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ON A USEFUL LEMMA THAT RELATES

QUASI-NONEXPANSIVE AND DEMICONTRACTIVE

MAPPINGS IN HILBERT SPACES

VASILE BERINDE1,2

Abstract. We give a brief account on a basic result (Lemma 2)
which is a very useful tool in proving various convergence theorems
in the framework of the iterative approximation of fixed points
of demicontractive mappings in Hilbert spaces. This Lemma re-
lates the class of quasi-nonexpansive mappings, by one hand, and
the class of k-demicontractive mappings (quasi k-strict pseudo-
contractions), on the other hand and essentially states that the
class of demicontractive mappings, which strictly includes the class
of quasi-nonexpansive mappings, can be embedded in the later
by means of an averaged perturbation. From the point of view
of the fixed point problem, this means that any convergence re-
sult for Krasnoselskij-Mann iterative algorithms in the class of k-
demicontractive mappings can be derived from its corresponding
counterpart from quasi-nonexpansive mappings.

1. Introduction

Nonexpansive type operators are extremely important in the met-
ric fixed point theory, both from the theoretical point of view and
especially for their large areas of applications, see [23] for a very re-
cent survey. In this note we shall refer mainly to the following classes
of mappings: nonexpansive, quasi-nonexpansive, k-strictly pseudocon-
tractive (in the sense of Browder and Petryshyn) and quasi k-strictly
pseudocontractive (commonly called demicontractive), which, although
largely well known, are defined in the following for the sake of com-
pleteness.

Let H be a real Hilbert space with norm and inner product denoted
as usually by ‖ · ‖ and 〈·, ·〉, respectively. Let C ⊂ H be a closed and
convex set and T : C → C be a self mapping. Denote by

Fix (T ) = {x ∈ C : Tx = x}

the set of fixed points of T .

Definition 1. The mapping T is said to be:

1) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C. (1)
1

http://arxiv.org/abs/2404.05753v1


2 Vasile Berinde

2) quasi-nonexpansive if Fix (T ) 6= ∅ and

‖Tx− y‖ ≤ ‖x− y‖, for all x ∈ C and y ∈ Fix (T ). (2)

3) k-strictly pseudocontractive of the Browder-Petryshyn type ([29])
if there exists k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− y − Tx+ Ty‖2, ∀x, y ∈ C. (3)

4) k-demicontractive ([66]) or quasi k-strictly pseudocontractive
(see [27]) if Fix (T ) 6= ∅ and there exists a positive number k < 1
such that

‖Tx− y‖2 ≤ ‖x− y‖2 + k‖x− Tx‖2, (4)

for all x ∈ C and y ∈ Fix (T ).

It is known, see the remarks following Definition 2, that Definition
1 4) is equivalent, in the setting of a Hilbert space, with Definition 2,
that is, (4) is equivalent to (7).

Let us denote by NE , QNE , SPC and DC the classes of nonexpan-
sive, quasi-nonexpansive, k-strictly pseudocontractive (in the sense of
Browder and Petryshyn) and quasi k-strictly pseudocontractive (demi-
contractive), respectively.

In Metrical Fixed Point Theory there was a long standing and there
still exists a steadily increasing interest for studying the existence and
approximation of fixed points of mappings in all of the above four
classes of mappings and in many related ones like asymptotically non-
expansive, firmly nonexpansive etc.

Most of the literature is devoted to mappings in the classes NE ,
QNE , SPC but, starting with the year 2008, there was also an in-
creasing interest for studying the mappings in the class DC, see the
very recent survey [23] and especially the consistent list of references
therein, of which most are also included here, for the sake of complete-
ness, see [2]-[13], [22]-[28], [31]-[112], [114]-[181].

In order to establish convergence theorems for fixed point iteration
schemes, some authors ([91], [66], [101],...) have used implicitly or
explicitly ([94], [22]) a lemma that relates the classes QNE and DC.

The aim of this note is to review some of the most important mo-
ments in the process of discovering and use of this Lemma in order to
prove convergence theorems in the class of demicontractive operators.

