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Abstract
We theoretically investigate the properties of magnetically-levitated superconducting rotors con-

fined in anti-Helmholtz traps, for application in magnetomechanical experiments. We study both

the translational modes and a librational mode. The librational mode gives an additional degree

of freedom that levitated spheres do not have access to. We compare rotors of different shapes:

ellipsoids, cylinders and cuboids. We find that the stable orientations of the rotors depend on the

rotors’ aspect ratios.

I. INTRODUCTION

When an external uniform magnetic field Ha is applied over a magnetic material with

the shape of an ellipsoid, it magnetizes with a uniform magnetization M [1]. If the magnetic

material is linear, B = µH inside the ellipsoid (µ is the constant permeability), and the

magnetization is related to the internal field through the susceptibility constant χ as M =

χH. Thus, χ = (µ/µ0)− 1 being µ0 the vacuum permeability.

When µ → 0 (χ → −1) the material behaves as a perfect diamagnet (B = 0 inside). A

superconductor can be modeled as a perfect diamagnet, although there are extra properties,

i.e. flux quantization, that are not captured by just χ → −1. On the other limit, when

µ → ∞ (χ → ∞) we would be considering a perfectly soft ferromagnet (H = 0 inside).

The demagnetizing factors are commonly used in magnetic experiments. Indeed, the

experimentalist controls the applied field, while the intrinsic properties one usually wants to

measure (i.e., the susceptibility) depend on the internal field. Both are related through the

demagnetizing factors.

We focus our study on levitation systems in the context of quantum magnetomechanics.

Indeed, the levitation of small diamagnetic microparticles in specially designed magnetic

traps has been proposed as the experimental platform to perform ground-state cooling of

the center-of-mass degrees of freedom of the superconductor [2–4]. Different magnetic traps

have been proposed, such as surface superconductors [5–7], quadrupolar magnets [8], chip-

based multi-winding planar coils [4], 3D arranged coils [3], or anti-Helmholtz coils (AHC)
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[2], to cite some. Stable levitation of lead microspheres (≃ 50 µm in diameter, 700 ng of

mass) in anti-Helmholtz traps has been recently demonstrated [4, 9]. Using a similar system

(with elliptical coils to break the xy-axis symmetry) the center-of-mass motion of levitated

lead-tin spheres (now of ≃ 100 µm in diameter) have been feedback controlled after coupling

with a superconducting quantum interference device achieving quality factors up to 2.6×107

[10].

As for the applied field, we shall consider AHC generating the applied fields. In these

levitation experiments, the applied field is not uniform and the use of demagnetizing factors

should be carefully considered. At the equilibrium position, the applied field is quadrupolar

with a value of zero at the center. The assumption of a uniform applied field does not

apply. However, we will see how to take profit of the demagnetizing factors to account for

the restoring force and obtain useful expressions for the trapping frequency.

As for the levitated particle, not only the size, but its shape can play an important role,

since the demagnetizing fields can change drastically the total field it experiences. Although

the spherical shape is the most used in magnetomechanics levitation experiments [11], find-

ing a perfect sphere is complicated and the studies of how the shape affects the levitation are

important. The nonsphericity lifts some of the symmetries and some vibrational modes be-

come non-degenerate. Moreover, non-spherical particles exhibit torques in the non-uniform

magnetic field which lead to librational modes as additional degrees of freedom [12]. El-

lipsoids represent a good approximation for many other shapes ranging from long cylinders

to disks (and including the sphere). Although the levitation of superconducting rings (in-

cluding flux quantization) has been considered [11, 13], there is a lack of work devoted to

studying the superconductor’s shape influence.

In this work, we aim to conduct an investigation of the levitation characteristics of mag-

netic particles in a quadrupolar (anti-Helmholtz) magnetic trap. We mainly focus on su-

perconducting ellipsoids, but some comparison with cylinders and cuboids is also presented.

