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The conventional continuous quantum heat engines rely on incoherent heat transfer with the baths and, thus,
have limited capability to outperform their classical counterparts. In this work, we introduce distinct continuous
quantum heat engines that utilize coherent heat transfer with baths, yielding significant quantum enhancement
in performance. These continuous engines, termed as coherent engines, consist of one qutrit system and two
photonic baths and enable coherent heat transfer via two-photon transitions involving three-body interactions
between the system and hot and cold baths. The closest quantum incoherent analogs are those that only al-
low incoherent heat transfer between the qutrit and the baths via one-photon transitions relying on two-body
interactions between the system and hot or cold baths. We demonstrate that coherent engines deliver much
higher power output and a much lower signal-to-noise ratio in power, where the latter signifies the reliability
of an engine, compared to incoherent engines. Coherent engines manifest more non-classical features than
incoherent engines because they violate the classical thermodynamic uncertainty relation by a greater amount
and for a wider range of parameters. Importantly, coherent engines can operate close to or at the fundamental
lower limit on reliability given by the quantum version of the thermodynamic uncertainty relation, making them
highly reliable. These genuine enhancements in performance by hundreds of folds over incoherent engines and
the saturation of the quantum limit by coherent engines are directly attributed to its capacity to harness higher
energetic coherence which is, again, a consequence of coherent heat transfer. The experimental feasibility of
the coherent engines and the improved understanding of how quantum properties may enhance performance are
expected to have significant implications in emerging quantum-enabled technologies.

I. INTRODUCTION

Quantum heat engines – microscopic thermal devices de-
signed to convert heat into quantum mechanical work – have
become one of the focal points of research considering the
current quantum industrial revolution [1, 2]. This leads to
studying thermodynamics in the microscopic and quantum
regime, both from foundational and applied aspects [1, 3–
22]. The earliest model of a quantum heat engine was pro-
posed by Scovil and Schulz-DuBois (SSD), which is com-
posed of a qutrit interacting with two thermal baths [23].
Later, it was re-investigated in a full quantum setting using
open quantum system dynamics [24–27]. In the last decades,
many other models of quantum heat engines have been pro-
posed; see Refs. [1, 27–29] for a comprehensive overview
of historical and recent advancements. Optomechanical sys-
tems [30], nitrogen-vacancy centers in diamond [31], trapped
ions [32, 33], nuclear magnetic resonance (NMR) [34], and
superconducting circuits [35] have emerged as versatile ex-
perimental platforms to realize quantum heat engines, bring-
ing these theoretical concepts into practical realizations.

The conventional continuous quantum heat engines oper-
ate in a steady-state regime, by interacting continuously with
hot and cold baths [1, 27–29]. These engines, in general, de-
liver low power with high fluctuation [27, 36–39]. As a result,
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the reliability, i.e., the ratio between the variance and average
of power (or relative fluctuation in power), of these engines
is considerably compromised. Recent studies focus on im-
proving the performance of quantum heat engines, aiming for
more power with higher reliability (less relative fluctuation in
power), by harnessing energetic coherence. It has been ob-
served that continuous quantum thermal devices, when ener-
getic coherence is present, may enhance power [40, 41] and
efficiency [42, 43], suppress fluctuation in power [37, 39].
and may lead to violation of classical thermodynamic trade-
off relations (classical thermodynamic uncertainty relation
(cTUR) [44] and power-efficiency-constancy trade-off rela-
tion [45]) [37–39, 46–53]. These violations indicate that these
engines can operate in the quantum regime. However, it
does not necessarily imply that quantum engines are operating
close to their optimal capacity in terms of reliability. Ideally,
one would expect negligible relative fluctuation in power from
an ideal continuous engine. However, relative fluctuation can-
not be suppressed to zero due to the existence of a finite lower
bound on it determined by the quantum thermodynamic un-
certainty relation (qTUR) [54]. This lower bound represents
a fundamental quantum limit, which is derived from the cele-
brated quantum Cramér-Rao bound [55], and is closely related
to the so-called quantum speed limits [54, 56].

The characteristic feature of traditional continuous quan-
tum heat engines is that they utilize incoherent heat transfers
between the working system and the baths. It implies that
the transitions induced in the working system by the hot and
cold baths are independent (or uncorrelated), rendering them
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highly stochastic in nature. This feature constitutes one of the
reasons for these engines to have limited ability to outperform
their classical counterparts. Therefore, we are required to re-
duce the stochastic nature of the transitions in the working
system induced by the baths to overcome these limitations.
The natural question is, thus, how to employ an operationally
distinct heat transfer mechanism, rather than the incoherent
one, in continuous heat engines that inherently involve less
stochastic transitions and lead to significant enhancement in
performance.