2. The complete inclusion diagram of the classes NE,
QNE, SPC and DC

To our best knowledge, there is no any paper that includes to-
gether a diagram of the four classes of nonexpansive type mappings
NE , QNE , SPC and DC, which should clearly show by appropriate
examples the complete map of the relationships existing between all of
them.
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So, we are doing this is the present section, mainly for its use in
this note but also for the importance itself of such a diagram.

The next two simple examples show that NE and QNE are inde-
pendent sets, i.e., NE ∩ QNE 6= ∅, NE is not included in QNE and
QNE is not included in NE .

Example 1. Let H be the real line with the usual norm, C = [0, 1]
and T1x = 1 + x, x ∈ [0, 1]. Then: 1) T1 ∈ NE; 2) Fix (T1) = ∅; 3)
T1 /∈ QNE .

Example 2. Let H be the real line with the usual norm, C = [0, 2]
and T2x = 2 − x, x ∈ [0, 2]. Then: 1) T2 ∈ NE; 2) T2 ∈ QNE; 3)
Fix (T2) = {1}.

The following lemma follows immediately from Definition 1.

Lemma 1.

NE ⊆ SPC; (5)

QNE ⊆ DC. (6)

By means of the next example we show that inclusion (5) is strict,
i.e., NE ( SPC.

Example 3. Let H be the real line with the usual norm, C =

[

1

2
, 2

]

and T3 : C → C defined by T3(x) =
1

x
, ∀x ∈ C. Then: 1) Fix (T3) 6=

∅; 2) T3 ∈ SPC; 3) T3 /∈ NE.

Proof. 1) Fix (T3) = {1};

2) By (3), T3 ∈ SPC if there exists k ∈ (0, 1) such that, for all
x, y ∈ C,

‖T3x− T3y‖
2 ≤ ‖x− y‖2 + k‖x− y − T3x+ T3y‖

2,

which in our case reduces to
∣

∣

∣

∣

1

x
−

1

y

∣

∣

∣

∣

2

≤ |x−y|2+k

∣

∣

∣

∣

x−
1

x
− y +

1

y

∣

∣

∣

∣

2

⇔ 1 ≤ x2y2+k(1+xy)2, x, y ∈

[

1

2
, 2

]

.

By denoting t := xy, it follows that t ∈

[

1

4
, 4

]

and hence we have

to prove that there exists k > 0 such that
1− t2

(1 + t)2
≤ k < 1, for all t ∈

[

1

4
, 4

]

. Consider the function f(t) :=

1− t2

(1 + t)2
, t ∈

[

1

4
, 4

]

.
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Since f ′(t) = −
2

(1 + t)2
< 0, it follows that f is strictly decreasing

on

[

1

4
, 4

]

, which implies

f(t) ≤ f

(

1

4

)

=
3

5
, for all t ∈

[

1

4
, 4

]

.

This shows that one can choose k =
3

5
and so, T3 is

3

5
-strictly

pseudocontractive.

3) Assume T3 ∈ NE , i.e., |T3x−T3y| ≤ |x− y|, ∀x, y ∈ C =

[

1

2
, 2

]

and take x =
1

2
and y = 1 to get |2 − 1| ≤

∣

∣

∣

∣

1

2
− 1

∣

∣

∣

∣

⇔ 1 ≤
1

2
, a

contradiction.
�

Example 4. Let H be the real line with the usual norm and C = [0, 2].

Define T4 : [0, 2] → [0, 2] by T4x =
x2 + 2

x+ 1
, for all x ∈ [0, 2]. Then: 1)

Fix (T4) 6= ∅; 2) T4 ∈ QNE; 3) T4 /∈ NE; 4) T4 /∈ SPC.

Proof. 1) Fix (T4) = {2};
2) For y = 2 and x ∈ [0, 2], by (2) we have

|T4x− 2| =

∣

∣

∣

∣

x2 + 2

x+ 1
− 2

∣

∣

∣

∣

=
x

x+ 1
· |x− 2| ≤ |x− 2|, x ∈ [0, 2],

and so T4 ∈ QNE .

