes 
a distinct shape over some high-symmetry line of the band structure. To obtain the correct band dispersion 
that matches a DFT band structure, all significant bonds must be included. As Vogl showed, a 1NN tight-
binding model with an sp basis cannot produce a low-symmetry conduction band minimum(14), whereas 
an many-NN sp basis can (29, 39). This indicates that physically significant bonds are missing from the 
1NN sp model, which as we have argued, are the 2NN interactions.  

To better account for how a bond contributes to the energy of a given band, we introduce a band-
dependent bond run )!,#$(k), Eqn. 4. This multiplies the Hamiltonian element given by Eqn. 3 by the 
phase of the orbital coefficients, ensuring that )!,#$ is real and the correct sign for band n. Finally, we write 
the energy that a bond between orbitals @ and Z contributes to band n as )!,#$(k) multiplied by the absolute 
value of the orbital coefficients, Eqn. 5, which follows clearly from Eqns. 1 and 4. 

)!,#$(6) ≡
:3!4

5
:3"
4

;:3!4 ;<:3"
4 <	

)#$(6)	     Eqn. 4 

!!,#$(6) = 	 (-!#' ((-!$
' (	)!,#$(6)    Eqn. 5 

The ∆5 band energy as a function of the bonds can be simplified from the sum over each matrix 
element, Eqn. 1, to a sum over unique elements for the \ and ]6 (written as U for simplicity) orbitals, Eqn. 
6. As discussed earlier, this reduces the 72 parameters for the Γ – X line to only 8: two onsite (orbital 
energy) terms, three 1NN terms, and three 2NN terms.  

							!∆6(6) = 2!∆6,11
? + 2!∆6,66

? + 2!∆6,11
5@@ + 4!∆6,16

5@@ + 2!∆6,66
5@@ + 2!∆6,11

3@@ + 4!∆6,16
3@@ + 2!∆6,66

3@@     Eqn. 6 

Each term has an analytical expression as seen from Eqn. 5, which is the product of relevant orbital 
coefficients (a multiplicative factor) with the band-dependent bond run (a cosine or sine shape). For 
example, the onsite px orbital term is !∆6,66

? = ^?6	(-∆6,6
' ((-∆6,6

' ( and the important 2NN px-px orbital bonding 
term is !∆6,66

3@@ = (-∆6,6
' ((-∆6,6

' ( ∙ [8366(110) cos(66X) + 4366(011)], where ^?6 is the atomic px-like orbital 
energy, 	-∆6,6

'  is the px orbital coefficient (Step 1), and 8366(110) cos(66X) − 4366(011) is the bond run 
)∆6,66
3@@ (6) which shows the 2NN px-px bond-type (energy) for the ∆5 band (Step 2 and 3). Crucially, the 

bond run for the 366(110)	hopping parameter is a positive cosine, lowering the energy at X. For full 
derivation and decomposition of Eqn. 6, see SI.4.  



 

 

 
Figure 4: Deconstructing how each bond contributes to the Δ1 conduction band in silicon by plotting the band-dependent bond 
runs 6∆#,9: and corresponding energies 7∆#,9: for the onsite (atomic orbital energy), 1NN, and 2NN bonds. Interactions between 
px-px, s-px, and s-s orbitals are colored purple, teal, and yellow, respectively, which corresponds with the orbital character color 
bar used in the total energy plots !∆$. Altogether, the linear behavior near X achieved with onsite + 1NN bonds and the cosine 
shape of the 2NN px-px bond combine to form the minimum near X. The gray lines in the bottom right plot show the Silicon band 
structure with all onsite, 1NN, and 2NN bonds, where the small error between the colored and gray Δ1 band results from including 
the 2NN s-px and s-s bonds. 

In Figure 4, we plot the band-dependent bond runs )∆6,#$ and the energy from each bond !∆6,#$ 
for the onsite, 1NN, and 2NN interactions. The bond run shapes are similar to the illustrative 1D example 
from Figure 1b, but with half the length in reciprocal space since silicon has a two-atom primitive cell. The 
bond run magnitudes are dictated by the hopping parameter.  

When looking only at the bond runs, the onsite and 1NN terms dominate the 2NN, with the 1NN  
s–px and s–s spanning ~8 eV each, while the 2NN px–px only reaches 2 eV. But once the strong px orbital 
character is included with !∆6,#$, the px–px interactions are nearly unchanged, while the s–px is decreased 
significantly, and the s–s drops nearly to zero. This puts the [onsite + 1NN] energy magnitude in the same 
range as the 2NN px – px, where each span ~1.5 eV. Now considering the shape, we find the onsite + 1NN 
combine to form a pseudo-linear increase near X. This results primarily from the !∆6,11

5@@  shape which arises 
from the sine curve of )∆6,11

5@@  (flat at X) which is heavily distorted (almost to a cosine-like curve) by the 
coefficient weight (-∆61((-∆62( increasing from Γ to X. The nonzero slope of the Δ1 band at X is then 
transferred to the degenerate Δ2 band.  

