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We introduce the Chebyshev pseudosite matrix product state approach (ChePSMPS) as a solver
for cluster perturbation theory (CPT), crucial for simulating spectral functions in two-dimensional
electron-phonon (e-ph) coupling systems. ChePSMPS distinguishes itself from conventional exact
diagonalization solvers by supporting larger clusters, thereby significantly mitigating finite-size ef-
fects. Free from the fermion sign problem, ChePSMPS enhances its ability to explore e-ph effects
and generate high-resolution spectral functions in doped Mott insulators. We use this method to
simulate the spectra for both one- and two-dimensional Hubbard-Holstein models, highlighting its
superiority over other methods. Our findings validate ChePSMPS as a powerful and reliable Green’s
function solver. In conjunction with embedding methods, ChePSMPS emerges as an essential tool
for simulating strongly correlated e-ph coupling systems.

I. INTRODUCTION

Spectral functions are pivotal in quantum many-body
physics, offering direct insight into the properties of ele-
mentary excitations in the system. Single-particle spec-
tral functions can be experimentally measured in both
momentum space and real space through angle-resolved
photoemission spectroscopy (ARPES) and scanning tun-
neling spectroscopy (STM), respectively. These experi-
mental techniques [1, 2] allow direct characterization of
electronic properties in actual materials. The develop-
ment of effective algorithms for computing spectral func-
tions is crucial, as it bridges theoretical predictions with
experimental observations, enhancing our understanding
of various intriguing phenomena.

The electron-phonon (e-ph) coupling influences the
electronic dispersion [3–9], superconducting pairing [3, 5],
thermal Hall effect [10], pseudogap [11], and other prop-
erties of the cuprates. Therefore, the study of strongly
correlated electronic systems with e-ph couplings is of
paramount importance. However, these systems exhibit
high degrees of freedom and pose substantial challenges
in computing spectral functions. The numerical meth-
ods fall into two main categories: finite-size and embed-
ding methods. Finite-size methods, such as exact diago-
nalization (ED) [12], determinant quantum Monte Carlo
(DQMC) [13], and density matrix renormalization group
(DMRG) [14], provide accurate spectral functions but
are limited by system size in terms of spectral resolu-
tion. Embedding methods [15–17], on the other hand,
simulate infinite systems by segmenting them into man-
ageable clusters. These methods solve intracluster prop-
erties accurately using numerical methods, while treating
intercluster correlations approximately as perturbations.
The embedding methods can produce spectral functions
with continuous momentum resolution. In addition, the
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impact of finite-size effects can be reduced by increasing
the size of clusters. This paper delves into cluster per-
turbation theory (CPT) [18–20], an embedding method
known for its simplicity and effectiveness.

The original CPT algorithm typically employs ED
as the solver for the Green’s function within the clus-
ter. However, ED is restricted to small clusters due
to computational limitations known as the exponential
wall. Other methods such as ED with optimized bo-
son basis (ED-OBB) [21, 22], time-dependent DMRG
(tDMRG) [23], dynamical DMRG (DDMRG) [24], Lanc-
zos method with matrix product state (MPS) [25], vari-
ational Monte Carlo (VMC) [26], and DQMC [27] have
also been applied as CPT solvers, each with its own limi-
tations. Compared to the original ED method, ED-OBB
truncates the boson basis, but remains limited by the ex-
ponential wall in terms of system size. tDMRG faces
challenges in handling systems with large phonon de-
grees of freedom, and the computation of wave functions
over long times demands substantial computational ef-
fort. DDMRG can simulate fairly accurate spectral func-
tions, but it has a high computational complexity. The
Lanczos MPS method requires an additional reorthog-
onalization procedure [28, 29], which makes it more
complex and computationally expensive. VMC allows
for the simulation of large-scale two-dimensional systems
with a relatively low computational cost, but its accu-
racy greatly depends on the choice of effective subspaces.
Furthermore, DQMC encounters difficulties in obtain-
ing spectral functions at low temperatures for models
affected by the fermion sign problem [30, 31].

To overcome the constraints of previous methods, we
present the recently developed Chebyshev pseudosite
matrix product state (ChePSMPS) method [32], which
merges the merits of the Chebyshev MPS approach [33–
36] with the pseudosite DMRG strategy [37], serving
as an innovative solver for CPT. This solver is de-
signed to significantly improve the accuracy and perfor-
mance of CPT calculations. We introduce the formula-
tion and implementation of CPT combined with CheP-

ar
X

iv
:2

40
4.

