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Recent experimental discovery of fractional Chern insulators at zero magnetic field in moiré superlat-
tices has sparked intense interests in bringing Landau level physics to flat Chern bands. In twisted MoTe2
bilayers (tMoTe2), recent theoretical and experimental studies have found three consecutive flat Chern
bands at twist angle ∼ 2◦. In this work, we investigate whether higher Landau level physics can be found
in these consecutive Chern bands. At twist angles 2.00◦ and 1.89◦, we identify four consecutive 𝐶 = 1
bands for the 𝐾 valley in tMoTe2. By constructing Wannier functions directly from density functional the-
ory (DFT) calculations, a six-orbital model is developed to describe the consecutive Chern bands, with the
orbitals forming a honeycomb lattice. Exact diagonalization on top of Hartree-Fock calculations are carried
out with the Wannier functions. Especially, when the second moiré miniband is half-filled, signatures of
non-Abelian states are found. Our Wannier-based approach in modelling moiré superlattices is faithful to
DFT wave functions and can serve as benchmarks for continuummodels. The possibility of realizing non-
Abelian anyons at zeromagnetic field also opens up a new pathway for fault-tolerant quantum information
processing.

Introduction.—Recent experiments [1–5] and theo-
ries [6–12] have identified a series of Abelian fractional
Chern insulators (FCI), such as the Laughlin states and
other Jain sequence states, as well as gapless composite
fermi liquids (CFL), inmoiré superlattices at zeromagnetic
field. The emergence of these exotic states is attributed
to the existence of flat Chern bands [13–16] in these
systems. Specifically, in twisted homobilayer transition
metal dichalcogenides (TMD), within the framework of
the continuum model, electrons can be viewed as hopping
in a layer pseudospin skyrmion lattice, giving rise to
topologically nontrivial flat bands [17, 18]. The quantum
geometry of these flat Chern bands resembling that of the
lowest Landau level is one of the important reasons for the
emergence of the above exotic states [19–26].
More exotic states, such as the Moore-Read (MR) state

featuring non-Abelian excitations [27], can be stabilized by
Coulomb interaction in the first LL [28–31]. In a recent
density functional theory (DFT) study of twisted bilayer
MoTe2 (tMoTe2), it is discovered that three consecutive flat
bands with Chern numbers equal to 1 appear at twist an-
gle 2.14◦ for each valley [32], which has not been predicted
in the continuum model description within the first har-
monic approximation. The existence of three consecutive
flat Chern bands has also been corroborated by experimen-
tal observations at similar twist angles [33]. These consec-
utive flat Chern bands with identical Chern numbers bear
a striking resemblance to the series of Landau levels, hint-
ing at the possibility of bring higher Landau level physics
to moiré superlattices at zero magnetic field, especially the
non-Abelian state such as MR.
In thiswork, wefirst extend our previous large-scaleDFT

calculations on tMoTe2 to additional twist angles near 2◦.
We identify four consecutive 𝐶 = 1 bands at twist angles
2.00◦ and 1.89◦ for the 𝐾 valley. To accurately describe the

band geometry, we construct Wannier functions directly
from DFT calculations and develop a six-orbital model to
describe the consecutive Chern bands, where the orbitals
form a honeycomb lattice. For the secondmoiré miniband,
the integral of the trace of the Fubini-Study metric [tr(𝑔)]
is shown to be close to that of the first Landau level. In
addition, the fluctuations of Berry curvature and tr(𝑔) can
be significantly suppressed by bandmixing inHartree-Fock
(HF) calculations, enhancing the analogy between the sec-
ond moiré miniband and the first Landau level. Exact di-
agonalization (ED) on top of HF calculations are carried
out using the Wannier functions. When the second moiré
miniband is half-filled, signatures of non-Abelian states
are found. Our Wannier-based approach in modelling the
moiré superlattice is faithful toDFTwave functions and can
serve as benchmarks for continuum models. The possibil-
ity of realizing non-Abelian states in tMoTe2 also opens up
an exciting avenue in realizing higher LL physics in moié
superlattices.