In this article, we affirmatively address the above question
by introducing the concept of a coherent heat transfer mech-
anism in continuous heat engines in which the baths induce
correlated (or mutually dependent) transitions in the working
system, and, as a result, the stochastic nature of transition de-
creases. The continuous engines operating with this mech-
anism are termed coherent quantum heat engines (CQHEs).
These engines can be physically realized by considering a
qutrit coherently interacting with hot and cold baths through
two-photon transitions (Raman interaction, i.e., three-body in-
teractions between system and baths) in the presence of pe-
riodic driving by an external field. The analogous incoher-
ent quantum heat engines (IQHEs) are the standard SSD en-
gines [24–27], where a qutrit interacts incoherently (indepen-
dently, through one-photon transitions) with the hot and cold
baths. For the same set of qutrit and bath parameters, the
CQHEs deliver much higher power and much lower relative
fluctuation in power compared to IQHEs. In fact, the per-
formance of CQHEs can be enhanced by hundreds of folds
of that of IQHEs. This enhancement is directly attributed to
the presence of a much higher amount of energetic coherence
in CQHEs, which is a consequence of coherent heat transfer.
Moreover, for the same reason, the CQHEs not only exhibit
a more profound violation of cTUR and power-efficiency-
constancy trade-off relations compared to IQHEs but also can
suppress relative fluctuation in power to the quantum limit im-
posed by qTUR. Hence, CQHEs manifest genuine quantum
enhancement over IQHEs and classical engines.

The rest of the article is organized as follows. In section II,
we introduce the generic models of continuous quantum co-
herent and incoherent engines involving coherent and incoher-
ent heat transfers, respectively. We demonstrate the genuine
quantum enhancements in performances by coherent engines
over incoherent engines in section III. Finally, our results are
summarized in section IV.

II. CONTINUOUS COHERENT QUANTUM HEAT
ENGINES

A continuous heat engine consists of a working system
that weakly interacts with two heat baths at different tem-
peratures while, at the same time, being periodically driven
by an external field. The simplest model for such an en-
gine utilizes a qutrit system interacting with two baths, widely
studied in literature [23–29]. Explicitly, a qutrit with Hamil-
tonian HS = ωh |2⟩⟨2| + (ωh − ωc) |1⟩⟨1| is coupled to two
thermal (photon) baths with respective inverse temperatures

βc and βh, where ωh > ωc and βc > βh. In addition, the
qutrit is driven by an external field following the Hamiltonian
Hd(t) = α(e−iωt |1⟩⟨0| + eiωt |0⟩⟨1|). The condition βhωh < βcωc
needs to be ensured for this device to operate as a heat en-
gine (see Ref. [27] and Appendix B). We assume ℏ = kB = 1
throughout this work. The total Hamiltonian of the qutrit-
baths composite is

H = HS (t) + HBh + HBc + HX
S BhBc
,

where HS (t) = HS + Hd(t) is the total Hamiltonian of the
qutrit, HBh =

∑
k Ωk,h a†k,hak,h and HBc =

∑
k′ Ωk′,ca†k′,cak′,c are

the Hamiltonians of the hot and cold (photon) baths with mode
frequencies Ωk,h and Ωk′,c respectively, and HX

S BhBc
represents

the interaction between the qutrit and the baths.
Below, we consider two qualitatively different models of

continuous heat engines that differ in the interaction between
the qutrit and the baths, i.e., HX

S BhBc
. In particular, our goal is

to compare the performances of engines with an interaction
Hamiltonian (HI

S BhBc
) that only allows ‘incoherent’ energy

transfer with the performances of engines with an interaction
Hamiltonian (HC

S BhBc
) that enables ‘coherent’ energy transfer

between the baths and the qutrit.

Incoherent Quantum Heat Engines (IQHEs) – We start with
an engine that operates via incoherent energy transfers be-
tween the constituents. Most of the traditional (continuous)
quantum heat engines utilize incoherent energy transfers [24–
26] with the interaction Hamiltonian

HI
S BhBc

= gh

∑
k

(ak,hb†h + a†k,hbh) + gc

∑
k′

(ak′,cb†c + a†k′,cbc),

(1)

where bh = |0⟩⟨2| and bc = |1⟩⟨2| are the ladder operator acting
on the qutrit space. The coefficients gh and gc are the interac-
tion strength with the hot and cold baths, respectively. The in-
teraction drives incoherent energy (heat) transfer in the sense
that the energy exchange between the states |0⟩ and |2⟩ with
the hot bath is independent of the energy exchange between
the states |1⟩ and |2⟩ with the cold bath. For |gh|, |gc| ≪ 1,
the local dynamics of the qutrit is expressed by the Lindblad
master equation [24–26, 57]

ρ̇ = i [ρ, HS (t)] +Dh(ρ) +Dc(ρ), (2)

where ρ is the density matrix representing the state of the
qutrit. The dissipators Dh(ρ) and Dc(ρ) represent dissipative
dynamics due to the interactions with the hot and cold baths
and are given by (for x = h, c):

Dx(ρ) = γx(nx + 1)(bxρb†x − {b
†
xbx, ρ}/2)