For the ellipsoids, we derive analytic expressions for the translational trapping frequencies

as a function of the principal axis lengths. For the librational frequencies, as well as for the

comparison with cylinders and cuboids, we use finite element simulations.

The paper is structured as follows. In section II we derive the expressions for the magne-

tization of a generic ellipsoidal linear magnetic material in the presence of a uniform applied

field. We find the external susceptibility matrix that relates the magnetization of the el-
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Figure 1. Sketch of a general rotation of an ellipsoid. The axes after rotating the ellipsoid are red,

and the ellipsoid once rotated is intense green. When a = b, the α angle can be skipped and the

γ angle is irrelevant (since x and y are identical). Thus, when a = b, only β is a relevant rotation

angle.

lipsoid with the external applied field. In section III, we consider a quadrupolar field and

find how the forces and torques over the levitated ellipsoid near its center can be found.

We evaluate the translational and librational torques for this trap. In sections III C and

IIID, numerical results comparing translational and librational frequencies, respectively, of

the trap for levitated superconducting ellipsoids, cylinders, and cuboids are presented. We

finish with conclusions in section IV.

II. THE EXTERNAL SUSCEPTIBILITY FOR ELLIPSOIDS

We consider a linear magnetic material with susceptibility χ (an ideal superconductor

would be χ = −1) and with the shape of an ellipsoid with principal semiaxes a, b, and c.

The induction field B inside the ellipsoid is related to the magnetization M, the magnetic

field H, the applied field Ha (uniform, in this section), and the demagnetizing field Hd,

through

B = µ0(M+H) = µ0(M+Ha +Hd). (1)

The magnetization of the ellipsoid is related to the demagnetizing field through the di-

agonal demagnetizing factor matrix N when both M and Hd components are expressed as

projections along the principal axes (â, b̂, and ĉ) of the ellipsoid. In this case, one has
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H′
d = −NM′ where the primes (′) indicate projections along principal axes and

N =


Na 0 0

0 Nb 0

0 0 Nc

 . (2)

The demagnetizing factors Na, Nb, and Nc satisfy Na +Nb +Nc = 1. Using Eq. (1),

M′ = χ(1 + χN)−1H′
a . (3)

We describe the orientation of the ellipsoid using the Euler angles zyz representation of

rotation defined as follows (see Fig. 1): (i) Initially the ellipsoid’s principal axis coincides

with the Cartesian axis, â = x̂, b̂ = ŷ, and ĉ = ẑ; (ii) first, rotate the ellipsoid an angle α

with respect to the z axis; (iii) second, rotate the (already rotated) ellipsoid an angle β with

respect to the rotated y axis; (iv) finally, rotate the (already rotated) ellipsoid an angle γ

with respect to the rotated z axis.

Any rotation within this representation can be described by (α, β, γ). The rotation matrix

Q is

Q =


cosα cos β cos γ − sinα sin γ − cos γ sinα− cosα cos β sin γ cosα sin β

cos β cos γ sinα + cosα sin γ cosα cos γ − cos β sinα sin γ sinα sin β

− cos γ sin β sin β sin γ cos β

 (4)

We use this Q matrix to change the coordinates of the vectors. Actually, we have H′
a = QHa

or Ha = QTH′
a, where T indicates the transposed matrix. From Eq. (3) we can write the

magnetization vector, expressed in Cartesian coordinates as a function of the applied field,

also expressed in Cartesian coordinates:

M = SHa , (5)

where we have defined the external susceptibility matrix S as

S = χQT (1 + χN)−1Q . (6)

The importance of Eq. (5) relies on that it gives the magnetization of an arbitrarily

rotated linear, homogeneous, isotropic, and magnetic ellipsoid as a consequence of a uniform
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applied field, directly as a function of the applied field (not the internal field H). The

obtained matrix S is general and can be applied to any ellipsoid as long as the applied field

is considered uniform through the ellipsoid. The explicit general expression is cumbersome

although straightforward from Eqs. (2), (4), and (6).