05
68

6v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

6 
A

pr
 2

02
4

mailto:shuoyang@tsinghua.edu.cn


2

SMPS, subsequently employing this method to simulate
the spectral functions of both one-dimensional (1D) and
two-dimensional (2D) Hubbard-Holstein models (HHM),
thereby demonstrating its advantages over other meth-
ods.

II. CPT METHOD

In this section, we briefly review the theoretical frame-
work of CPT. More detailed derivations and discussions
are available in Refs. [17, 19, 20]. We consider a Hamilto-
nian defined on an infinite lattice with local interactions,
where the connections between different clusters are lim-
ited to hopping terms. The system is segmented into a
series of clusters, each containing N sites, as shown in
Fig. 1. The Hamiltonian is decomposed as

Ĥ =
∑
m

Ĥ0
m +

∑
m,n
i,i′

V m,n
i,i′ ĉ†m,iĉn,i′ , (1)

where Ĥ0
m includes all hopping and interaction terms

within the m-th cluster. The intercluster hoppings are

written as the hopping matrix V m,n
i,i′ , with ĉ†m,i(ĉm,i) de-

noting the fermion creation (annihilation) operators and
i representing the site coordinates within a cluster. The
spin index σ is omitted for simplicity.

Applying CPT, we treat the intracluster and interclus-
ter terms separately, leading to a mixed representation of
the Green’s function for the entire system [19]

G(Q, z) = G(z)[I − V (Q)G(z)]−1, (2)

where z = ω+iη with η denoting the spectral broadening.
V (Q) is the Fourier transformation of V m,n

i,i′ with respect

to the cluster coordinates m and n. Q = (Nxkx, Nyky)
denotes the superlattice vector, and G(z) corresponds

to Green’s function of the intracluster Hamiltonian Ĥm.
The bold symbols in Eq. (2) indicate matrix quantities
of dimension N × N , where N = NxNy is the size of
the cluster. The Green’s function for the entire system
is then expressed as

G(k, z) =
1

N

∑
i,i′

e−ik·(ri−ri′ )Gi,i′(Q, z). (3)

The imaginary part of this function yields the spectral
function

A(k, ω) = −ImG(k, z)/π. (4)

In the following section, we will illustrate that CheP-
SMPS [32] is a suitable solver for CPT. It can accurately
simulate the cluster Green’s function at a moderate com-
putational cost and without the fermion sign problem.

(a) (b)

= ⋯|ψ⟩
dall dall dall

dall dF dB

= =

dF

⋯
dp dp

FIG. 1. (a) Schematic illustration of the CPT method, where
each shaded square represents a cluster and all clusters con-
stitute the entire system. (b) Pseudosite MPS representation
for the wave function within a cluster.

III. CPT + CHEPSMPS IMPLEMENTATION

We now introduce the method that utilizes ChePSMPS
as a CPT solver to simulate the spectral function of the
strongly correlated system with e-ph couplings in the
thermodynamic limit, which has three steps:
(1) Map the system within the cluster to a 1D chain.

Employ the pseudosite matrix product state and matrix
product operator (MPO) [32, 37, 38] to describe its wave
function and Hamiltonian, respectively. As illustrated in
Fig. 1(b), the original MPS at a lattice site is decomposed
into fermionic MPS and bosonic MPS, where dF and dB
represent the fermionic and bosonic degrees of freedom,
respectively. Here, we choose dB = Nb + 1 = 2Np , with
Nb indicating the maximum number of bosons per lat-
tice site and Np being an integer. Subsequently, the
bosonic MPS is further decomposed into Np = log2 dB
pseudosite MPSs, each with dp = 2 degrees of freedom.
The total physical degrees of freedom at each lattice site
is dall = dF × dB . Following this segmentation, we em-
ploy DMRG [37, 39–41] to determine the ground state
wave function |ψ0⟩ and its energy E0.
(2) Expand the cluster Green’s function using Cheby-

shev polynomials Tn(ω) [42]. The cluster Green’s func-
tion is defined as Gi,i′(z) ≡ G+

i,i′(z)−G−
i′,i(z), where

G±
i,i′(z) = ⟨ψ0|ĉ∓i

1

±z + (E0 − Ĥ)
ĉ±i′ |ψ0⟩, (5)

ĉ+i = ĉ†i and ĉ−i = ĉi. Since the domain of Tn(ω) is

[−1, 1], we need to map ω and Ĥ to this range

ω 7→ ω′, ω′ =
ω

a
+ b, ω′ ∈ [−W ′,W ′], z′ = ω′ + iη/a,

Ĥ 7→ Ĥ ′, Ĥ ′ =
Ĥ − E0

a
+ b. (6)