Finally, the pseudo-linear shape of the onsite + 1NN near X plus the cosine curve of the 2NN  
px–px combine to form the conduction band minimum away from the high-symmetry X point in silicon. 
Importantly, including the 2NN px – px bond also provides a good band structure fit on all other k-paths (see 
SI.2 for details), compared to the s* state from Vogl et al.(14), which validates the physical importance of 
2NN bonding in governing the low-symmetry conduction band minimum of silicon.  



 

 

Towards Bonding-by-Design 

Band engineering for solar cells, semiconductors, and thermoelectrics frequently requires control 
over the energy level of bands at specific k-points. Because we now have a theoretical pathway to connect 
the bonding interactions to the band structure, we can examine the inverse electronic structure design 
problem—How can I modify chemical interactions to morph an existing band structure to a new band 
structure with more desirable features? As a representative example, here we will modify the bonding 
interactions to shift the CBM from the Γ-X line in silicon to the L point as it is in germanium. We then 
rationalize the short range ordering in d’Azerac’s ‘magic sequence’ of Si-Ge layers that led to a direct band 
gap.(45) This illustration paves the way to a vision of bonding-by-design, where instead of searching for 
pristine materials with a given band structure feature, we can rationally tune the chemistry (by substitutional 
doping or alloying) to morph a given band structure towards a desired one.  

Thoroughly analyzing a band structure feature is arduous, which motivated us to create a 
computational analysis package (https://viz.whsunresearch.group/tb/) which systematically executes our 
three-step process. Our package features an interactive interface that populates tables with the orbital 
character and important bonds for any selected point of the E(k) diagram. In addition, the band-dependent 
bond runs and bond energies for any of the important bonds can be plotted upon selection, allowing a user 
to rapidly discern how each bond contributes to the band shape. A detailed explanation and tutorial are 
provided in SI.5 and SI.6. Here we use our package to demonstrate how different segments of a band can 
be selectively raised or lowered towards a desired shape by modifying a single bond.   

As illustrated in Fig 5a and discussed previously, the 2NN px-px bond contributes a shifted cosine 
shape to the Δ1 band. Thus, strengthening the 2NN px-px bond lowers the corresponding off–X minimum. 
Figure 5b shows that by increasing the 1NN p–p bond strength, the L point moves down. Increasing the 
1NN p-p bond affects the L point because the L point in reciprocal space corresponds to the [111] direction 
in real space, and in Silicon this (111) direction corresponds to a nearest-neighbor atom from the tetrahedral 
coordination environment. The band character of the L − Γ line is split ~55% s orbital and ~45% evenly 
amongst the p orbitals, a combination which corresponds to the sp3 hybridized orbital in the (111) direction 
with variable s character. Using our analysis tool, we found that increasing 1NN p–p bond strength moves 
the L point down in energy below the Γ and X points, which can make the CBM at the L point.  

In Figure 5c, we examine the conduction band at the Γ point, which is entirely s orbital character. 
The s character increases from ~55% to 100% in the last tenth of the line from L to Γ—this dramatic change 
in orbital character contributes to the sharp curvature near Γ, which leads to low effective masses in direct-
gap tetrahedral semiconductors like GaAs. Consequently, reducing the 1NN s–s bond strength lowers the 
energy of the band at Γ, which is the s orbital antibonding state.   

Altogether, it is possible to morph the Si band structure towards the Ge band structure by increasing 
bonding between p orbitals while decreasing bonding of s orbitals. This effect is qualitatively consistent 
with changing chemistry from Si to Ge. The occupied d shell in Ge allows more partially screened nuclear 
charge to attract the valence shell––an effect called scandide contraction––which disproportionately 
impacts the s orbital near the nucleus, thereby reducing the s orbital radius in Ge compared to the p orbital 
radii. Yuan et al. also found that the d orbitals are important in changing CBM location (46), and here we 
see that this is due to the indirect screening for the s and p orbitals. Thus, when augmenting Si by increasing 
all 1NN p–p interactions by 30% and decreasing all 1NN s–p and s–s bonds by 15%, we reproduce the 
characteristic band structure of Ge with a CBM at the L-point. Further discussion of the Si and Ge MLWF 
band structure can be found in SI.7. 



 

 

Figure 5: The role of chemical bonding in band extrema. In (a-d) the original Si band structure (gray) is plotted against augmented 
band structures (red), which changes one bond to selectively lower X, L, or Γ (plots a, b, and c, respectively) or changes bonds 
based on the chemistry of Ge (plot d). In e, Zunger’s magic sequence of Si (blue) and Ge (gray) layers is plotted (unrelaxed) with 
the decomposition of Si-Si and Si-Ge bonds for 1NN, 2NN, 3NN, and 4NN. The table reveals how the strength of each NN bond 
should change to increase directness and is highlighted for whether Si-Ge or Si-Si would achieve the desired qualitative bond 
strength based on their different chemistry. 

These conceptual insights into how different orbitals affect the bandstructure can also qualitatively 
guide the design of short-range alloy order to promote the frequency of certain bond-types over others (47). 
In a random solid-solution of Si0.5Ge0.5, the frequency of A-A bonds (e.g., Si-Si or Ge-Ge) and A-B bonds 
(Si-Ge) are equally 50% likely for all nearest-neighbor environments. But because each bond type and 
nearest-neighbor number can affect band extrema differently, the band structure can be selectively tuned 
by designing short-range order that preferences different fractions of nearest neighbor bond types.  

