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Confinement controls the creep rate in soft granular packings
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Flow in soft materials encompasses a wide range of viscous, plastic and elastic phenomena which
provide challenges to modelling at the microscopic level. To create a controlled flow, we perform
falling ball viscometry tests on packings of soft, frictionless hydrogel spheres. Systematic creep flow
is found when a controlled driving stress is applied to a sinking sphere embedded in a packing.
Here, we we take the novel approach of applying an additional global confinement stress to the
packing using an external load. This has enabled us to identify two distinct creep regimes. When
confinement stress is small, the creep rate is independent of the load imposed. For larger confinement
stresses, we find that the creep rate is set by the mechanical load acting on the packing. In the
latter regime, the creep rate depends exponentially on the imposed stress. We can combine the two
regimes via a rescaling onto a master curve, capturing the creep rate over five orders of magnitude.
Our results indicate that bulk creep phenomena in these soft materials can be subtly controlled
using an external mechanical force.

INTRODUCTION

The physical properties of athermal particle packings
have a variety of non-trivial features which are of interest
at both the fundamental and applied levels. Collections
of materials such as sand, foams, emulsions and other
particulate media have a “rigid” phase that can bear a
finite amount of stress [1–10]. However, the definition of
“rigid” is sometimes not clear cut since slow mechanical
motion or creep can exist in thermally driven amorphous
materials [11, 12]. Specifically, packings of inelastic parti-
cles might be considered rigid, yet they also display slow
relaxation dynamics when deformation is imposed, even
in the absence of thermal fluctuations; they are consid-
ered to self-fluidize [13, 14]. Alternatively, when stress
is imposed, granular packings also display very small
magnitude logarithmic aging [15, 16]. Hence, the ori-
gin of creep in athermal packings is unclear. Despite
the introduction of concepts such as non-locality, there is
no general framework to connect the microscopic details
of (a)thermal particle packings and their fluctuations to
their rheology at a coarse grained level. Furthermore,
it is difficult to reproduce these observations numerically
using techniques such as Discrete Element Methods with-
out introducing (ad hoc) noise.

In this study we focus on elastic phenomena using
packings of hydrated hydrogels. Previous work [17] on
this material has revealed systematic dependence of creep
flow rates on driving stress. Here we show that the creep
in athermal soft particle packings can also be controlled
via an external mechanical stress applied to the particle
phase. We again find that the local stress that the in-
truder applies to the packing exponentially enhances the
creep rate. We can merge these two competing effects us-
ing a master curve, in which a stress-time superposition
principle is captured. Our work highlights sensitivity to

boundary stresses of bulk creep phenomena.

EXPERIMENTAL SETUP

We prepare a packing of hydrogel spheres using a suc-
cessfully established approach [17]. Briefly, we swell hy-
drogel beads (JRM Chemicals, type “snow”) in a fixed
volume of 2 Litres of triply boiled Oxford tap water. The
particles are swollen in a 124mm diameter Plexiglass con-
tainer - see Fig. 1a. The dry particles are sprinkled into
the water in measured amounts of ≈ 2 gms. They are
heavier than the water and sink and swell to form a layer
of swollen particles at the bottom of the container. A
gentle stir of the layer is applied between additions of
particles and the layer is left for 2 hours to settle be-
tween additions. Interestingly, it is found that the depth
of the layer is linearly dependent on the weight of the dry
beads as shown in Fig. 1(b). This observation provides
evidence for the uniformity of the density of the layer. We
find it convenient to define the volume fraction ρ = m

V

where m is the weight of the dry hydrogel powder and
V is the volume of water. The fixed volume of 2 Litres
of water used in our experiments, corresponds to a water
level at L = 165mm. At the specified concentration of
hydrogel powder (and no additional confinement of the
packing), the packing reaches the surface of the water i.e.
there is no clear water above the hydrogels - see Fig. 1b.
We apply confinement stress by placing a rigid lid on the
surface of the packing. The lid is always submersed so
that there is no influence of surface tension on the par-
ticle packing. For the first set of experiments, a lid was
designed and 3D printed in plastic (PLA), partially hol-
low and weighing ≃ 50.3gram as shown in Fig. 1c. The
lid rests freely on the surface of the packing; when sub-
mersed, its contribution to the stress on the particles is
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Figure 1. (a) Photo of the setup with the guided lid, used for
larger confinement stresses. L indicate the lid position from
the base. σ is the stress applied to the packing. (b) The initial
height of the hydrogel layer Li versus the concentration ρ of
dry hydrogel powder added to 2 Litres of water. (c) Drawing
of the 3D printed lid used to provide low confinement stress
to the hydrogel packing. The protrusions are for picking up
the lid. (d) Confinement stress σL compresses the packing by
amount ∆L as indicated by the data. The dashed straight
line with a slope of 3.3 kPa to guide the eye.