In Eq. (6), W ′ is a number slightly smaller than 1, the
selection of constants a and b refers to Appendix A. Then,
we expand Gi,i′(z

′) to obtain

Gi,i′(z
′) =

1

a

NC−1∑
n=0

gn
(
α+
n (z

′)µ+
n − α−

n (z
′)µ−

n

)
, (7)
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FIG. 2. Spectral functions of the 1D half-filled Hubbard(-Holstein) model with η = 0.1, U/t = 8, DC = 100, NC = 1800,
ω1max = 80, and ω2max = 0. SP, HO, and SH represent the spinon, holon, and shadow bands, respectively. (a)-(d) HM with
different cluster sizes, with the dotted gray line in (d) representing results from the ED-Lanczos method for N = 12. (e)-(h)
HHM with different cluster sizes, setting ω0/t = 1, γ/t = 1, and Nb = 7. The dotted gray line in (h) displays results from the
ED-Lanczos method with N = 6 and Nb = 6.

where µ+
n = ⟨ψ0|ĉiTn(Ĥ ′)ĉ†i′ |ψ0⟩ and µ−

n =

⟨ψ0|ĉ†i′Tn(Ĥ ′)ĉi|ψ0⟩ are the model-dependent ex-
pansion coefficients, NC is the expansion order, gn is the
damping factor for suppressing Gibbs oscillations (here
we adopt Jackson damping [42]), and α±

n (z
′) are known

functions independent of the model (see Appendix A).
Therefore, obtaining µ±

n is sufficient to compute Gi,i′(z).
(3) Employ the ChePSMPS method to determine µ±

n ,
and then derive the spectral function. Taking the calcu-
lation of µ+

n as an example, we use the variational pseu-
dosite MPS method [32, 37, 38] to compute each order of
Chebyshev vectors,

|t0⟩ = ĉ†i′ |ψ0⟩, |t1⟩ = Ĥ ′|t0⟩,
|tn+1⟩ = 2Ĥ ′|tn⟩ − |tn−1⟩, (8)

thus obtaining µ+
n = ⟨ψ0|ĉi|tn⟩, and similarly for µ−

n .
Then, substitute µ±

n to Eq. (7) to compute the cluster
Green’s function Eq. (5). Next, replace it in Eq. (2)
and Eq. (3) to derive the Green’s function G(k, z) of the
entire system, from which the imaginary part yields the
single-particle spectral function A(k, ω).

IV. APPLICATION TO HUBBARD-HOLSTEIN
MODEL

The Hamiltonian of the Hubbard-Holstein model is

Ĥ =− t
∑

⟨i,j⟩,σ

(ĉ†i,σ ĉj,σ + h.c.) + U
∑
i

n̂i,↑n̂i,↓

+ ω0

∑
i

â†i âi + γ
∑
i

n̂i(â
†
i + âi), (9)
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FIG. 3. Spectra of the Holstein polaron on a square lattice,
where ω0/t = 2, γ/t =

√
7.56, and η = 0.05. High symme-

try points Γ, X, Y, and M correspond to k = (0, 0), (π, 0),
(0, π), and (π, π), respectively. (a) The spectrum given by
momentum average approximation (MA). (b) The spectral
function calculated using CPT+ChePSMPS, with N = 2×12,
Nb = 15, NC = 1600, DC = 100, ω1max = 100, and ω2max = 0.
(c)-(e) Comparisons of the spectral function calculated by MA
and CPT+ChePSMPS at different momenta k.

where â†i (âi) denotes the phonon creation (annihilation)

operator, n̂i =
∑

σ ĉ
†
i,σ ĉi,σ represents the electron num-

ber operator, U stands for the onsite Coulomb repulsion,
ω0 signifies the phonon frequency, and γ refers to the
e-ph coupling parameter.