For example, d’Avezac et al. used genetic algorithms to identify a ‘magic sequence’ of Si-Ge layers 
that results in a direct band gap SixGe1-x alloy(45). Qualitatively, to build a direct band gap structure, the 
CBM has to be lowered at Γ while being raised at X and L. In the magic sequence structure, Si is bonded 
to Si 25% of the time for 1NNs, 33% for 2NNs and 3NNs, and 83% for 4NNs (Fig 5e). To understand how 
this short-range ordering leads to a direct band gap, we show in the table of Fig 5e whether a weaker or 
stronger orbital interaction for each nearest neighbor would improve directness (lower Γ while raising X 



 

 

and L). For example, a weaker 1NN s-s interaction results in diminished 1NN s-s antibonding, lowering the 
energy of the CBM at Γ. On the other hand, stronger 2NN and 4NN s-s interactions lower the energy at Γ 
because their interactions exhibit more bonding in the CBM wavefunction. Based on our chemical intuition 
that Si-Si bonds have stronger s-s bonds and weaker s-p and p-p bonds relative to Si-Ge, we anticipate that 
to engineer a direct band gap, we should increase the relative fraction of Si-Ge bonds for 1NN and 3NN 
bonds, while increasing the fraction of Si-Si bonds for 2NN and 4NN—which is consistent with the magic 
sequence short-range ordering in d’Avezac et al. While the d’Avezac structure was difficult to realize 
experimentally due to strain between layers,(48) it is possible that this ratio of nearest-neighbor bonds can 
be found in a more energetically-favorable ordering that also yields a direct band gap. 
 
Outlook 

Here we presented a computable and chemically motivated framework that considers 1) Which 
orbitals are in a band, 2) How are they allowed to bond, and 3) How strongly do they bond? This framework 
produces a sparse and therefore interpretable tight-binding model that can help us intuitively understand 
the crystal chemistry origins of band structure. When we applied our approach to silicon, we found that the 
low-symmetry conduction band minimum of silicon originates primarily from 2NN px–px bonds, which 
significantly lowers the energy at X. The significance of the 2NN px-px orbital bond compared to the 1NN 
is explained from the geometry of the bonding angles, in addition to there being 3× as many 2NN atoms 
than 1NN. This explanation is a revision on Vogl’s sps* model, which captures the CBM position in Silicon 
but at the expense of other conduction bands in the Brillouin zone. Our interpretation provides a clear 
physical mechanism compared to previous sp models with multiple NN.  

 
Figure 6: In materials-by-design, the electronic properties of pristine materials are calculated from DFT. By inverting this paradigm 
to bonding-by-design, one starts with the desired band feature for a given application, and rationally tunes the crystal chemistry 
to achieve this band feature.  

Broadly speaking, our approach allows us to clearly and robustly pinpoint the physical origin of 
electronic structure features in complex 3D crystals. This framework is general and can be applied to any 
tight-binding interpolation of a DFT-calculated band structure. By better understanding how crystal 
chemistry translates to major electronic structure features, we can more intuitively design chemistries and 
bonding environments to yield a desired band structure feature. A major advantage of this approach 
opportunity to search within the ‘perturbation space’ of a given material, allowing us to find best-in-class 
semiconductors which are often minor perturbations (strain, doping, alloying, etc.) from their pristine 
forms. This approach would invert the design paradigm from electronic ‘materials-by-design’ to the inverse 
approach of bonding-by-design (Figure 6)—where instead of searching for materials with specific 
properties, we can chemically or structurally modify the band structure of a given material to tune it towards 
next-generation electronic, optic, thermoelectric, and correlated quantum materials.   
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SI.1: Details of 1D monatomic s and p tight binding model 

In this section we review the simple tight binding theory behind our model in Figure 2 of the main 
text. The tight binding wavefunction are the sum of s and p Bloch orbitals with their respective contribution 
-!#' , shown in Eqn. 1, where @ indicates the orbital, n the band, and k the k-point. 

Ψ!'(=) = -!1' 	ΦA(=) + -!2' 	ΦB(=)    (1.1) 

The Hamiltonian for our system including first and second nearest neighbors is shown in Eqn. 2. 

) = b
!1 +)115@@ +)113@@ )125@@ +)123@@

−)125@@ −)123@@ !2 +)225@@ +)223@@
c   (1.2) 

In 1D system with interatomic spacing of N, there are two 1NN at locations +N and −N and two 2NN at 
+2N and −2N.  The Brillouin zone is also limited to 1D, from Γ (6 = 0) to 7 (6 = 8

C
). Thus, the # ∙ 2	term 

is ±N6 for the 1NN and ±2N6 for the 2NN. When defining 66 from 0 at Γ to 1 at 7 the phase becomes 
±X66 for the 1NN and ±2X66 for the 1NN. Because each term is the sum of two opposite sign imaginary 
exponentials, the functional form reduces to sine for s-p bonds where the hopping parameter changes sign, 
and cosine for s-s and p-p bonds. The full bond runs are written below with the sign of the hopping 
parameter carried out to the front. 

