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Abstract. Three long memory models, ARFIMA, Timmer and Konig 1995,

and a circular convolution model based on Wold’s representation theorem are

examined. Each model is shown to produce sequences with nonstationary
generalized beta marginal distributions. It is demonstrated that the variance

divided by the squared range of the sequence is stationary, and is a function of
the shape parameter of the resulting symmetric beta distribution. Using the

Wold model, a simple matrix distribution transformation is given that maps

the normal components of the long memory model onto the beta distribution.

1. Introduction

Two properties of long memory sequences, produced by the three models, ob-
scure the probability distribution: serial correlation, and nonstationarity of the
variance and mean. Serial correlation of the sequence impedes sampling of the
full extent of the distribution. Generation of multiple subsequences derived from
different random seeds allow sampling of most of the possible values of the model.
Min-max normalization of the same subsequences transforms the distribution to the
unit interval [0, 1], mitigating nonstationarity, and preserving the distribution type.
Concatenation of the processed subsequences facilitates the generation a complete
empirical density. These operations allow a representation of the sequence distri-
bution type as a symmetric beta distribution. It is inferred from the resulting
distribution that the preprocessed distribution is a nonstationary generalized beta
distribution.

The ratio of variance and squared range of long memory sequences produced by
the three models is shown to be stationary. As well, the shape parameter of the
symmetric beta distribution is a function of the ratio.

The three models tested are Granger and Joyeux’s ARFIMA model, Timmer and
Konig’s 1995 model, and a model based on Herman Wold’s moving average model.
Kernal density plots are derived from the ARFIMA model for truncated normal,
Wigner semi-circle, uniform, and arcsine densities. These densities are identifi-
able members of the symmetric beta distribution family. The four beta densities
produced by the Timmer and Konig model and the Wold model are statistically
identical and are not given in a figure.

A model generating long memory sequences based on HermanWold’s convolution
theorem is given. The model consists of the matrix product of a circulant matrix
derived from the spectral trend of the desired long memory sequence, and a vector
of zero mean, unit variance, normal random samples. The simplicity of the linear
algebra model facilitates understanding of the distribution transformation of the
normal distribution onto the beta distribution using the inverse circulant matrix.

Code written in the R language is used as the exploratory component of this
paper, and examples of the code are provided.

1

ar
X

iv
:2

40
4.

05
73

6v
1 

 [
m

at
h.

G
M

] 
 2

6 
M

ar
 2

02
4



2 ROBERT KIMBERK

2. The Shape Parameter of the Symmetric Generalized Beta
Distribution

The variance of a four parameter generalized beta distributed sequence is defined
as

(1) σ2 = (b− a)2
αβ

(α+ β)2(α+ β + 1)

where (b − a)2 is the squared range of the sequence, and (α, β) are the two beta
distribution shape parameters. As all the beta distributions described in this paper
are symmetric, which occurs when α and β are equal, this paper combines the two
shape parameters into the α symbol such that α+ β = 2α and αβ = α2 . Merging
the shape parameters in equation (1), dividing both sides by the squared range,
and simplifying the resulting equation gives the following

(2)
σ2

(b− a)2
=

1

8α+ 4

The shape parameter, α, of the four beta distributions are as follows, for arcsine
distribution α = 1

2 , uniform distribution α = 1, Wigner semi circle distribution

α = 3
2 and the truncated normal distribution α > 5.

A similar equation is Tiberiu Popoviciu’s variance inequality on bounded prob-
ability distributions [1]

(3)
σ2

(b− a)2
≦

1

4

All sequences in this paper are of bounded support and elements of the sequences
are finite. Popoviciu’s theorem constrains α in equation (2) such that 0 ≦ α < ∞.

A property of

(4)
σ2

(b− a)2

is scale invariance. A homogeneous function f of degree p is a function of a sequence
x and scalar t such that [2]

(5) f(t(x)) = tpf(x)

It is easy to see that variance, and squared range are both homogeneous functions of
degree two. The ratio of variance to squared range remains constant when sequence
x is scaled by scalar t.

3. Min-Max Normalization

Min-max normalization is a scale and location transformation that preserves the
type of distribution family [3, 4] , and maps the distribution to the unit interval
[0, 1]. Subtract the minimum value of sequence, min(x), from each sequence ele-
ment, and divide each element of the result by the range, range(x), to produce the
min max normalized sequence.

(6)
x−min(x)

range(x)
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In terms of the sequence x, with range [a, b], and with a = min(x), b = max(x),
min max normalization is described as

(7)
[a, b]− a

b− a
=

[0, b− a]

b− a
= [0, 1]

For symmetric beta distributions with support on the unit interval [0, 1] the mean
is one half, and the ratio of variance to squared range is equal to the variance. The
variance of the normalized four test beta distributions are: arcsine distribution
var = 1

8 , uniform distribution var = 1
12 , Wigner semicircle distribution var = 1

16 ,
and truncated normal distribution var = small.

4. Power Spectral Density Trend of a Long Memory Sequence

The power spectral density of a long memory sequence is characterized by ran-
dom values distributed about a deterministic trend that is proportional to the
absolute value of the Fourier frequency variable f raised to a power −β, and scaled
by a constant k

(8) k|f |−β where 0 < k, and 0 ≦ β

The power spectral density trend is a power law function producing a linear
graph with a slope of −β, when plotted with logarithmic coordinate axes.