3) Just consider x = 0 and y =
1

3
in (1) to get

5

12
=

∣

∣

∣

∣

T40− T4

1

3

∣

∣

∣

∣

≤

∣

∣

∣

∣

0−
1

3

∣

∣

∣

∣

=
1

3
,

a contradiction since
5

12
>

1

3
. So, T4 /∈ NE .

4) Assume now that T4 ∈ SPC and take x = 0 and y =
1

3
in (3) to

get
(

5

12

)2

=

∣

∣

∣

∣

T40− T4

1

3

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

0−
1

3

∣

∣

∣

∣

2

+k

∣

∣

∣

∣

0− T40−

(

1

3
− T4

1

3

)
∣

∣

∣

∣

2

=

(

1

3

)2

+k

(

3

4

)2

,

which is a contradiction, since
5

12
>

1

3
and k > 0. Hence T4 /∈ SPC. �

The next example shows that the inclusion (6) is also strict, i.e.,
QNE ( DC.

Example 5. Let H be the real line with the usual norm and C = [0, 1].

Define T5 on C by T5x =
7

8
, if 0 ≤ x < 1 and T51 =

1

4
. Then:
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1) Fix (T5) 6= ∅; 2) T5 ∈ DC; 3) T5 /∈ NE; 4) T5 /∈ QNE; 5)
T5 /∈ SPC.

Proof. 1) Fix (T5) =

{

7

8

}

;

2) By taking y =
7

8
and x ∈ [0, 1), inequality (4) becomes:

|T5x− y|2 = 0 ≤ |x− y|2 + k|x− T5x|
2,

which obviously holds, for any k > 0.
It remains to check (4) for the case x = 1, which yields

∣

∣

∣

∣

1

4
−

7

8

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

1−
7

8

∣

∣

∣

∣

2

+ k

∣

∣

∣

∣

1−
1

4

∣

∣

∣

∣

2

and which holds true for any k ≥
2

3
. Hence T5 is

2

3
-demicontractive.

3) To show that T5 is not quasi-nonexpansive, take x = 1 and

y =
7

8
in (2), to get

5

8
≤

1

8
, a contradiction. Hence T5 is not quasi-

nonexpansive.

4) To prove that T5 is not nonexpansive take x = 1 and y =
7

8
in

(1) to get the same contradiction as above.
5) Assume T5 is k-strictly pseudocontractive, that is, there exists

k < 1 such that (3) holds for any x, y ∈ [0, 1]. By taking x ∈ [0, 1) and
y = 1 in (3) we have

(

5

8

)2

≤ (x− 1)2 + k

(

x− 1−
5

8

)2

, x ∈ [0, 1),

from which, by letting x → 1 we obtain 1 ≤ k < 1, a contradiction.
Hence T5 is not strictly pseudocontractive. �

Based on Lemma 1 and Examples 1-5, we have the following com-
plete map of the relationships between the four sets of nonexpansive
type mappings in Definition 1.

NE · T2· T1

· T3

SPC

· T4

QNE

· T5

DC
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Figure 1. Diagram of the relationships between the classes NE ,
QNE , SPC and DC

3. A Lemma that relates quasi-nonexpansive and

demicontractive mappings

The main aim of this section is to present some historical facts
about the use and formulation of an important lemma that relates
quasi-nonexpansive and demicontractive mappings.

This result is of particular importance in proving convergence theo-
rems for some fixed point iterative schemes like Krasnoselskii, Krasnoselskij-
Mann etc. in the class of demicontractive mappings, by reducing the ar-
guments to the same algorithms but in the class of quasi-nonexpansive
mappings.

We state it in the form it has been presented and used in the paper
[22] and, for the sake of completeness, we also give its proof.

Lemma 2 ([22], Lemma 3.2). Let H be a real Hilbert space, C ⊂ H be
a closed and convex set. If T : C → C is k-demicontractive, then for
any λ ∈ (0, 1− k), Tλ is quasi-nonexpansive.

