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We provide an overview of standard “projective” quantum measurements with the goal
of elucidating connections between theory and experiment. We make use of a unitary
“Stinespring” representation of measurements on a dilated Hilbert space that includes both
the physical degrees of freedom and those of the measurement apparatus. We explain how
this unitary representation (i) is guaranteed by the axioms of quantum mechanics, (ii) relates
to both the Kraus and von Neumann representations, and (iii) corresponds to the physical
time evolution of the system and apparatus during the measurement process. The Stinespring
representation also offers significant conceptual insight into measurements, helps connects
theory and experiment, is particularly useful in describing protocols involving midcircuit
measurements and outcome-dependent operations, and establishes that all quantum operations
are compatible with relativistic locality, among other insights.
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1. INTRODUCTION

Measurements are a fundamental part of quantum theory. Typically codified in axiomatic
formulations of quantum mechanics [1–8], the standard “projective” measurement is intrinsically
related to the most prominent departures of quantum systems from more familiar classical physics.
For example, the quantization of observable outcomes and the probabilistic nature of measurements
gave some of the first historical indications of the inadequacy of classical mechanics in describing,
e.g., atomic systems. Despite the successes of quantum mechanics, the nature of measurements—and
their implications for quantum mechanics as a theory—has been a source of substantial debate.

The apparent “collapse” of the wavefunction upon measurement was one of several early sources
of confusion and concern. The probabilistic nature of measurements was seen as a problem to those
who expected a deterministic theory, à la classical physics [9]. Moreover, the putative violation of
relativistic locality in the measurement of spatially separated entangled degrees of freedom was
viewed as a “paradox” that implied that quantum theory was not yet complete [10]. While it is
now understood that no such violation exists, measurements remain one of the more “mysterious”
aspects of quantum mechanics, and are at the heart of debates over the theory’s interpretation.

We stress that addressing such foundational questions (e.g., about interpretations of quantum
mechanics) is not our goal. However, doing so would require considering the details of how
measurements are implemented in real experiments. Importantly, we note that the standard
theoretical descriptions of quantum measurements [11–13] obfuscate their nature. Measurements
and other nonunitary quantum operations are typically modeled via (i) stochastic updates to the
wavefunction, (ii) a Lindblad master equation [14–16], or (iii) Kraus operators [17–20], all of
which describe only the degrees of freedom in the system of interest, despite the fact that all such
quantum operations are exclusive to open systems. Even setting aside matters of interpretation,
consideration of the experimental details surrounding measurement is important for connecting
theory to experiment and designing measurement-based protocols for near-term quantum devices.

To that end, we consider a conceptually transparent and analytically powerful representation of
projective measurements in terms of a unitary operator U acting on an enlarged Hilbert space [21, 22].
This representation is logically implied by all axiomatic formulations of quantum mechanics [1–8],
and describes precisely the unitary time evolution of the physical system and measurement apparatus
in the experimental implementation of the prototypical examples of measurements considered herein.
Although an exhaustive study of all possible implementations of projective measurements is beyond
the scope of this work, we expect that U always has this physical interpretation. In addition to
elucidating various aspects of measurements—e.g., related to their experimental implementation
and compatibility with both relativistic locality and determinism—the unitary representation
we showcase is also better suited to the investigation of measurement-based protocols involving
projective measurements and outcome-dependent operations. We emphasize this because such
protocols have immense utility in numerous tasks relevant to near-term quantum technologies, from
quantum information processing to efficient many-body state preparation [21–25].
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The primary goals of this paper are to (i) provide a useful overview of projective quantum
measurements in theory and experiment; (ii) explain how these measurements are most commonly
implemented in practice; (iii) explain the rigorous mathematical origins of the unitary “Stinespring”
representation of projective measurements; (iv) establish how the unitary representation corresponds
to the time evolution of the system and detector during the measurement process; and (v) explain
how to apply the Stinespring formalism to generic quantum protocols, its benefits (e.g., in the
context of protocols with midcircuit measurements and outcome-dependent feedback), and some of
its more important implications. The remainder of this paper is organized as follows.

In Sec. 2 we derive the unitary measurement formalism from the axioms of quantum mechan-
ics [1–8], using powerful results from C∗-algebras [26–31]. In Sec. 2.1, we discuss the axiomatic
properties of quantum measurements. In Sec. 2.2, we derive the standard Kraus representation of
measurements [17–20] using both the Stinespring dilation theorem [28] and Choi’s theorem [29]
for completely positive (CP) maps. In Sec. 2.3.1, we explain the “physicist’s Stinespring theo-
rem” [30, 31], in which quantum operations are captured by a unitary operator U on a dilated
Hilbert space Hdil (2.8), which includes both the physical Hilbert space H and a Stinespring Hilbert
space Hss. This result does not follow straightforwardly from Stinespring’s theorem [28], but was
proven by Kraus [20] for finite-dimensional Hilbert spaces; a proof for the infinite-dimensional case
H = L2(R) = ℓ2(N) ∼= C∞ is the subject of forthcoming work [31]. In Sec. 2.4.1, we connect U to
von Neumann’s description of measurements using a pointer Hamiltonian [32, 33] that includes the
detector. All of the above is summarized in Sec. 2.5

In Secs. 3 and 4, we discuss the experimental implementations of measurements of photons and
qubits, respectively. While quantum systems can be probed in a variety of ways, the final stage of
these probes is typically selected from a small set of measurements that includes the examples in
Secs. 3 and 4. We also highlight that most measurement schemes involve electromagnetic modes
(e.g., photons), and typically record outcomes through particle detection, which generally involve
the excitation of particles in an apparatus. In Sec. 3.1, we review the quantum description of
electromagnetic fields. In Sec. 3.2, we consider measurements of photon number (or intensity);
despite being “destructive” (rather than projective), these measurements are captured by the unitary
representation. In Sec. 3.3, we discuss interferometry measurements involving homodyne detection,
which culminate in intensity measurements. In Sec. 4.1, we review fluorescence measurements
of various types of qubits, which also culminate in counting spontaneously emitted photons. In
Sec. 4.2, we discuss “dispersive readout” of the states of, e.g., superconducting qubits.

The examples in Secs. 3 and 4 illustrate that the dilated Hilbert space Hdil (2.8) is physical. We
note that the minimal Stinespring Hilbert space Hss that we derive in Sec. 2 has a basis {|m⟩ss}
corresponding to the N possible measurement outcomes. However, in the examples considered
in Secs. 3 and 4, we generally identify a nonminimal dilated unitary representation U involving
additional degrees of freedom and/or multiple states reflecting the same outcome. Importantly,
appropriately “binning” the states of Hss corresponding to the same outcome leads to the minimal
Stinespring representation, which is unique up to the choice of “default” initial state of the apparatus.

Finally, in Sec. 5, we discuss how to use the unitary formalism, and some of its implications.
In Sec. 5.1, we show how to recover the usual Born rule comes from and extract statistics. In
Sec. 5.2, we explain the utility of the dilated unitary representation U in describing measurement-
based protocols. Because the outcomes are stored in explicit degrees of freedom, it is far more
straightforward in the unitary representation to describe quantum operations conditioned on the
outcomes of prior measurements than it is using the Kraus representation. We emphasize that,
given the utility of measurement-based protocols, this is one of the main advantages of the unitary
formalism. In Sec. 5.3, we explain the appearance of “wavefunction collapse” using a simple
model of decoherence [15] based on recent progress on many-body quantum chaos—the mechanism
underlying thermalization. Although the dilated unitary representation U is fully deterministic,
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with all outcomes occurring, the fact that the measurement apparatus is classical (so that the
outcome can be read off) also ensures that it is subject to decoherence [15]. However, because the
outcomes are associated with a symmetry charge (e.g., particle number), superpositions of distinct
outcomes rapidly decohere into a mixed state, so that only one outcome is observed. In Sec. 5.4, we
explain the absence of “spooky action at a distance” in measurements of entangled states, as (i)
no information is transferred and (ii) the intrinsic nature of collapse and absence of “branching”
of the dilated wavefunction upon measurement means there is no “influence” of one particle in
an entangled pair on the other. Lastly, in Sec. 5.5, we explain how the unitary representation
establishes that all quantum operations involving measurements obey relativistic locality [21].

2. MATHEMATICAL FORMALISM FOR MEASUREMENTS

We begin with a careful derivation of mathematical representations of projective and similar
measurements, culminating in the unitary “Stinespring” formulation. The Stinespring unitary U
connects directly to the Kraus [17–20] and von Neumann [2, 32] representations of measurements,
and acts on a dilated Hilbert space Hdil = H ⊗ Hss (2.8). While the degrees of freedom in Hss

are nominally just a bookkeeping tool, the examples in Secs. 3 and 4 show that they are physical,
corresponding to the measurement apparatus. Readers for whom such a unitary formulation of
measurements is familiar and/or intuitive may prefer to skip to the summary in Sec. 2.5.

The unitary representation of measurements we discuss below follows from mathematical results
for C∗-algebras [20, 26–29]. Historically, C∗-algebras were developed to describe the algebraic
properties of the operators associated with quantum systems. In fact, every axiomatic formulation
of quantum mechanics implies a C∗-algebra corresponding to the “bounded” operators B(H) on
a Hilbert space H [1–8, 26–31]; moreover, the allowed updates to a quantum system—known as
quantum operations—correspond to completely positive (CP) maps between C∗-algebras [20, 24].

In particular, the density matrix ρ describing a quantum system always belongs to B(H). Density
matrices are positive operators ρ ≥ 0, which means that their spectra (i.e., eigenvalues) are real
and nonnegative. They also have unit trace tr(ρ) = 1, so their eigenvalues encode a probability
distribution. Because a quantum operation Φ is a CP map, it sends positive operators ρ to positive
operators Φ(ρ) ≥ 0, even if ρ only describes part of a larger system. An important subset of
quantum operations are known as quantum channels, which are both completely positive and trace
preserving (CPTP). When Φ is a quantum channel, ρ′ = Φ(ρ) is also a density matrix. However,
generic quantum operations are trace decreasing, meaning that Φ(ρ) = λρ′ for some density matrix
ρ′ and real number 0 ≤ λ ≤ 1. We consider quantum operations to allow for, e.g., measurements
resulting in a particular outcome m, for which Φm(ρ) = pm ρm, with pm the probability of outcome
m and ρm the corresponding (and normalized) postmeasurement density matrix. Note that the
map Φm : ρ 7→ pm ρm is always well defined and linear in ρ, while a map ρ 7→ ρm is ill defined when
pm = 0, and is always a nonlinear function of ρ, since pm depends on ρ [20, 24].

The correspondence between quantum operations and CP maps between C∗-algebras provides
for the derivations below [30, 31], due to useful properties of C∗-algebras and maps [20–22, 26–
31]. In particular, the Stinespring dilation theorem [28] implies a representation of any quantum
operation Φ on a dilated Hilbert space Hdil. In the case of finite-dimensional Hilbert spaces, Choi’s
theorem [29] implies a representation of Φ in terms of Kraus operators [17–20], which is the most
common representation of measurements in the literature. However, the Kraus formulation also
implies the unitary representation of measurements on Hdil that we explore herein. The unitary
“Stinespring” representation results from a “physicist’s version” of the Stinespring dilation theorem
[28] discussed in Sec. 2.3.1, which is actually due to Kraus [20]. We refer to the unitary formalism
as the “Stinespring representation” due to its connection to the physicist’s Stinespring theorem and
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to avoid confusion with the Kraus representation in terms of Kraus operators. A rigorous proof for
the infinite-dimensional Hilbert space H = ℓ2(N) is the subject of forthcoming work [31].

In Sec. 2.1 we discuss the axiomatic properties of quantum measurements. In Sec. 2.2, we derive
the Kraus representation [17–20] from Stinespring’s dilation theorem [28] and Choi’s theorem [29].
In Sec. 2.3, we derive the unitary representation of measurements on a Hdil, which we relate to
the Kraus formulation. In Sec. 2.4, we discuss von Neumann’s “pointer” Hamiltonian describing
measurements [32], which we relate to the unitary representation. Finally, for convenience, we
summarize the foregoing results for measurement representations in Sec. 2.5.

Although we regard the extra Stinespring degrees of freedom Hss ⊂ Hdil as a bookkeeping tool
below, in Secs. 3 and 4 we show that Hss is physical in several prominent examples of measurements,
and we expect that it holds for generic projective and destructive measurements. In particular, Hss

reflects the state space of the measurement apparatus, where the dilated measurement unitary U
(2.17)—or, equivalently, the von Neumann Hamiltonian HvN (2.34)—captures time evolution of the
system and apparatus during the measurement process. Again, we expect this unitary description
of measurements to be intuitive to many readers, who may prefer to skip to Sec. 2.5.

2.1. Measurement and spectral decomposition of observables

Consider the standard, projective measurement of a generic observable O in a system described
by the density matrix ρ. Suppose that O has N unique eigenvalues {Om} for 0 ≤ m < N , and
denote by rm the multiplicity (degeneracy) of the mth eigenvalue Om. We then identify a set of
eigenprojectors onto the N distinct eigenspaces of O, i.e.,

O Pm = Om Pm with tr
(
Pm

)
= rm , (2.1)

where rm is also the “rank” of Pm, meaning that Pm = |m⟩⟨m| when rm = 1, and otherwise,
Pm =

∑rm
k=1 |mk⟩⟨mk| is a sum over projectors onto degenerate eigenstates |mk⟩ of O with eigenvalue

Om. The eigenstates are orthonormal and form a complete basis for H [1–8]. The N projectors
(2.1) form an orthogonal and complete set, meaning that,

N−1∑
m=0

Pm = 1 and Pm Pn = δm,n Pm , (2.2)

and using these projectors, we define the spectral decomposition of the observable O via

O =
N−1∑
m=0

Om Pm , (2.3)

which is unique, and holds even in the limit N →∞.
The axioms of quantum mechanics [1–8] dictate that the outcome of projectively measuring O

(2.3) is one of its eigenvalues On. Repeating the experiment many times, the expectation value
(i.e., average) of the measurement of O in the state ρ is given by ⟨O⟩ρ = tr(O ρ). However, the
probability-theoretic definition of the expectation value also implies that

⟨O⟩ρ =
N−1∑
m=0

Om pm = tr (O ρ ) =
N−1∑
m=0

Om tr
(
Pm ρ

)
=⇒ pm = tr

(
Pm ρ

)
, (2.4)

where pm is the probability of observing outcome Om upon measuring O in the state ρ. When
ρ = |ψ⟩⟨ψ| is a pure state and rm = 1, then pm = ⟨m|ψ⟩2, reproducing the familiar Born rule.
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If O (2.3) is measured in the state ρ and the observed outcome is Om, then the postmeasurement
state collapses into a state ρm [1–8]; up to normalization, we have that

ρ 7→ ρm ∝ Pm ρPm where tr
(
Pm ρPm

)
= tr

(
Pm ρ

)
= pm , (2.5)

meaning that the normalized density matrix ρm can only be defined if pm > 0. Accordingly, we
identify a quantum operation (or linear CP map) Φm, corresponding to a measurement of O in the
state ρ resulting in the particular outcome Om, which takes the form

Φm(ρ) = Pm ρPm = pm ρm , (2.6)

where ρm = 0 if pm = 0, and ρm = Pm ρPm/pm otherwise. Note that if O is measured again in the
postmeasurement state ρm, the probability to obtain outcome Om again is unity, as expected.

We also separately define a quantum channel corresponding to the measurement of O, given by

Φ(ρ) ≡
N∑

m=1

Φm(ρ) =
N∑

m=1

Pm ρPm =
N∑

m=1

pm ρm ≡ ρav , (2.7)

which is CP, linear, and trace preserving, since tr (ρav) =
∑N

m=1 tr [Φm(ρ)] =
∑N

m=1 pm = 1. We
comment that nonprojective measurements (e.g., weak and generalized measurements) need not
satisfy the foregoing properties, and we relegate their consideration to future work. As a reminder,
we expect that all of the statements above hold true even in the countably infinite case N →∞.

2.2. Kraus representation

The starting point for all representations of quantum operations is the Stinespring dilation
theorem [28] for CP maps between C∗-algebras [26, 27]. As a reminder, all density matrices ρ
belong to the C∗-algebra B(H), corresponding to the bounded operators on a Hilbert space H;
the quantum operations of interest are CP maps from B(H) to itself. The Stinespring dilation
theorem [28] establishes that all CP maps can be represented on a dilated Hilbert space

Hdil = H⊗Hss , (2.8)

using the following combination of completely positive operations,

Φ(ρ) = V † π(ρ)V , (2.9)

where V : H → Hdil is an isometry—i.e., a length-preserving CP map—and π : B(H)→ B(Hdil) is
a ∗-homomorphism—i.e., a structure-preserving CP map between C∗-algebras, whose properties
are unimportant to the present discussion. Further simplification is not possible in full generality.

However, when H is finite dimensional [30, 31], useful simplifications are possible. We also
expect that this extends to the countably infinite case H = ℓ2(N) via inductive limits [31, 34–36].
For finite-dimensional H, we have that B(H) ∼=MN (C), where MN (C) is the C∗-algebra of N ×N
matrices with complex entries, for which it is well known [26, 27, 30, 31] that π(ρ) in Eq. 2.9 can
be written as π(ρ) = u†(ρ⊗ 1ss)u for some unitary u acting on Hdil. Accordingly, we have that

Φ(ρ) = V † ρ⊗ 1ss V , (2.10)

where we absorb u into V without loss of generality. We note that the representation above also
invokes Choi’s theorem for CP maps between finite-dimensional C∗-algebras [29].



7

For CP maps between generic C∗-algebras, which may be infinite dimensional, we stress that
Eq. 2.10 is not guaranteed to hold. This is because the ∗-homomorphism π in Eq. 2.9 is not
guaranteed to have a convenient functional form beyond finite-dimensional C∗-algebras, which
are isomorphic to MN (C). However, if H is a tensor product of finitely many countably infinite
Hilbert spaces Hi = ℓ2(N), we expect that the Stinespring representation (2.10) remains valid [31],
as these Hilbert spaces can be realized as inductive limits of a sequence of finite-dimensional Hilbert
spaces H. The inductive limit of MN (C) is the set K(H) of compact operators on H = ℓ2(N)—an
approximately finite C∗-algebra [31, 34–36] to which all density matrices ρ belong. Moreover, any
observable O ∈ End(H) as dim (H)→∞ is guaranteed to be close in the weak operator topology
to an element of the approximately finite C∗-algebra K(H) [26, 27, 31, 34–36].

We now derive the Kraus representation of Φ. Suppose that Hss has dimension Dss = q and an
orthonormal basis {|k⟩}; resolving the identity in Eq. 2.10, we find that

Φ(ρ) =

q∑
k=1

V † ρ⊗ |k⟩⟨k|ss V =

q∑
k=1

Ek ρE
†
k with Ek ≡ V †|k⟩ss , (2.11)

where Ek : H → H is a Kraus operator on H and q ≤ D2 (when D is finite). When the map Φ
(2.11) is a quantum channel (i.e., trace preserving), then the Kraus operators form a complete set,

0 = tr [ρ− Φ(ρ)] = tr

[
ρ

(
1−

q∑
k=1

E†
kEk

)]
=⇒

q∑
k=1

E†
kEk = 1 , (2.12)

much like the projectors Pm (2.1) form a complete set (2.2). When the map Φ is a quantum
operation (i.e., trace decreasing), we instead find that the Kraus operators form an incomplete set,

0 ≤ tr [ρ− Φ(ρ)] = tr

[
ρ

(
1−

q∑
k=1

E†
kEk

)]
=⇒ E2

0 ≡ 1−
q∑

k=1

E†
kEk ≥ 0 , (2.13)

where the new Kraus operator E0 on the right is well defined because it is the square root of a
positive operator (i.e., its eigenvalues are real and positive). Importantly, this implies that every
incomplete set of Kraus operators corresponding to a quantum operation is part of a larger, complete
set of Kraus operators, since one can always append E0 to the incomplete set to recover

q∑
k=0

E†
kEk = 1 , (2.14)

meaning that every trace-decreasing quantum operation Φ involves a subset of a larger, complete
Kraus operators that define a related, trace-preserving quantum channel.