)125@@(6) = 2B	(3125@@( sin(X66) 

)115@@(6) = −2|3115@@| cos(X66) 

)225@@(6) = 2(3225@@( cos(X66) 

)123@@(6) = 2B	(3123@@( sin(2X66) 

)113@@(6) = −2|3113@@| cos(2X66) 

)223@@(6) = 2(3223@@( cos(2X66) 

From these, we see that )125@@ , )113@@ , )223@@ , and )123@@  bond runs all have extrema away from high 
symmetry points. Then the Hamiltonian is diagonalized with and without the 2NN terms. While the energy 
can be directly obtained in the diagonalization it can be equivalently written as the sum of the bonds as 
described below. The band dispersions for the 1NN and 2NN are than found as the equations below. Note 
that !!D!E5@@(6)  is slightly different when the eigenvectors are calculated with the 2NN terms than 
without. 

!!D!E5@@(6) = 	 -!1'
∗-!1' A!1 +)115@@(6)C + -!2'

∗-!2' e!2 +)225@@(6)f + -!1'
∗-!2' e2)125@@(6)f 

!!D!E5@@E3@@(6) = 	!!D!E5@@(6) + -!1'
∗-!1' A)113@@(6)C + -!2'

∗-!2' e)223@@(6)f + -!1'
∗-!2' e2)123@@(6)f 

  



 

 

SI.2: Comparing our 2NN model to Vogl’s sps* model 

Here we compare our 1NN+2NN model, which relies crucially on the 2NN same p orbital bond (e.g. 
px-px), to the Vogl sps* model, which also reproduces a minimum off-X for silicon. While the motivation 
for considering additional parameters from 1NNs is to capture the CBM off-X, the impact that the added 
parameter has on the rest of the bandstructure reveals how physical the parameter is. For physical accuracy, 
including an additional term into a model should qualitatively improve your fit across the entire Brillouin 
Zone or k-path. Because our model includes only 1NN and some 2NN terms from a TB interpolation of 
DFT bandstructure, it will have some quantitative error due to limiting the number of terms. While Vogl’s 
model (which is fit only using 1NN sps* terms) may have less quantitative error along the Γ-X line, it 
produces qualitatively incorrect band shapes along various k-paths. 

To assess the physical accuracy of our model compared to sps*, we look at changes in qualitative band 
shape on other k-paths. First examining the Γ-L line, a clear physical problem for the sps* model, is the 
significant lowering of the Λ2 band. While the DFT bandstructure exhibits a slight lowering close to L, the 
L2 point is still significantly higher than the L1 and L3. But in the sps* model, the L2 band is lower than L3, 
sitting around L1. Because the 2NN p-p interaction have almost no effect on any of the bands along the Γ-
L line, it can lower the X1 point without affecting the L2 point. Additionally, while the run of the Λ1 band 
with the sps* model is lowered near the L point, consistent with the DFT bandstructure, the band minimum 
is significantly off-L, which is not reproduced from DFT.  

 
Figure SI.1: The band structures from DFT, the limited Wannier TB model, and Vogl’s sps* TB model are plotted. Bands and high 
symmetry point are labeled as needed. The TB models are plotted with (solid red) and without (dashed gray) the interaction 
important to the CBM near X to analyze the affect the additional term has on the bandstructure as a whole. Ultimately, we see 
that the 2NN same p-p bond adds changes consistent with the DFT bandstructure, while the s*-p interaction creates unphysical 
changes. 

The other band shapes that are qualitatively changed by the s*-p interaction are the bottom two 
conduction bands along the Γ-K line, Σ3 and Σ1. Both of these bands with the s*-p interaction run down 
towards the K point, where the 1NN interactions mostly run up towards K (with a slight turn downwards 
in the Σ1 band near K). In the DFT bandstructure, both bands move up from Γ to ~0.5K (Σ3) or ~0.8K (Σ1) 
than turn down sharply towards K for the remainder of the k-path. This matches up poorly with the sps* 
model, where they run down starting at Γ (Σ3) or ~0.3K (Σ1) and the K1 point is brought much lower in 



 

 

energy than in DFT. Including the 2NN same p-p interaction decreases the band energies near K while 
leaving the bands largely unchanged from Γ-0.5K. While the exact shape does still not match perfectly, the 
decrease in the band energies only near K is seen in the DFT bandstructure. Thus, our 2NN same p-p 
interaction is deemed a physical correction to a 1NN model, while the extent of the s*-p appears unphysical. 

Furthermore, there are several features in the valence bands and conduction bands of silicon which are 
not reproduced with a 1NN model. The 2NN same p-p bond address these exceptionally well, while the s*-
p interactions have no effect. Firstly, the 1NN TB bandstructure is incorrectly flat along the X-W. 
Previously documented by Chadi and Cohen, including the 2NN same p-p interaction creates a dispersion 
along X-W which aligns well with DFT valence bands Z1 and Z4.(13) The added s*-p interaction cannot 
produce the dispersion from X-W, which becomes especially problematic for the conduction Z1 band. 
Because the sps* model goal is to lower the X point, it inevitably lowers the W by an equal amount. This 
is highly unphysical as in the DFT bandstructure the W1 point is ~3 eV higher than the X1 point. Whereas 
the 2NN same p-p orbital bond only slightly lowers the W1 point when lowering the X1 point. The 1NN 
model also poorly predicts the top two VBs along the Γ-K, Σ1 and Σ2, as being too close together and does 
not capture the low symmetry minimum off-K in the Σ1 band. Including the 2NN same p-p bond fixes this, 
separating the K1 and K2 points and creating the minimum near K in the Σ1 band, while the s*-p interaction 
has no affect.  