negligible. We added weights to the upper surface of this
free lid (FL) to increase the confinement stress σL. The
lid remained level when small masses were added but
it tended to tilt when adding more than ∼ 300 grams
in calibrated weights to the lid. We therefore designed
a second, guided lid (GL) for subsequent experiments
as shown in Fig. 1a. In this setup, the same container
is used, but the lid is now guided by three rods which
pass through closely fitting holes in the cover of the con-
tainer. The three rods are connected by a 2 mm thick
ring on which we can add weights to increase the con-
finement stress - see Fig. 1d. We also observe that the
amount of compression of the packing ∆L/L increases
approximately linearly with the amount of applied con-
finement stress, indicating a packing stiffness of about
3.3 kPa as indicated in Fig. 1d. The measured packing
stiffness is lower than that of the particles themselves
(about 10kPa), which is reasonable as the packing is a
loose, porous collection of soft, deformable and slippery
particles. The rods ensure that the lid remains horizontal
over the range of confinement stresses investigated. All
experiments above 200 Pa confinement stress level are
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Figure 2. (a) Selection of sinking data for experiments with-
out lid (◦), unsupported lid (△) and the supported lid (�).
The colors identify the evolution of δ in a single experiment,
and indicate different experiments at different, arbitrarily se-
lected settings. Error bars are indicated for line-connected,
unsupported lid data but representative for all measurements.
The same data is shown on log scale in (b), with trend lines

δ ∝ t1/2 indicated as dashed line. (c) The squared displace-
ment normalized by fit coefficient D as a function of time.
The dash-dotted line has a slope of 1. The dotted lines have
a slope of 20% smaller and larger, to indicate the error on D.

achieved with the GL, which allows us to apply a stress
of up to ≃ 1000 Pa.
We probe the mechanical behavior of the prepared pack-
ing via what is essentially a falling ball viscometry test.
Inside the packing of swollen hydrogel spheres, we em-
bed an intruder. The intruder is a spherical plastic ob-
ject, 2 cm in diameter and mounted on a rod. The rod is
guided by a vertical bearing to maintain the alignment
of the rod and allow for tracking of the intruder motion,
while the intruder can sink into the packing of spheres as
a result of the gravitationally induced stresses it exerts
on the packing. The intruder stress σS that the intruder
is exerting is varied by adding calibrated weights to the
tray which is connected to the 23 mm diameter plastic
sphere by a thin rod. The 3D printed tray alone weighs 2
grams which enables stresses down to ≃ 100 Pa to be ap-
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plied. We compute the intruder stress from the buoyancy
corrected total weight of the intruder, the volume of the
sphere and the surface of the sphere. We also test sink-
ing rates without the lid (NL) to verify reproducibility
of previous results [17]. We collect displacement data via
photographs taken at set intervals and post-processing
of the images to extract the penetration depth δ(t) as a
function of time. We measure δ from the starting posi-
tion of the sphere, which is always fully submersed in the
packing.
We found it to be essential to stir the packing, and allow
a settling period of three hours between rehearsals of the
experiment as in previous work. Stirring the packing is
carried out carefully to avoid introducing bubbles, as the
presence of bubbles creates poorly reproducible sinking
dynamics. We stir the packing by burying a long rod
at the bottom of the container. The rod is nearly as
wide as the container and has two neodymium magnets
at its ends. The magnets are held with other magnets
on the outside of the container. Slow movement of the
external magnets allows us to change the position of the
rod within the packing and thereby induce stirring while
keeping the lid in place.

EXPERIMENTAL RESULTS

The main experimental results for the sinking charac-
teristics of the sphere are presented in Fig. 2a. Note that
only one third of all the data collected over about one
year of experimental efforts are shown here. The exam-
ples are randomly selected and displayed in this short
form for reasons of clarity whereas the full dataset is
used in the analysis. The color coding spans different
experimental settings in σL and σS and its purpose is to
highlight the time dependence δ(t). For all three cases
NL, FL, GL, and a wide variety of σS , σL, we observe
the characteristic non-linear displacement dynamics as
reported in our previous experiments. The data is well
represented by square root behavior, as observed previ-
ously and indicated in Fig. 2a and on log scale in Fig. 2b.
The error on the determination of the position is small,
as indicated. Consistently, we find that δ2(t) ∝ t as evi-
denced by the collapse of data in Fig. 2c. Here we divide
out the fitted prefactor D from δ2 = Dt to find that
all data follows a single master curve. We observe small
deviations from linearity in the δ2 vs t plot, but see no
systematic trend in the deviations with any experimental
control parameter.