Lastly, we discuss the Kraus representation of measurements. First, consider the trace-decreasing
quantum operation Φm corresponding to a measurement of O (2.3) resulting in the mth outcome
Om, so that Φm(ρ) = pm ρm (2.6) where pm = tr (ρPm) is the probability to recover outcome m
(2.4) and ρm is the collapsed postmeasurement density matrix following observation of outcome
m. The Kraus representation (2.11) that realizes the postmeasurement state Φm(ρ) = pm ρm (2.6)
involves a single Kraus operator Em = Pm (2.1), with q = 1. Next, consider the trace-preserving
quantum channel Φav corresponding to the average over a large number of measurements of O (2.3),
meaning that Φav(ρ) = ρav =

∑
m pm ρm =

∑
mΦm(ρ) (2.7). There are q = N Kraus operators,

given by Em = Pm (2.1), corresponding to the N possible outcomes (the unique eigenvalues of O).
Note that the set {Pm} (2.1) of Kraus operators is complete (2.2), as required (2.14).
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2.3. Unitary representation

We now use the Kraus representation (2.11) to derive a unitary representation of quantum
operations and channels Φ on the dilated Hilbert space Hdil. This representation (2.15) is sometimes
misattributed to the Stinespring dilation theorem [26–28] in the literature, though it was actually
proven by Kraus [20] for finite-dimensional quantum systems. To avoid confusion with the Kraus
representation discussed in Sec. 2.2, we refer to Kraus’s unitary representation of CP maps Φ as the
“Stinespring representation,” and the corresponding theorem as the “physicist’s Stinespring theorem.”
We expect this proof to extend—using the machinery of approximately finite C∗-algebras [34–36]
and inductive and projective limits—to the infinite-dimensional Hilbert space ℓ2(N) [31].

2.3.1. The physicist’s Stinespring theorem

The physicist’s Stinespring dilation theorem [28, 31] implies that any quantum channel (i.e.,
CPTP map) Φ acting on a finite-dimensional Hilbert space H can be written in the form

Φ(ρ) = tr
ss

(
U ρ⊗ |i⟩⟨i|ss U†

)
, (2.15)

where U acts unitarily on Hdil (2.8), |i⟩ss ∈ Hss is some “default” initial state of the Stinespring
Hilbert space, and the partial trace is over Hss. Importantly, there is always a minimal Stinespring
representation—corresponding to the smallest possible dimension of Hss [26–28, 30]—which is
unique, up to the definition of |i⟩ss. We often consider nonminimal Stinespring representations.

We next extend the unitary representation of channels (2.15) to quantum operations (i.e., trace-
decreasing CP maps) Φm. The Kraus operators that define a quantum operation Φm are a subset
of those that define an associated quantum channel Φ (2.15), identified by the qm < q = Dss basis
states {|k1⟩, . . . , |kqm⟩} of Hss (2.11). Accordingly, the quantum operation Φm can be written as

Φm(ρ) = tr
ss

(
U ρ⊗ |i⟩⟨i|ss U† P (m)

ss

)
, (2.16)

where P
(m)
ss projects onto the appropriate qm basis states of Hss associated with Φm, and U is the

same dilated unitary that defines the corresponding quantum channel Φ (2.15) [30, 31].
The dilated unitary U in Eqs. 2.15 and 2.16 relates to both the Stinespring (2.10) and Kraus

(2.11) representations in that it acts on an arbitrary physical state |ψ⟩ ∈ H via

U|ψ⟩ ⊗ |i⟩ss =

q∑
k=1

(Ek|ψ⟩)⊗ |k⟩ss =

q∑
k=1

(
V † |ψ⟩ ⊗ |k⟩ss

)
⊗ |k⟩ss , (2.17)

where |i⟩ss is the “default” initial state on Hss, and it is straightforward to check that this operation
is length preserving (i.e., isometric) and surjective (i.e., unitary). As with the Kraus representation
(2.11) of Sec. 2.2, we expect that the results above extend to infinite-dimensional Hilbert spaces
upon taking an inductive limit of finite-dimensional Hilbert spaces [31, 34–36]. We now consider
the particular form of this unitary in the context of projective (and similar) measurements.

2.3.2. Finite spectra

We first work out the dilated unitary U (2.17) corresponding to the projective measurement
of an observable O (2.3) with a finite number N of unique eigenvalues. The minimum number of
Kraus operators (2.11) needed to represent a measurement channel is q = N . For convenience, we
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label the eigenvalues of O by 0 ≤ m < N , so that the Kraus operators are given by Em = Pm (2.1).
These Kraus operators are associated with a basis {|m⟩} of Hss, and without loss of generality, we
initialize the Stinespring register in the default state |i⟩ss = |0⟩ss, so that Eq. 2.17 becomes

U |ψ⟩ ⊗ |0⟩ss =

N−1∑
m=0

Pm |ψ⟩ ⊗ |m⟩ss , (2.18)

which, in the minimal case with dim(Hss) = N , is uniquely fulfilled by the dilated unitary operator

U[O] ≡
N−1∑
m=0

Pm ⊗Xm
ss , (2.19)

up to the choice (and definition) of the default state |0⟩ss. The expression above involves the unitary
N -state Weyl shift operator X [22], which acts on Hss as

Xm
ss ≡

N−1∑
k=0

|k +m mod N⟩⟨k|ss , (2.20)

and maps the default Stinespring state |0⟩ss to |m⟩ss, as required. The shift operator X is a unitary
extension of the Pauli operator X to Hilbert spaces with N ≥ 2 [22].

It is straightforward to verify that the Kraus operators Em = Pm form a complete set (2.14) and
that U (2.19) is unitary on Hdil. We next confirm that the quantum channel Φ (2.15) corresponding
to U (2.19) leads to the outcome-averaged density matrix ρav (2.7),

Φ(ρ) = tr
ss

(
U ρ⊗ |0⟩⟨0| U†

)
=

N−1∑
m,n=0

Pm ρPn tr
ss

(
X−m |0⟩⟨0|Xn

)
=

N−1∑
m=0

Pm ρPm = ρav , (2.21)

as required. We also confirm that the quantum operation Φℓ (2.16)—corresponding to a measurement
of O resulting in the outcome Oℓ—leads to pℓ times the collapsed density matrix ρℓ (2.6),

Φℓ(ρ) = tr
ss

(
U ρ⊗ |0⟩⟨0| U† P (ℓ)

ss

)
=

N−1∑
m,n=0

Pm ρPn ⟨ℓ|m⟩ ⟨n|ℓ⟩ = Pℓ ρPℓ = pℓ ρℓ , (2.22)

as required. In other words, the quantum operation corresponding to a measurement resulting in
the outcome ℓ recovers from projecting Hss onto its ℓth basis state.

Thus far, the dilated unitary U (2.18) has been a bookkeeping tool. In Secs. 3 and 4, we
demonstrate how, in real experiments, Hss physically represents the state of the detector and U
represents the time evolution of the system and detector during the measurement process. Since the
state of the apparatus encodes the observed outcome, it is natural that the postmeasurement state
ρℓ given outcome ℓ recovers from applying |ℓ⟩⟨ℓ|ss (see also Sec. 5). As a reminder, the derivations
above apply to the minimal Stinespring representation with dim(Hss) = N . However, in general,
there exist nonminimal Stinespring representations for which dim(Hss) > N . These generally
correspond to the actual detector degrees of freedom in the experiment, and reduce to the minimal
representation upon “binning” distinct states corresponding to the same outcome.

2.3.3. Single-qubit observables

First, consider measuring Z on a qubit. While different physical realizations of qubits may
have different interpretations and require different implementations (see Sec. 4), they all share the
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same minimal Stinespring representation (2.19). Since Z has eigenvalues ±1 and eigenprojectors
P± = (1± Z )/2, the measurement unitary is straightforward to work out,

U[Z ] =
∑
n=0,1

1

2
(1+ (−1)n Z )⊗Xn

ss (2.23a)

= |0⟩⟨0| ⊗ 1ss + |1⟩⟨1| ⊗Xss = CNOT(ph→ ss) , (2.23b)

where Z |n⟩ = (−1)n |n⟩, so that the measurement unitary (2.23) is simply a CNOT gate with the
physical system the “control” qubit and the detector the “target” qubit. As we discuss in Sec. 4,
the detectors used in experiments are almost always more complicated than a single qubit; however,
in the idealized limit of the measurement (i.e., vanishing probability of readout error), binning
detector states into n = 0 versus n = 1 results in the minimal representation above (2.23).

We next generalize U (2.23) to arbitrary single-qubit observables Oj with eigenvalues O0 > O1;
and decomposing this operator onto the Pauli basis for qubit j, we have that

Oj ≡
1

2
tr
(
Oj

)
1j +

1

2

∑
ν=x,y,z

tr
(
σνj Oj

)
σνj , (2.24)

so that there exists a traceless, involutory operator Ōj with the same eigenvectors [23] given by

Ōj ≡
1

O0 −O1

∑
ν=x,y,z

tr
(
Oj σ

ν
j

)
σνj so that Pm =

1

2

(
1j + (−1)m Ōj

)
, (2.25)

whose eigenvalues are Ōm = (−1)m, where Pm are the spectral projectors (2.1) for Oj (2.24) as

well. The dilated unitary (2.19) that captures measurement of either Oj or its involutory part Ōj is

U[Oj ]
=

1

2

(
1j + Ōj

)
⊗ 1ss +

1

2

(
1j − Ōj

)
⊗Xss , (2.26)

which applies to any single-qubit observable Oj (2.3) and any operator unitarily connected thereto.

2.3.4. Infinite spectra

Now, consider an observable O (2.3) with infinitely many eigenvalues (N → ∞). The Weyl
operator X (2.20) is no longer defined, since “modulo N ” has no meaning. Although an alternative
unitary to X (2.20) may be defined by labeling eigenvalues via n ∈ Z (instead of n ∈ N) to realize
a minimal Stinespring representation [31], we instead consider a nonminimal representation on

Hss =
⊗
j∈N

C2 with Nss = dim (Hss) = ∞ , (2.27)

corresponding to infinitely many qubits labeled by a “site” j ∈ N. This nonminimal Stinespring
Hilbert space (2.27) is not separable—its dimension is uncountably infinite by Cantor’s theorem.

Importantly, we note that the spectrum of O is countably infinite, so that the minimal Stinespring
Hilbert space has a countable basis (i.e., is separable). It is common practice to define a separable
analogue of Hss (2.27) in terms of finite numbers of spin flips above the reference state |0⟩ss (with
all qubits in the +1 eigenstate |0⟩ of Z). However, measuring the boson occupation number may
require exciting an infinite number of qubits; moreover, separability itself is not a concern. Instead,
we note Hss (2.27) can be partitioned into a countably infinite number of subspaces of configurations
in which exactly n qubits are in the excited state |1⟩, with all others in the default state |0⟩. Each
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subspace reflects a different outcome, and imposing the condition on Hss (2.27) that all qubits in
the state |1⟩ are to the “left” of all qubits in the state |0⟩ ensures that there is only one state from
each subspace n—and thus, one state per outcome. In other words, labeling Stinespring qubits by
the order in which they are excited leads to a countably, minimal Stinespring representation.

That minimal Stinespring Hilbert space is simply the bosonic Hilbert space ℓ2(N) ∼= C∞. Still,
Hss (2.27) reflects the actual detector Hilbert space in experimental measurements of observables
O with countably infinite spectra, as we discuss in Sec. 3. Initializing the detector qubits in the
state |i⟩ss = |0⟩ss, we arrive at the following extension of U (2.19) to countably infinite spectra,

U[O] ≡
∑
n∈N

Pn ⊗
n∏

j=1

Xss,j , (2.28)

where Xss,j is a Pauli X operator acting on the jth Stinespring qubit. Physically, this describes,
e.g., the counting of the number of photons n at a given frequency by creating n excitations in a
detector. Because the order of excitement is unimportant, all states with n excitations reflect the
outcome Om. We note that U (2.28) is only unitary on the full Hss (2.27), and not on ℓ2(N) ⊂ Hss.

2.3.5. Destructive measurements

We now consider destructive measurements, which are similar to the projective measurements
considered thus far. While a projective measurement of O (2.3) in the state ρ resulting in the
outcome Om projects the system into the eigenstate ρm ∝ Pm ρPm of O (with the observed eigenvalue
Om), a destructive measurement destroys the measured property of the initial state ρ, generally
resulting in a single postmeasurement state ρ′ regardless of the observed eigenvalue Om.

Consider a bosonic state |ψ⟩ =
∑∞

n=0 cn|n⟩ (e.g., a harmonic oscillator or electromagnetic mode),
where a projective measurement of the boson number N = a†a =

∑∞
n=1 n |n⟩⟨n| is captured by

U[N ] : |Ψi⟩ =
∞∑
n=0

cn |n⟩ph ⊗ |0⟩ss 7→ |Ψf ⟩ =
∞∑
n=0

cn |n⟩ph ⊗ |n⟩ss , (2.29)

under U[N ] (2.28). Following the measurement, if the Stinespring register is found to be in the state

|n⟩ss with n excited qubits, the system is in the state |n⟩ph corresponding to exactly n bosons.
However, one could imagine that counting the number of bosons N requires destroying them

one by one, until none remain. Such a destructive measurement is captured by the unitary

V[N ] : |Ψi⟩ =
∞∑
n=0

cn |n⟩ph ⊗ |0⟩ss 7→ |Ψ′
f ⟩ =

∞∑
n=0

cn |0⟩ph ⊗ |n⟩ss , (2.30)

where |n⟩ss is a shorthand for any configuration of Hss (2.27) with exactly n qubits in the state |1⟩;
the physical state following the destructive measurement is always empty.

Noting that V : |0⟩ph ⊗ |n⟩ss 7→ |n⟩ph ⊗ |0⟩ss is an isometry on Hph ⊗ ℓ2(N), we write

V † =

∞∑
n=0

|0⟩⟨n|ph ⊗ P (n)
ss =

∞∑
n=0

[
aN−1/2

]n
⊗

n∏
j=1

|1⟩⟨1|j
∞∏

k=n+1

|0⟩⟨0|k , (2.31)

where a is the lowering operator a |n⟩ =
√
n |n− 1⟩, a† is the raising operator, and N = a†a. The

isometry V realizes a minimal Stinespring representation on ℓ2(N) ⊂ Hss and satisfies

V †V = 1ph ⊗ 1ss and V V † = 1ph ⊗ 1ss −
∞∑
n=1

n−1∑
k=0

|k⟩⟨k|ph ⊗ P (n)
ss , (2.32)
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as required. Moreover, V † can always be embedded in a unitary U ′ acting on all of Hss (see Sec. 3.2),
so the destructive measurement of N is captured by the unitary operation

V[N ] = U
′ U[N ] , (2.33)

where U[N ] (2.28) realizes a projective measurement of N and U ′ is a unitary embedding of V † (2.31)

in Hdil (2.27). In this sense, projective and destructive measurements are equivalent up to some
unitary U ′. In the case above, the destructive measurement is equivalent to a projective measurement
followed by an outcome-dependent unitary U ′ that maps the postmeasurement physical state to
some state |0⟩; a projective measurement is equivalent to a destructive measurement followed by
outcome-dependent restoration of the corresponding eigenstate |n⟩.

2.4. von Neumann representation

An alternative to the unitary representation of measurements outlined in Sec. 2.3 is von
Neumann’s formulation in terms of a Hamiltonian H [32, 33]. Like the unitary U (2.17), the
Hamiltonian H acts on the dilated Hilbert space Hdil = Hph ⊗ Hss, where now, Hss explicitly
represents the state of the measurement apparatus. The Hamiltonian formulation is often more
useful in the context of quantum optics [37, 38]. We review the von Neumann representation in
Sec. 2.4.1, consider the example of the Stern-Gerlach experiment [39–41] in Sec. 2.4.2, and connect
the pointer Hamiltonian H to the Stinespring unitary U (2.17) in Sec. 2.4.3.

2.4.1. Pointer Hamiltonian

We now review von Neumann’s description of measurements in terms of a “pointer particle”
[32, 33]. This model represents an early attempt to account for the details of the measurement
apparatus, albeit in terms of H and not the unitary U (2.19) it generates. The pointer particle
propagates freely, apart from a coupling between the observable O to be measured and the
momentum p of the pointer particle (with coupling strength λ), i.e.,

H = H0 ⊗ 1pp + 1ph ⊗
p2

2M
+ λO ⊗ p , (2.34)

where H0 is the Hamiltonian for the physical system alone, and M ≫ 1 is the mass of the pointer
particle (“pp”). As a comment, the Wigner-Araki-Yanase Theorem [42, 43] generally requires that
O commute with H0 or else the uncertainty is generally guaranteed to be large.

The combined system is prepared in the state |Φ(0)⟩ = |ϕ(0)⟩ph ⊗ |φ(0)⟩pp, with

|ϕ(0)⟩ph =

N−1∑
m=0

rm∑
ℓ=1

ϕm,ℓ |m, ℓ⟩ph (2.35a)

|φ(0)⟩pp =

∫
R
dxφ0(x) |x⟩pp =

∫
R
dx

exp(−(x− x0)2/4σ2)
(2π σ2)1/4

|x⟩pp , (2.35b)

where O |m, ℓ⟩ = Om |m, ℓ⟩ and ℓ runs over the rm degenerate states with eigenvalue Om. The state
|Φ(0)⟩ = |ϕ(0)⟩ph ⊗ |φ(0)⟩pp satisfies ⟨x⟩ = x0, ⟨p⟩ = 0, ∆x = σ, and ∆p = ℏ/2σ.

Assuming that [O, H0] = 0 and M ≫ 1, one can ignore both H0 and the pointer’s dispersion in
Eq. 2.34. In this limit, the time evolution operator is well approximated by the unitary

Ueff(t) =
N−1∑
m=0

Pm ⊗ e−i t λOm p/ℏ , (2.36)
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under which, the initial state |Φ(0)⟩ (2.35) evolves into

|Φ(t)⟩ = Ueff(t) |Φ(0)⟩ = Ueff(t)
N−1∑
m=0

nm∑
ℓ=1

∫
R
dxϕm,ℓ |m, ℓ⟩ph ⊗ φ0(x) |x⟩pp

=
N−1∑
m,k=0

nm∑
ℓ=1

∫
R
dx
(
ϕm,ℓ Pk |m, ℓ⟩ph

)
⊗
(
e−λ tOk ∂x φ0(x)

)
|x⟩pp

=

N−1∑
m=0

nm∑
ℓ=1

∫
R
dxϕm,ℓ |m, ℓ⟩ph ⊗ φ0(x− λ tOm) |x⟩pp , (2.37)

which can be summarized as the following map (2.36) on the initial state (2.35),

|ϕ(0)⟩ph ⊗
∫
R
dxφ0(x) |x⟩pp 7→

N−1∑
m=0

(
Pm |ϕ(0)⟩

)
ph
⊗
∫
R
dxφ0(x− λ tOm) |x⟩pp , (2.38)

meaning that, for t > 0, the full state is a sum over outcomes m of the product of the physical
postmeasurement state Pm |ϕ(0)⟩ph and the pointer state φ0(x− λ tOm).

In other words, the position of the pointer particle indicates the measurement outcome: If the
initial uncertainty ∆x = σ in the pointer’s position x satisfies σ ≪ λ t min(δOm), where min(δOm)
is the minimum difference between consecutive eigenvalues of O (ordered by absolute value), then
one can distinguish the particular eigenvalue Om by the displacement of the pointer particle’s wave
packet initially centered about x0 with standard deviation ∆x = σ (2.35b).

The final state (2.38) is realized in the limit [H0, O] = 0 and M → ∞ in Eq. 2.34. When
[H0, O] ̸= 0 or the pointer particle’s mass is small, the same result (2.38) can be achieved by
increasing the coupling to the pointer particle (λ≫ 1) and decreasing the interaction time (t≪ 1),
so that H0 and the dispersion term p2/2M in Eq. 2.34 do not have time to introduce noise to
Eq. 2.38. Finally, we comment that for any fixed t, the von Neumann unitary evolution operator
U(t) (2.36) is equivalent to the Stinespring measurement unitary U (2.17).