Overall, including Vogl’s s*-p interaction induces unphysical changes along every other high symmetry 
line other than Γ-X line. This reveals that within Vogl’s sps* model, the s*-p interaction is merely a fitting 
term which solely reproduces the CBM while negatively impacting the rest of the silicon bandstructure. On 
the other hand, the 2NN same p-p interactions leave other high symmetry lines either unchanged or makes 
changes consistent with the DFT bandstructure. Thus, the inclusion of the 2NN same p-p interaction and 
its effect on the CBM in silicon is deemed physical.  

Ultimately, we believe that while physical s* states do impact the bandstructure, it is in a much less 
significant role than suggested by Vogl, and that the essential physics of the low symmetry CBM in silicon 
is reproduced without relying on excited states. The impact of excited states on the conduction bands is 
likely well estimated as the difference between the DFT bandstructure and TB models reproduced using 
solely a sp3 orbital basis. This is well illustrated in Figure 1a of Ref [2] by Sanchez-Portal et. al.(29) 

 
 

  



 

 

SI.3: Obtaining the best chemistry from Maximally Localized Wannier Functions  
This section outlines the essential attributes of a “good” Wannierisation such that the resulting TB model 
can be used for physical intuition in the third step. For additional Wannier90 formalism and code examples 
the reader is deferred to the Wannier90 papers and user guide. 

To achieve the correct generalizable chemical intuition, the Wannierization must be done with 
projections of all the outer shell atomic orbitals that are included in the pseudo-potential files. For example, 
Si requires s and p orbitals, while atoms like Ga or Pb require s, p, and d orbitals. In the projections block 
of the seedname.win file this translates to having ‘T = 0; 	T = 1’ for Si and ‘T = 0; 	T = 1; T = 2’ for Ga or 
Pb. Specifying the zaxis or xaxis is not necessary with atomic orbitals and setting the radial part is not 
necessary with projection on the pseudo-wavefunctions, which have no radial nodes for the outer shell 
orbitals which are not excited states. Setting zona to set orbital size may be necessary if the default projected 
atomic orbitals are much smaller or larger than the PAW pseudo-orbitals. This is increasingly important for 
compounds with atoms of significantly different sizes but not strictly necessary for silicon. 

Projecting all the outer shell orbitals will include some of the conduction bands in the Wannierisation. 
This often requires a detangling of the desired bands. In the case of silicon, the bottom four conduction 
bands are nearly separated from the higher conduction bands (no overt band crossings) but of course still 
hybridizes with higher bands. Because the TB parameters have nontrivial variation (±20%) depending on 
the window selection for disentangling, it is preferable to do no disentanglement for a clear comparison to 
Germanium later. When comparing the TB interpolations of silicon with and without the detangling 
procedure, we find similar TB parameters and bandstructures for distances < 8 Angstroms. Only above this 
does the poor localization of the Wannier orbitals without disentanglement manifest with higher TB 
parameters and a bandstructure with incorrect high frequency wiggles. The disentangled bandstructure uses 
parameters of num_wann	 = 8, num_bands	 = 15, dis_win_max	 = 21.5, dis_froz_max	 = 7.6 . The 
paper analysis is completed using the TB model without disentanglement because it produces the same 
qualitative dependencies on NN as the disentangled TB model and has reasonable quantitative accuracy up 
to hopping parameters with a distance of < 8 Angstrom. 

 
Finally, check the results of the Wannierisation to determine whether it can be used to gain chemical 

intuition. Common metrics for a ‘good’ Wannierisation are that the change in spread of the Wannier 
functions is <20% and that the tight binding parameters exponentially decay with distance. While these are 
good indicators, a change in spread of <20% is impossible with the initial projection of atomic orbitals for 



 

 

the Wannierisation of Si (and other covalent compounds). Atomic orbital ought to be used despite this 
because hybridized orbitals only work well in molecular chemistry because they are the final combination 
of the atomic orbitals. But in crystal, the localized orbitals combine to form a nearly infinite number of 
crystal orbitals across momentum space (k-space) producing a variety of hybridizations which only reduces 
to what human intuition might expect at limited high symmetry points. Thus, atomic orbitals must be used 
to clearly show the natural hybridization at any band and point in k-space. Fortunately, a precise tight 
binding model that maintains crystal symmetry and has near zero imaginary components can still be 
interpolated.  

The high-quality tight binding model will be obtained when two things are true throughout the 
Wannierisation:  the centers of the Wannier orbitals are that of the host atom in all symmetrically 
constrained directions, and the spread of orbitals for atoms of the same type are identical. These conditions 
generally need to be met immediately in the initial projection or Wannierisation tends to indirectly optimize 
one of the constraints at the cost of the other. For the initial projection to be good enough, I have found an 
odd Γ-centered k-point grid of the DFT calculation to be necessary. Our code requires Wannier90 output 
files _hr.dat, _center.xyz, and .win to generate the interactive TB band structure using a tight binding 
package. Then, the corresponding eigenvectors are used to determine the orbital contributions and plot the 
crystal wavefunctions with the 5)'4 term using the .xsf Wannier orbital files. 