To demonstrate the advantages of our method over
traditional CPT+ED, we simulate the spectral func-
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FIG. 4. Spectra of the (Hubbard-)Holstein model on a square lattice with N = 4 × 4, U/t = 8, η = 0.1, and NC = 400. The
red line indicates the Fermi level. SP, HO, and QP denote the spinon-like, holon-like, and quasi-particle bands, respectively.
(a) Half-filled HM with Ne = 16 electrons, DC = 300, ω1max = 80, and ω2max = 0. (b) Doped HM with Ne = 14, DC = 400,
ω1max = 80, and ω2max = 3. (c) Doped HHM with Ne = 14, Nb = 3, ω0/t = 2, γ/t =

√
3.2, DC = 600, ω1max = 90, and

ω2max = 3.

tions of the 1D half-filled Hubbard model (HM) and the
Hubbard-Holstein model. The spinon, holon, and shadow
bands for 1D HM are clearly visible in Fig. 2(a). Simi-
larly, spin-charge separation can be clearly observed for
HHM in Fig. 2(e). Unlike HM, in HHM the holon band
is separated from the spinon band and the shadow band
at k = π/2 and k = 0, respectively, and the separa-
tion approximates the phonon frequency ω0. Addition-
ally, phonon interactions significantly reduce the spectral
weights of the holon and shadow bands.

We then examine the impact of the cluster size N on
the spectrum. As seen in Figs. 2(a)-(b) and 2(e)-(f),
small clusters result in a spectrum composed of sub-
bands due to finite size effects, which are not inher-
ent to HM and HHM. Increasing the cluster size al-
most eliminates these finite size effects, as illustrated in
Figs. 2(c)-(d) for HM and Figs. 2(g)-(h) for HHM. Fur-
thermore, our CPT+ChePSMPS results align perfectly
with CPT+ED under the same conditions, as shown in
Figs. 2(d) and 2(h). They are also in full concordance
with Fig. 5 in Ref. [22], confirming the accuracy of our
approach. Traditional ED solvers face limitations due to
the exponential wall, restricting them to small clusters.
This limitation is exacerbated in e-ph coupling models
by the extensive phonon degrees of freedom. As a re-
sult, CPT+ED simulations display significant finite size
effects. Our CPT+ChePSMPS approach, however, can
handle larger clusters, effectively minimizing finite size
effects and yielding higher resolution spectral functions.

To further demonstrate the effectiveness of our method
in 2D e-ph coupling systems, we simulate spectra of the
Holstein polaron,

A(k, ω) = ⟨vac|ĉkδ(ω − Ĥ)ĉ†k|vac⟩. (10)

Here, |vac⟩ denotes the vacuum state and Ĥ is the
Hamiltonian of the Holstein model (HHM with U =
0). The subbands depicted in Fig. 3 correspond to

an electron band coupled with multiple phonon exci-
tations, and the subband spacing roughly equals the
phonon frequency ω0. Within the low-energy domain,
the CPT+ChePSMPS spectra align well with the mo-
mentum average approximation (MA) results [43], as
shown in Fig. 3. Despite deviations in the high-energy
domain compared to MA, our results remain consistent
with those obtained by CPT+ED (Fig. 6 in Ref. [44]).
This discrepancy can be attributed to the approximate
nature of MA. Notably, our ability to simulate larger clus-
ters with CPT+ChePSMPS enhances the resolution of
the spectral functions compared to CPT+ED.

Applying CPT+ChePSMPS to strongly correlated 2D
systems with e-ph interactions, we first examine the spec-
tral function of the HM with U/t = 8. Strong Coulomb
repulsion manifests itself as the Mott gap, along with
the spinon-like and holon-like bands [45], as evident in
Fig. 4(a). Upon doping the HM, the Fermi level lowers,
perserving the spinon-like and holon-like bands, while in-
troducing a quasi-particle (QP) band [46] near momen-
tum k = M, as shown in Fig. 4(b). These Mott charac-
teristics in Figs. 4(a)-(b) are consistent with prior find-
ings (Fig. 1 in Ref. [47]), confirming the accuracy of our
method for 2D doped HM.

Introducing onsite e-ph couplings converts HM into
HHM, whose zero-temperature spectral function has
been relatively unexplored. As depicted in Fig. 4(c),
the holon-like band divides into two subbands, with a
separation close to ω0/t = 2. These results confirm that
CPT+ChePSMPS successfully captures phonon effects in
doped Mott insulators. The capability of our method to
handle larger clusters results in higher-resolution spectral
functions compared to that of the ED solver. Moreover,
unlike the DQMC solver, CPT+ChePSMPS is not hin-
dered by the fermion sign problem, making it suitable for
investigating e-ph coupling effects at zero temperature.
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FIG. 5. (a)-(c) Convergence of the spectral function A(k, ω) at momenta k = Γ, M, and X for the half-filled HM with respect
to DC, using the same parameters as in Fig. 4(a). (d)-(f) Convergence of A(k, ω) at momenta k = Γ, M, and X for the doped
HM with respect to DC, using the same parameters as in Fig. 4(b). (g)-(i) Convergence of A(k, ω) at momenta k = Γ, M, and
X for the doped HHM with respect to DC, using the same parameters as in Fig. 4(c). (j)-(l) Fitting errors ∆fit associated with
G−

1,1 in the half-filled HM, doped HM, and doped HHM, respectively.