Consecutive Chern bands in tMoTe2.— When moiré su-
perlattices are formed by twisting two identical monolay-
ers, the original monolayer bands are broken into mini-
bands. For monolayer MoTe2, the valence band top is lo-
cated at two corners (𝐾 and 𝐾′) of the honeycomb Bril-
louin zone. In moiré superlattices, the bands from both
𝐾 and 𝐾′ valley form two independent sets of minibands.
The two sets of bands are partners under the operation of
time reversal symmetry. Our previous large-scale density-
functional-theory (DFT) calculations with machine learn-
ing force fields has revealed an intricate dependence of the
band topology on twist angles [32]. Interestingly, at twist
angle of 2.14◦, 𝐾 valley valence bands of tMoTe2 feature
three consecutive Chern bands with 𝐶 = 1. With hole
doping, these Chern bands can be revealed in experiments
when valleys are spontaneously polarized due to electron-
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FIG. 1. Bands for tMoTe2 at twist angles 1.89◦, 2.00◦ and 2.14◦.
Empty blue circles are from DFT calculations, and solid lines are
fromWannier interpolation. ForWannier interpolated bands, red
lines are from the 𝐾 (spin up) valley and black lines are from the
𝐾′ (spin down) valley. AllWannier interpolated bands haveChern
number 𝐶 = +1 for the 𝐾 valley. Only Wannier interpolated
bands in the frozen window are shown here.

electron interactions.
To further explore the band topology of tMoTe2 around

this twist angle, we have performed DFT calculations at
two other twist angles 2.00◦ and 1.89◦, following the same
method introduced in Ref. [32]. The moiré valence bands
from all three angles are shown in Fig. 1. Four consec-
utive 𝐶 = 1 bands from 𝐾 valley are found at twist an-
gles 2.00◦ and 1.89◦. At twist angle 2.14◦, the fourth band
is not well-isolated to have a well-defined Chern number.
The Chern numbers are determined by Wannier interpo-
lation with Wannier functions, whose construction will be
described below.
The consecutive Chern bands are flat, hinting at the pos-

sibility of strong-correlated physics when these bands are
partially filled. In this work, we focus on the possibility of
realizing first Landau level physics in tMoTe2, specifically
targeting the second valence band (bands are numbered in
the descending order of energy). At the twist angle 2.00◦,
the second valence band reaches optimal flatness. There-
fore, we will focus on this twist angle in the following, de-
ferring the results from other twist angles to Supplemental
Material.
Band geometry from Wannier functions.—To investigate

whether consecutive moiré valence bands resemble LL se-
ries, accurate modelling is required to capture fluctuations
of band geometry. Currently, the most common descrip-
tion of moiré superlattice is continuum models, in which
the effect of moiré superlattice is described bymoiré poten-
tials periodic in the moiré Bravais lattice vectors. However,
continuummodels fitted to DFT bands within the first few
harmonic moié potentials do not guarantee an accurate re-
production of the band geometry such as the Berry curva-
tureΩ and the Fubini-Study metric 𝑔 fromDFTwave func-
tions. Here, we construct Wannier functions to faithfully
represent DFTwave functions and performmany-body cal-
culations on top of the Wannier functions. The Wannier

FIG. 2. (a) Real space distributions of the Wannier functions for
tMoTe2 at twist angle 2.00◦. Black parallelograms represent moiré
unit cell. 𝐶3 eigenvalues with respect to the center of theWannier
functions have been labeled (𝐶3 eigenvalues take the form of ei𝛼 ,
and𝛼 is labelled in the figure). Contribution fromboth layers have
been summed over. (b) and (c) show the distribution of the Berry
curvature Ω and the trace of the Fubini-Study metric tr(𝑔) in the
Brillouin zone for the second moiré miniband. The unit for both
Ω and tr(𝑔) is 2π∕|Γ|, where |Γ| is the area of the Brillouin zone.
BothΩ and tr(𝑔) are calculated from the small-𝒒 expansion of the
form factors.

functions are constructed for the 𝐾 valley bands, and the
𝐾′ valley Wannier functions are obtained using time rever-
sal symmetry. The valleys in the DFT calculations are de-
coupled by distinct Bloch phases and opposite expectation
values of the spin-𝑧 operator.
Our approach to construct the Wannier functions is the