A. Spheroid, a = b

As a particular case of the general treatment done above, we consider here that the

ellipsoid has two identical principal axes, a = b. Then, Na = Nb ≡ Nab. Considering the

applied field along the z direction, any rotation is described only by β. That is, we are

rotating the spheroid about the y-axis at an angle β. In this case, the external susceptibility

matrix reduces to

S =


χ((Nab+Nc)χ−(Nab−Nc) cos(2β)χ+2)

2(Nabχ+1)(Ncχ+1)
0 (Nc−Nab)χ

2 cosβ sinβ
(Nabχ+1)(Ncχ+1)

0 χ
Nabχ+1

0

(Nc−Nab)χ
2 cosβ sinβ

(Nabχ+1)(Ncχ+1)
0 χ((Nab+Nc)χ+(Nab−Nc) cos(2β)χ+2)

2(Nabχ+1)(Ncχ+1)

 . (7)

Importantly, for the spheroid, the demagnetizing factors of N have been analytically found

[14, 15] as

Nc =


1

1−( c
a)

2

(
1−

c
a√

1−( c
a)

2 arccos
c
a

)
, if c < a,

1

( c
a)

2
−1

(
c
a√

1−( c
a)

2 ln

(
c
a
+
√(

c
a

)2 − 1

)
− 1

)
, if c > a,

(8)

Nab =
1

2
(1−Nc) . (9)

In Figs. 2 and 3 we plot the values of different components of the S matrix as a function of

c/a for several values of β and χ. When β = 0 and when β = π/2 one obtains, respectively,

S(β = 0) =


χ

Nabχ+1
0 0

0 χ
Nabχ+1

0

0 0 χ
Ncχ+1

 , (10)

S(β = π/2) =


χ

Ncχ+1
0 0

0 χ
Nabχ+1

0

0 0 χ
Nabχ+1

 . (11)
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Figure 2. Szz (blue-green) and Sxz (red-purple) matrix elements of a spheroid, as a function of c/a

for different values of β from 0 to π/2 in intervals of π/20 (following the arrows). In this figure,

χ = −1. Note that the rest of the matrix is given by Szx(β) = Sxz(β), Szz(β) = Sxx(β + π/2),

Syy(β) = Sxx(0) = Szz(π/2), and Sxy = Syx = Syz = Szy = 0.

For spheres, Nc = Nab = 1/3, the rotation matrix is the identity matrix, and the external

susceptibility tensor becomes

S =
3χ

3 + χ
1. (12)

For the ideal superconducting sphere (χ = −1), we have S = −(3/2)1.

III. FORCES AND TORQUES OVER THE ELLIPSOID IN A QUADRUPOLAR

EXTERNAL FIELD

A. Anti-Helmholtz coil field

One of the common traps for quantum magnetomechanics experiments is the AHC trap.

It consists of two coaxial coils of radius R separated by a distance R. A current I circulates

through the coils in the opposite direction. The origin of coordinates is located on the coaxial

axis of the coils, at the equidistant point between all the points of both coils. The field

created by the AHC at positions r = (x, y, z) close to the origin (|r| ≪ R) is a quadrupolar

field that can be written as

Ha =
H0

R
(−xx̂− yŷ + 2zẑ) , (13)

where H0 ≡ 24I
25

√
5R

.
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Figure 3. Sxx (green), Szz (blue), and Sxz (red) matrix elements of a spheroid, as a function of c/a

for different values of χ, from 0 to −1 in intervals of −0.1 (following the arrows). The thickest lines

correspond to curves with χ = −1. In this figure, β = 0. Note that the rest of the matrix is given

by Szx(χ) = Sxz(χ), Sxx(χ) = Syy(χ), and Sxy = Syx = Syz = Szy = 0.

Figure 4. Magnetic field lines interacting with a diamagnetic ellipsoid, (a) for a uniform external

magnetic field and (b) for an external quadrupolar magnetic field.