Finally, our framework requires a real-space tight binding description of the reciprocal-space band 
structure. In order to apply this framework generally to materials an automated tight binding interpolation 
of nonorthogonal atomic orbitals from DFT needs to be realized. While MLWFs often provide a good TB 
interpolation, the basis set of Wannier orbitals are distorted, often significantly, from the original atomic 
orbitals(34, 49), creating hopping parameters and coefficients which may be inconsistent with chemical 
intuition. On the other hand, methods that perform a TB interpolation of predefined (orthogonalized) atomic 
orbitals have significant errors, preventing generalization and confidence in such approaches.(50) Although 
the orbitals generated from MLWFs are orthogonal and vary from traditional atomic orbitals, they can still 
yield valuable insight when the hopping parameters produce the same sign and magnitude as from atomic 
orbitals. 

 
  



 

 

SI.4: Derivation of final Δ1 band dispersion 
We show the full derivation and decompose of equation 6 of the main text.   

The total energy of a TB wavefunction can be broken down into components from individual Bloch 
orbitals i and j, Eqn. 1.  

!!(6) = ⟨Ψ%&|)|Ψ%&⟩ = ∑ -!)'
(
-!G' 	))G(6))G = ∑ !!,)G(6))G    (4.1) 

Along the Δ1 band, there are only s and px orbitals for each atom, limiting i and j to four options. This 
expansion is shown by the Eqn. 2 where the superscript indicates the atom of the orbital and px is written 
as p for simplicity.  

!∆6(6) = !!,1616 + !!,1626 + !!,161/ + !!,162/ + !!,2616 + !!,2626 + !!,261/ + !!,262/  
+!!,1/16 + !!,1/26 + !!,1/1/ + !!,1/2/ + !!,2/16 + !!,2/26 + !!,2/1/ + !!,2/2/  (4.2) 
These 16 terms are reduced considering that the coefficients for atom 1 are the same as atom 2 for the 

entire Δ1 band and that atom 1 and atom 2 are the same element and thus have the same orbitals. Terms 
where ji=ij are also grouped together. 

!∆6(6) = 2!!,1616 + 2!!,2626 + 4!!,1626 + 2!!,161/ + 4!!,162/ + 2!!,262/ (3.3) 
The 1NN interactions are between atoms 1 and 2, being the last three terms of Eqn 3, while interactions 

between the same atom include both the onsite (orbital energy) terms and the 2NN interactions. This 
equation written as onsite, 1NN, and 2NN terms is Equation 6 of the main text and Eqn. 4 below. 
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The individual terms are expanded using the bond run, where 〈B, y〉 goes over the onsite, 1NN, or 2NN 
bonds and 3)G(2) is the hopping parameter.  

!!,)G(6) = -!)'
(
-!G' 	))G(6) = -!)'

(
-!G' ∑ 3)G(2)	5)'∙,/EH;.H20/    (4.5) 

The onsite terms are most obvious, where !1?is the orbital energy and -3 	= 	 -(-: 
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1st nearest neighbors 

The 1NN terms have four bonds, with ?G − ?)  terms of 
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has opposite sign but same magnitude we obtain Eqns 8-10 below.  
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The s – s (px – px) bond shape along the Γ − X line is a negative (positive) cosine wave with only a 
quarter of the cosine wavelength shown, relating to bonding (antibonding) at Γ and nonbonding at X. The 
s – px bond has the shape of a quarter of a positive sine wave, with nonbonding at Γ and antibonding at X. 
Including the TB parameters, and the phase of the coefficients (real for s-s and p-p but imaginary for s-p), 
we obtain all the 1NN contributions written as Eqn. 11 below. 

!∆6
5@@(66) = 2!∆6,22

5@@ + 2!∆6,11
5@@ + 4!∆6,12

5@@     (4.11) 

2nd nearest neighbors 
The 2NN terms have twelve bonds, with ?G − ?) terms with variations of [±1,0,0], [0, ±1,0], [0,0, ±1], 

[0, ±1,∓1], [±1,0, ∓1]	and [±1,∓1,0] in lattice vectors. Of the 6 groups listed 1, 3, 4, and 6 have nonzero 
projections along Γ → 7 line of ±66X with bond vector denoted as (110) in Cartesian coordinates, while 
groups 2 and 5 have zero projection with bond vector denoted as (011) in Cartesian coordinates. Similar 
to the 1NN, these breakdown to cosine for s-s and p-p bonds and sine for s-p as shown in Eqns 12-14, where 
the extra x in the subscript denotes the TB parameters between 2NNs along the x-direction. 
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Where 3123@@ should be zero by symmetry. The bonding for the variable eight 2NNs should have the 
same shapes as their 1NN counterparts but will now cover half, rather than a quarter, of the cosine or sine 
wave along the Γ − X line. These are written with the TB parameters and the coefficients phase to give the 
contribution of 2NN, which is Eqn. 15 below. Here the px – px bonds dominate with larger hopping 
parameters and coefficients.  
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SI.5: Details of computational tool 

The code starts from a tight binding interpolation of DFT results, requiring basic information about the 
primitive cell, the number of orbitals, and the tight binding (or hopping) parameters. There will be a separate 
hopping parameter to represent a bond between each orbital set of i and j with all possible displaces for 
orbital j of Ü = R5àLâ +R3àMâ +R9àNâ. If the interpolation is good, many of the hopping parameters will 
be equal or equal and opposite according to the symmetry of the orbitals and crystal. To obtain the initial 
band structure, the TB model is solved in the standard way using the hopping parameters to constructing k-
dependent Hamiltonians which are diagonalized to obtain the energies and eigenvectors (orbital 
coefficients).  