Intruder stress dependence

We measure the sinking rate D for a range of intruder
stresses σS and confinement stresses σL. Having access
to all D(σS , σL), we can establish the stress dependence

via two different representations of the data. We first dis-
cuss how D(σL) depends on σS . We show all measured
D(σS , σL) in Fig. 3a. Given the quality of the collapse of
Fig. 2c, we conclude that the error bars on the slope esti-
mate D is less than 20% and hence becomes negligible on
the log scale representation used henceforth. There are
three main observations: (i) at low confinement stress
σL, D appears to be approximately independent of the
confinement stress: both FL and GL data here suggests
there is a a plateau in D(σL); the tentative plateau value
depend on σS . (ii) The data of the NL case are consistent
with the FL and GL case. This consistency indicates that
current experiments probe the same dynamics as previ-
ous work [17] in which no lid was used, (iii) above ap-
proximately 100 Pa of confinement stress, the creep rate
has a definite dependence on the confinement stress. We
find that the previously observed exponential stress de-
pendence (shown in solid lines) captures the overall trend
well:

D = D0e

(

σS

σS0
−

σL

σL0

)

(1)

Here, σS0,L0 are characteristic stress scales for the
intruder and confinement stress respectively. The de-
pendence of D ∝ exp (−σL/σL0) is immediately obvious
from the slope of the solid lines following the trends in
all data in Fig. 3a. The dependence of D ∝ exp(σS/σS0)
is indicated by the vertical separation of the colored solid
lines; also the matching of the functional dependence of
D(σS0, σL) and the data is evident. Further evidence
that the creep rate of the intruder depends exponentially
on the stresses involved, is provided by rescaling D with
its purported exponential intruder stress dependence. A
result of this rescaling is the collapse of the data shown
in Fig. 3b. Let us call D̃ = D/ exp(σS/σS0). We see
again that (i) the high stress data collapses onto a single
master curve D̃ ∝ exp(−σL). Furthermore, data taken
in the low stress regime provides a reasonable collapse
onto a single line, suggesting that the low stress regime
is governed by a single σS0, despite its independence of
confinement stress. We find that for D0 = 2 × 10−6,
σS0 = 35 Pa, σL0 = 22 Pa, all data collapses onto a single
confinement stress dependent curve, suggesting that the
bulk creep rate is indeed set by the mechanical boundary
stress acting on the particles and competing with the
local stress from the intruder. It should be emphasized
that we show here all the data, from NL, FL and GL
experiments, demonstrating consistency across different
lid types and hence ways to exert boundary stress. Note
that to estimate the amplitude of the surface stress in
the NL case, we need to make assumptions concerning
the typical radius of curvature of the water surface
between the hydrogel beads. An estimate of about
100 Pa was previously considered reasonable, but this
value has considerable uncertainty. As we can see, a
value of 150 Pa produces a good match between the
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Figure 3. (a) All D obtained for all σL,S measured shown
versus confinement stress. Symbols indicate experiments NL
(◦), FL (△) and GL (�). Solid lines indicate the trend as de-
scribed in Eq. 1 (b) Rescaled data. The dashed line indicates
the exponential decay with confinement stress; the stress scale
σL0 is indicated in the panel.

NL data and the trend line; however a surface tension
stress of 100 Pa would also keep the NL data consistent
with the FL and GL cases. We emphasize here that the
visible change in the behavior of the hydrogels at D(σL)
around 100 Pa is therefore unrelated to the surface
tension pressure scale, as we shall see with more careful
analysis in the following section.

CONFINEMENT STRESS DEPENDENCE

Even though the collapse displayed in Fig. 3b is sat-
isfying, small but systematic deviations can be observed
over the range of σS . Further, the low confinement stress
regime appears to be different— careful inspection of the
data reveals that the plateau shows significant scatter
over about two orders of magnitude, even in the rescaled
D. In fact, scatter of about one order of magnitude is
present in the rescaled D values at higher values of σL.
We can gain a better understanding of the physical mech-
anisms at play by plotting D as a function of the intruder
stress. We show D(σS) and its dependence on σL in
Fig. 4a. We observe that the FL, NL and the GL obser-
vations with low σL have approximately the same, but
not identical trend with σS . This trend with σS is the
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Figure 4. (a) All D obtained for all σL,S measured shown
versus sphere stress. Symbols indicate experiments NL (◦),
FL (△) and GL (�). Solid lines indicate the trend of Eq. 1.
(b) Intruder stress scale factor A fitted with free B (black
circles) or fixed B = −11.2 (blue squares). The red dash-
dotted line represents 1/A ∝ σL with A0 = 18Pa and k = 0.09
(c) B(σL) from the fits (black circles) or fixed at their average
fitted value B = −11.2 (blue line)

reason why the rescaling with Eq. 1 as shown in Fig. 3
does not collapse onto a single master curve. At larger
confinement stress, the intruder stress effect shows de-
pendence on confinement. Moreover, the magnitude of
the confinement stress dependence becomes larger with
σL. To capture the effects of the change of slope in both
low and high confinement stress regimes, we fit all con-
stant confinement stress data with an additional com-
pensatory linear function on a semilog scale. The fits are
shown as solid lines. Specifically, we have fitted

log(D) = A(σL)σS + B(σL), (2)