We consider a, b, and c small enough with respect to R so that in all situations, all the

points of the ellipsoid will be on the region where Eq. (13) holds.

To simplify the treatment we shall consider, unless explicitly indicated, that we have a

perfectly diamagnetic (χ = −1) ellipsoid with a = b (a spheroid), near the center of the

trap.

B. Forces after translations

The stable position for translation of a levitated spheroid is when its center coincides with

the center of the AHC, where the applied field is zero (we neglect gravity). Any translation

of the ellipsoid from this position results in a restoring force that tends to push the ellipsoid

to the center again. For χ = −1 materials (ideal superconductor), some currents are induced
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in its surface to have B = 0 inside it (see Fig.4).

In this case, the magnetization inside the ellipsoid is not uniform. Since we are considering

a region where the applied field is linear, if the center of the ellipsoid is moved to a point

r0, we have

Ha(r) = Ha(r0) +Ha(r
′), (14)

where r′ points to an ellipsoid’s point as if it were located at the origin.

As we have assumed linear materials, the magnetization of the spheroid will be the sum

of the magnetization induced by these two fields. The currents induced by the second term

will have a complicated distribution but, because of the symmetry, the forces they receive

sum up to zero when integrated all over the spheroid’s surface.

Thus, as for the force evaluation is concerned, we can consider only the currents induced

because of the field given by the first term of the right-hand side of Eq. (14). That is, the

force exerted over the ellipsoid with its center at r0 can then be written, using (5), as

F = µ0V (M · ∇)Ha = µ0V (SHa · ∇)Ha, (15)

where applied field and its derivatives should be evaluated at r0, the "displaced" center of

the spheroid.

The trapping frequencies are then evaluated from the variations of the force components

with respect to the coordinates (xl = x, y, or z):

ωkl =

√√√√ 1

m

(
− ∂Fk

∂xl

∣∣∣∣
xl→0

)
, (16)

being m the mass of the ellipsoid. Using Eqs.(13) and (15) one gets

ωxx = ω0

√
−Sxx, (17)

ωyy = ω0

√
−Syy, (18)

ωzz = 2ω0

√
−Szz, (19)

where ω0 is defined as

ω0 =
H0

R

√
µ0

ϱ
, (20)

being ϱ the mass density of the ellipsoid. When β = 0 or β = π/2, ωkl = 0 for all k ̸= l. For

an ideal superconducting sphere, Eqs. (17), (18) and (19) reduce to ωxx = ωyy = (1/2)ωzz =

9



ω0

√
3/2, which coincides with Ref. [2]. Considering a lead levitating particle, ϱ = 1.09 · 104

kg/m3, in an AHC coil of µ0H0/R ≃ 75 T/m [10], we obtain ω0 ≃ 640 rad s−1 ≃ 2π × 100

Hz.

C. Comparison with cylinders and cuboids

Up to now, we have considered the levitated superconductor with an ellipsoidal shape. It

is clear that this is an excellent case for extracting analytical expressions and it represents

a pretty good approximation for other shapes. However, the fabrication of such samples is

more complicated than other "simpler" shapes such as cylinders or cuboids. In this section

we present numerical results of trapping frequencies, comparing them with the analytically

obtained for ellipsoids.

To compare the different geometries, we consider spheroids with a = b, and compare them

with cylinders of radius a and length 2c and cuboids with a square cross-section of sides 2a

and length 2c. Note that the volume of the three samples is not the same: Vell = 4πa2c/3,

Vcyl = 2πa2c, and Vcub = 8a2c for the ellipsoid, cylinder, and cuboid, respectively. The mass

density ϱ is considered the same. To compare different aspect ratios, we have fixed the value

of a and varied the value of c. In all the cases, we have considered that all the samples are

in the region where the approximation of the quadrupolar external field holds.