V. ERROR AND CONVERGENCE ANALYSIS

This section analyzes the error and convergence prop-
erties of the CPT+ChePSMPS method. Figures 5(a)-(c)
show the convergence of A(k, ω) at high symmetry points
k = Γ, M, and X for the half-filled HM as a function of
DC. The spectral function converges at DC = 300, with
negligible differences from the results at DC = 100. This
indicates that the key features of the spectral function
are captured at a moderate computational cost. In par-
ticular, A(k = Γ, ω) in Fig. 5(a) mirrors A(k = M,−ω)
in Fig. 5(b), and A(k = X, ω) equals A(k = X,−ω) in
Fig. 5(c), consisting of the particle-hole symmetry in the
half-filled HM and validating the accuracy of our method.
Figures 5(d)-(f) and 5(g)-(i) present the convergence of
A(k, ω) for the doped HM and the doped HHM as a func-
tion of DC. HM and HHM exhibit convergence of the
spectral function at DC = 400 and DC = 600, respec-

tively.
In calculating Chebyshev vectors |tn⟩ in Eq. (8), we

employ a two-site update method [38] to variationally
minimize the fitting errors

∆fit =


∥|tn⟩ − ĉ±i |ψ0⟩∥2, if n = 0,

∥|tn⟩ − Ĥ ′|tn−1⟩∥2, if n = 1,

∥|tn⟩ − (2Ĥ ′|tn−1⟩ − |tn−2⟩)∥2, if n ≥ 2.

(11)

For instance, when analyzing the computation ofG−
1,1, we

show the variation of fitting error ∆fit with bond dimen-
sion DC and expansion order n for half-filled HM, doped
HM, and doped HHM in Figs. 5(j)-(l). ∆fit is more sig-
nificant at n = 0 due to compression of ĉ1|ψ0⟩ into |t0⟩,
where the large bond dimension D of |ψ0⟩ contributes to
a higher fitting error. For n > 1, ∆fit initially increases
with n before gradually decreasing. In the region where
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∆fit ascends with n, a greater DC significantly reduces
∆fit. In contrast, in the region where ∆fit descends with
n, a larger DC does not lower ∆fit effectively. According
to the parameters in Fig. 4, ∆fit stays below 10−2. Thus,
the CPT+ChePSMPS method can capture the essential
features of the spectral function with feasible computa-
tional effort.

VI. CONCLUSION

We present the CPT+ChePSMPS method, which em-
ploys ChePSMPS to compute Green’s functions within a
cluster. This approach facilitates the analysis of larger
clusters, surpassing the limitations of ED and producing
high-solution spectral functions. When applied to the
2D Holstein polaron Green’s function, our findings are
consistent with previous studies, underscoring the effec-
tiveness in 2D e-ph coupling systems. To demonstrate its
suitability for strongly correlated cases, we simulate the
spectral functions of 2D HM in both half-filled and doped
scenarios. Our method uncovers Mott features with rea-
sonable computational cost, including Mott gaps, spinon-
like bands, and holon-like bands. Furthermore, we ex-
tend to the zero-temperature spectral function of 2D
doped HHM, a subject not extensively explored due to
the fermion sign problem. The e-ph interactions split the
holon-like band into two subbands, separated by roughly
the phonon frequency, vividly demonstrating phonon ef-
fects. Our simulations validate ChePSMPS as a powerful
solver for Green’s function, which, when combined with
embedding methods, becomes a valuable tool for inves-
tigating 2D strongly correlated electronic systems with
e-ph couplings.
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Appendix A: Chebyshev polynomial expansion of
the Green’s function

In Eq. (5), G−
i′,i(z) and G+

i,i′(z) include informa-
tion on the occupied and unoccupied states, respec-
tively. The energy window for G+

i,i′(z) is defined as

ω ∈ [−ω2max, ω1max], and for G−
i′,i(z), it is ω ∈

[−ω1max, ω2max], with the specific choice of ω1max and
ω2max being model-dependent. Our goal is to expand