Proof. By hypothesis, we have Fix (T ) 6= ∅ and there exists k < 1 such
that

‖Tx− y‖2 ≤ ‖x− y‖2 + k‖x− Tx‖2, x ∈ C and y ∈ Fix (T )

which is equivalent to

〈Tx− x, x− y〉 ≤
k − 1

2
· ‖x− Tx‖2, x ∈ C, y ∈ Fix (T ).

Then, for all x ∈ C and y ∈ Fix (T ), we have

‖Tλx− y‖2 = ‖λ(Tx− x) + x− y‖2 = ‖x− y‖2 + 2λ〈Tx− x, x− y〉

+λ2‖Tx− x‖2 ≤ ‖x− y‖2 + (λ2 + λk − λ)‖Tx− x‖2

= ‖x− y‖2 +
λ2 + λk − λ

λ2
· ‖Tλx− x‖2, x ∈ C, y ∈ Fix (T ).

So, if λ2+λk−λ < 0, that is, λ < 1−k, then the above inequality
implies that

‖Tλx− y‖2 ≤ ‖x− y‖2, x ∈ C, y ∈ Fix (T ),

i.e., that Tλ is quasi-nonexpansive. �

We are now interested to trace back on the use of this simple but
important Lemma. As it has been shown in the very recent survey pa-
per [23], the demicontractive mappings were introduced independently
in 1977 by Măruşter [91] and Hicks and Kubicek [66], respectively, in
the setting of a Hilbert space.

The same notion has been introduced in 1973 by Măruşter [90], in
the particular case of Rn, but for the case of the nonlinear equation
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U(x) = 0. By simply taking U = I − T , one finds the same concept
as the one introduced in [91]. This was the reason why in the survey
paper [23] we have considered 1973 as the birth date of demicontractive
mappings.

In order to present some facts about the early use of Lemma 2, we
also give here Măruşter’s definition [91] of demicontractive mappings.
It is important to note that the term ”demicontractive” was coined by
Hicks and Kubicek [66], who introduced it by means of inequality (4).

Definition 2 (Măruşter [91]). Let H be a real Hilbert space and C a
closed convex subset of H. A mapping T : C → C such that Fix (T ) 6=
∅ is said to satisfy condition (A) if there exists λ > 0 such that

〈x− Tx, x− x∗〉 ≥ λ‖Tx− x‖2, ∀x ∈ C, x∗ ∈ Fix (T ). (7)

Despite the fact that the two definitions were introduced in the
same year and in very visible magazines, it was not apparent for a
rather long time that the two inequalities (4) and (7), which involve
different formulas, are actually equivalent in the setting of a Hilbert
space.

This fact was observed more than two decades later, by Moore [100]
and is based on the following identity, valid in a real Hilbert space:

‖x−x∗‖2+k‖x−Tx‖2−‖Tx−x∗‖2 = 2〈x−x∗, x−Tx〉−(1−k)‖x−Tx‖2,

see [100]) for more details.
In our recent paper [22], based on Lemma 2, we have explicitly

proven that, in Hilbert spaces, any convergence result for a Kras-
noselkij type fixed point iterative algorithm in the class of demicon-
tractive mappings can be deduced from its counterpart in the class of
quasi-nonexpansive mappings.

But this fact was known and used implicitly long before by a few
researchers that were working in this area. Our aim is to survey all
those attempts that precede the more recent papers [139], [151] and
[22], where Lemma 2 was explicitly stated.

1) In the proof of Theorem 1 in Măruşter [91], the author used the
same arguments like the ones in the proof of Lemma 2.

Indeed, if we adapt the notations in [91] to our current ones, i.e.,
we denote the fixed point of T by x∗ instead of ξ and the parameter
tk involved in the Mann iteration by t, what Măruşter [91] did, see the
first 4 rows on page 70, is the following

‖Ttx− x∗‖2 = ‖x− x∗ − t(x− Tx)‖2 = ‖x− x∗‖2 − 2t〈x− Tx, x− x∗〉

+t2‖x− Tx‖2 ≤ ‖x− x∗‖2 + t(2λ− t)‖x− Tx‖2

and since 2λ− t > 0, it follows that

‖Ttx− x∗‖ ≤ ‖x− x∗‖, x ∈ C, x∗ ∈ Fix (T ),

which means that Tt is quasi-nonexpansive for 0 < t < 2λ.
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On the other hand, if we keep in mind the relationship between λ in

(7) and k in (4), that is, λ =
1− k

2
, then we get exactly the condition

on the parameter in Lemma 2 that ensures that the averaged operator
Tt is quasi-nonexpansive.