In Fig. 5 we show the calculated frequency for the three shapes as a function of the

aspect ratio. It is important to note that, as we shall see in section IIID, the equilibrium

angle β0 with respect to rotation varies when c/a changes. In Fig. 5 we show the calculated

translational frequencies considering β = β0 (shown in Fig. 5 for cylinders, cuboids, and

ellipsoids). We have also calculated some values for the spheroid to double-check the previous

equations and to ensure that the numerical imprecision of the calculations does not affect

our results. The values for cylinders have also been double-checked in Ref. [16].

The main facts we observe are: (i) the equilibrium angle for stability, β0, is different

depending on the sample and its aspect ratio c/a; (ii) the evaluated vertical frequencies

are larger than the horizontal ones for all the considered geometries; (iii) there is a sudden

change in β0 for the ellipsoids when c/a = 1 yielding a kink in the ellipsoid’s plot; (iv)

for oblate ellipsoids (c/a<1), ωxx = ωyy because β0 = 0; for prolate ellipsoids (c/a > 1),

ωxx ̸= ωyy because β0 = π/2; (v) the vertical and horizontal frequencies for cylinders and
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Figure 5. On top, there are the normalized translational frequencies’ components (in logarithmic

scale) as a function of c/a for ellipsoids (green ellipsoids), cylinders (red circles), and cuboids (blue

squares). Each point is evaluated from the corresponding stable-rotation angle β0. For the same

aspect ratio, this stabilization angle is different depending on the geometry. On the bottom, we

plot the numerically evaluated stabilization angle as a function of the aspect ratio. Therefore, all

frequencies are evaluated with β = β0 (the corresponding rotational-stability angle) and χ = −1.

The lines for the ellipsoids correspond to the analytical expressions [see Eqs. (17), (18), and (19)].

For the cylinders and cuboids, the dotted lines are guides for the eye, and the solid lines are the

analytical expression for the small c/a limits [Eqs.(21) and (22)]. The purple region corresponds to

oblate ellipsoids and the orange one to prolate ellipsoids. All the dots are numerically calculated

values using finite-element methods. The inset below is a scheme of the definition of β0 using a

cylinder as an example.

cuboids are very similar in this comparison; (vi) the frequencies become greater as more

fraction of the superconducting volume is located closer to the z = 0 plane and/or the

z-axis (suggesting a z−revolution astroid-like shape [17] for the levitated particle).

It is interesting to study the c ≪ a limit (very thin samples). It is known that the

external susceptibility at small applied fields is χ0 = f0a/c with f0 = 4/(3π) for cylinders

[18] and f0 = 0.9094 (numerically found value) for cuboids [19]. The resulting vertical and
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horizontal frequencies are

ωzz = 2ω0

√
f0
a

c
, (21)

ωxx = ωyy = ω0 . (22)

Note that, in this limit, β0 = 0 and ωxx and ωyy are the same for both samples. For thin

oblate spheroids, one can also find that ωzz ∝
√

a/c and ωxx (= ωyy) tends to ω0.

D. Torques after rotations

Even if the center-of-mass of the ellipsoid is not displaced from the origin of coordinates,

the spheroid can rotate. Rotation of microscale diamagnets can exhibit interesting quantum

phenomena [20]. In general, the torque on a given magnetized body due to an external field

is given by

T = µ0

∫
V

r× (M · ∇)Ha dV. (23)

When the spheroid is not rotated (their principal axes point along the coordinates axes)

the total torque is zero, although the sample is magnetized. To simplify the treatment of

librations we consider that the rotation is over the y-axis, represented by the angle β. We

can define the librational frequency of the trap as

ωβ =

√√√√ 1

Iy

(
− ∂Ty

∂β

∣∣∣∣
β→β0

)
, (24)

where Iy is the moment of inertia of the spheroid with respect to the y-axis, I = (1/5)m(a2+

c2) = (4/15)πa2c(a2 + c2)ϱ for a solid spheroid.

β0 is the angle with respect to the z-axis at which the total torque cancels when only

libration is considered. Thus, it represents the rotational equilibrium angle. Ellipsoids,

cylinders, and cuboids with identical c/a ratios will stabilize libration at different β0 angles

(see Fig. 5). For cuboids, there would also be an α or γ dependency, that has not been

considered here.