Then, once the user selects a point, the energy contributed by each individual bond is calculated by 
Eqn. 1 below, combining to Equation 1 and 3 of the main text, where the second sum is over all relevant 
displacements R between orbitals i and j, often written as 〈B, y〉. 

!!(6) = ∑ -!)'
(
-!G' 	))G(6))G = ∑ -!)'

(
-!G' ∑ 3)G/	5)'∙// 	)G    (5.1) 

This creates an array with a flattened size of B ∙ y ∙ R5 ∙ R3 ∙ R9, where each element represents a single 
bond in the crystal and its corresponding value is the energy that bond contributes. This energy per bond 
array is sorted and equal magnitude elements are grouped into bonding groups, which includes all bonds 
that contribute the same amount of energy to that point on the bandstructure. For bonds to be grouped, their 
displacement must have the same magnitude when projected on k-point, |6 ∙ Ü|, in addition to having the 
same hopping parameter. One group of bonds will contribute a characteristic real shape to the total energy 
dispersion. For example, Eqns. 3.12 describes the energy for all 12 of the 2NN s-s bonds, where 8 are 
grouped into a cosine shape and 4 are grouped into a constant.  

Finally, the band-dependent bond runs and bond energies can be plotted for each bond group using 
Equations 4 and 5 of the main text. This is written using the hopping parameters in Eqns. 2 and 3, where 
〈B, y, Ü〉O includes all the hopping parameters in bond group number b. While the phase of the coefficients 
:32
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 changes gradually, if at all, along high symmetry lines, degenerate bands (and band crossing) cause 

significant jumps. Because of this, the band-dependent bond run for degenerate bands is plotted using the 
coefficient phase of only the clicked point, rather than changing the phase based on k-point. 
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Altogether, this process allows us to circumvent the long steps of calculating by hand the energies for 
a given band and high symmetry line as was done in SI3, which is even more challenging for less symmetric 
high symmetry paths.  

 
  



 

 

SI.6: Tutorial of computational tool 
General process 

1. Open https://viz.whsunresearch.group/tb/, and click on point in bandstructure. 
2. Observe tables with the orbital character and the most important bonds. 
3. Plot the bond run and energies for the important bond groups by clicking on the row. This informs 
       how a bond group effects the band dispersion along a given high symmetry line. The bond runs    
       plotted will always be for the nth band based on the band index n that was selected in the first step. 
4. Edit hopping parameter magnitudes to achieve a bandstructure with desired change. 

Next, we analyze the Γ, X, and L points using our online tool. We show how to use our app to make figures 
similar to Figure 5(a-d) of the main text. Although, the band structures will not be exactly the same because 
the online app has a further NN cutoff than that plotted for our manuscript. Areas which are clicked or 
edited are highlighted in red, showing in the top left panel which point is clicked, in the bottom left panel 
which bond is selected to plot bond run and energy, and in the main panel which TB parameters are edited 
to generate the desired change in bandstructure. 

Γ point 

Observe tables: When the Γ point is clicked, the tables populate to reveal that the character is 50/50 
Wannier orbital 1 and 5 which corresponds to the s orbital on atom 1 and 2. The bonds at play at this point 
are the 1NN, 2NN, and 3NN s-s interaction. The 1NN s-s TB parameter is –1.64 eV, in the antibonding 
state selected this increases the energy by 6.56 eV. The 2NN s-s TB parameter is 0.084, this is 
counterintuitive if the Wannier orbitals are perfect s orbitals as they should have bonding (negative) TB 
parameters at any distance. The positive TB parameter is reflective of the nodal behavior of Wannier orbital 
due to their orthogonality requirement. 

Plot bond runs: In this case, the value strictly at Γ is what we are most interested in, so the bond runs play 
a less significant role. Particularly because the bond runs are for the highest band (rather than the lowest 
conduction band) along the L to Γ high symmetry line. 

Edit hopping parameters: Here we want to lower the s antibonding state which was selected. We to this 
by reducing the TB parameter of the 1NN s-s bond by 15%. This successfully lowers s antibonding state 
while minimally effecting the energies of surrounding bands and the CBMs at the L and X points. 



 

 

X point 
 

Observe tables: When near the CBM near the X point is clicked, the orbital character is shown to be s and 
px orbitals on atom 1 and 2 equally. The px orbitals have ~80% total character while the s orbitals have the 
remaining ~20%. The important bonds include (1) all the 1NN s-p bonds, (2) the 2NN p-p bonds without a 
projection on x, (3) the 2NN p-p bonds with a projection on x.  