2.4.2. The Stern-Gerlach experiment

One of the first examples of a quantum measurement was realized by Stern and Gerlach [39–
41, 44]. A stream of particles with intrinsic magnetic moments (e.g., silver atoms) travels in the
positive x direction through an apparatus that applies a magnetic field with nonzero gradient in
the z direction. The particles have an internal spin magnetic moment µ, resulting in a potential
V = −µ ·B; since the gradient is nonvanishing in the z direction, we expect a nonzero force on
the particle, proportional to µ = |µ|. In this sense, the atom is its own pointer particle: The
position of the atom after exiting the apparatus effectively measures its magnetic moment µ in
the z direction. Crucially, while classical mechanics predicts a continuum of final positions of the
particles, corresponding to a continuum of possible magnetic moments µz = |µ| cos(θ), the actual
experiment shows quantized outcomes, corresponding to the particle appearing at z = ±δz. The
value of δz is determined by experimental details that do not vary between shots.

We first construct the Hamiltonian describing the particles inside the apparatus (i.e., from x = 0
to x = L). Assuming the magnetic field is B = (0,−by,B0 + bz), where B0 ≫ b, we have that

HSG = − ℏ2

2M

(
∂2x + ∂2y + ∂2z

)
+ µB (−b y σy + (B0 + b z)σz) , (2.39)
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where σn is the nth Pauli matrix, and the particles’ magnetic moment has vector components µn =
µB g σ

n/2 ≈ µB σn, where µB is the Bohr magneton. Instead of the time-dependent Schrödinger
equation under (2.39), we consider the more straightforward Heisenberg evolution of operators.

We make the standard assumption that the initial state is separable with respect to the
coordinates x, y, z. Noting that x is decoupled, we assume that ϕx(px) ∝ exp(−(px −M v)2/4δ2x),
where δx is the x-momentum variance, and v is a velocity. In the Heisenberg picture, we find

x(t) = x(0) +
t

M
px(0) =⇒ ⟨x⟩t = ⟨ϕx(px)|x(t)|ϕx(px)⟩ = v t , (2.40)

in accordance with Ehrenfest’s Theorem [45]. Hence, the particle traverses the apparatus in time
t = L/v; we assume that the particle’s z position is measured upon exiting the apparatus at x = L.

The analogous expressions to Eq. 2.40 for y and z are far more complicated, and do not truncate
at finite order in t. Expressions up to O(t5) appear in App. A.1, and suggest simplifications. First,
since the x-dependent part of |Ψ(t)⟩ evolves independently, it may be considered separately. Second,
we find in App. A.1 that ⟨y⟩t = ⟨Ψ(0)|y(t)|Ψ(0)⟩ is identically zero to O(t5) in generic initial states,
and we expect this holds for most or all orders, so that the dynamics in the y direction can be
ignored (i.e., we can fix y = 0). As a result, HSG (2.39) is well approximated by

Hz = − ℏ2

2M
∂2z + µB (B0 + b z) σz , (2.41)

where we ignore y dynamics. Suppose that the particle is initialized in the state

|Ψ(0)⟩ =
∑
s=±1

∫
R
dzΨs(z, 0) |z, s⟩ =

∑
s=±1

cs

∫
R
dz

e−(z−z0)
2/4 δ2

(2π δ2)1/4
|z, s⟩ , (2.42)

corresponding to a Gaussian wave packet centered at z = z0 with variance δ.
The unitary operator that generates time evolution under Hz (2.41) is given by

U(t) = exp

(
t µB
i ℏ

(B0 + b z) σz +
i ℏ t
2M

∂2z

)
= ei b

2 µ2
B t3/M ℏ exp

(
t µB
i ℏ

(B0 + b z) σz
)

exp

(
i ℏ t
2M

∂2z

)
exp

(
−
b µB
M

t2 ∂z σ
z

)
, (2.43)

via the Zassenhaus formula [46]. Applying this operator to the initial state |Ψ(0)⟩ (2.42) leads to

Ψs(z, t) = cs
ei b

2 µ2
B t3/ℏM e−i s t µB(B0+bz)/ℏ

(2π)1/4 (δ + i δ t
2δ )

1/2
exp

−
(
z − z0 −

b µB
M s t2

)2
4 δ2

1

1 + i ℏ t
2M δ2

 , (2.44)

as derived in detail in App. A.2. The probability distribution for the particle’s z coordinate is

ps(z, t) = p(s)N
(
z0 +

b µB
M

s t2, δ2
(
1− ℏ2 t2

4M2 δ4

))
, (2.45)

where p(s) is the probability of ⟨σz⟩ = s = ±1 in the initial state (2.42), and N (zav, σ
2) is a normal

distribution with mean zav and variance σ2. We evaluate ps(z, t) (2.45) at time t = L/v, where v is
the initial x velocity and L is the length of the apparatus in the x direction.

Evolving the particle’s z coordinate under Hz (2.41) in the Heisenberg picture leads to

z(t) = z +
t

M
pz −

b µB
2M

t2 σz =⇒ ⟨z⟩s,t = ⟨Ψs(0)|z(t)|Ψs(0)⟩ = z0 −
b µB
2M

s t2 , (2.46)
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evaluated in |Ψ(0)⟩ (2.42), where the x dynamics (2.40) determine t = L/v.

Because the particle’s position is classically accessible, one expects to observe the classical
behavior associated with the expectation values of x (2.40) and z (2.46), with y trivial. However,
the particle’s magnetic moment (captured via s) is not classically observable; moreover, one cannot
observe a superposition of the macroscopically distinct z-basis states—corresponding to the two spin
values s = ±1—in experiment (by nature, classical objects cannot appear in macroscopically distinct
superpositions). Instead, any experiment appears to result in a shift of z by either −α (when s = 1)
or +α (when s = −1). Importantly, there is not a continuum of favored displacements, but a single
displacement, with sign given by the particle’s internal magnetic moment with eigenvalues s = ±1.

2.4.3. Connection to the Stinespring unitary

We now connect von Neumann’s Hamiltonian representation to the Stinespring unitary U (2.17)
from Sec. 2.3. Both representations act on the dilated Hilbert space Hdil = Hph ⊗Hss (2.8). In the
unitary case, Hss is a bookkeeping tool that stores the measurement outcome; in the Hamiltonian
case, it corresponds physically to an observable property of the “pointer” particle [32, 33].

The pointer Hamiltonian H (2.34) generates the unitary evolution operator U(t) = exp(−i tH/ℏ)
(2.36). Applying U(t) entangles the system and pointer particle, resulting in a sum over measurement
outcomes m of the physical state Pm |ψ⟩ and the pointer state |x0 − αOm⟩. In this sense, the von
Neumann unitary U(t) (2.36) is the Stinespring unitary U (2.17), though possibly nonminimal, as
in the case of the Stern-Gerlach experiment [39–41] discussed in Sec. 2.4.2. However, recording a
particular outcome requires “binning” the states of the pointer particle into a minimal set of N
“Stinespring states.” In the Stern-Gerlach experiment, taking z0 = 0 and for fixed initial x velocity
v and magnetic field Bz = B0 + b z, there are possible final z positions of the pointer, localized to
zf = ±b µB L2/M v2, up to experimental imprecision and variations encoded in the initial state
(2.42). These are binned easily binned into s = ± according to s = sgn(zf ).

Thus, we expect that the Stinespring unitary U (2.17) is not merely a bookkeeping tool, but a
physical operator corresponding to the time evolution of the system and measurement apparatus (a
detector, pointer particle, etc.) during the measurement process. The Stinespring Hilbert space Hss

gives a (minimal) representation of the state of the apparatus, with binning of states already encoded.
We stress that the binning is itself part of the measurement; we explore numerous examples in which
the dim(Hss)≫ N in Secs. 3 and 4. In fact, this is to be expected when N →∞ (see Sec. 2.3.4),
and the minimal Stinespring representation implicitly encodes equivalence classes between states
of Hss that reflect the same measurement outcome. The technical details of how outcomes are
extracted from the state of the detector are generally of little importance from the perspectives
of (i) a theory of projective and destructive measurements and (ii) the practical or analytical
treatment of protocols involving measurements and outcome-dependent operations [21, 22].

2.5. Summary of measurement representations

Before moving on to experimental implementations, we briefly review the mathematical repre-
sentations of projective and destructive measurements developed thus far. The axioms of quantum
mechanics [1–8] dictate that such a measurement of an observable O (2.3) in a system described by
a density matrix ρ results in one of the N unique eigenvalues Om of O, such that

Pr(Om) ≡ pm = tr
(
Pm ρ

)
and ρ 7→ Φm(ρ) = pm ρm = Pm ρPm , (2.47)
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where ρm is the postmeasurement density matrix given outcome m and the eigenprojector Pm (2.1)
satisfies OPm = Om Pm and Eq. 2.2. Averaging over outcomes leads to

ρ 7→ Φ(ρ) = ρav ≡
N−1∑
m=0

pm ρm =

N−1∑
m=0

Pm ρPm , (2.48)

which is a quantum channel (a CPTP map) [24], with Φ(ρ) =
∑

Φm(ρ).
The Kraus representations (2.11) of the quantum operation Φm : ρ 7→ pm ρm (2.47) and the

related quantum channel Φ : ρ 7→ ρav (2.48) are given straightforwardly by [20]

Φm(ρ) = Em ρE
†
m , Φ(ρ) =

N−1∑
m=0

Em ρE
†
m , where Em = Pm , (2.49)

so that the Kraus operator Em is simply the projector Pm (2.1), meaning that

N−1∑
m=0

E†
mEm =

N−1∑
m=0

Pm = 1 , (2.50)

i.e., the Kraus operators form a complete set (2.13). Quantum channels are trace preserving, and
involve a complete set of Kraus operators, while quantum operations are trace decreasing and
involve a proper subset of the complete set of Kraus operators that define an associated channel.

Related to the Kraus representation (2.49) of quantum operations and channels is a unitary
representation (2.17), first proven by Kraus using the Stinespring dilation theorem for finite-
dimensional systems [17–20, 28, 30]. An extension to infinite-dimensional systems is the subject of
forthcoming work [31]. The unitary “Stinespring” representation is captured by

Φ(ρ) = tr
ss

(
U ρ⊗ |i⟩⟨i|ss U†

)
and Φm(ρ) = tr

ss

(
U ρ⊗ |i⟩⟨i|ss U† P ss

m

)
, (2.51)

where |i⟩ss is some “default” initial state on Hss = CN , P ss
m projects onto |m⟩ss ∈ Hss, and U acts

on Hdil = H⊗Hss (2.8) and can be expressed in terms of the Kraus operators (2.49) via

U |ψ⟩ph ⊗ |0⟩ss =
N−1∑
m=0

(Em |ψ⟩)ph ⊗ |m⟩ss =⇒ U =

N−1∑
m=0

Pm ⊗Xm
ss , (2.52)

for projective measurements, where Xm|0⟩ = |m⟩ is the N -state Weyl shift operator (2.20), and
we have taken |i⟩ss = |0⟩ss without loss of generality. Meanwhile, destructive measurements are
represented by a dilated unitary V (2.33) that is equal to the projective-measurement unitary
U (2.52) by another dilated unitary U ′. For either type of measurement, U (2.52) realizes a
minimal Stinespring representation [27], where dim(Hss) = N is the number of unique eigenvalues
of the measured observable O (2.3). However, there also exist nonminimal representations with
dim(Hss) > N , which reduce to Eq. 2.52 upon “binning” different states of Hss corresponding to
the same outcome Om. We discuss how to extract various statistics from U (2.52) in Sec. 5.

Finally, the von Neumann representation describes measurements using a Hamiltonian HvN

(2.34), which acts on a dilated Hilbert space Hdil (2.8) that includes the physical system and a
“pointer” particle [32]. The pointer plays the role of the detector, and HvN relates to U (2.51) via

U = exp
(
− i

ℏ

t∫
0

dτ HvN(τ)
)
, (2.53)
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i.e., U (2.51) corresponds to evolution under the von Neumann Hamiltonian HvN(τ) (2.34) for time
t, and connects the Kraus and von Neumann representations of measurements. In general, HvN

(2.34) leads to a nonminimal Stinespring representation; the minimal representation (2.51) recovers
upon identifying subspaces of Hss that reflect the same outcome. In the Stern-Gerlach experiment
[39–41, 44], e.g., the minimal representation has Hss = C2, corresponding to states with states
where s = sgn[z(t) − z(0)] = ±1 for any values of M , L, v, and b. The distinct subspaces with
s = ±1 reflect the (quantized) z component of the atom’s intrinsic spin.

We discuss particular realizations of U and/or HvN for measurements of photons and qubits in
Secs. 3 and 4, respectively. While a dilated unitary representation U (2.51) of measurements is
guaranteed for any axiomatic formulation of quantum mechanics [1–8], this only implies that U is
a valid bookkeeping tool. However, the connection (2.53) to von Neumann’s pointer Hamiltonian
suggests that U is, in fact, physical. In Secs. 3 and 4, we show how this is the case in several of
the most common implementations of projective and destructive measurements, and posit that
this holds in all cases. In Sec. 5, we discuss how to use the Stinespring representation to describe
generic quantum protocols, as well as implications of the unitary U (2.51) being physical.

3. PHOTON MEASUREMENTS

We first consider the measurement of photons, which not only diagnose optical systems, but
are relevant to the measurements of atomic and molecular systems that we discuss in Sec. 4. As
noted in Sec. 2.3.5, one generally expects the counting of photons to be destructive, rather than
projective—though we comment that there exist projective measurements of photon number [47–49]
naturally described by Eq. 2.28. Importantly, such destructive measurements are nonetheless
captured by the von Neumann (2.34) and Stinespring (2.33) representations. These representations
require that we model the measurement apparatus explicitly, in contrast to the device-independent
description of photodetection introduced by Glauber [50].

This section is organized as follows. In Sec. 3.1, we review the description of photons as oscillator-
like excitations of the electromagnetic fields in matter-free regions, and then extend to optical
modes in cavities. In Sec. 3.2, we consider the destructive measurement of photon number, which
serves as a proxy for measurements of intensity and other properties related to energy or occupation
number [50–52]. In Sec. 3.3 we consider homodyne detection [53–57] of photon quadratures (3.14),
which relates to general interferometric probes [37, 38, 53–56].

3.1. Electromagnetic modes

Quantum mechanically, photons are the excitations of the electromagnetic fields E and B, which
in a matter-free region are described by the continuum Hamiltonian [44],

HEM =
ϵ0
2

∫
V

d3x
(
E2(x) + c2B2(x)

)
, (3.1)

where B = ∇×A and E = −∂tA, and we use the traverse (Coulomb) gauge ∇ ·A = 0.

Regarding HEM (3.1), we interpret the electric field E = −∂tA as the “momentum” conjugate
to A, and the magnetic field B = ∇×A as a “gradient” of A. Then, HEM (3.1) resembles a theory
of bosonic excitations (e.g., in a harmonic solid) and, in a box with volume V , we write

Aj(x) ≡
√

ℏ
2 c ϵ0 V

∑
k

|k|−1/2
∑
s=1,2

(
eik·x ês,j(k) ak,s + e−ik·x ê∗s,j(k) a

†
k,s

)
, (3.2)
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where k is a Fourier wavevector, the ladder operators obey the canonical commutation relation[
a
k′,s′

, a†k,s

]
= δs,s′ δ

(
k − k′) , (3.3)

and ês,i(k) is the ithe component of the polarization unit vector ês, which satisfies

∑
s=1,2

ês,i(k) ê
∗
s,j(k) = δi,j −

ki kj
|k|2

, (3.4)

so that the polarization vectors span the plane perpendicular to k, and there are two modes s = 1, 2
instead of the three associated with the photon’s spin 1 due to gauge redundancy.

Using Eq. 3.2 for A (and thereby E), we express HEM in terms of ladder operators (3.3),

HEM =
∑
k

∑
s=1,2

ℏω(k)
(
a†k,sak,s +

1

2

)
, (3.5)

where Nk,s = a†k,sak,s ∈ N is the number of photons with polarization s and wavevector k, with
corresponding dispersion ω(k) = c |k| [44]. These occupation numbers fully characterize the
electromagnetic fields in a matter-free box of volume V .

In many scenarios, the spatial structure of the electromagnetic fields is modified by the presence
of mirrors (as in the case of cavities) or some dense medium. In other cases, the range of relevant
frequencies is sufficiently small that the factor of k−1/2 ∝ ω−1/2 can be pulled out of the sum in
Eq. 3.2 to good approximation [37, 38]. These cases are still described by HEM (3.5), but the
expansion of A in Eq. 3.2 is neither appropriate nor convenient. Instead, one writes

A(x) ≡
√

ℏ
2 ϵ0 c

∑
n

∑
s=1,2

(
un,s(x) an,s + u∗

n,s(x) a
†
n,s

)
, (3.6)

where the vector fields un,s(x) are (normalized) classical solutions to Maxwell’s equations with the
appropriate boundary conditions. Most of these optical “modes” propagate and resemble plane
waves far from any mirrors or media, but some may be localized in space (e.g., within a cavity).

Each mode n, s is associated with the creation and annihilation operators a†n,s and an,s, respectively,
as with the plane-wave photon modes that realize in free space (3.3) [37, 38].

We also comment that, while a full accounting of all electromagnetic modes and the precise
form of A (3.2) is needed to resolve the spatiotemporal profile of the electromagnetic fields, it is
not necessary to the measurements of interest herein [37, 38]. Instead, it is generally sufficient to
consider one or two electromagnetic modes, which may correspond to a particular wavevector and
polarization in free space, a particular confined mode in a cavity, or similar.

3.2. Destructive measurement of photon number

As alluded to in Sec. 2.3.5, measuring the number of photons at wavevector k (3.5)—or, more
generally, the occupation or intensity of an electromagnetic mode n (3.6)—is generally destructive,
rather than projective. The reason is that the detector counts the photons by absorbing them,
destroying the system’s state. However, such measurements are nonetheless captured by a von
Neumann Hamiltonian H (2.34) or Stinespring unitary V (2.30) acting on Hdil (2.8), and the latter
is equivalent to a projective measurement U (2.28) followed by a dilated unitary U ′ (2.33).

We now consider a simplified description of the destructive measurement of occupation number
(i.e., photon counting), based on a toy model of a photodetector comprising N two-level systems.
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FIG. 1. A simple mode of destructive measurements of photon number or intensity. (a) Prior to the
measurement, the electromagnetic mode realizes a mildly localized wave packet and the electrons in the
detector are represented by N two-level electrons on a line, indexed k. (b) During the measurement, the
photons interact with the electrons (strength g) in sequence; each absorption exciting an electron to the state
|1⟩, leading to a current proportional to the number of absorbed photons.

This toy model schematically captures a variety of distinct physical processes by which photons
are detected in actual experiments. Destructive counting of photons necessarily requires their
absorption, which transfers energy and momentum to the detector in the form of an “excitation”
(|0⟩ 7→ |1⟩). The number of excitations reflects the number of photons counted; for the result to be
readable, the excitations must result in a classically discernible signal. For example, the photons
may excite electrons to the conduction band, producing a detectable current; electron-hole pairs in
a semiconductor, altering the material’s conductivity; phonons in a lattice, altering the material’s
thermal properties; and other mechanisms [58].

Importantly, all of these experimental realizations of photon counting are captured by time
evolution on a dilated Hilbert space via a Hamiltonian (2.34) or unitary (2.17). In the interest
of clarity, we neglect many technical details related to sources of noise, “dark counts” (i.e., false
positives), thermal effects, differences between different detector realizations, the presence of
multiple electromagnetic modes, and so on. Such considerations are discussed in great detail in
the literature [58]. We also comment that, while some detectors of electromagnetic radiation are
not well suited to counting individual photons, they are nonetheless suitable for coarse-grained
measurements of intensity. The simplified model of photon counting we consider below is also a
convenient model for intensity measurements [51] and similar energetic measurements. While the
precise details of the detector degrees of freedom, set of outcomes, binning of states into outcomes,
and other details may differ, the minimal Stinespring unitary is the same.