In Ref. [21], the angular frequency was expressed as ωβ = c

a
√

(a/c)2+1

√
15
4πϱ

kβ, where

kβ = − 1
c2

∂Ty

∂β

∣∣∣
β→0

. kβ was been defined as the effective spring constant of an effective

librational oscillator of length c. This definition is similar to ours, although adapted to the

vibration of a cantilever.
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Figure 6. Librational frequencies for angular vibration of ellipsoids (green), cylinders (red), and

cuboids (blue), as a function of the aspect ratio c/a. Each point is evaluated from the corresponding

stable-rotation angle β0, see Fig. 5. The purple region corresponds to oblate ellipsoids and the

orange one to prolate ellipsoids. Dashed lines are guides for the eye.

Although the external field is known, after rotation, we cannot separate the external field

in a non-torque-producing term plus a non-zero uniform term [as we did in Eq. (14)]. In

the case of a superconducting spheroid with χ = −1, the reaction of the superconductor is

the induction of surface currents K whose value is evaluated from the discontinuity of the

tangential component of the B-field at the (rotated) surface of the ellipsoid. In this case,

the total torque can be also expressed as

T = µ0

∫
S

r× (K×Ha) dS. (25)

We could not find in this case an easy analytical expression for the currents. Approximately,

they could be evaluated from the currents at the surface of a sphere [22] adequately distorted

to account for the spheroidal shape and then evaluate the above integral. In any case, the

expressions would not be simple enough as they are in terms of elliptical integrals. We

present in Fig. 6 the librational frequencies evaluated with Eq. (24), after numerically

evaluating the torques. The kink in the librational frequency for the ellipsoids is explained

by the change in β0 from 0 to π/2 when the ellipsoid passes from oblate to prolate, as shown

in Fig. 5.

We observe in Fig. 6 that when c/a is close to unity, cylinders, and cuboids are more

rigid than spheroids, concerning libration (as expected, since for c/a = 1 the ellipsoid is a

sphere which can rotate freely, because of the symmetry). However, as the ellipsoid becomes
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more prolate or more oblate, it becomes more rigidly levitated.

Finally, note that an already rotated ellipsoid, if moved laterally or vertically, would

experience, apart from the evaluated restoring force and torque, extra forces that go in the

direction perpendicular to the displacement, and, as a consequence, also torques in other

directions [see Fig. 2 and Eq. (7)]. The general movement, taking into account all the

possibilities is beyond the scope of this work, but we would like to note that many different

possible modes of vibration can appear and that the particular geometry of the levitating

sample can play a significant role in their trapping frequencies.

IV. CONCLUSIONS

We have found the external susceptibility matrix, S, that directly relates the magneti-

zation of the ellipsoid with the uniform applied field, for all possible relative orientations

between them. The key result is that we can express the applied field in the convenient co-

ordinates needed for describing the magnetic system and the magnetization is found directly

as a function of the demagnetizing factors, which are tabulated assuming that the field is

along one of the principal axes of the ellipsoid.

We have used this result to evaluate the forces received considering a χ = −1 spheroid

located at the central region of an anti-Helmholtz coil system. From these forces, the transla-

tional (analytically and numerically) and the librational (numerically) trapping frequencies

have been evaluated.

The results found, although derived in an idealized case, could be useful in the field of

magnetomechanics, since the knowledge of analytical (despite approximate) equations can

guide the design of the experimental systems. Moreover, the detailed description of the

levitation system and the geometry effects can also serve to calibrate a given experiment

and, thus, increase the performance of the experimental setup.

In a more general scope, the described external susceptibility and its consequences could

help in performing demagnetization corrections in a broad type of experiments since we have

found the external susceptibility tensor as the relation between the internal magnetization (a

measure of the reaction of the material) and the external applied field (an easily controllable

magnitude).
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