As a matter of fact, in [91] all the above calculations were performed
directly for the sequence xk+1 = Ttxk and not for the mapping Tt.

2) In the proof of Théoréme in [90], the same arguments were used,
but for the case of the nonlinear equation U(x) = 0. By simply taking
U = I − T , the proof actually shows that the mapping Tµ is quasi-
nonexpansive for µ < 2η, where η corresponds to λ in (7).

Similarly to [91], the author did all the calculations in [90] for the
sequence xp+1 = Tµxp and not for the mapping Tµ.

3) In the proof of Theorem 1 in [66], the authors performed similar
calculations to those in [91] but for the sequence vn+1 = Tdnvn and not
for the averaged mapping Tdn .

4) In a series of papers from the period 2003-2009, see [92], [89],
[93]-[95], Măruşter used Lemma 2 and even presented a complete proof
of it, but in the framework of the proof of the main result established
there. For example, in [92], this is done in the proof of Theorem 2.
Lemma 2 is also explicitly stated and proved and then used to apply
Theorem 1 in [92] (about quasi-nonexpansive mappings) to get the
desired conclusion. Similar formulations of Lemma 2 do appear under
various forms in the subsequent papers by Măruşter [89], [93]-[95].

5) In Remark 2.1 from Moudafi [101], Lemma 2 is explicitly stated
and proven, as follows.

”Let T be a k-demicontractive self-mapping onH with Fix (T ) 6= ∅
and set Tw := (1−w)I+wT for w ∈ (0, 1]. It is obviously checked that
Fix (T ) = Fix (Tw). Moreover, Tw is quasi-nonexpansive for w small
enough. Indeed, given an arbitrary (x, q) ∈ H × Fix (T ), we have

|Twx− q|2 = |(x− q) + w(Tx− x)|2

= |x− q|2 − 2w〈x− q, x− Tx〉+ w2|Tx− x|2

which by (1.5) (i.e., the demicontractive condition in Măruşter’s form)
yields

|Twx− q|2 ≤ |x− q|2 − w(1− k − w)|Tx− x|2.

Consequently, if w ∈ (0, 1− k], then Tw is quasi-nonexpansive...”
This explicit statement and its proof are reproduced in Maingé and

Moudafi [87] (Remark 2.1), in Maingé [82] (Remark 4.2) and in some
other papers by the same authors.

6) It appears that Tang et al. [139] were the first ones to state
explicitly Lemma 2, by referring to Remark 2.1 from Moudafi [101].
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7) The present author, who was not aware of the implicit or explicit
statements of Lemma 2 reviewed previously, formulated it as an auxil-
iary result (Lemma 3.2) in [22], and, based on it, presented simpler and
unifying proofs for the pioneering papers by Măruşter [91] and Hicks
and Kubicek [66].

The title of [22], Approximating fixed points results for demicon-
tractive mappings could be derived from their quasi-nonexpansive coun-
terparts, as well as its first conclusions reproduced below should be
taken into consideration by all researchers dealing with the study of
demicontractive mappings.

”1. In this paper we have shown that the convergence theorems
for Mann iteration used for approximating the fixed points of demi-
contractive mappings in Hilbert spaces could be derived from the cor-
responding convergence theorems in the class of quasi-nonexpansive
mappings.

2. Our derivation is based on an imbedding technique described
by Lemma 3.2, which essentially shows that if T is k-demicontractive,
then for any λ ∈ (0, 1− k), Tλ is quasi-nonexpansive.

3. In this way we obtained a unifying technique of proof for var-
ious well known results in the fixed point theory of demicontractive
mappings that has been illustrated for the case of the first two clas-
sical convergence results in the class of demicontractive mappings in
literature: Măruşter [91] and Hicks and Kubicek [66].”