With these caveats in mind, we now consider the simplified model of destructive measurement
of photon number [59, 60]. Suppose that the detector consists of electrons in the default state |0⟩,
which excite to the conducting state |1⟩ upon absorption, giving rise to a classically discernible
electrical current (though this model captures generic photodetectors). We also restrict to a single
electromagnetic mode, with ladder operators a and a†. It is useful to picture this mode as a
propagating wavepacket—i.e., a localized mode moving in space towards the detector [see Fig. 1(a)].

The N detector electrons are described by the fermion operators fs,k, where s = 0, 1 labels the
“orbital” and k ∈ {1, 2, . . . ,N} reflects the order of excitation [see Fig. 1(a)]. The initial states of
the electromagnetic mode and detector are, respectively, |ψ⟩ ∈ ℓ2(N) and |i⟩ss = |0⟩ = |000 · · · 000⟩.
The light interacts with the kth electron for a time τ under the Hamiltonian

Hk = i g
(
a ⊗ f †1,kf0,k − a

† ⊗ f †0,kf1,k
)
, (3.7)

where g is the strength of the electron-photon coupling. Ignoring electron-electron interactions, we
replace the fermion operators with spin operators according to f †1,kf0,k ≡ σ+k and f †0,kf1,k ≡ σ−k .
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The sequential interaction between the optical mode and the effective spins 1/2 leads to

|Ψ⟩ = egτ(aσ
+
N−a†σ−

N ) · · · egτ(aσ
+
1 −a†σ−

1 ) |ψ⟩ ⊗ |0⟩ss , (3.8)

where |Ψ⟩ ∈ Hdil is final state of the light and detector. We also define the parameter

ζ ≡ N g2 τ2 , (3.9)

to be fixed and finite as we take the limits gτ ≪ 1 and N ≫ 1, so that Eq. 3.8 becomes

|Ψ⟩ = exp

[
− ζ

2
a†a

]
exp

[
(1− e−ζ)1/2 a ⊗B†

]
|ψ⟩ ⊗ |0⟩ss . (3.10)

A careful derivation of the new ladder operator B† appears in App. B and results in

B† ≡ 1√
N

√
ζ√

eζ − 1

N∑
k=1

eζ(N−k)/(2N ) σ+k , (3.11)

as a collective raising operator on Hss with [B, B†] = 1 in the limit N → ∞ and τ → 0, with
leading corrections proportional to gτ and N−1/2 (see App. B for details).

The operator B† (3.11) creates bosonic excitations in the detector above the “vacuum” state
|0⟩ss = |000 · · · 000⟩. Note that corrections to the final state |Ψ⟩ (3.10) vanish as O(N−1/2) as
N →∞. Hence, the electronic state of the detector is well approximated by a bosonic mode, where
B†B counts the number of of electrons in the state |1⟩ after interacting with the light. Those
excited electrons produce a classically detectable current proportional to the number of absorbed
photons. While other means of counting photons exist, they generically involve converting photons
into excitations, leading to a classical signal from which the number of photons can be inferred.

The attenuation parameter ζ (3.9) controls the efficiency of the transduction of photons into
excitations of the detector; its name refers to the “attenuation” of electromagnetic energy with each
absorbed photon. The transduction—and thus, the counting—of photons is most efficient when the
attenuation parameter ζ ≫ 1 is large but finite as N →∞ and gτ → 0. For example, if the system
is initially in the Fock state |ψ0⟩ph = |n⟩ with exactly n photons, then the measurement results in

|n⟩ph ⊗ |0⟩ss 7→ |Ψ⟩ =
n∑

m=0

eiθm
(
n

m

)1/2

(1− e−ζ)m/2 e−ζ(n−m)/2 |n−m⟩ph ⊗ |m⟩ss , (3.12)

which includes contributions from detector states |m⟩ss with different numbersm of excited electrons—
and hence, counted photons. We also note the generic, m-dependent phase exp(i θm) ̸= 1 above,
which is sensitive to microscopic details of the apparatus, may be time dependent and vary between
experimental shots, and intuitively comes from phases other than ±i in Hk (3.7). Although the
phases {θm} are not important in any single experiment shot or for detecting photons from a single
mode, they are quite relevant in the more realistic settings of many electromagnetic modes (which
often have spatiotemporal structure) and the extraction of statistics (which requires multiple shots
and is sensitive to coherences). Moreover, the phases {θm} provide a mechanism for decoherence,
which leads to the appearance of wavefunction collapse as we describe in Sec. 5.3.

For the initial Fock state |ψ0⟩ph = |n⟩ (3.12), the probability to detect k ≤ n photons is

pk = ⟨Ψ|1⊗ P (k)
ss |Ψ⟩ =

(
n

k

)
pk (1− p)n−k with p = 1− e−ζ , (3.13)

corresponding to a binomial distribution, where p = 1 − e−ζ is the probability that an incident
photon is successfully detected. For the initial Fock state |n⟩, the expected number of counted
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FIG. 2. Schematic depiction of homodyne detection. (a) An optical mode “A” of interest and a strong,
coherent “B” mode (3.15) are sent towards a beam splitter. (b) The modes interact in the beam splitter. (c)
The modes exit the beam splitter with coherent correlations and propagate towards photodetectors.

photons is n p with variance n p (1−p). Hence, efficiency is greatest when the attenuation parameter
ζ (3.9) is large. This also holds for more general initial states of the electromagnetic mode.

However, one can still effectively count photons even when ζ ≲ 1 is small (3.9). Essentially, when
p≪ 1 (3.13) is small, the average number of excitations in the detector is np≪ n, with variance
np(1− p) ≈ np, so that the distribution is effectively Poisson, as one might expect in the context of
particle detection. If np is large, the relative fluctuations with respect to the mean are small, with
∼ (np)−1/2 ≪ 1, so that if m excitations are observed, one can infer an occupation n = m/p of the
electromagnetic mode with high precision, provided that p is known.

Finally, we note that the simplified model of photon counting discussed above also applies to
the measurement of intensity of narrow-band sources of light. For such sources, the intensity
is simply proportional to photon number flux, even if the associated measurements rely on a
physical mechanism different from the photodetection mechanism considered above [50]. We also
note that Eq. 3.10 is the coherent representation of the statistics of single-mode attenuated fields
originally derived in Refs. 59 and 60. In this context, the attenuation parameter ζ is replaced by κτ
from Ref. 59. In general, the mathematical form of the associated probabilities is agnostic to the
specific detector model employed, as shown in Ref. 61, which also provides formulae for multi-time
correlations. Other measurements of electromagnetic modes related to photon number include
irradiance and excitance. For a discussion of how the model above is modified to account for the
presence of many electromagnetic modes, we refer to the literature [62–64].

3.3. Balanced homodyne detection

Another important class of optical measurements relates to interferometry [65]. When combined
with other ingredients, measurements of intensity or photon number (see Sec. 3.2) can be used to
probe “quadratures” of light—i.e., a family of operators of the form

xϕ ≡
1√
2

(
e−iϕ a + eiϕ a†

)
(3.14)

which realize canonically conjugate operators for, e.g., ϕ = 0 and ϕ = π/2. Measuring such quadra-
tures (3.14) can be achieved using homodyne detection [53–57, 66], where ϕ is the experimentally
controllable “homodyne angle.” For convenience, we assume that the attenuation parameter ζ ≫ 1
(3.9) is large, so that the photodetectors (see Fig. 2) efficiently count photons [51].
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Homodyne detection involves two electromagnetic modes of the same frequency, as schematically
depicted in Fig. 2. The “A” mode represents the physical system of interest, prepared in an arbitrary
initial state |ψ⟩A. The “B” mode is an auxiliary mode, prepared in the coherent state

|β⟩B = e−|β|2/2
∑
n∈N

βn√
n!
|n⟩B , (3.15)

for complex β ∈ C with |β| ≫ 1. This highly populated (i.e., bright) coherent state represents the
field of a laser, which is commonly termed the “local oscillator” (LO) [54]. Its phase (β = |β| e−iϕ)
determines the quadrature xϕ (3.14) that is ultimately measured. For conceptual clarity, it is useful
to regard both the A and B modes as propagating, localized wavepackets, as in Fig. 2(a). With this
in mind, the steps involved in homodyne measurements are as follows (see Fig. 2):

1. The two electromagnetic modes are initially in the state |Ψ0⟩ = |ψ⟩A|β⟩B. The modes
propagate towards separate photodetectors [see Sec. 3.2 and Fig. 2(a)], each in the default
initial state |0⟩det with no excitations. The full initial state is |Ψ0⟩ ⊗ |0, 0⟩ss.

2. Before reaching the detectors, the A and B modes simultaneously pass through a beam
splitter [see Fig. 2(b)], during which they evolve under the unitary [67, 68]

UBS = exp
(π
4
(a†b− ab†)

)
, (3.16)

where a and b are annihilation operators for the A and B modes, respectively. Applying UBS

(3.16) to the initial state |Ψ0⟩ produces a complicated state |Ψ1⟩ = UBS |Ψ0⟩.

3. The A and B modes exit the beam splitter and propagate toward their associated detector
[see Fig. 2(c)], which counts the photons in that mode as in Sec. 3.2, i.e.,∑

na,nb∈N

[
⟨na, nb|Ψ1⟩

]
|na, nb⟩ ⊗ |0, 0⟩ss 7→

∑
na,nb∈N

[
⟨na, nb|Ψ1⟩

]
|0, 0⟩ ⊗ |na, nb⟩ss , (3.17)

where |na, nb⟩ is a shorthand for |na⟩A|nb⟩B. This process is described in Sec. 3.2 and Fig. 1.

4. We express the final state in terms of the sum N = na + nb and difference D = (na − nb)/2
of the counts of the two detectors, so that the final state (3.17) is

|Ψf ⟩ =
∞∑

N=0

N/2∑
D=−N/2

⟨N,D|UBS|Ψ0⟩ |0⟩A|0⟩B ⊗ |N,D⟩ss . (3.18)

In Eq. 3.18, we introduced a new basis |N,D⟩ for the physical and auxiliary modes, given by

|N,D⟩ = 1√(
N/2 +D

)
!

1√(
N/2−D

)
!

(
a†
)N/2+D(

b†
)N/2−D|0⟩A|0⟩B , (3.19)

and all that remains is to calculate the matrix element ⟨N,D|UBS|Ψ0⟩. As we show explicitly in
App. C, in the limit |β| → ∞ with ⟨ψ|a†a|ψ⟩A ≪ |β| [66], this matrix element takes the form [52],

⟨N,D|UBS|Ψ0⟩ =
eiNϕ

π1/4|β|
exp

[
−
(
N − |β|2

)2
4|β|2

]
ψϕ

(
D
√
2/|β|

)
, (3.20)
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where ψϕ(x) = ⟨xϕ|ψ⟩A is the “quadrature wavefunction”—i.e., the overlap of the state |ψ⟩ ∈ ℓ2(N)
with the eigenbasis of the quadrature operator xϕ (3.14), instead of the usual x = x0, i.e.,

ψϕ(x) =
〈
xϕ
∣∣ψ〉 =

∞∑
n=0

e−inϕ e−x2/2

π1/4 2n/2
√
n!
Hn(x) ⟨n|ψ⟩ , (3.21)

where Hn(x) is the nth (physicist’s) Hermite polynomial. Since ϕ is defined by the phase of the
coherent state (i.e., β = |β| e−iϕ), the final state |Ψf ⟩ (3.18) can be written

|Ψf ⟩ =
∞∑

N=0

∞∑
D=−∞

eiNϕ

π1/4|β|
exp

[
−
(
N − |β|2

)2
4|β|2

]
ψϕ

(
D
√
2/|β|

)
|0, 0⟩ ⊗ |N,D⟩ss , (3.22)

where we extend the sum over D from ±N/2 to ±∞ by assuming that the quadrature wavefunction
ψϕ(D

√
2/|β|) vanishes for D > N/2. As a result, |Ψf ⟩ (3.22) is separable with respect to N and D.

Several remarks about the homodyne-detection procedure described above are in order:

• The total detector excitation level N is uncorrelated with the difference in excitations D,
since |Ψf ⟩ (3.22) is a product of a function of N and a function of D, where

p(N) = N
(
|β|2, |β|2

)
and p(D) =

∣∣∣ψϕ

(
D
√
2/|β|

)∣∣∣2 . (3.23)

• The N -dependent part of |Ψf ⟩ (3.22) reflects a very bright coherent state, where p(N) (3.23)
realizes a normal (Gaussian) distribution whose mean and variance are both equal to |β|2.
Importantly, it encodes no information about the initial physical state |ψ⟩.

• The coherences between different N sectors are extremely sensitive to the phase ϕ of the
LO [52], which also appears in the factor eiNϕ in |Ψf ⟩ (3.22). Measuring coherences between
macroscopically different values of N thus requires very precise control (e.g., with sensitivity
1/N) of the phase ϕ of the LO, or else the coherences wash out upon averaging over many
measurements, which leads to an effective source of decoherence (see also Sec. 5.3).

• The excitation difference D samples the quadrature wavefunction ψϕ in |Ψf ⟩ (3.22). The
quadrature basis xϕ (3.14) is determined by the phase ϕ of the LO (3.15), and the quadrature
wavefunction ψϕ(·) is effectively probed at points separated by the spacing δxϕ =

√
2/|β|,

which vanishes when |β| is large so that one resolves a continuum of values of ψϕ(·).

• The homodyne detection scheme described above operates in a “balanced” configuration,
where the specific beam-splitter unitary UBS (3.16) transmits (and reflects) 50% of the light
in each mode. Once can also use unbalanced configurations of the beam splitter, where the
ratio between the reflection and transmission coefficients is not 1 : 1. Such setups can also be
used to extract information about the state of electromagnetic modes [69–71].

Within this framework, each experimental shot results in a single “observed” value of D, sampled
from the probability distribution p(D) = |ψϕ|2 (3.23). Repeating the experiment with the same
value of the homodyne angle ϕ (3.14) samples p(D) with approximate spacing δxϕ =

√
2/|β|,

allowing for the reconstruction of p(D) with sensitivity δxϕ. Moreover, repeating the experiment
with different values of ϕ allows for the recovery of the full quantum state ψϕ of mode A [57, 72].

In practice, extracting a value of D from an experimental shot requires integrating the instan-
taneous outputs of the A and B detectors over time, and computing sums and differences. The
temporal nature of such interferometric measurement processes is especially pronounced in the
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related context of heterodyne detection, in which the frequencies ωA and ωB are different. As a
result, the quadrature (3.14) being probed changes as a function of time—i.e., the quadrature angle
is ϕ(t) = (ωA − ωB) t. Moreover, extracting information from this temporal distribution requires
multiplying the time-dependent output of the detectors by a sinusoidal signal that oscillates at the
beat frequency ωA − ωB before integrating. Since quadratures (3.14) for different values of ϕ do not
commute with one another, accommodating this technique into the Stinespring formalism—and
particularly, extracting the minimal Stinespring form—requires more careful consideration of the
time-dependent processes described above, which we defer to future work. Schematically, however,
heterodyne detection can be viewed as effectively measuring the non-Hermitian annihilation operator
a, whose coherent eigenstates are not mutually orthogonal and overcomplete [73].

4. QUBIT MEASUREMENTS

We now consider the measurements of various implementations of qubits, which involve the
examples of photon measurements considered in Sec. 3. Although we restrict to two-level qubits,
the ideas herein may also extend to multi-level qudits. The two levels of the qubit correspond to
the computational (Z) basis states |0⟩ and |1⟩, where Z|n⟩ = (−1)n|n⟩. These states are generally
associated with the internal energy levels of, e.g., atoms, ions, and superconducting circuits, where
the interpretation varies depending on the underlying physical system. In atoms and ions, the
levels correspond to distinct orbital and spin configurations of valence electrons; in superconducting
circuits, the states describe different configurations of the superconducting current, phases, or
voltages; in nitrogen-vacancy (NV) centers, the states correspond configurations of a defect and
surrounding electrons; and in quantum dots, the configurations correspond to the presence of
electrons in the potential wells or the spins of those electrons.

Typically, one seeks to measure the computational (Z) basis state of the qubit. Other single-qubit
operators can be measured by first applying a unitary change of basis—e.g., applying the Hadamard
gate H = (X+Z)/

√
2 and measuring Z is equivalent to measuring X. Certain multi-qubit operators

can also be measured by applying entangling unitaries and then measuring Z. In contrast to the
photon measurements of Sec. 3, qubit measurements are generically projective—as opposed to
destructive—so that the postmeasurement state is an eigenstate of the measured operator.

In the remainder, we consider two types of measurements that are common across many different
experimental systems: fluorescence state detection and dispersive readout. Since they ultimately rely
on detection of light, we frequently invoke the results of Sec. 3. While other detection mechanisms
for qubits exist, they generally seem to involve particle detection in some form.

4.1. Fluorescence measurement

Detecting fluorescent photons is a common means of measuring the Z-basis states of qubits
realized in trapped ions [74], neutral atoms [75–78], NV centers [79, 80], and more. We first
introduce a minimal model of fluorescence state detection for trapped-ion qubits, which is based
on the “electron shelving” technique [74, 81]. We then explain how to adapt this simple model to
fluorescence state detection of other experimental realizations of qubits.

The minimal model involves three atomic energy levels: the ground state |g⟩ = |0⟩ and excited
state |e⟩ = |1⟩ that define the computational states of the qubit, and an auxiliary level |a⟩, as
depicted in Fig. 3. The state |a⟩ is generally unstable (i.e., short lived, with a typical lifetime of a
few nanoseconds). Fluorescence state detection operates as follows (see also Fig. 3). Incident light
of the appropriate frequency ωag = Ea −Eg preferentially excites an atom from the state |g⟩ = |0⟩
to the state |a⟩, while leaving the state |e⟩ = |1⟩ unaltered; the excited atom in the unstable state
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Initial state

FIG. 3. State detection via fluorescent photons. (a) The top (bottom) row corresponds to the initial physical
state |g⟩ (|e⟩). (b) Shining light on the system preferentially excites the state |g⟩ to |a⟩. (c) Relaxation via
spontaneous emission of a photon that can be detected. This process is repeated many times.

|a⟩ fluoresces, spontaneously emitting a photon as it relaxes back to the state |g⟩. The process is
then repeated, typically in a regime of high saturation (i.e., high intensity of incident light). The
physical state is inferred from the presence (|g⟩) or absence (|e⟩) of emitted photons [74–78, 81].

This process is modeled using a nonminimal Stinespring Hilbert space Hss = Hem ⊗Hdet, where
Hem corresponds to the electromagnetic mode containing emitted (fluorescent) photons and Hdet is
the state of the photodetector. The electromagnetic mode incident on the atom is not included
in Hem; these photons merely induce the atomic transition |g⟩ → |a⟩. The state of the detector
reflects the number of photons absorbed, as described in Sec. 3.2. The minimal representation
(2.23) corresponds to associating n > 0 detected photons with |g⟩ and n = 0 with |e⟩.

The state of the full system (including the electromagnetic mode and detector) is initially

|Ψ0⟩ = (cg|g⟩+ ce|e⟩)ph ⊗ |0⟩em|0⟩det , (4.1)

i.e., an arbitrary superposition of the qubit states |0⟩ and |1⟩, an unoccupied external electromagnetic
field, and the default (unexcited) state of the photodetector. Fluorescence measurement begins
with shining light on the atom, described by time evolution under the Hamiltonian

H =
ωag

2

(
|a⟩⟨a| − |g⟩⟨g|

)
+

Ω

2
(σgae

iωag t + σage
−iωag t) +Hem +Hint , (4.2)

where σga = σ†ag = |g⟩⟨a| and Ω is the Rabi frequency of the driving light, which is resonant only
with the atomic transition |g⟩ ↔ |a⟩, Hem describes the evolution of the electromagnetic field,
and Hint describes the interaction between the field and atom, including spontaneous emission
of photons via the Wigner-Weisskopf mechanism. We do not write Hint explicitly, as it is quite
complicated; we also stress that |e⟩ does not appear in Eq. 4.2.