“projection”method [34], which is also the first step in con-
structing maximally localized Wannier functions [35, 36].
This approach first chooses several trial Wannier functions
and project the relevant Bloch states onto the trial Wannier
functions. The projected Bloch states are subsequently or-
thogonalized. The Fourier transformation of the orthog-
onalized projected Bloch states gives the desired Wannier
functions. This method generally retains the symmetry
properties of the trial Wannier functions [36] and is a pow-
erful tool to construct tight-binding models from DFT cal-
culations.
The DFT band structure does not possess a local gap

above which the total Chern number is zero. Therefore,
band disentanglement [37] needs to be performed to avoid
Wannier obstruction [38]. A set of frozen states is chosen
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for which the DFT band energies and Bloch states are faith-
fully reconstructed. For twist angle 2.14◦, we choose the
first three valence bands as frozen states. For twist angles
2.00◦ and 1.89◦, first four bands are frozen.
For twist angle 2.00◦, the real space plots of the Wannier

functions are shown in Fig. 2(a). The Wannier functions
form a honeycomb lattice. For each site in the honeycomb
lattice, there are three Wannier functions with different 𝐶3
symmetry eigenvalues. Together they form a six-orbital
honeycomb model. We have chosen trial Wannier func-
tions centered at XM (Mo on top of Te) and MX (Te on top
of Mo) stackings. At some high symmetry 𝒌 points, DFT
wave functions for certain bands are localized at the MM
(Mo on top of Mo) stacking [39], which are covered by lin-
ear combinations of our Wannier functions. The Wannier-
interpolated bands, along with the DFT bands, are shown
in Fig. 1, where an excellent agreement is observed.
In this work, we mainly employ two indicators to com-

pare band geometry of moiré minibands and LLs, namely
the trace of the Fubini-Studymetric tr(𝑔) and the Berry cur-
vature Ω. For LLs, the integration of tr(𝑔)

𝜒 = 1
2π ∫BZ

d𝒌tr[𝑔(𝒌)] (1)

is 2𝑛 + 1, where 𝑛 is the LL index. With Wannier func-
tions, our calculated results of𝜒 are 1.04, 3.02, 5.11, 7.53 for
the topmost four moiré bands, resembling that of LLs. An-
other important feature of LLs is that they have flat Ω and
tr(𝑔). Targeting the second moiré valence, we plot the dis-
tribution of Ω and tr(𝑔) in the Brillouin zone in Fig. 2(b,c).
The fluctuation of Ω and tr(𝑔) is relatively large, with the
standard deviation being 0.51 and 0.67, respectively (Table
I). We will show that electron-electron interactions can im-
prove the flatness of Ω and tr(𝑔) by band mixing.
Coulomb interaction.—To include the electron-electron

interactions, we adopt the following interacting Hamilto-
nian

�̂�int =
∑

{𝑛},{𝒌},𝒒
𝑉𝑛1𝑛2𝑛3𝑛4(𝒌1,𝒌2, 𝒒)�̂�

†
𝑛1𝒌1

�̂�†𝑛2𝒌2 �̂�𝑛3𝒌2−𝒒�̂�𝑛4𝒌1+𝒒,

𝑉𝑛1𝑛2𝑛3𝑛4(𝒌1,𝒌2, 𝒒) =
1
2𝐴𝑣(𝒒)𝑓𝑛1𝑛4(𝒌1, 𝒒)𝑓𝑛2𝑛3(𝒌2,−𝒒),

(2)
where �̂�†𝑛𝒒 creates a Bloch state for band 𝑛 at crystal mo-
mentum 𝒒 and𝐴 is the area of the system. The summation
over 𝒌 is in the Brillouin zone and the summation of 𝒒 is
unbounded. We have taken the convention that the Bloch
state is periodic with respect to the reciprocal lattice vec-
tors. We choose the Coulomb interaction screened by sym-
metric metal gate: 𝑣(𝒒) = 𝑒2tanh(|𝒒|𝑑)∕2𝜖0𝜖|𝒒|. Here, 𝑒 is
the elementary charge; 𝑑 is the distance between tMoTe2
and the metal gate; 𝜖 is relative permittivity; 𝜖0 is the vac-
uum permittivity. The form factor 𝑓𝑛1𝑛2(𝒌, 𝒒) is defined as

𝑓𝑛1𝑛2(𝒌, 𝒒) = ⟨𝑛1𝒌|e−i𝒒⋅�̂�|𝑛2𝒌 + 𝒒⟩, (3)

FIG. 3. Hartree-Fock calcuations with Wannier functions. (a)
shows the Hartree-Fock quasiparticle bands. (b) and (c) show the
distribution of theBerry curvatureΩ and trace of the Fubini-Study
metric tensor tr(𝑔) in the Brillouin zone for the second moiré
miniband after HF calculations. The color scale of (b) and (c) is
the same as Fig. 2(b,c).