We note that a similar technique also works for k-strict pseudocon-
tractions, which can be embedded in the class of nonexpansive map-
pings in Hilbert spaces. This fact was first exploited by Browder and
Petryshyn [29], [113], and also used much later by Zhou [177] in the
case of nonself mappings.

4. Conclusions

1. I this paper we gave a brief account on a basic result (Lemma
2) which is a very useful tool in proving various convergence theo-
rems in the framework of the iterative approximation of fixed points of
demicontractive mappings in Hilbert spaces. This lemma relates the
class of quasi-nonexpansive mappings, by one hand, and the class of
k-demicontractive mappings (or quasi k-strict pseudocontractions), on
the other hand and essentially states that the class of demicontrac-
tive mappings, which strictly includes the class of quasi-nonexpansive
mappings, can be embedded in the later by means of an averaged per-
turbation.

2. From the point of view of the fixed point problem, this means
that any convergence result for Krasnoselskij-Mann iterative algorithms
in the class of demicontractive mappings can be derived from its cor-
responding counterpart established for quasi-nonexpansive mappings.
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3. The nonexpansive mappings are important in solving various
problems in data science, like image recovery, machine learning, signal
processing, neural networks etc. This was the reason why, in Sec-
tion 2, we presented, by means of appropriate examples, the complete
map of the relationships existing amongst four important such classes:
nonexpansive mappings, quasi-nonexpansive mappings, strictly pseu-
docontractive mappings and demicontractive mappings. To our best
knowledge, this is the first time such a diagram is pictured.

4. In this context, we also collected an almost complete list of
references related to the study of fixed point problem in the class of
demicontractive mappings, mainly taken from [23].

5. The main message of this note for researchers working in that
area is to use Lemma 2 when dealing with convergence theorems of
Krasoselskij-Man type in the class of demicontractive mappings, in
order to unify and simplify the proofs.

6. One of the main aims of this note was to trace back on the
awareness and use of Lemma 2. We thus discovered that its inception
started with the pioneering works on demicontractive mappings, due
to Măruşter [90], [91] and Hicks and Kubicek [66], and that the first
explicit statement and proof of this lemma in due to Măruşter [92],
who did it within the proof of Theorem 2 [92].

7. A similar technique works for k-strict pseudocontractions, which
can be embedded in the class of nonexpansive mappings in Hilbert
spaces, first exploited by Browder and Petryshyn [29], see also [113],
and also used much later by Zhou [177] in the case of nonself mappings,
but this should be the subject of another paper.
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An. Univ. Vest Timiş. Ser. Mat.-Inform. 56 (2018), no. 2, 13–27.



12 Vasile Berinde

[19] Berinde, V. Approximating fixed points of enriched nonexpansive mappings by
Krasnoselskij iteration in Hilbert spaces. Carpathian J. Math. 35 (2019), no.
3, 293–304.

[20] Berinde, V. Celebrating the 70th birthday of Professor Charles E. Chidume.
J. Nigerian Math. Soc. 38 (2019), no. 3, 329–340.

[21] Berinde, V. Approximating fixed points of enriched nonexpansive mappings
in Banach spaces by using a retraction-displacement condition. Carpathian J.
Math. 36 (2020), no. 1, 27–34.

[22] Berinde, V. Approximating fixed points of demicontractive mappings via the
quasi-nonexpansive case. Carpathian J. Math. 39 (2023), no. 1, 73–85.

[23] Berinde, V. Single-Valued Demicontractive Mappings: Half a Century of
Developments and Future Prospects. Symmetry, 15 (2023), no. 10, 1866;
https://doi.org/10.3390/sym15101866
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[82] Maingé, P.-E. A hybrid extragradient-viscosity method for monotone operators
and fixed point problems. SIAM J. Control Optim. 47 (2008), no. 3, 1499–1515.
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Canad. Math. Bull. 16 (1973), 541–544.
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[94] Măruşter, Şt.; Popirlan, C. On the Mann-type iteration and the convex feasi-
bility problem. J. Comput. Appl. Math. 212 (2008), no. 2, 390–396.
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