Physically, the atom is repeatedly excited from |g⟩ to |a⟩ by the incident light via the Rabi
term in H with coefficient Ω in (4.2) [see Fig. 3(b)]. The interaction term Hint (4.2) captures the
fluorescence process, where the atomic transition |a⟩ to |g⟩ is accompanied by a spontaneously
emitted photon [see Fig. 3(c)]. The emitted photons evolve under Hem (4.2) until they are counted
by the photodetector, as described in Sec. 3.2; the repeated excitation and emission increases the
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chance of detection. Supposing that this process results in n photons, the intermediate state is

|Ψ1⟩ = cg|g⟩ph ⊗ |n⟩em|0⟩det + ce|e⟩ph ⊗ |0⟩em|0⟩det , (4.3)

where none of the photons have been absorbed by the photodetector [see Fig. 3(c)] for the purpose
of illustration. The photons are then counted as described in Sec. 3.2, leading to a final state

|Ψf ⟩ = cg|g⟩ph ⊗ |0⟩em|n⟩det + ce|e⟩ph ⊗ |0⟩em|0⟩det , (4.4)

of the full system and detector, where we associate n > 0 counted photons with outcome g and
n = 0 counted photons with outcome e (see also Fig. 3). In practice, however, the counting of
emitted photons and reexcitation of the atom are concurrent, and not all emitted photons are
necessarily counted. Although this may result in more complicated states than appear in Eqs. 4.3
and 4.4, we always associate n > 0 counted photons with |g⟩ and n = 0 counted photons with |e⟩.

The foregoing procedure is commonly referred to as “fluorescence state detection” [82] because
it detects the Z-basis state. This is equivalent to measuring Z = |g⟩⟨g| − |e⟩⟨e| itself. Importantly,
associating |n = 0⟩det with the outcome |1⟩ (e) and any state |n > 0⟩det with the outcome |0⟩ (g)
defines a binning procedure that leads to the minimal Stinespring unitary (2.23),

U[Z ] = |g⟩⟨g|ph ⊗ 1ss + |e⟩⟨e|ph ⊗Xss , (4.5)

which acts on the initial state |ψ⟩ph ⊗ |e⟩ss, where the default is e because it is associated with no
change to the state of the detector; this is the general interpretation of the default state on Hss.

As with photon counting in Sec. 3.2, successful fluorescence measurement is possible even if the
photodetector only counts emitted photons with probability p < 1 (3.13). Intuitively, one should
then shine a large number of photons on the atom, in which case the postmeasurement state is

|Ψf (p)⟩ = cg |g⟩ ⊗
n∑

m=1

[(n
m

)
pm(1− p)n−m

]1/2
|n−m⟩em|m⟩det

+
[
ce|e⟩ ⊗ |0⟩em + cg(1− p)n/2 |g⟩ ⊗ |n⟩em

]
|0⟩det , (4.6)

where the two terms above correspond to m ≥ 1 photons detected and m = 0 photons detected,
respectively. For any p > 0, if m > 0 photons are detected, the atom is guaranteed to be in the
state |g⟩, provided that sources of dark counts (i.e., false positives) are mitigated. However, for
p < 1, there is a nonzero probability to detect m = 0 photons even if the atom is in the excitable
state |g⟩. If p is the probability that a photon shone on the atom induces fluorescence and the
spontaneously emitted photon is absorbed by the detector, then the probability of such a “false
negative” is |cg|2 (1− p)n/2, where n is the number of photons shone on the atom.

Hence, shining a very large number of photons on the atom exponentially reduces the probability
of a false negative. In this limit, the final state can be represented schematically as

|Ψf ⟩ = cg |g⟩ph ⊗ |clicks⟩ss + ce |e⟩ph ⊗ |no clicks⟩ss , (4.7)

which we note is of the minimal Stinespring form now that we have binned “clicks” (m > 0) versus
“no clicks” (m = 0). However, scattering large numbers of photons leads to unwanted heating so
that, in practice, one must optimize the number of photons shone on the atom.

We now discuss some important practical considerations involved in the experimental implemen-
tation of the foregoing simplified model of fluorescence measurements of Z in atomic systems, as
well as how the technique is commonly extended to other realizations of qubits.
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• The fluorescence measurement process described above is most commonly used to determine
the energy levels of, e.g., trapped ions [83–85] and neutral atoms [86–88]. With neutral
atoms, it is often preferable to induce the transition |g⟩ → |a⟩ with off-resonant light to
avoid, e.g., heating-induced losses and state leakage [89]. Alternatively, cavities can be used
to enhance the collection efficiency [90] and ensure that light is preferentially emitted in
particular directions to facilitate the collection of outgoing photons [91].

• Fluorescence measurements are also used to determine the occupancy of “sites” in optical
lattices [76, 77, 92]. The states |g⟩, |a⟩ and |e⟩ above are replaced by |1, g⟩, |1, a⟩ and |0⟩,
where |1, g/a⟩ indicates the presence of an atom in the state g/a and |0⟩ indicates the absence
of an atom or an atom in a state other than g or a. We also note that conservation of particle
number requires that superpositions of |0⟩ and |1, g/a⟩ on a given “site” must be correlated
with mixed occupations of other sites [93]. This necessitates a description of the measurement
process involving Stinespring registers for each site; in many experimental implementations,
the imaging technique only discriminates between even and odd occupations of several optical
lattice sites, as atoms are typically lost in pairs due to light-assisted collisions [94].

• Fluorescence measurements can also be used as an indirect probe of which “sites” in an optical
lattice are occupied by an atom in the state g. This is particularly common in tweezer arrays,
where one preferentially expels all atoms in the state e (e.g., via resonant heating [95, 96] or
due to antitrapping [97]). One then uses fluorescence measurement to obtain a “snapshot” of
the locations of the remaining atoms, which are in the state g. This requires the ability to
resolve light emitted from different lattice sites. We also note that this process is destructive,
as the ejected atoms are irrevocably lost, but is useful in numerous settings.

• Fluorescence state detection also applies to NV centers, whose various internal states involve
configurations of, e.g., electronic spins in the vicinity of the defect [79, 80]. In contrast
to the atomic implementation above, fluorescence measurement of NV centers require two
auxiliary internal states |a⟩ and |a′⟩. The light incident on the NV center generically induces
transitions |g⟩ → |a⟩ and |e⟩ → |a′⟩, but the various decay pathways out of |a⟩ versus |a′⟩ are
different. The system can return to both of the states |g⟩ and |e⟩ via radiative processes, and
can return to the state |g⟩ via nonradiative decay (via intersystem crossing). Importantly,
these nonradiative processes occur with different rates, which has two consequences: (i) at
the end of the measurement the NV center realizes the state |g⟩ regardless of its initial state
and (ii) the number of scattered photons depends on whether the initial state was |g⟩ or |e⟩.
The final state following the measurement is given schematically by [80]

|ψ⟩ =
[
cg |g⟩+ ce |e⟩

]
⊗ |0⟩em 7→ |g⟩ ⊗

[
cg |ng⟩em + ce |ne⟩em

]
, (4.8)

where |ng,e⟩ is a placeholder for some complicated state of the electromagnetic field that,
on average, has ne,g photons. It is typically assumed to be coherent to account for Poisson
statistics [80]. The outcomes corresponding to |e⟩ versus and |g⟩ are more subtle to differentiate
than “clicks” versus “no clicks,” since the associated numbers of emitted photons are very
small. However, performing the experiment many times increases the total numbers of
collected photons from the states |g⟩ and |e⟩; it also increases their difference, so that one
can reliably distinguish the two states. Note that |ψ⟩ (4.8) has the Stinespring form of a
destructive measurement (2.33).
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Resonator Transmission line

(a) (b)

FIG. 4. Left: Schematic of a superconducting qubit interacting with a resonator that is coupled to a
transmission line. Right: Bare cavity frequency (ωr) and the qubit state-dependent frequency shifts (blue).

4.2. Dispersive measurement

Here we describe dispersive state readout [98]—a common technique for determining the Z -basis
state of superconducting qubits and atoms in cavities (microwave and optical). For concreteness,
we focus on a single superconducting qubit, whose two levels generally represent physically distinct
configurations of charges, phases, and/or fluxes in a superconducting circuit. This state can be
measured indirectly via controllable interactions with auxiliary systems, as depicted schematically in
Fig. 4. More concretely, one sends a pulse of light through a transmission line to probe a resonator
(e.g., a cavity) that hosts confined electromagnetic modes. The interaction of the resonator modes
with the qubit modify the pulse in the transmission line (see Fig. 4), from which the qubit’s state is
inferred. A minimal description consists of the qubit (with states g and e), a single resonator mode
(with photon annihilation operator r), and the transmission line (whose continuum of propagating
electromagnetic modes is represented schematically by Fock states |n⟩out). As in Sec. 3, we picture
these outgoing modes as being mildly localized and propagating towards a detector.

The measurement protocol involves evolution under the qubit-resonator Hamiltonian

HQR = ωaσ
z + ωrr

†r + g(r†σ− + rσ+) , (4.9)

where ωa is the frequency of transitions between the states |e⟩ and |g⟩ of the qubit, ωr is the
frequency of the resonator, and g controls the strength of a Jaynes-Cummings interaction [99], which
models coherent photon absorption and emission by the qubit. In the dispersive regime—where
the large detuning |ωa − ωr| ≫ g ensures that the atom quickly emits any absorbed photons—we
perturb about g = 0 to good approximation, recovering the Hamiltonian

HQR = ωaσ
z + ωrr

†r + χ(r†r)σz , (4.10)

where χ = g2/(ωr − ωa), and this term describes a shift in the resonator frequency ωr, whose sign
depends on the qubit’s Z -basis state [see Fig. 4(b)]. Dispersive readout proceeds as follows:

1. The qubit of interest is prepared in an arbitrary superposition |ψ⟩ = cg|g⟩+ ce|e⟩ and the
field modes (resonator and transmission line) are initially empty. The dilated initial state is

|Ψ0⟩ = (cg|g⟩+ ce|e⟩)⊗ |0⟩r|0⟩out . (4.11)

2. A mode with the same frequency ωr as the bare resonator is sent to the resonator via the
transmission line. The outgoing modes realize a coherent state |α⟩ (3.15), and the average
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number of photons n ∼ |α|2 sent towards the resonator grows linearly in time in the late-time
steady-state regime of the electromagnetic modes. The state remains separable, with

|Ψ1⟩ = |ψ⟩ ⊗ |0⟩r|α⟩out . (4.12)

3. Photons sent through the transmission line enter the resonator, interact with the qubit, and
escape back through the line. The resonator responds to the incoming light as a damped-
driven harmonic oscillator (damped by the modes in the transmission line). Crucially, this
response depends on the resonator frequency, which in turn depends on the state of the qubit
via χ (4.10). This process (with the foregoing assumptions) is captured by:

|g⟩ ⊗ |0⟩r|α⟩out 7→ |g⟩ ⊗ |ρ e+iθ⟩r|0⟩out 7→ |g⟩ ⊗ |0⟩r|α e+2iθ⟩out (4.13a)

|e⟩ ⊗ |0⟩r|α⟩out 7→ |e⟩ ⊗ |ρ e−iθ⟩r|0⟩out 7→ |e⟩ ⊗ |0⟩r|α e−2iθ⟩out , (4.13b)

where |ρ e±iθ⟩r and |α e±2iθ⟩out are coherent states (3.15). The final state of the system is

|Ψf ⟩ = cg|g⟩ ⊗ |0⟩r|α e2iθ⟩out + ce|e⟩ ⊗ |0⟩r|α e−2iθ⟩out . (4.14)

In this schematic description, the light enters the cavity and establishes an intracavity field
ρ e±iθ whose phase depends on the state of the qubit (+iθ for |g⟩ and −iθ for |e⟩). The
coherent light then escapes the resonator via the transmission line, so that its phase can be
recorded. We comment that, in practice, all of these processes occur at the same time and
the device is operated in steady-state conditions after transients have died off.

4. The phase of the returning light is extracted via homodyne detection of the momentum
quadrature p = (a − a†)/i

√
2 = xϕ=π/2 (3.15). Working in the eigenbasis of p,

|α e±iθ⟩ = π−1/4

∞∫
−∞

dp e−i
√
2αp cos θ e−(p∓

√
2α sin θ)2/2 |p⟩ ≡

∞∫
−∞

dpψ±(p) |p⟩ , (4.15)

and, since the distribution of the output momentum for the initial qubit states |g⟩ and |e⟩
are centered at p = ±

√
2α sin θ, respectively, we associate the detection of |p > 0⟩ with |g⟩

and of |p < 0⟩ with |e⟩. This is procedure is not perfect: The probability to detect p < 0
(p > 0) when the initial state of the qubit is g (e) is given by

perror =

∞∫
0

dp|ψ−(p)|2 =

0∫
−∞

dp|ψ+(p)|2 =
1

2
erfc

(
α
√
2 sin θ

)
, (4.16)

which saturates to 1/2 when α sin θ → 0, and vanishes as exp(−α2 sin2 θ)/α sin θ in the limit
α sin θ →∞. In this limit of many outgoing photons, the final state takes the form

|Ψf ⟩ = cg|g⟩ ⊗ |0⟩r
( ∞∫

0

dpψ+(p)|p⟩out
)
+ ce|e⟩ ⊗ |0⟩r

( 0∫
−∞

dpψ−(p)|p⟩out
)
, (4.17)

which requires that θ is within (0, π/2), or else one cannot discriminate between these outcomes;
however, this is generally the case in experiment. The outgoing light is then measured
via homodyne detection, so that correlations between the qubit and the electromagnetic
mode (in the transmission line) are transferred into correlations between the qubit and the
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differential intensity measurements of the final detectors, as in Eq. 3.22. In actual experimental
implementations, the phase θ in Eq. 4.13 is measured in a steady-state configuration in which
there is a fixed flux of photons (i.e., intensity) emanating from the resonator. By waiting
longer, transients die off and |α|2 grows larger, linearly in time, reducing the probability of a
readout error. However, separate experimental factors may degrade the measurement process
over time, meaning there exists an optimal duration for the dispersive-readout process.

We now describe the application of this detection scheme in various experimental settings:

• Dispersive readout as described above is a common measurement approach for superconducting
qubits [98] and detecting the presence of absence of atoms in cavities [100].

• The same scheme can also be used to measure the collective “inversion” of many atoms—i.e.,
the difference between the number of atoms in the excited versus ground state—in cavities
(both optical and microwave) [101]. Instead of measuring σz for a single atom, one measures
Sz =

∑
j σ

z
j /2 for an ensemble of N atoms. The role of the resonator is played by the cavity

itself and that of the transmission-line modes is played by light leaking through the cavity
mirrors, which can be measured using homodyne (or heterodyne) detection.

In the “dispersive regime,” the atom-cavity interaction is given by Eq. 4.10, with σz replaced
by 2Sz. The detection scheme proceeds as described above. Note that, in this collective
regime, there are N + 1 possible values Sz instead of two. Ideally, the procedure collects
enough photons to enable almost perfect discrimination between each value of inversion,
yielding a postmeasurement state in Stinespring form (4.17). Schematically, if |m⟩ represents
the different eigenstates of the inversion Sz, the dispersive-readout process takes the form

|Ψ0⟩ =
N/2∑

m=−N/2

cm|m⟩ ⊗ |0⟩r|0⟩out 7→ |Ψf ⟩ =
N/2∑

m=−N/2

cm|m⟩ ⊗ |0⟩r|α eimθ⟩out , (4.18)

where the coherent states |α eimθ⟩ are nearly orthogonal for different m-dependent phases
mθ. This is often not possible due to technical limitations, but the information gained by
the measurement can still be used to constrain the most likely values of Sz, in many cases
creating entanglement between atoms in the ensemble [101–104].

The physical mechanism underlying this collective Sz measurement—namely, the state-
dependent shift of the cavity (resonator) frequency captured by Eq. 4.10—is, strictly speaking,
not restricted to the dispersive regime. It also occurs when the atoms and cavity are close to
(or on) resonance—i.e., ωa = ωr in Eq. 4.9—though the functional relationship between the
atomic state and the shift in cavity frequency is different. In contrast to the dispersive scheme,
three levels are typically used, where the cavity is resonant with the transition |g⟩ ↔ |a⟩,
rather than |e⟩ ↔ |g⟩, for some auxiliary state |a⟩. The objective of a measurement in this
regime is not to infer the inversion Sz = Ne −Ng, but simply the number Ng of atoms in
|g⟩ [102, 103]. The inversion can be determined using a similar, complementary measurement
of Ne. These resonant measurements can also be used in the single-atom regime [105].

• The dispersive response of atoms can also be used directly with atomic clouds to infer their
average atomic state [106], or for spatial imaging, whereby a probe beam of light acquires
spatially dependent phase shifts as it interacts with the atoms in the cloud [107–109]. We
defer a Stinespring description of this procedure to the future, since it involves the spatial
distribution of the electromagnetic field, which we have ignored thus far.
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5. USING THE UNITARY MEASUREMENT FORMALISM

Having discussed several prominent experimental implementations of projective and destructive
measurements and their connection to the dilated unitary formalism presented in Sec. 2, we now
discuss how to use this formalism in practice and its various advantages, implications, and properties.

5.1. Measurement outcomes and the Born rule

We begin by showing that the standard concepts associated with such measurements recover in
the Stinespring representation of Sec. 2. In particular, we show how the standard Born rule may
be evaluated either before or after the measurement, and is a natural consequence of Gleason’s
theorem [110]. We also consider the extraction of expectation values. As noted in Sec. 2, the
projective measurement of an observable O (2.3) is always associated with a quantum channel

Φ(ρ) = tr
ss

(
U ρ⊗ |i⟩⟨i|ss U†

)
= ρav , (2.15)

where the measurement unitary U acts on Hdil = H ⊗ Hss, with Hss the state space of the
measurement apparatus and |i⟩ss the default initial state of the apparatus. The channel Φ is CPTP,
and ρav is the outcome-averaged postmeasurement density matrix.

Related to Φ (2.15) is the selective operation [20] corresponding to the quantum channel

Φm(ρ) = tr
ss

(
U ρ⊗ |i⟩⟨i|ss U† P (m)

ss

)
= pm ρm , (2.16)

which is a CP map describing a projective measurement resulting in the particular outcomem, where

P
(m)
ss projects onto the state(s) of the apparatus associated with outcome m, pm is the probability

of observing outcome m, and ρm is the “collapsed” postmeasurement density matrix [20].
The foregoing expressions for Φ (2.15) and Φm (2.16) only apply to projective measurements.

The destructive measurements discussed in Sec. 2.3.5 generally result in the same state of the
physical system for any outcome m. Apart from the postmeasurement state, however, all of the
formulae below apply equally to projective and destructive measurements.

The probability to observe outcome m (i.e., the eigenvalue Om) is given by the Born rule

pm = |⟨m|ψ⟩|2 ←→ pm = tr
(
Pm ρ

)
, (5.1)

where ρ is the premeasurement state of the system. The familiar expression on the left holds when
ρ = |ψ⟩⟨ψ| is pure and the mth outcome is nondegenerate (2.3); the expression on the right is
generic. Importantly, the Born rule (5.1) is generally an assumption of quantum mechanics—i.e., it
is built into the axioms [1–8]. We note that the state ρ encodes a probability distribution, which
one expects can be extracted from expectation values as in Eq. 5.1. The expectation value of an
operator is a C∗-state—a positive linear functional. Positivity of the spectral projectors (2.1) then
implies that pm ≥ 0, and because the projectors form a complete set (2.2), we have

0 ≤ pm = tr
(
Pm ρ

)
≤

N−1∑
m=0

tr
(
Pm ρ

)
= tr ( ρ ) = 1 , (5.2)

so that the probabilities pm are positive and sum to one, as required. Moreover, Gleason’s
theorem [110] establishes that, a priori, probabilities are always related to projectors via Eq. 5.2.