Plot bond runs: The band-dependent bond runs and bond energies will be consistent with Figure 4 and 
equations 7 and 8 of the main paper. With the blue lines representing the band-dependent bond runs plotted 
in the top of Figure 4 and the pink lines representing how the bond contributes to the total energy by scaling 
the bond run with the orbital character as in the middle of Figure 4.  

Edit hopping parameters: With the goal of selectively lowering the X point we increase 2NN p-p hopping 
parameters by 30%. This has the desired effect because the 2NN with and without an x projection 
destructively combine at Γ, but they constructively combine near X. 

 
  



 

 

L point 
h 
 

Observe tables: This band along L to Γ has character from s, px, py, and pz orbitals. Atoms 1 and 2 again 
contribute equally and the px, py, and pz orbitals have equal character. Much of the band is split between 
~50% character s orbitals and ~50% character combined p orbitals. The diversity of orbital character 
increases the number of active bonds. Along the L direction, the four 1NN split into one with a nonzero 
projection on k-point and three with zero projection. This is distinguished in their bond run, as the bonds 
with zero projection are flat. The bonds contributing most to the energy at this k-point are (1) the three s-s 
bonds with zero projection (x2 for orbital variations), (2) the three s-p bonds (x12 for orbital variation), (3) 
the one s-p bond with a projection (x12), (4) the three p-p bonds (x12), (5) the one p-p bond with projection 
(x12), (6) (shown online when by scrolling) the one s-s bond with projection (x2). The extra multiplicity 
for the p-p bonds comes for the six possible combinations of different px-py/z orbitals. 

Plot bond runs: The bond runs break into ones with more # of params that are flat because the bonds have 
no projection along k-point (bonds 1, 2, and 4) and ones with less # of params which have a cosine shape 
(bonds 3, 5, and 6). While the first set have flat bond runs, they can have a shape in the bond energy if the 
orbital character changes significantly along the band. Because this band has minimal change in orbital 
character, the plotted bond energies remain mostly flat, except when very close to Γ. 

Editing hopping parameters: With the goal of selectively lowering the L point, we target the 1NN 
different orbital p-p bonds by increasing them by 30%. This successfully lowers this point while have no 
impact on the CBM at Γ and X. This time it has no effect because there are no p orbitals in the antibonding 
s state at Γ and only one type of p orbital at the X point, restricting any different p orbital bonding.  



 

 

SI.7: Details of Si tight binding parameters compared to Ge 

The main chemical difference between silicon and germanium is the filled d shell in Ge. This introduces 
10 electrons which do not fully screen the increased positive nuclear charge for the outer shell s and p 
orbitals. This especially impacts the s orbitals, which are smaller and lower in energy compared to the p 
orbitals than the s orbitals in silicon. This effect is often referred to as d-block or scandide contraction.  

Because of this, we expect a rebalancing of the bond strengths to favor p orbitals. The s-s and possibly 
s-p bonds should get weaker while the p-p bonds should get stronger. Additionally, the s orbital energies 
should decrease as they are more bound. While the exact energy level cannot be compared without band 
alignment calculations, we can compare the energy difference between the s and p orbitals. A final note I 
is that the Wannier orbitals will not be exactly atomic orbitals. Because of this, the TB parameters following 
the developed chemical trend is obscured as the nodes near neighboring atom in the Wannier function has 
inconsistent effects. Still, we are able to observe the expected changes in the TB parameters. Although, this 
is less severe than I would anticipate for perfect atomic orbitals as the changes could be mapped onto 
multiple higher NN. 

All of this considered, the 1NN TB parameters in eV for silicon are 1.64, 1.08, 1.13, and 0.13 for the 
s-s, s-p, different type p-p, and same type p-p, respectively. The s and p orbital energies are 7.12 eV apart. 
In germanium, the TB parameters are very similar with the largest difference occurring in the s-s hopping 
and s orbital energy difference from the p orbital. The parameters are 1.40, 1.03, 1.15, and 0.16 for the s-s, 
s-p, different type p-p, and same type p-p, respectively. The s and p orbital energies are 8.31 eV apart.  

To test how these different parameters change the bandstructure, we can use our new computational 
tool. (Changing the orbital energy has to be done in code because it is excluded from the list of important 
bonds). Because we are more concerned with the accuracy of the CBM points, these bandstructures are 
recreated using TB parameters that are <8 Angstroms apart. Most of the change in bandstructure from 
silicon to germanium within the Wannierisation is caused by the s orbital energy that is 1.19 eV lower and 
the s-s bond that is 0.24 eV weaker.  

 
Ultimately, the Γ point is exclusively lowered by changing either the s orbital energy or s-s hopping 

parameters but the L and X points can be lowered through a couple chemical mechanisms, including 
increased p-p hopping, decreased s-p hopping, or decreased s-s hopping. While the Wannier90 results point 
to changes in the s orbital being the main cause for the onsite and 1NN terms, it is not conclusive due to the 
non-atomic nature of the Wannier orbitals. In other words, changes in the p orbitals could be mapped to the 
s orbitals as the orbitals hybridize to maintain orthogonality.  
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