While β is a convenient descriptor for a long memory sequence it is not sufficient
to describe the probability distribution of the long memory sequence. In general
range is not defined by β, with the exception of a random walk, where the range
is defined by Khinchin’s Law of the Iterated Logarithm. However there is a loose
relation between the power spectral density β and the beta distribution shape
parameter α. As β increases α decreases.

5. Three Long Memory Models

The four beta densities presented in figure 1 are representative of the densities
generated by each of the three models. In each model a sequence of normally
distributed values is transformed into a long memory sequence with a beta type
distribution.The R code in the following four programs may be copied and pasted
into a R editor, and after the indicated parameters are changed in the code, the
program may be run.

5.1. ARFIMA. The densities in figure 1 are derived from a fractionally differenced
ARFIMA(0,d,0) model, where the d = dint + dfrac parameters are given above each
graph of density. Description of the model may be found in the following references
[5, 6].

The R program to generate the densities is as follows. The arfima.sim function
parameters dint and dfrac may be changed to the values shown in figure 1 to derive
the four beta type distributions.
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#arfima.sim produces beta distribution

#load arfima package

n = 1e3

t = 0

i = 1

for ( i in 1:200 ) {

set.seed( i* 7)

q = arfima.sim( n, model = list(dfrac = .22, dint = 2,

sigma2 = 1 ), rand.gen = rnorm )

z = ( q - min( q ) ) / (max(q) - min( q ) )

t = c( t, z ) }

var(t)

d = density( t, bw = .01 )

plot( d, lwd = 3 )

Note that the distribution of the innovations is set to normal by rand.gen =
rnorm, and the densities ploted are kernal densities.

5.2. TK95. A power law noise model created by Timmer and Konig in 1995. The
model, based on function (8) of this paper, is fully explained in the paper by Timmer
and Konig [7].
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Figure 1. Beta Densities from ARFIMA.SIM
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The R program to generate the four densities as shown in figure 1 is as follows.
The alpha argument of the TK95 function may be changed to 0 for a truncated
normal density, 2.2 for a Wigner semi circle density, 2.9 for an uniform density, and
8 for an arcsine density.

#TK95 produces beta distribution

# load package RobPer

n = 1e3

i = 1

y = 0

for (i in 1:200) {

set.seed(i*7)

x = TK95(n,alpha = 8)

x = (x - min(x)) / (max(x) - min(x))

y = c(y,x) }

var(y)

d = density(y, bw = .01)

plot(d, lwd = 3)

5.3. Wold model. A modification of Herman Wold’s convolution model for a non-
stationary stochastic process [8]. It is a matrix product of a circulant matrix [9],
derived from function (8) of this paper, and a random normal vector to a long mem-
ory sequence. An advantage of this model is this, the inverse circulant matrix can
be used to demonstrate the transformation of the normal distribution into a beta
distribution. A more complete description of this model may be found in the paper
by Kimberk, Carter, and Hunter [10]. The beta variable may may be changed to
0 for a truncated normal density, 2.17 for a Wigner semi circle density, 2.87 for an
uniform density, and 8.6 for an arcsine density.

#Wold’s model produces beta distribution

#load package magic

beta = 2.87

n = 1e3

b = 0

i = 1

y = 0

for (i in 1:100) {

set.seed(200 + i*7)

epsilon = rnorm(n+1, mean = 0, sd = 1)

freq = c(seq(-1/2, -1/n, by = 1/n), 1e-5,

seq(1/n, 1/2, by = 1/n))

density = (abs(freq))^(-beta/2)

b = Mod(((n^(-1/2))* fft(density, inverse = TRUE )))

C = circulant(b)

x = C %*% epsilon

x = (x - min(x)) / (max(x) - min(x))

y = c(y,x) }

var(y)

d = density(y, bw = .01)

plot(d, lwd = 3)
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6. Distribution Transformation

Let C be the square circulant matrix in the Wold model, and x be the column
vector of a normally distributed instances of random variable X, as in Wold’s model,
section 5.3. Then y, the product of matrix C and vector x, will be a long memory
sequence with a beta type distribution.

(9) y = Cx

If FB is the beta distribution function and FN is the normal distribution function
then the following equation is the transformation of distribution functions [11].

(10) FB [y] = P (Y ≦ y) = P (Cϵ ≦ y) = P (X ≦ C−1y) = FN [C−1(y)]

The four beta distribution functions of figure 2, corresponding to the four density
functions of figure 1, are derived from the following R program implementing equa-
tion (10). Note that the range of the truncated normal distribution (beta = 0) is
shortened by changing d to d[450:550] in the last line of the following code.
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Figure 2. Four Beta Distributions Functions of Transformed
Normal Sequence



BETA DISTRIBUTION OF LONG MEMORY SEQUENCES 7

# Distribution transformation

# load package magic

# beta: 0 = normal, 0.75 = Wigner semi circle,

#0.84 = uniform, 1.1 = arcsine

beta = .75

n = 1000

freq = c(seq(-1/2, -1/n, by = 1/n), 1e-5,

seq(1/n, 1/2, by = 1/n))

density = (abs(freq)) ^(-beta / 2)

b = Mod((n^(-1/2))*fft(density, inverse = TRUE))

C = circulant(b, doseq = TRUE)

y = seq(-1000, 1000, by = 2)

inverse_C = solve(C)

x = inverse_C %*% y

d = pnorm(x, mean = 0, sd = 1)

plot(d, type = "l", lwd = 2)
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