Using the Stinespring representation of measurements developed in Sec. 2.3, we can write

pm = tr
(
U ρ⊗ |i⟩⟨i|ss U† P (m)

ss

)
= tr

[
Φm(ρ)

]
= pm tr (ρ) = pm , (5.3)
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i.e., pm is the expectation value of the Stinespring projector P
(m)
ss in the postmeasurement state

ϱ(t) = U ρ⊗ |i⟩⟨i|ss U† =
N−1∑
m=0

p−1
m Φm(ρ)⊗ P (m)

ss , (5.4)

on Hdil. As always, the Born probability corresponds to the expectation value of a projector (5.2),
as guaranteed by Gleason’s theorem [110]. The probability pm may be extracted from the physical
premeasurement state ρ0 (5.8) via Eq. 5.1 or the dilated postmeasurement state ϱ(t) (5.4) via
Eq. 5.3. The latter has a physical interpretation as the expectation value (or probability) of finding
the detector in a state corresponding to outcome m following evolution under U (2.17).

Following a projective measurement resulting in outcome m, the system’s state is

ρm = p−1
m Φm(ρ) =

Pm ρPm

tr (Pm ρ )
, (5.5)

provided that pm > 0. The average postmeasurement state ρav is given by Φ(ρ) (2.15). However,
in the dilated unitary representation, these merely correspond to particular limits of the dilated
postmeasurement density matrix ϱ (5.4) of the system and apparatus. The average over all outcomes
recovers upon taking the trace over the apparatus Hilbert space Hss (2.15), giving the reduced
postmeasurement density matrix of the physical system. The collapsed density matrix ρm (5.5)
corresponds to projecting the apparatus onto the corresponding state |m⟩ss, and then taking the
trace (2.16). Because the dilated unitary U (2.17)—or Hamiltonian H (2.34)—is both guaranteed
by the axioms (see Sec. 2) and consistent with known experimental implementations (see Secs. 3
and 4), we adopt the perspective that ϱ is the correct postmeasurement density matrix, in which
all outcomes occur. In Sec. 5.3, we describe why only one outcome is observed in practice.

Finally, the expectation value for measuring O in some state ρ can be written

⟨O⟩ρ =

N−1∑
m=0

pmOm =

N−1∑
m=0

Om tr
(
Pm ρ

)
= tr (O ρ ) , (5.6)

in terms of the premeasurement state ρ, or in terms of the postmeasurement state ϱ (on Hdil) via

⟨O⟩ρ =

N−1∑
m=0

pmOm =

N−1∑
m=0

tr
dil

[ (
1ph ⊗Om P

(m)
ss

)
ϱ
]
, (5.7)

which reproduces Eq. 5.6, as expected. The expectation value and Born probabilities are the
same for projective and destructive measurements, and may be evaluated either before or after the
measurement unitary U is applied using ρ or ϱ(t), respectively. As a reminder, the fact that the
Born probability takes the form of an expectation value of a projector is a consequence of Gleason’s
theorem [110], which extends without caveat to the dilated Hilbert space Hdil (2.8).

5.2. Application to measurement-based protocols

Perhaps the greatest advantage of the Stinespring formulation of projective and destructive
measurements is the application to adaptive quantum protocols. These protocols involve nonlocal
quantum operations based on the outcomes of prior measurements, and are known to be faster (and
sometimes less error prone) than local unitary—or even Lindblad—dynamics [21, 111, 112]. However,
such protocols are often cumbersome to describe in both the Kraus (2.11) or von Neumann (2.34)
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representations, especially if one is interested calculations that require evolving operators—e.g.,
diagnosing locality, constraining quantum protocols, and identifying optimal strategies [21, 23].

The advantage of representing measurements unitarily on a dilated Hilbert spaceHdil = Hph⊗Hss

(2.8) is that the outcomes are reflected in explicit degrees of freedom in Hss, corresponding to the
states of the detectors. In experiment, distinct detectors are not necessarily required, and one can
simply reset and reuse the same detector for multiple measurements and “write down” the outcome.
However, for the purpose of calculation, it is most convenient to encode the measurement outcomes
in distinct Hilbert spaces. We may also consider protocols in which the decision of whether or not
to perform a measurement (or what operator to measure) is conditioned on prior outcomes. One
simply assigns Stinespring degrees of freedom to each possible measurement, and if a measurement
is not performed, one simply does not use the corresponding Stinespring register.

Consider a quantum protocol W involving measurements of up to M observables {Oj}, where
all aspects of W at any time t may depend on any prior measurement outcomes. The physical
system is initialized in an arbitrary state ρ0 on Hph, and M Stinespring registers labeled j are
initialized in the default state |0⟩⟨0|ss,j of each apparatus, so that

ϱ(0) = ρ0 ⊗ |0⟩⟨0|ss , (5.8)

is the dilated initial state. The physicist’s Stinespring theorem [20, 30, 31] ensures that W acts
unitarily on Hdil (2.8), which may require enlarging Hss to include “environmental” degrees of
freedom. For simplicity, we consider protocols W involving only measurements and unitary time
evolution on Hph, which may be arbitrarily conditioned on prior outcomes. The unitary evolution
may be generated by a discrete quantum circuit or continuous evolution under some local Hamiltonian
H(t). In the latter case, one must either approximate the measurement unitary U as instantaneous
or use the Hamiltonian formulation of measurements [21].

For convenience, suppose that W is realized by a unitary circuit on Hdil (2.8). We now consider
the distinct types of dilated unitary “gates” in W . Time evolution is realized by a unitary U acting
only on Hph, while a projective measurement of an observable Oj (2.3) takes the form

Uj =

Nj−1∑
n=0

P
(n)
j ⊗Xn

ss,j , (5.9)

where P
(n)
j projects onto the nth eigenspace of Oj (2.3) associated with Stinespring label j. When

Nj →∞, Uj (5.9) is replaced with a dilated Hamiltonian (2.34) or with a modified unitary (2.28).
For destructive measurements, one modifies the physical part of Eq. 5.9 to match, e.g., Eq. 2.33.

The measurement of Oj (2.3) via Uj (5.9) entangles the system with the jth Stinespring register,
which reflects the observed outcome. Importantly, we do not immediately trace over Hss,j to realize
the quantum channel Φ (2.15) or the quantum operation Φm (2.16). Instead, we view Uj (5.9) as
the time evolution of the system and the jth detector during the measurement of Oj (2.3), and
defer all traces until the end of the full calculation. The relevant quantities are given by

ρav = tr
ss

(
W ϱ(0)W†

)
(5.10a)

pn ρn = tr
ss

(
W ϱ(0)W† P (n)

ss

)
, (5.10b)

where P
(n)
ss = |n1, . . . , nM ⟩⟨n1, . . . , nM |ss projects (i.e., collapses) the dilated state onto a particular

sequence n = {n1, . . . , nM} of measurement outcomes (5.10b), and taking the trace averages over
all outcomes (5.10a). Importantly, these traces are only taken after W has been applied in its
entirety, to allow for subsequent outcome-dependent operations. As a bookkeeping tool, one can
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view the unitary description in Eq. 5.10 as an algebraic means of accounting for all Kraus operators—
including outcome-dependent operations—in a convenient manner. However, we associate W with
the physical time-evolution operator for the system and detectors throughout the protocol.

Because the trace is only taken at the end in Eq. 5.10, we can express a unitary feedback operation
on the physical degrees of freedom in Hph that is conditioned on the jth measurement outcome via

Rj =

Nj−1∑
n=0

Un ⊗ P (n)
ss , (5.11)

which applies the physical unitary Un if the jth outcome was n, where the trivial case corresponds
to Un = 1 (i.e., do nothing). Such outcome-dependent unitaries are essential to measurement-based
protocols, as without these operations, the outcome-averaged final state ρ(t) is some maximally
mixed state [21–23]. We note that Eq. 5.11 is easily extended to include physical unitaries that are
conditioned on multiple outcomes—e.g., the parity of several qubit measurements, in the context of
quantum teleportation [23]. One can also describe conditional measurements via

Mj,k =

Nj−1∑
n=0

U[On]
⊗ P (n)

ss , (5.12)

which realizes a projective measurement of an observable On if the jth measurement resulted in
outcome n. The measurement unitary Un acts on Hss and the kth Stinespring register—in which
the measurement outcome is encoded—conditioned on the outcome of the jth measurement. As
with outcome-dependent feedback (5.11), one can also extend Eq. 5.12 to measurements conditioned
on multiple outcomes, and the case in which no measurement is performed if the jth measurement
resulted in outcome m is captured by replacing the nth measurement unitary with 1.

5.3. Decoherence and “wavefunction collapse”

For the dilated unitary U (5.9) to be considered physical, we must explain why only one outcome
is observed in any experimental measurement. It is widely understood that quantum decoherence—
the mechanism by which classical physics emerges in quantum systems—explains the appearance of
wavefunction collapse [15]. Here, we combine recent results on quantum chaos and thermalization
with the Stinespring representation of measurements outlined in Sec. 2.

Importantly, the physicist’s Stinespring theorem (2.51) implies a bookkeeping representation
of measurements in which all outcomes occur deterministically on Hdil (2.8)—i.e., the dilated
postmeasurement state ϱ(t) (5.4) is a coherent superposition of states ∝ |ψm⟩ ⊗ |m⟩ss, where the
state |m⟩ of the apparatus indicates that the system is in the state |ψm⟩. Although the quantum
probability distributions encoded by such coherent superpositions may exhibit interference, this is
not observed in any particular experimental instance of a measurement.

Instead, the fact that only one outcome is observed indicates that ϱ(t) (5.4) encodes an incoherent
(i.e., classical) probability distribution. For the ensemble of states encoded in the postmeasurement
state ϱ(t) (5.4) to appear classical, ϱ(t) must realize a mixed state, i.e.,

ϱmix =

N−1∑
m=0

pm |ψm⟩⟨ψm| , (5.13)

where ρm = |ψm⟩⟨ψm| is pure and pm is the classical probability for outcome m. While the
coefficients of pure states correspond to coherent superpositions in a particular basis and reflect
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quantum probabilities, the coefficients of the different pure states in a mixed state (5.13) reflect
incoherent classical probabilities. Mixed states have always had the physical interpretation of a
classical ensemble of pure quantum states ρm, only one of which is observed classically. A given
experiment realizes a single pure state ρm, which is sampled from ϱmix with probability pm.

It remains to identify a mechanism by which ϱ(t) (5.4) realizes a mixed state ϱmix (5.13), i.e.,

ϱ(t) =
N−1∑
m,n=0

Pm ρ0 Pn ⊗ |m⟩⟨n|ss 7→
N−1∑
m=0

Pm ρ0 Pm ⊗ P (m)
ss =

N−1∑
m=0

pm ρm ⊗ P (m)
ss , (5.14)

where we used Eqs. 5.8 and 5.9, and ρm ⊗ P
(m)
ss realize pure states. Understanding how the process

in Eq. 5.14 comes about in actual experiments involves two key observations.

The first observation is that the state of the apparatus is classically observable and in thermal
equilibrium with its environment. The eigenstate thermalization hypothesis (ETH) [113–115]—
which has since been proven [116]—states that entanglement between a system and its environment
is the mechanism for quantum thermalization. Because the apparatus is thermal, it is guaranteed
to be highly (if not maximally) entangled with the environment. Studies of the chaotic quantum
dynamics leading to thermalization have shown that the dynamics is well described by evolution
under an ensemble of random matrices with the appropriate symmetries [22, 117–122].

The second observation is that the postmeasurement state of the apparatus is stable to pertur-
bations. In other words, the chaotic quantum dynamics that lead to the classical behavior of the
apparatus must preserve the recorded outcome. Since chaotic quantum dynamics scramble as much
information as symmetries allow [22, 119–122], the states of Hss associated with each outcome m
must belong to distinct symmetry sectors. Together with the first observation, this implies that the
chaotic evolution of the apparatus is well approximated by a random unitary of the form

U =
∑
m

P (m)
ss Um P

(m)
ss for Um ∈ U

(
rm
)
, (5.15)

where the rm × rm unitary Um acts in the rm-dimensional subspace of Hss corresponding to the
mth outcome Om (2.3) and is drawn at random from U(rm) with uniform (Haar) measure. In the
minimal Stinespring representation, each outcome has a unique state, so rm = 1 and Um = eiθm is
simply a complex phase. In the nonminimal representations relevant to experiments, Um generically
mixes states that reflect the same outcome Om. For example, in the case of photon counting (see
Sec. 3.2, every state of Hss with n conduction electrons reflects the same outcome n, so that the
Haar-random unitary U (5.15) respects a U(1) symmetry corresponding to particle number.

We next show that the chaotic, symmetry-preserving unitary evolution of the apparatus—
captured by Haar-averaged evolution under Eq. 5.15—leads to wavefunction collapse. Following the
measurement process, the full dilated state is generically given by

ϱ(t) =
N−1∑
m,n=0

Pm ρ0 Pn ⊗
rm∑
j=1

rn∑
k=1

c∗m,jcn,k |m, j⟩⟨n, k|ss , (5.16)

where |m, j⟩ and |n, k⟩ label all states corresponding to outcomes m and n, respectively, and
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∑rm
j=1|cm,j |2 = 1. Evolving under U (5.15) and ensemble averaging leads to

ϱ′(t) = E
[
U ϱ(t)U †

]
=

N−1∑
m,n=0

Pm ρ0 Pn ⊗
∑
j,k

c∗m,jcn,k

N−1∑
ℓ,ℓ′=0

P (ℓ)
ss E

[
Uℓ Pℓ |m, j⟩⟨n, k|Pℓ′ U

†
ℓ′

]
P (ℓ′)
ss

=

N−1∑
m,n=0

Pm ρ0 Pn ⊗
∑
j,k

c∗m,jcn,k

N−1∑
ℓ=0

P (ℓ)
ss Φ

(1)
Haar,ℓ

(
Pℓ |m, j⟩⟨n, k|Pℓ

)
, (5.17)

where Φ
(1)
Haar,ℓ(A) = tr (A) /rℓ is the onefold Haar channel for the rℓ × rℓ unitary Uℓ [118], which

vanishes unless ℓ = ℓ′ and is proportional to the identity. In particular, we have that

Φ
(1)
Haar,ℓ

(
Pℓ |m, j⟩⟨n, k|Pℓ

)
=

1

rℓ
tr (Pℓ|m, j⟩⟨n, k|) =

1

rℓ
δm,ℓ δn,ℓ δj,k , (5.18)

and inserting this result back into Eq. 5.17 leads to

ϱ′(t) =

N−1∑
m=0

Pm ρ0 Pm ⊗
rm∑
j=1

|cm,j |2

rm
P (m)
ss =

N−1∑
m=0

Pm ρ0 Pm ⊗
1

rm
P (m)
ss , (5.19)

which has precisely the desired form (5.14). The final state (5.19) is a sum over outcomes m of the
probability pm (2.4) of observing outcome m times the collapsed density matrix ρm (5.5) times the
maximally mixed state Pm/rm on the subspace of Hss corresponding to outcome m. Finally, in the
minimal Stinespring representation, each subspace has dimension rm = 1, so that

ϱ′(t) = E
[
U U ϱ(0)U† U †

]
=

N−1∑
m=0

Pm ρ0 Pm ⊗ |m⟩⟨m|ss , (5.20)

which is a classical mixture of N pure quantum states corresponding to the collapsed state
ρm ∝ Pm ρ0 Pm (5.14) tensored with the projector onto the mth Stinespring state. In the context
of chaos, the process (5.20) reflects relaxation to the digaonal ensemble, due to dephasing [113–116].
It is ubiquitous to quantum systems that thermalize (or behave classically).

While the averaging over an ensemble of statistically similar evolution operators U (5.15) on
Hss may appear unnatural, it is merely a useful—and highly successful—approximation of the
underlying chaotic dynamics. Indeed, the onefold Haar channel (5.18) is nonunitary, though still a
valid quantum channel (i.e., CPTP map). One might think that such a nonunitary channel could
not possibly capture the actual unitary evolution. In practice, however, we note that the chaotic
evolution of the measurement apparatus also involves interactions with an environment, which may
be similarly nonunitary in its action on the system after tracing out the environment. Moreover, the
ensemble-averaged evolution reproduces the decohering effects of complicated interactions with the
environment, and even successfully predicts the universal behaviors of isolated, thermodynamically
large systems. We also note that other random-matrix ensembles common to the literature on, e.g.,
quantum complexity [118] lead to the same result (5.19). For these reasons, we expect the model of
decoherence in terms of the random unitary U (5.15) to provide a useful description of the chaotic
dynamics associated with the classical (and thermal) nature of the apparatus [22, 113–122].

Summarizing the discussion thus far, the axioms of quantum mechanics [1–8] imply that
measurements are equivalent to unitary evolution on a dilated Hilbert space Hdil = Hph ⊗ Hss

(2.8), where the unitary U (5.9) codifies the time evolution of the system (Hph) and measurement
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apparatus (Hss) during the measurement process, and the resulting density matrix (5.14) encodes
all possible outcomes. We note that this formulation of measurements is entirely deterministic—i.e.,
at the level of the equations of motion, there is nothing stochastic, and all outcomes occur.

The appearance of wavefunction collapse is merely a byproduct of our classical nature—and one
we engineer. For a measurement outcome to be discernible to classical beings, it must be stored in
a classical thermal state—meaning a state that is stable to the underlying and chaotic quantum
dynamics. The same mechanism that leads to the classical behavior of the apparatus in the first
place—and hence, its utility as a detector—also guarantee that the the postmeasurement state
rapidly decoheres into a classical mixture of states (5.19). In the context of measurements, we
associate this with wavefunction collapse—in any given experiment, we experience only one pure
state ρm ⊗ |m⟩⟨m|ss, sampled from ϱmixed (5.13) with probability pm (5.3).

The primary constraint this places on the apparatus itself is that distinct outcomes correspond
to different “charges” under some symmetry; in most implementations of measurements, that
symmetry corresponds to particle number. Importantly, the connection to symmetries naturally
explains the emergence of a “preferred basis.” This also underlies the probabilistic appearance of
radioactive decay—as classical beings, we cannot observe superpositions of different numbers of
particles (symmetry sectors), as they rapidly decohere into mixed states, as in Eq. 5.14.

A related point is that any “strangeness” of quantum are by design. Without assigning distinct
outcomes to different symmetry charges, the state of the apparatus would not reliably indicate
the outcome. Without using a classical apparatus, there would be no notion of collapse, nor an
“outcome” to discern, without a second measurement involving a classical apparatus (e.g., in the
thought experiment known as “Wigner’s friend”). Moreover, any nonclassical apparatus could not
safely store information about the outcome, which could easily be lost to decoherence.

This understanding of wavefunction collapse appears to resolve several “paradoxes” surrounding
measurements. First, there is no paradox surrounding Schrödinger’s cat: A cat is placed in a box
with a radioactive isotope, whose decay triggers the release of poison; the paradox is that, until the
cat is observed, its state is a superposition of alive and dead. However, a cat is classical—in this
case, it acts as the detector for the spontaneous decay of the isotope (though we comment that
far more ethical and efficient detectors exist). While the release of the poison creates a coherent
superposition of the cat being dead (radioactive decay occurs) and alive (no decay occurs), because
the cat is classical, this state rapidly decoheres into a mixed state in which the cat is alive and no
decay occurred and the cat is dead and decay occurred. This collapse happens extremely rapidly
as unitary dynamics increase the probability that the isotope decayed. As a result, there is no
possibility of observing the cat to be in a coherent superposition of alive and dead, and thus no
paradox [11, 15]. Second, there is no concern surrounding Wigner’s friend: The apparatus should
be identified with the first classical system that is entangled with the quantum system of interest,
since that apparatus is sufficient for collapse, and no other ingredients are required.

Finally, we note that the physical details surrounding decoherence of the apparatus beyond the
toy model considered above do not depend directly on the measured observable, but on microscopic
and nonuniveral properties of the apparatus. In contrast to the minimal Stinespring representation
(5.9), there can be no general theory of, e.g., the precise time scale over which decoherence (and
collapse) occurs, as this depends entirely on microscopic details that vary depending on how the
measurement is implemented. However, it is likely that the time scale of decoherence is small
compared to the time scale of the measurement overall, or else the apparatus would exhibit
quantum effects, and would not reliably indicate the measurement outcome. Hence, we expect that
decoherence-induced collapse (5.19) occurs quite rapidly, and is merely part of the process by which
the outcome becomes classically available. The crucial observations are that (i) the measurement
process itself is described by a deterministic unitary (5.9) corresponding to time evolution of the
system and apparatus; (ii) the same criteria that guarantee that U realizes a classically readable
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measurement also guarantee the appearance of wavefunction collapse via decoherence (5.14); (iii) it
also explains the emergence of a preferred classical basis for the different “branches” of the universal
wavefunction |Ψ⟩ ∈ Hdil; and (iv) that collapse is unrelated to consciousness or observation.