where |𝑛,𝒌⟩ is a Bloch state. To compute the form factor,
we calculate the matrix element ⟨𝑛1𝑹1|e−i𝒒⋅�̂�|𝑛2𝑹2⟩, where
|𝑛𝑹⟩ is the 𝑛th Wannier function sitting at the unit cell la-
beled by the lattice vector 𝑹. 𝑓𝑛1𝑛2(𝒌, 𝒒) can then be ob-
tained by a Fourier transformation.
Signatures of non-Abelian states.—One of the most fasci-

nating features in higher LLs is the non-Abelian state such
as the MR state. Moore-Read states can be thought of as
superconducting paired CFLs, and is known to be the exact
ground state of a pure three-body short ranged interaction
in the lowest Landau level [40] or stabilized by themore re-
alistic Coulomb interaction in the first Landau level. To ex-
plore whether this non-Abelian state can appear in tMoTe2
at zero magnetic field, ED calculations are required. How-
ever, direct ED calculations at doping 𝜈 = −5∕2 are pro-
hibitively demanding. Here, we carry out HF calculations
at doping 𝜈 = −2 (two holes per moiré unit cell) to select
the active orbitals.
The central object in HF calculations is the one-body re-

duced density matrix 𝜌𝑛1𝑛2(𝒌1,𝒌2) = ⟨�̂�†𝑛2𝒌𝟐 �̂�𝑛1𝒌𝟏⟩. For an
arbitrary 𝜌, a mean field decomposition of �̂�int gives rise to
the HF interaction Hamiltonian �̂�HF[𝜌]. In DFT calcula-
tions, part of the electron-electron interaction has already
been taken into account. To avoid double counting, we sub-
tract the �̂�HF[𝜌0] from the total Hamiltonian:

�̂� =
∑

𝑛,𝒌
𝜖𝑛𝒌�̂�

†
𝑛𝒌�̂�𝑛𝒌 + �̂�int − �̂�HF[𝜌0]. (4)

Here, 𝜖𝑛𝒌 is the DFT band energy, and 𝜌0 is the one-body
reduced density matrix from the DFT calculations. HF cal-
culations are carried out with �̂� defined above. The sub-
traction of �̂�HF[𝜌0] ensures that when all valence bands are
occupied, the HF calculations reproduce exactly the same
band energies and Bloch states from DFT calculations.
The results of Hartree-Fock calculations are presented in

Fig. 3. Only frozen bands are included in the calculations.
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FIG. 4. Many-body spectrum of tMoTe2 with twist angle 2◦ and
LL on a 4 × 6 [(a)] and 5 × 6 [(b)] supercell with periodic bound-
ary condition. The horizontal axis is the total momentum of all
electrons. For LL, unscreened Coulomb interaction is used. Pa-
rameters: 𝜖 = 5, 𝑑 = 300 Å.

An enhanced gap between the first and second moiré va-
lence bands can be observed. Crucially, after HF calcula-
tions, the fluctuations of Ω and tr(𝑔) are significantly re-
duced by approximately 50% (Table I), while 𝜒 slightly im-
proves (3.09 to 3.02). The improvement of band geometry
enhances the analogy between the second moiré band and
the first LL.
Focusing on the secondmoiré valence band, we carry out

ED calculations on top of the HF calculations. To avoid
double counting of electron-electron interaction, we again
utilize Eq. (4) as the Hamiltonian in ED calculations. In
this context, 𝜖𝑛𝒌 and𝜌0 inEq. (4) are band energies and one-
body reduced density matrix from HF calculations. Previ-
ously, the double counting removing procedure for HF cal-
culations on top of DFT calculations is heuristic. However,
the same procedure, used for ED calculations on top of HF
calculations, is exact. The sole purpose of HF calculations
is to select relevant Bloch states as single particle orbitals
for ED calculations.
On a 4 × 3 supercell with periodic boundary condition,

our ED calculations, restricted to the second moiré valence
bands from both valleys, show that fully valley polarized
state is the ground state with parameters specified in the
caption of Fig. 4. Therefore, we further restrict the ED
calculations to the second moiré valence band from the 𝐾
valley. The many-body spectrums are shown in Fig. 4 for
4 × 6 and 5 × 6 supercells with periodic boundary condi-
tion. The six-fold and two-fold ground state degeneracy
with even and odd number of electrons is the hallmark of

TABLE I. Many-body gaps of non-Abelian state for tMoTe2 and
relevant band geometry properties, including the integration of
the quantum metric (𝜒), the standard deviation of the Berry cur-
vature (∆Ω) and the quantummetric [∆tr(𝑔)], at various twist an-
gles (𝜃). NaN indicates that no evidence of non-Abelian states has
been found. The gap is identified on a 4 × 6 supercell and the pa-
rameters are the same as that specified in the caption of Fig. 4.