It is instructive to consider the behavior of the fit-
ted prefactors A,B. We show their dependence on σL in
Fig. 4b,c. The prefactor 1/A sets the slope of the intruder
stress dependence on the creep rate and hence is essen-
tially a pressure scale. It is therefore natural to assume
that 1/A ∝ σL, and the data confirm this. The results
of two different fitting methods to extract 1/A are shown
in Fig. 4b,c. One can keep B free to have a B(σL), or
fix it at some B. Both methods of extracting A yield the
dependence to be well-fitted by 1/A = A0 + kσL, with
A0 = 18 Pa and k = 0.09 (red dashed line).
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DISCUSSION

The different portrayals of D in Eqs. 1 and 2 can be
seen as two different representations of the same behav-
ior. Indeed, we can understand that the weak σL depen-
dence makes Eq. 2 the more broadly applicable descrip-
tion than Eq. 1, as we found that

D = e(A(σL)σS+B), (3)

= eBe

(

σS

A0+kσL

)

, (4)

≃ eBe

(

σS
A0

−
kσSσL

A2
0

)

, (5)

In the limit of σL < σS explored in [17], the weak con-
finement stress dependence appears to be the balance of
stresses used to construct Eq. 1. There, σS0 ≈ σL0 and
also in Eq. 1 we see that A0 ≈ kσS/A

2
0 for σS ≈ 100 Pa.

To further highlight the compatibility of the two equa-
tions, we can scale out the dependence of both the stress
variables. The creep rate D can be corrected for the
confinement stress by plotting D/ exp(B(σL)), while the
driving stress σS can be normalized by A(σL). The col-
lapse of the data over more than six orders of magnitude
is visible in Fig. 5a: clearly there is a universal rate-stress
superposition principle at play here, in which simply the
rescaling factors depend on the applies stresses. Also, in
the limit of σS → 0, the intercept for D ≈ D0 ≈ eB

as expected. The offset A0 of about 18 Pa is the most
likely source of the qualitatively different creep behavior
observed at low confinement stresses, and has a physical
interpretation: besides the confinement from the lid, the
hydrogel particles experience a weak hydrostatic pressure
gradient because the hydrogels are not perfectly den-
sity matched. Our previous work estimated this pres-
sure scale to be about 10 Pa for the geometry and ma-
terials used. We thus conjecture that the finite slope in
log(D(σS) to which the creep data converges at low σL

as visible in Fig. 4a is due to hydrostatic pressure effects.
The meaning of dimensionless factor B is less obvious.
The variation in B is significant, particularly as it ap-
pears in an exponential factor. Even so, any change in
B, e.g. the apparant low value of B at low σL, is some-
what offset by a change in the value of 1/A, as visible
when comparing Figs. 4b,c. As the effect of a changing
B can also be absorbed in an effective diffusion constant
D0, there are good reasons to assume that B depends on
the experimental settings. For example, fluctuations in
temperature or perhaps small mis-alignments of the lid
could potentially produce suck deviations in the prefac-
tor. Pragmatically, keeping B fixed to the average value
of freely fitted B(σL) of course yields a lower, yet still sat-
isfactory, quality fit and collapse of the data. We show
this collapse in Fig. 5b. We observe that fixing B does
not essentially affect the quality of the rescaling. We can
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Figure 5. (a) Rescaled data, dividing out the σL dependence
for the freely fitted Eq. 2, providing σL-dependent A and B.
(b) Rescaled data, now with the fixed B = −11.2 while fit-
ting A(σL) as shown as blue squares in Fig. 4b. The colorbar
applies to both panels. The dashed line indicates the expo-
nential intruder stress dependence D0 exp(σS) in both panels.

thus conclude that Eq. 2 captures very well the creep
response of the hydrogel packing.

CONCLUSIONS

We report a consistent set of results on creep behavior
found using a spherical intruder in a packing of hydrogel
particles under a variety of confinement conditions.
By varying the confinement stress on the packing, we
observe that the boundary induced stress influences the
creep rate. The creep is also observed to be dependent
on the intruder stress, in agreement with published
results. The creep rate depends exponentially on both
local and global stress scales. This rate-stress depen-
dence can be rescaled and collapses onto a master curve.
The rescaling factors reveal a residual role for a small
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hydrostatic pressure gradient. Our results highlight the
relevance of boundary stresses on creep dynamics.
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