5.4. Absence of “spooky action at a distance”

Here we discuss how the Stinespring representation (5.9) naturally resolves the Einstein-Podolsky-
Rosen (EPR) “paradox” [10], in a manner consistent with results long known to the literature.
Suppose that two qubits are prepared in the Bell state

|Bell⟩a,b =
1√
2

(
|0⟩a ⊗ |0⟩b + |1⟩a ⊗ |1⟩b

)
, (5.21)

and we then send qubits a and b to Alice and Bob, respectively—who are separated by some large
distance r—while preserving the maximally entangled state (5.21) of the qubits [10, 123].

Suppose that Alice and Bob each measure Z on their qubits. From the measurement axiom [1–8] ,
it would appear that whoever measures first collapses the Bell state (5.21) onto either |00⟩ or |11⟩, so
that whoever measures second is guaranteed to observe the same outcome. The EPR paradox centers
on the putative violation of relativistic locality—e.g., how does Bob’s qubit b “know” to collapse to
the same outcome observed by Alice upon her measurement of qubit a [10]? The idea was that
information about Alice’s outcome must propagate the distance r to Bob’s qubit instantaneously,
which would violate causality. Even if one accepts that all outcomes occur in the universal (dilated)
state ϱ (5.20), since the observed outcomes correspond to distinct classical “branches” of ϱ (i.e.,
Stinespring states |m⟩), one might still worry that Alice’s measurement determines this classical
branch and instantaneously communicates that information to Bob’s qubit.

It has been well established for decades now that there is no violation of relativistic locality (i.e.,
causality) in such Bell measurements, and hence, no “paradox” to resolve. This is particularly clear
using the Stinespring representation, as we now show. The dilated description reveals that there is
no need for instantaneous communication between entangled qubits following a measurement of
one—i.e., there is no “spooky action at a distance” in the context of measuring entangled states.

We first introduce two Stinespring qubits A and B, corresponding to the measurement apparati
used by Alice and Bob, respectively. Alice’s Za measurement, e.g, is captured by the dilated unitary

UA = |0⟩⟨0|a ⊗ 1A + |1⟩⟨1|a ⊗XA , (5.22)

as in Eq. 2.23, and the analogous UB for Bob is the same up to replacing (a,A)→ (b, B). The two
apparati are initialized in the Z -basis state |0⟩, so the dilated initial state is given by

|Ψi⟩ =
1√
2
(|00⟩+ |11⟩)a,b ⊗ |00⟩A,B . (5.23)

Assuming Alice measures first, we apply UA (5.22) to |Ψi⟩ (5.23), resulting in

|Ψ′⟩ = 1√
2
(|000⟩+ |111⟩)a,b,A ⊗ |0⟩B , (5.24)

and applying UB (5.22) for Bob’s subsequent measurement leads to the final state

|Ψf ⟩ =
1√
2
(|0000⟩+ |1111⟩)a,b,A,B , (5.25)
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from which it is clear that Alice and Bob’s Z measurements are guaranteed to realize the same
outcome, simply due to the structure of the Bell state. Because the two measurement unitaries act
on disjoint Hilbert spaces, they commute, and their order is unimportant. The correlation between
the measurement outcomes is a consequence of the correlations between the physical qubits; each
measurement merely entangles the corresponding apparatus into the Bell state (5.21), forming a
Greenberger-Horne-Zeilinger (GHZ) state [124] of the two physical qubits and two detector qubits.

Essentially, the measurements merely reveal information already encoded in the state. Regarding
the postmeasurement state |Ψf ⟩ (5.25), we see that the physical part of the state is unaltered
compared to the initial state |Ψi⟩ (5.23). In fact, projective measurements never alter the physical
part of the state when written the basis of the measured observable O (2.3); they merely entangle
the state of the apparatus into the physical state in a correlated manner.

For example, if Alice measures Za and Bob measures Xb, the initial state is

|Ψi⟩ =
1

2
(|0,+⟩+ |0,−⟩+ |1,+⟩ − |1,−⟩)a,b ⊗ |0, 0⟩A,B , (5.26)

in the measurement basis Za ⊗Xb, where X |±⟩ = ±|±⟩. The postmeasurement state is

|Ψf ⟩ =
1

2
(|0,+, 0,+⟩+ |0,−, 0,−⟩+ |1,+, 1,+⟩ − |1,−, 1,−⟩)a,b,A,B , (5.27)

where the physical part is unaltered compared to |Ψi⟩ (5.26). Again, the measurements commute.

Comparing Eqs. 5.26 and 5.27 also shows that measurements do not create “branches” of the
universal wavefunction |Ψ⟩ ∈ Hdil, but merely reveal superpositions already present in |Ψ⟩. By
writing |Ψ⟩ in the basis of the observables to be measured, we see that the measurement simply
entangles the state of the apparatus into |Ψ⟩ without altering the latter, as in Eqs. 5.25 and 5.27.
Classical information about the observed outcome emanates from the locations of each measurement,
traveling no faster than c. The correlations between the outcomes of measurements of entangled
states |Ψ⟩ are guaranteed by the structure of |Ψ⟩ itself, without the need for action at a distance.

Not only is there no need for action at a distance—“spooky” or otherwise—but we now explain
why there cannot be any such action. Returning to the well separated Bell state (5.21), the
expectation value of any Pauli measurement by either Alice or Bob is given by

⟨σνa/b⟩ = tr
(
σνa/b ρBell

)
=

1

4
tr
[
σνa/b (1+XaXb + ZaZb − YaYb)

]
= 0 , (5.28)

so that, if they repeat the experiment many times without communicating, Alice and Bob each
conclude that their qubit is in the maximally mixed state ρa/b = 1/2, so that all measurement
outcomes are equally likely. They can only deduce that their qubits are maximally entangled with
something else—e.g., a thermal bath—but not that they are part of a Bell state.

In fact, without communicating, Alice and Bob cannot learn anything about the other party. If
they both know that they share a Bell state, they cannot determine which of the four Bell states they
share from local measurements. Even knowing which Bell state they share, they cannot determine
whether the other party has measured yet, even knowing what they plan to measure. Alternatively,
even knowing that the other party has measured, they cannot determine which operator was
measured. The only way that Alice and Bob can see correlations between their measurements is
by sending classical signals, which obey relativistic causality. The only way Alice and Bob can
use their entangled state to transmit quantum information is again by sending a classical signal
containing details of the measurements and their outcomes [21, 23]. In other words, there is no
“paradox” because measuring one party in an entangled state does not transmit information or
influence of any kind to the other parties—there is no action at a distance, as is now well known.
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5.5. Quantum mechanics is local

We now explain that not only measurements of Bell states [10, 123], but all of quantum mechanics,
is compatible with relativistic locality [21]. In the process, we show how the Stinespring Stinespring
representation of Sec. 2 implies that large swaths of quantum dynamics—including those with
measurements and nonlocal feedback—obey a much stronger, nonrelativistic notion of locality [21]
in the sense of the Lieb-Robinson theorem [111]. Such notions of locality have profound implications
for quantum dynamics, phases of matter, and more [21, 111, 125].

We emphasize that we use the term “locality” exclusively to refer to the idea that objects
are only influenced by events within their causal light cone. We do not refer to the notion of
“quantum nonlocality” associated with Bell states [123], which instead refers to the fact any classical
hidden-variables model describing quantum phenomena must violate relativistic locality [126, 127].
Instead, we use the term “locality” to refer to the idea that information and influence of any
kind can always be traced dynamically, and never exceed the speed of light c. Moreover, in most
nonrelativistic scenarios, there exists an emergent and stronger notion of locality.

We first review locality in the context of unitary time evolution of isolated quantum systems.
Consider a lattice spin system described by a local Hamiltonian H (e.g., interactions between
neighboring spins) with energy scale J and average spacing a between spins. The Lieb-Robinson
bound establishes that the distance x over which quantum information can be transferred (or
correlations and/or entanglement generated, etc.) in time t obeys the inequality

x ≤ 2vt , (5.29)

where v ∼ aJ/ℏ≪ c is an emergent speed limit on quantum information [111]. The bound comes
from the fact that correlations, entanglement, and quantum information can spread out from some
point no faster than v, leading to a region of size 2vt in time t. Formally, the bound (5.29) derives
from the fact that generic commutators satisfy |[A(x, t), B(0, 0)]| ≲ exp(2vt− x) as x→∞.

The Lieb-Robinson bound (5.29) also applies to systems with interactions in finite local regions,
exponentially decaying interactions V (r) ∼ e−r/ξ [125], and even power-law interactions V (r) ∼ r−α

for α ≥ 2d+1 in d spatial dimensions [128–131]. A modified Lieb-Robinson bound with a nonlinear
“light cone” recovers for d < α < 2d+ 1 [131]. The foregoing Hamiltonians all have an emergent
notion of nonrelativistic locality that is even stronger (i.e., more constraining) than standard,
relativistic locality. Importantly, all Hamiltonians H obey relativistic locality: When α ≤ d, V (r)
is mediated by a field whose excitations propagate no faster than c (e.g., the Coulomb potential).

Still, generic quantum dynamics may also involve nonunitary quantum operations, such as
measurements and outcome-dependent feedback. When the outcome-dependent operations are
performed in the vicinity of the measurement, the entire process is captured by a Lindblad master
equation involving only local jump operators. Any dynamics captured by a local Lindbladian obeys
the same Lieb-Robinson bound (5.29) as local unitary time evolution alone [112].

However, when outcome-dependent feedback is applied nonlocally—i.e., far from the location
of measurement—the Lieb-Robinson bound (5.29) does not apply [21]. We allow for generic local
quantum operations that are individually compatible with the usual Lieb-Robinson bound [111, 112],
and further allow for the nonlocal communication of measurement outcomes; in the nonrelativistic
limit where c → ∞, this communication is effectively instantaneous. Using the Stinespring
representation of Sec. 2, Ref. 21 established that any quantum task that achieves a useful task over
some distance x using measurements in M regions obeys the generalized bound,

x ≤ 2(M + 1)vt , (5.30)

where t is the duration of unitary time evolution and v is the Lieb-Robinson velocity associated with
that evolution (5.29). While the bound (5.30) was only proven explicitly for qubits on arbitrary
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graphs and interacting with their nearest neighbor only, it is highly likely that the generalized bound
is compatible with any Lieb-Robinson bound for the purely unitary part [21]. Proving this to be the
case is an open direction for future work. We stress that the measurements need not be projective,
and can be generalized to any quantum operations involving ancillas in Hss; however, any such
operation not accompanied by nonlocal outcome-dependent feedback provides no enhancement [21].

We further comment that the generalized bound (5.30) does not derive from commutator norms,
as measuring Zi and then communicating the outcome n ∈ {0, 1} and applying Xj if n = 1 leads
to |[Xi(0), Zj(t)| = 2 even as t → 0 and x = d(i, j) → ∞. However, this sequence of operations
does not transmit quantum information nor does it generate or meaningfully alter correlations or
entanglement between i and j. The commutator is nonzero solely because classical information
was transmitted. Instead, the bound (5.30) derives from comparing the reduced density matrix ρij
between sites i and j separated by x and showing that, if the bound is violated, it is arbitrarily
close in trace distance to a state ρ′ij that contains no entanglement or correlations between i and j.
Because all useful quantum tasks inherently create entanglement and/or correlations over some
distance x, the bound (5.30) constrains all useful quantum tasks [21].

Importantly, the generalized bound (5.30) implies that a finite number of measurements only
leads to a finite enhancement to the speed v (5.29) of quantum information. This holds even in the
nonrelativistic limit where c→∞ and communication of outcomes is instantaneous. Intuitively, the
bound reflects the fact that measurements can only be used to “link up” local regions—of a resource
state, teleportation protocol, or similar. The most optimal protocols involve unitary evolution for
time t that generates local patches of the resource state in M + 1 regions. Each patch grows to
maximum size ℓ(t) = 2vt (5.29), and theM measurements “stitch” these patches together to achieve
a distance of x ≤ (M + 1) ℓ(t) = 2(M + 1)vt (5.30). In some cases, a protocol can achieve a useful
quantum task starting from a product state (e.g., |00 · · · 00⟩) in as few as t = 2 layers of entangling
unitary gates (i.e., depth two). In the context of teleportation, the outcomes of measurements
adjacent to the initial site i must be communicated to determine a feedback operation on the final
site f , with d(i, f) = x; in the context of state preparation, measurements at the edges of the
system are tied to feedback operations throughout the system, with maximum linear size x [21].

Essentially, there are two mechanisms for transferring quantum information (or generating
correlations and/or entanglement). The first is through unitary time evolution, which usually
obeys a nonrelativistic Lieb-Robinson bound (5.29) and always obeys relativistic locality [111]. The
second is through the communication of measurement outcomes and accompanying feedback, which
obeys the generalized bound (5.30) whenever the unitary dynamics obey the Lieb-Robinson bound
(5.29) and the number of measurement regions M is finite [21]. But when M →∞ or the unitary
evolution does not obey Eq. 5.29, there is no nonrelativistic notion of locality.

However, the relativistic notion of locality always holds. We stress that the generalized bound
(5.30) holds in the nonrelativistic limit where c→∞; to demonstrate relativistic locality, we take
c to be finite but large. First, consider an optimal protocol with M = O(x) measurements and
unitary evolution with Lieb-Robinson velocity v (5.29) for time tu, which we minimize. Because
the protocol is optimal, all M →∞ measurements occur after all unitary evolution [21], and we
assume that they occur simultaneously in the rest frame of the system. Even in this limit, at least
one measurement’s outcome must be communicated a distance x− 2vtu using a signal with speed c,
where the unitary dynamics shorten this distance by vtu from both “edges” of the system. This
protocol achieves a useful task over distance x in time t ≥ x/c+ (1− 2v/c)tu, i.e.,

x ≤ c(t− tu) + 2vtu ≤ 2ct, (5.31)

meaning that information travels at speed 2v ≪ c for time tu and speed c for the remaining time;
since v ≪ c, this obeys relativistic locality. Even in the limit v → c, we still have x < 2ct, so
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relativistic locality is always satisfied. The reason is that the measurements themselves do not send
information—that is achieved by the classical signals, which travel no faster than c.

Accordingly, all quantum operations obey relativistic locality. A large fraction obey a stronger,
nonrelativistic notion of locality, captured by the Lieb-Robinson bound (5.29) for unitary evolution
and local quantum operations, and by the generalized bound (5.30) for local quantum operations
combined with classical signaling and nonlocal feedback [21, 111, 112]. Without the classical signals
and the corresponding feedback, nonunitary operations provide no advantage over unitary dynamics
[21, 22, 112]. The generation of correlations and/or entanglement and the transmission of quantum
information involve combinations of unitary dynamics and classical signals, which individually and
jointly obey relativistic locality. Hence, all quantum dynamics are local in the relativistic sense.

This not only establishes that quantum mechanics is “complete” in the sense of EPR [10], but
also has extremely useful implications for quantum applications. For example, locality can be
used to constrain quantum protocols, reveal useful tradeoffs (e.g., between unitary time evolution
and measurements), identify optimal protocols tailored to particular hardware, and constrain the
resource states compatible with a particular quantum task [21, 23], among other applications.

6. CONCLUSION

The description of quantum measurements as an entangling interaction between a physical
system of interest and a measurement apparatus—as well as the unitary description (2.51) of generic
quantum operations in finite dimension—have long been known to the literature [11–13, 15, 20–
24, 28–33]. Nonetheless, the analytical tools most commonly used in the literature to describe
measurements manifestly ignore details of the apparatus [14, 17–20], creating a disconnect between
theory and experiment, leading to avoidable confusion about the nature of measurements, and
complicating the description of adaptive protocols with midcircuit measurements [21–23].

In this work, we have given an overview of projective and destructive quantum measurements,
their theoretical description, and their experimental implementation. In particular, we have
highlighted the “Stinespring” representation of measurements in terms of a unitary U (2.17) acting
on a dilated Hilbert space Hdil = H ⊗Hss (2.8), and how it follows logically from all axiomatic
formulations of quantum mechanics [1–8]. We have also shown how the unitary U relates to the
standard Kraus representation (2.11) [17–20], von Neumann pointer Hamiltonian H (2.34) [32, 33],
and most importantly, to experiment. Noting that a large number of experimental implementations
culminate in one of a handful of measurement types, we consider the most prominent among these
in Secs. 3 and 4. In all cases, we find that the dilated unitary U (5.9) is not just a bookkeeping tool
but physical, capturing the time evolution of the system and measurement apparatus during the
measurement process, in agreement with intuition from the literature.

Generally speaking, projective and destructive measurements involve forming a maximally
entangled state between the physical system and a classical measurement apparatus. Consider the
measurement of an observable O (2.3) with N unique eigenvalues (i.e., measurement outcomes)
Om with corresponding eigenprojectors Pm (2.1). In the minimal Stinespring representation, the
projective measurement outputs a state that is a sum over m of the collapsed state Pm|ψ⟩ ∈ H of
the system times the state |m⟩ss ∈ Hss of the apparatus. Additionally, the measurement unitary U
(5.9) is unique up to the choice of initial state |i⟩ss ∈ Hss of the apparatus. In the case ofdestructive
measurements—which are unitarily related to projective measurements—the final state of the
physical system is not an eigenstate of the measured observable. In our consideration of physical
implementations of measurements in Secs. 3 and 4, we saw that the physical unitary corresponding
to the time evolution of the system and apparatus generally realizes a nonminimal Stinespring
representation, in which dim(Hss) > N . However, upon “binning” distinct states of the apparatus
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corresponding to the same observed outcome—and ignoring states that do not encode information
about the outcome—one recovers the minimal Stinespring representation (5.9).

In fact, one of the most important features of the Stinespring formulation of measurements on
Hdil (2.8) is its direct connection to experiment. In all of the examples of projective and destructive
measurements considered in Secs. 3 and 4, we found that the Stinespring measurement unitary U (5.9)
corresponds exactly to a simplified description of the actual, physical time evolution of the system and
measurement apparatus during the measurement process. This direct correspondence suggests that
U (5.9) is not only a valid bookkeeping tool, but the physical time evolution operator. This allows us
to evolve operators in the Heisenberg picture through arbitrary combinations of measurements and
outcome-dependent feedback [21–23]. Thus, the minimal Stinespring representation not only encodes
the minimal ingredients required for the experimental implementation of a given measurement, but
is a powerful analytical tool for describing adaptive protocols with midcircuit measurements.

Additionally, we have explained in Sec. 5 how to extract standard results from the Stinespring
formalism, and its application to quantum protocols. We explained in Sec. 5.1 how to recover the
familiar Born rule, expectation values, and other statistics from the postmeasurement state ϱ(t)
(5.4), using Gleason’s theorem [110]. We showcased the utility of the Stinespring representation U
(5.9) for adaptive protocols with measurements and outcome-dependent feedback in Sec. 5.2. These
protocols can achieve tasks in much less time than their purely unitary counterparts [21].

In Sec. 5.3 we derived the appearance of wavefunction collapse via decoherence [15]. Because
the state of the measurement apparatus is readable to us, it must be stable to the quantum
decoherence—i.e., the chaotic, highly entangling interactions with the environment—responsible for
the classical behavior of the apparatus. Moreover, the states corresponding to distinct outcomes
must be stable; as is known from the quantum chaos literature [22, 120, 121], this requires that these
states have different “charges” under some symmetry (e.g., particle number), which also provides a
“classically preferred basis” [15]. This decoherence effectively leads to a mixed state (5.14)—i.e., a
classical ensemble of “collapsed” pure quantum states corresponding to different outcomes. Despite
being deterministic, we experience this process as probabilistic because we only experience one of
the pure states encoded in a mixed state, according to their probabilities.