Before HF After HF
𝜃 𝜒 ∆Ω ∆tr(𝑔) 𝜒 ∆Ω ∆tr(𝑔) Gap

1.89◦ 3.07 0.88 0.79 3.04 0.72 0.59 NaN
2.00◦ 3.09 0.51 0.67 3.02 0.32 0.27 0.41
2.14◦ 3.15 0.99 1.08 3.06 0.28 0.27 0.11

the non-Abelian states of MR type or its particle hole con-
jugate. In Fig. 4, we also show the many-body spectrum
of half-filled first Landau level with Coulomb interaction
𝑣(𝒒) = 𝑒2∕2𝜖0𝜖|𝒒|. The Landau level system is put on a
triangular lattice with the same lattice constant as tMoTe2
at twist angle 2◦. The striking similarity of the many-body
spectrum between tMoTe2 and the LL system is another
strong indication of the non-Abelian states.
In the SupplementalMaterial, we present themany-body

spectrum on a 4 × 6 supercell of half-filled tMoTe2 second
valence band, but with bare DFT bands. The spectrum
bears similarity to that of the half-filled first LL, but lacks
the six-fold ground state degeneracy. Therefore, the im-
proved band geometry from HF calculations is crucial for
the non-Abelian states to appear.
We have also performed calculations for twist angles

1.89◦ and 2.14◦. The band geometry before and after
HF calculations is presented in Table I. Evidence of non-
Abelian states is also found at twist angle 2.14◦, but with a
smaller many-body gap. No non-Abelian states are found
at 1.89◦, for which the fluctuations of Ω and tr(𝑔) are not
significantly suppressed by HF calculations.
In LL systems, the Moore-Read (Pfaffian) state and its

particle-hole (PH) conjugate anti-Pfaffian state are degen-
erate if LL mixing effects were ignored; the LL mixing pro-
vides a PH breaking effect and selects anti-Pfaffian over
Pfaffian [41]. Besides Pfaffian and anti-Pfaffian, an intrinsi-
cally PH symmetric topological order, PH-Pfaffian, was also
proposed [42? ]. In our systems, the PH symmetry is explic-
itly broken by the dispersion andnon-uniformquantumge-
ometries. We leave more detailed examination of the pre-
cise nature of our ground state to the future work, which
can be addressed by wave function overlap and entangle-
ment spectrum analysis.
Compared to Laughlin states and other Jain sequence

states, signatures of non-Abelian states presented here are
muchweaker. It has been shown that the 𝜈 = −2∕3 Laugh-
lin state exists in a wide range of twist angles in tMoTe2 [7].
However, evidences of non-Abelian states are only found at
two commensurate twist angles in this work. In addition,
the many-body gap in Fig. 4 is also several times smaller
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than that of the 𝜈 = −2∕3 Laughlin state at the same in-
teraction strength. Finally, our choice of the dielectric con-
stant 𝜖 gives rise to characteristic interaction strength that is
several time larger than the band gap. Therefore, it should
be critically evaluated whether the non-Abelian state is sta-
ble against bandmixing in tMoTe2, which was proved to be
crucial in understanding Laughlin states in the same sys-
tem at twist angle around 3.89◦ [43–45].
We acknowledge useful discussions with Yuchi He, Ying

Ran, Lingnan Shen, and Kai Sun. The exact diagonaliza-
tion study is supported by DOE Award No. DE-SC0012509.
The density-functional theory calculation is supported by
the Center on Programmable Quantum Materials, an En-
ergy Frontier Research Center funded by DOE BES un-
der award DE-SC0019443. The machine learning of moiré
structure is supported by the discovering AI@UW Initia-
tive and by the National Science Foundation under Award
DMR-2308979. This work uses Microsoft Azure credits
funded by discovering AI@UW Initiative.
Note added.— We recently became aware of Refs. [46–

48]. Ref. [46] proposed the existence of non-Abelian states
in free electron gas coupled to Skyrmion lattices. An up-
dated version of Ref. [46] andRefs. [47 and 48] proposed the
existence of non-Abelian states in tMoTe2 based on contin-
uum models fitted to DFT bands.
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