1

±z − (Ĥ − E0)
(A1)

using Tn(ω). This requires mapping ω and Ĥ to the
domain of Tn(ω) ∈ [−1, 1]. For G+

i,i′(z), the mapping is

ω 7→ ω′, ω′ =
ω

a
+ b, (A2)

and conversely, for G−
r′,r(z), the mapping is

−ω 7→ −ω′, −ω′ = −ω
a
+ b. (A3)

After mapping, we obtain

ω′ ∈ [−W ′,W ′], z′ = ω′ + iη/a. (A4)

Similarly, Ĥ is mapped as

Ĥ 7→ Ĥ ′, Ĥ ′ =
Ĥ − E0

a
+ b. (A5)

In these mappings,

a =
ω1max + ω2max

2W ′ , b =
ω2max − ω1max

ω2max + ω1max
W ′, (A6)

where W ′ is a number slightly less than 1. After linear
mapping, Eq. (A1) can be rewritten as

1

±z − (Ĥ − E0)
=

1

a(±z′ − Ĥ ′)
, (A7)

and then it can be expanded using Tn(Ĥ
′) as

1

a(±z′ − Ĥ ′)
=

1

a

∞∑
n=0

α±
n (z

′)Tn(Ĥ
′), (A8)

with the expansion coefficients

α±
n (z) =

2− δn,0

(±z)n+1(1 +
√
z2

√
z2−1
z2 )n

√
1− z−2

, (A9)

derived from Ref. [48]. Substituting the expansion
Eq. (A8) into the definition of the cluster Green’s func-
tion Eq.(5), we obtain the specific expression for G±

i,i′(z),

G+
i,i′(z) =

1

a

∞∑
n=0

α+
n (z

′)⟨ψ0|ĉiTn(Ĥ ′)ĉ†i′ |ψ0⟩

=
1

a

∞∑
n=0

α+
n (z

′)µ+
n . (A10)

Similarly,

G−
i′,i(z) =

1

a

∞∑
n=0

α−
n (z

′)µ−
n . (A11)

This leads to the final form of Eq. (7).
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Appendix B: The explicit representation of the
hopping matrix for the Hubbard-Holstein model

For nearest-neighbor hoppings between clusters, the
one-dimensional hopping matrix has following form

V m,n
i,i′ = −t(δm,n−1δi,Nδi′,1 + δm,n+1δi,1δi′,N ), (B1)

A Fourier transformation on cluster coordinates yields

Vi,i′(Q) = −t(eiQδi,Nδi′,1 + e−iQδi,1δi′,N ). (B2)

In the case of a two-dimensional square lattice, the hop-
ping matrix is given by

V m,n
i,i′ =− t

[
δ(mx,my),(nx−1,ny)δx,Nx

δx′,1δy,y′

+ δ(mx,my),(nx,ny−1)δy,Ny
δy′,1δx,x′

+ δ(mx,my),(nx+1,ny)δx,1δx′,Nx
δy,y′

+ δ(mx,my),(nx,ny+1)δy,1δy′,Ny
δx,x′

]
, (B3)

where m = (mx,my) and n = (nx, ny) are cluster indies.
i = (x, y) and i′ = (x′, y′) denote the coordinates of
the lattice points within the cluster. Applying a Fourier
transformation to the cluster indices of V m,n

i,i′ gives

Vi,i′(Q) =− t
[
eiQxδx,Nx

δx′,1δy,y′

+ eiQyδy,Ny
δy′,1δx,x′

+ e−iQxδx,1δx′,Nx
δy,y′

+ e−iQyδy,1δy′,Ny
δx,x′

]
. (B4)
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[20] D. Sénéchal, D. Perez, and D. Plouffe, Cluster perturba-
tion theory for Hubbard models, Phys. Rev. B 66, 075129
(2002).

[21] H. Zhao, C. Q. Wu, and H. Q. Lin, Spectral function of
the one-dimensional Holstein model at half filling, Phys.
Rev. B 71, 115201 (2005).

[22] W.-Q. Ning, H. Zhao, C.-Q. Wu, and H.-Q. Lin, Phonon
Effects on Spin-Charge Separation in One Dimension,
Phys. Rev. Lett. 96, 156402 (2006).

[23] C. Yang and A. E. Feiguin, Spectral function of the two-
dimensional Hubbard model: A density matrix renor-
malization group plus cluster perturbation theory study,
Phys. Rev. B 93, 081107 (2016).

[24] M. Kohno, Spectral properties near the Mott transition
in the two-dimensional t−J model, Phys. Rev. B 92,
085128 (2015).
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