We have also explained using the Stinespring representation how all quantum operations—
including the combination of measurements and nonlocal feedback—obey relativistic locality. In
Sec. 5.4, we explain the absence of “spooky action at a distance” in measurements of a well
separated Bell state [10, 21, 123]. If Alice and Bob share an entangled Bell state, there is no
measurement either can perform on their own qubit to learn anything about the other’s. Alice’s
measurement of her qubit does not influence or in any way transmit information to Bob’s qubit.
Hence, there is simply no “action at a distance” of any kind, and “quantum nonlocality” [126, 127]
is a misnomer. We also show how the act of measurement does not create new “branches” in the
universal wavefunction |Ψ⟩ ∈ Hdil. In fact, when the physical state |ψ⟩ ∈ H is written in the basis of
the observable to be measured, the projective measurement process does not even alter the structure
of |ψ⟩, but merely entangles the state of the apparatus into the existing superposition. Moreover,
in Sec. 5.5, we summarized how the Stinespring representation was used in Ref. 21 to establish a
notion of locality in quantum dynamics with measurement, generalizing the Lieb-Robinson bound
[111] to generic quantum channels. Most importantly, we also showed how this bound implies that
all quantum dynamics respect relativistic locality (i.e., causality).

In summary, we have shown how the unitary Stinespring representation of measurements on a
dilated Hilbert space that includes the detector is both conceptually transparent and practically
useful. While this representation is likely intuitive to many [24], it is not commonly used in the
literature, despite its utility. In addition to providing a useful connection between theory and
experiment, a powerful tool for describing protocols with midcircuit measurements, and insights into
more foundational questions about quantum measurements, the Stinespring formalism also paves
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the way to entirely new types of results in the context of quantum computation, dynamics, and
information processing. In particular, the formalism allows for the Heisenberg evolution of operators
in the presence of arbitrary quantum operations (e.g., measurements and nonlocal feedback), which
allows for the systematic study of quantum protocols, resolving questions such as what resource
states can be measured to achieve a given quantum task [23], and revealing new constraints and
resource tradeoffs [21]. We believe this formalism will be an invaluable tool in future studies of
quantum protocols and near-term quantum technologies. In addition to forthcoming work proving
the physicist’s Stinespring theorem for infinite-dimensional systems [31], we also plan to extend the
Stinespring representation to generalized and weak measurements, and generic quantum operations.
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Appendix A: Details of the Stern-Gerlach experiment

Here we elaborate on technical details relevant to the Stern-Gerlach experiment discussed in
Sec. 2.4.2. In App. A.1 we show that the evolution of the y coordinate can be ignored; in App. A.2,
we derive the final wavefunction Ψs(z, t) for the magnetic particle.

A.1. Time evolution of operators in the general case

Observables O evolve in the Heisenberg picture under a Hamiltonian H according to

O(t) = eiHt/ℏO e−iHt/ℏ =
∞∑
n=0

1

n!

(
t

iℏ

)n

[O, H]n , (A.1)

where the nested commutator satisfies [A, B]n+1 = [[A, B]n , B] with [A, B]0 = A. For the
Stern-Gerlach Hamiltonian HSG (2.39), the jth component of the position operator x evolves via

xj(t) =

∞∑
n=0

1

n!

[
O,
(
− ℏ2

2M
∇2 − µB b y σy + µB (B0 + b z)σz

)
t

iℏ

]
n

=

∞∑
n=0

1

n!
x
(n)
j (t) , (A.2)

where we retain the time dependence of the nth term for convenience. The first several terms are

x
(0)
j (t) = xj (A.3a)

x
(1)
j (t) =

t

iℏ
[
xj , HSG

]
=

itℏ
2M

[
xj , ∂

2
j

]
=

tℏ
iM

∂j =
t

M
pj (A.3b)

x
(2)
j (t) =

t

iℏ

[
tℏ
iM

∂j , HSG

]
=

µB b t
2

M

(
δj,y σ

y − δj,zσz
)
, (A.3c)
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and for convenience, we now treat the evolution of y and z separately. For y(t), we have

y(3)(t) =
t

iℏ

[
µB b t

2

M
σy, HSG

]
=

µB b t
3

iℏM
[σy, µB(B0 + b z)σz] =

2µ2B b t
3

ℏM
(B0 + b z) σx (A.4a)

y(4)(t) =
t

iℏ
2µ2B b t

3

ℏM
[(B0 + b z) σx, HSG]

=
2µ2B b t

4

iℏ2M

(
−b ℏ

2

2M

[
z, ∂2z

]
σx − µBby (B0 + b z) [σx, σy] + µB(B0 + b z)2 [σx, σz]

)
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2µ2B b t
4

iℏ2M

(
b ℏ2

M
σx ∂z − 2 iµBby (B0 + b z) σz − 2 iµB(B0 + b z)2 σy

)
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2µ2B b
2 t4

ℏM2
pz σ

x −
4µ3B b t

4

ℏ2M
(B0 + b z)2 σy −

4µ3B b
2 t4

ℏ2M
(B0 y + b y z) σz , (A.4b)

where the terms above are organized by the Pauli matrices. The analogous expressions for z(t) are

z(3)(t) =
t

iℏ

[
−
µB b t

2

M
σz, HSG

]
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iµB b t
3

ℏM
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2 t3

ℏM
y σx (A.5a)

z(4)(t) =
t
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2 t3
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=
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3 t4

ℏ2M
y2 σz , (A.5b)

organized as before. Now, suppose we plan to measure z at time t, and take the initial state to be

|Ψ(0))⟩ =
∫∫∫

R3

dpx dy dz
e−(px−M v)2/4 δ2x

(2π δ2x)
1/4

e−y2/4 δ2y

(2π δ2y)
1/4

e−(z−z0)2/4 δ2z

(2π δ2z)
1/4

|px, y, z, s⟩ , (A.6)

where σz |s⟩ = s |s⟩. This initial is a Gaussian wave packet centered around y = 0 and z = z0 (in
real space) and px =M v (in momentum space), with spin polarization s. To O(t4), we have

⟨x⟩(t) = v t (A.7a)

⟨y⟩(t) = 0 (A.7b)

⟨z⟩(t) = z0 −
µB b t

2

2M
s+

µ3B b
3 t4

6 ℏ2M
δ2y s , (A.7c)

meaning that the average correction to z(t) due to the y dynamics only appears at O(t4), and is
proportional to the variance δy in the initial y position. By minimizing δy and using particles with
polarized z spin s, the y dynamics can be neglected, as in Sec. 2.4.2.

A.2. Time evolution of states in the simple case

We start by applying the rightmost operator in the unitary U(t) (2.43) to |Ψ(0)⟩ (2.42), giving∑
s=±1

cs

∫
dz φz(z) |z, s⟩ 7→

∑
s=±1

cs

∫
dz φ(z − s t2

b µB
M

) |z, s⟩ , (A.8)
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via the same trick for exponentials of ∂z used in the pointer-particle example (2.37) in Sec. 2.4.1,
where φ(z) ∝ exp

(
−(z − z0)2/4 δ2

)
(A.6). Applying the next factor in U(t) (2.43) leads to

|Ψ(0)⟩ 7→
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where Hk(y) is the kth (physicist’s) Hermite polynomial in y, and we have defined

zs,t ≡ z0 +
b µB
M

s t2 , (A.10)

and we now simplify Eq. A.9 using a Taylor expansion of the Hermite polynomials. We define

F (λ, τ) =
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where we used the fact that H2s+1(0) = 0, and we next switch the order of summation,

F (λ, τ) =
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k=0

(2λ)2k

(2k)!

∞∑
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(i τ)n
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(2n)!
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and the sum over n can be computed exactly to give

F (λ, τ) =
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i τ
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4 iλ2 τ
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)
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so that the initial wavefunction (2.42) evolves via U(t) (2.43) into

Ψs(z, t) = cs
ei b

2 µ2
B t3/ℏM e−i s t µB(B0+bz)/ℏ

(2π)1/4 (δ + i δ t
2δ )

1/2
exp

−
(
z − z0 −

b µB
M s t2

)2
4 δ2

1

1 + i ℏ t
2M δ2

 , (2.44)

as claimed in the main text. This simplifies upon evaluating ps(z, t) (2.45).

Appendix B: Photon absorption

Here we discuss details of the photon-counting measurements considered in Sec. 3.2. The physical
system is a bosonic mode with Hph = L2(R) = ℓ2(N) ∼= ℓ2(N), and the apparatus consists of N ≪ 1
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qubits with states |0⟩ (default) and |1⟩ (excited). We initialize the system in the state |ψ⟩, the
apparatus in the state |0⟩ = |0⟩⊗N , and evolve under a Hamiltonian H (3.7), leading to

|Ψ⟩ = egτ(aσ
+
N−a†σ−

N ) · · · egτ(aσ
+
1 −a†σ−

1 ) |ψ⟩ph ⊗ |0⟩ss , (3.8)

where τ is the duration and g is the strength of the interaction between the light and the detector
qubits, which are labeled according to the order in which they interact with the light.

Next, consider the interaction between the electromagnetic mode and the kth detector qubit.
Assuming that the former starts in the state |ϕ⟩ and taking N ≫ 1 and τ ≪ 1, we find that

egτ(aσ
+
k −a†σ−

k ) |ϕ⟩ ⊗ |0⟩k = egτ a σ+
k e−gτ a† σ−

k eg
2τ2[aσ+

k , a†σ−
k ]/2

(
1 + O(g3τ3)

)
|ϕ⟩ ⊗ |0⟩k

= egτ a σ+
k e−gτ a† σ−

k eg
2τ2[(a†a+1) |1⟩⟨1|k−a†a |0⟩⟨0|K ]/2 |ϕ⟩ ⊗ |0⟩k + O(g3τ3)

= egτ a σ+
k e−gτ a† σ−

k e−g2τ2a†a/2 |ϕ⟩ ⊗ |0⟩k + O(g3τ3)

= egτ a σ+
k e−g2τ2a†a/2 |ϕ⟩ ⊗ |0⟩k + O(g3τ3) , (B.1)

so that the final state |Ψ⟩ (3.8) is given by

|Ψ⟩ = egτaσ
+
N e−g2τ2a†a/2 · · · egτaσ

+
1 e−g2τ2a†a/2|ψ⟩ph ⊗ |0⟩ss + O(N g3τ3) , (B.2)

and we now reorder the product of operators above. We first note that

exp
(
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)
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(
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)
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(
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2τ2/2 gτ aσ+k

)
exp

(
−g2τ2 a†a/2

)
, (B.3)

which we use to commute all e−g2τ2a†a/2 terms to the right of all others in Eq. B.2, leading to

|Ψ⟩ = egτaσ
+
N e−g2τ2a†a/2 · · · egτaσ

+
1 e−g2τ2a†a/2|ψ⟩ph ⊗ |0⟩ss + O(N g3τ3)
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)]

e−N g2τ2 a†a/2 |ψ⟩ph ⊗ |0⟩ss + O(N g3τ3) , (B.4)

where all terms in the product over qubits k commute with one another, so that we can write

= exp

(
gτ

N∑
k=1

eg
2τ2(N−k)/2 a ⊗ σ+k
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)
|ψ⟩ph ⊗ |0⟩ss + O(N g3τ3) , (B.5)

which we now simplify using additional definitions. We first define the attenuation parameter

ζ ≡ N g2 τ2 , (3.9)

which remains finite as τ → 0 and N → ∞. We note that there are N leading corrections to
Eq. B.5 with O(g3τ3) coefficients, which may conspire to produce a correction no larger than
O(N g3τ3) = O(ζ3/2N−1/2), which still vanishes as gτ → 0 and N →∞. We then define

B† ≡

√
ζ

N (eζ − 1)

N∑
k=1

eζ(N−k)/(2N ) σ+k , (B.6)

as an effective bosonic operator. The postmeasurement state |Ψ⟩ (B.5) now becomes

|Ψ⟩ = exp
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)1/2
a ⊗B†

]
exp

[
− ζ

2
a†a

]
|ψ⟩ph ⊗ |0⟩ss + O(ζ3/2N−1/2) , (B.7)
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which reproduces Eq. 3.10 upon reordering the two exponential terms above.

The lowering operator B (B.6) only realizes a bosonic annihilation operator in the limit N →∞
with ζ (3.9) finite. The standard commutation relation for arbitrary N and τ is given by

[
B, B†

]
=

g2 τ2

eNg2τ2 − 1

N∑
k,k′=1

eg
2τ2(2N−k−k′)/2

[
σ−k , σ

+
k′
]

= − g2 τ2

eNg2τ2 − 1

N∑
k=1

eg
2τ2(N−k) Zk , (B.8)

and we rewrite Zk = 2nk − 1, where nk = |1⟩⟨1|k. As discussed in Secs. 2.3.5 and 3.2, all states
with m qubits in the state |1⟩ reflect the same outcome, so we assume the qubits are excited in
order of ascending k without loss of generality. The above then becomes

[
B, B†

]
=

g2 τ2

eN g2 τ2 − 1

N∑
k=1

eg
2 τ2(N−k)

(
1− 2nk

)
=

g2 τ2

eN g2 τ2 − 1

N∑
n=0

( N∑
k=1

eg
2 τ2(N−k) − 2

n∑
k=1

eg
2 τ2(N−k)

)
|n⟩⟨n|ss

=
g2 τ2

eg2τ2 − 1

N∑
n=0

(
1− 2

1− e−ng2τ2

1− e−Ng2τ2

)
|n⟩⟨n|ss , (B.9)

and taking the limits τ → 0 and N →∞ in either order while keeping ζ (3.9) fixed gives

[
B, B†

]
=

∞∑
n=0

|n⟩⟨n|ss = 1ss , (B.10)

so that B is a bosonic annihilation operator in this limit. If we only take N → ∞, the above
commutator is instead g2τ2(eg

2τ2 − 1)−1 1; if we only take τ → 0, the commutator is instead∑N
n=0 (1− 2n/N ) |n⟩⟨n|. Hence, both limits are needed, which means that ζ (3.9) must be finite.

Appendix C: Matrix element for homodyne detection

Here we calculate the matrix element 3.20 central to the discussion in Sec. 3.3. This calculation
also appears in the literature (see, e.g., Ref. 52). The matrix element of interest is

f(N,D) = ⟨N,D|UBS|Ψ0⟩ (C.1)

where |Ψ0⟩ = |ψ⟩A|β⟩B, with |ψ⟩ arbitrary and |β⟩ (3.15) a coherent state. The Fock states |N,D⟩
correspond to the sum N and difference D of the occupation numbers of the A and B modes, i.e.,

|N,D⟩ = 1√(
N/2 +D

)
!

1√(
N/2−D

)
!

(
a†
)N/2+D(

b†
)N/2−D |00⟩ , (3.19)

and the unitary UBS describing time evolution within the beam splitter (see Fig. 2) is given by

UBS = exp
(π
4
(a†b− ab†)

)
, (3.16)
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so that the following properties hold for the annihilation operators for the two modes:

a UBS = UBS

(a + b)√
2

(C.2a)

b UBS = UBS

(b− a)√
2

, (C.2b)

and using the fact that b |β⟩B = β |β⟩B, the matrix element f(N,D) (C.1) takes the exact form

f(N,D) =
e−|β|2/2 ⟨0| (β + a)N/2+D (β − a)N/2−D |ψ⟩A√

2N (N/2 +D)! (N/2−D)!
, (C.3)

using Eq. 3.15 for ⟨0|β⟩B, the relation ⟨0|A⟨0|B UBS = ⟨0|A⟨0|B, and other relations above.
Assuming that the B-mode occupation nB ∼ |β|2 ≫ 1 is large (the precise value must be

determined self-consistently and depends on nA), we can rewrite f(N,D) (C.3) as

= ⟨0| (β + a)N/2+D (β − a)N/2−D |ψ⟩A

= |β|N e−iϕN ⟨0| exp
[(

N

2
+D

)
log

(
1 +

a eiϕ

|β|

)
+

(
N

2
−D

)
log

(
1− a eiϕ

|β|

)]
|ψ⟩A

≈ |β|N e−iϕN ⟨0| exp
(
2D

|β|
eiϕ a − N

2|β|2
(eiϕ a)2 + . . .

)
|ψ⟩A , (C.4)

where we have ignored higher-order terms in the arguments of the logarithms and used the definition
β = |β| e−iϕ. In the limit identified above, the matrix element f(N,D) (C.3) becomes

f(N,D) =
|β|N e−|β|2/2 e−iϕN√

2N (N/2 +D)! (N/2−D)!
⟨0| exp

(
2D

β
a− N

2β2
a2
)
|ψ⟩A , (C.5)

which, as a function of N , is peaked around N ∼ |β|2. Expanding about this value leads to

f(N,D) =
eiϕN

|β|
√
π
e−D2/|β|2 e(N−|β|2)

2
/4N ⟨0| exp

(
−1

2
(eiϕa)2 +

2D

|β|
(eiϕa)

)
︸ ︷︷ ︸

⟨Pϕ|

|ψ⟩ , (C.6)

and we now consider the properties of the state |Pϕ⟩ above, defined by

|Pϕ⟩ = exp

[
−1

2
(e−iϕa†)2 +

2D

|β|
(e−iϕa†)

]
|0⟩ ≡ G|0⟩ , (C.7)

where, for notational convenience, we have introduced the operator

G ≡ exp

[
−1

2
(e−iϕa†)2 +

2D

|β|
(e−iϕa†)

]
. (C.8)

We first note that |Pϕ⟩ is an eigenstate of the quadrature operator xϕ (3.14), since

G−1a†G = a† and G−1aG = a − a†e−2iϕ +
2D

|β|
e−iϕ , (C.9)

so that applying xϕ (3.14) to |Pϕ⟩ (C.7) leads to

xϕ |Pϕ⟩ =
(
eiϕ a + e−iϕ a†√

2

)
G |0⟩ = G

(
ae−iϕ

√
2

+

√
2D

|β|

)
|0⟩ =

(
D
√
2

|β|

)
|Pϕ⟩ , (C.10)
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meaning that |Pϕ⟩ (C.7) is an eigenstate of xϕ (3.14) with eigenvalue xϕ(D) = 2D/|β|. Thus, |Pϕ⟩
is proportional to an eigenstate |xϕ(D)⟩ = N−1(D) |Pϕ⟩ that is part of an orthonormal set, i.e.,〈

xϕ(D)
∣∣xϕ(D′)

〉
= δ

(
xϕ(D)− xϕ(D′)

)
∝ δ

(
D −D′) . (C.11)

We then obtain the “normalization factor” N by projecting |Pϕ⟩ = N|xϕ(D)⟩ onto |0⟩,

⟨0|Pϕ⟩
!
= 1 = N

〈
0
∣∣xϕ(D)

〉
=
N
π1/4

exp

[
−
x2ϕ(D)

2

]
=
N
π1/4

e−D2/|β|2 , (C.12)

which we then insert into Eq. C.6 to recover the result claimed in the main text,

f(N,D) =
eiϕN

|β|π1/4
exp

[(
N − |β|2

)2
4N

] 〈
xDϕ
∣∣ψ〉

=
eiϕN

|β|π1/4
exp

[(
N − |β|2

)2
4N

]
ψϕ

(
D
√
2

|β|

)
. (3.20)

To determine the conditions under which the foregoing derivation is valid, we consider the first two
terms that we neglected in the argument of the exponential in Eq. C.4, which are proportional
to D |β|−3 (a)3 and N |β|−4 (a)4, respectively. However, we note that N ≈ |β|2 and, in typical
states, a ∼

√
⟨a†a⟩ (up to a phase, where the average is taken with respect to the initial physical

state |ψ⟩A). Hence, we can safely neglect these higher-order terms when |β| ≫
〈
ψ
∣∣a†a∣∣ψ〉 and

D ≪ |β|3/⟨a†a⟩3/2. Since xϕ(D) ∝ D/|β| extends up to a distance in phase space of size
√
⟨a†a⟩,

the latter condition also implies that |β| ≫
〈
ψ
∣∣a†a∣∣ψ〉, in agreement with Ref. 66.
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