+ γxnx(b†xρbx − {bxb†x, ρ}/2),

where the anti-commutator {Y,Z} = YZ+ZY , the coefficient γx

is the Weiskopf-Wigner decay constant, and nx = 1/(eβxωx −1)
is the average number of photons in the bath with frequency
ωx. The appearance of two dissipators, Dh(ρ) and Dc(ρ), in
the master equation (2) reflects that the heat exchange with the
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FIG. 1. Schematics of incoherent and coherent heat engines. The
engine is constituted by a three-level quantum system (qutrit), which
weakly interacts with hot and cold baths with the inverse tempera-
tures βh and βc. In incoherent heat engine, the energy (heat) transfer
takes place via (independent) single photon transitions, i.e., energy
levels |0⟩ and |2⟩ interact with the hot bath and levels |1⟩ and |2⟩ inter-
act with the cold bath, governed by the interaction Hamiltonian (1).
Solid (red and blue) arrows indicate these independent or incoherent
energy transfers. In coherent heat engines, the energy transfer takes
place via two-photon transitions, where effectively energy levels |0⟩
and |1⟩ participate in the process, and absorption of a photon from
the hot bath is associated with the release of a photon top the cold
bath and vice versa. This coherent heat transfer is governed by the
interaction Hamiltonian (4) and indicated here by the dotted (green)
arrow. The wavy arrow (solid-green) between |0⟩ and |1⟩ indicates
the external driving utilizing which the work is extracted. See text
for more details.

hot bath is independent (or uncorrelated) of the heat exchange
with the cold baths. Thus, the heat exchanges between the
baths are incoherent.

To quantify the power, heat currents, and other relevant
quantities of IQHEs, we move to a rotating frame using a
transformation BR = eiH̃tBe−iH̃t, where B is an arbitrary oper-
ator and [HS , H̃] = 0 [22, 26]. This transformation eliminates
the time dependence of HS (t) and reduces it to HS − H̃ +HdR,
where HdR = α(|1⟩⟨0| + |0⟩⟨1|). The dissipators remain un-
changed in the rotating frame, and the dynamics leads to a
steady state σI with σ̇I = 0 (see Appendix A). Now the av-
erage power ⟨PI⟩ and the average heat currents ⟨J̇x

I ⟩ are given
by

⟨PI⟩ = −i Tr([HS ,HdR]σI), and ⟨J̇x
I ⟩ = Tr(Dx(σI)HS ). (3)

Note, ⟨PI⟩ ≤ 0 for a heat engine, and the heat-to-work
conversion efficiency is ηI = −⟨PI⟩/⟨J̇h

I ⟩ ≥ 0. Other im-
portant quantities, such as fluctuation in power (∆PI) and
fluctuation in heat currents (∆Jx

I ), where power and heat
currents are considered as random variables, are computed
using full counting statistics of the steady state dynamics. See
Appendix D for more details.

Coherent Quantum Heat Engines (CQHEs) – We consider
an alternative engine that involves energy transfer between the
baths and the qutrit via a two-photon process, driven by an

interaction Hamiltonian [58–60]

HC
S BhBc

= g0

∑
k,k′

(ak,ha†k′,cb†hc + a†k,hak′,cbhc), (4)

where bhc = |0⟩⟨1| and g0 is the coupling strength. Here, the
energy transfer between the baths and the system is coherent
in the sense that any photon absorbed from the hot bath is
associated with a release of a photon to the cold bath and the
excitation |0⟩ → |1⟩, and vice versa. For |g0| ≪ 1, the local
dynamics of the qutrit reduces to

ρ̇ = i [ρ, HS (t)] +Dhc(ρ) (5)

for a qutrit state ρ, where the only dissipator in the Lindblad
master equation is given by,

Dhc(ρ) = γ1(bhcρb
†

hc − {b
†

hcbhc, ρ}/2)

+ γ2(b†hcρbhc − {bhcb†hc, ρ}/2),

with γ1 = γ0nc(nh +1), γ2 = γ0nh(nc +1), and γ0 is Weiskopf-
Wigner decay constant. The derivation of the above Lindblad
master equation is outlined in Appendix B. The dissipatorDhc
involves the parameters of both hot and cold baths and induces
dissipation utilizing the levels |0⟩ and |1⟩. The level |2⟩ is never
“engaged” in the process. Due to the coherent nature of the in-
teraction, the energy (heat) transfer between the baths and the
qutrit is less random (i.e., involves less stochastic transitions)
due to correlated heat transfer than that of the engines with
incoherent heat transfer considered earlier.

To calculate the power, heat currents, and other relevant
quantities, we move to a rotating frame employing the trans-
formation BR = eiH̃tBe−iH̃t, where B is an operator satisfying
[HS , H̃] = 0, similar to the case of IQHEs. With the resultant
time-independent qutrit Hamiltonian HS − H̃ + HdR, where
HdR = α(|1⟩⟨0| + |0⟩⟨1|), the dynamics attains a steady state in
the rotating frame. For the steady state σC , with σ̇C = 0, the
average power ⟨PC⟩ is given by

⟨PC⟩ = −i Tr([HS ,HdR]σC) ≤ 0. (6)

The average heat currents ⟨J̇x
C⟩ cannot be quantified directly

(like in the case of IQHEs) because there are no indepen-
dent dissipators corresponding to hot and cold baths. For that,
we employ full counting statistics of the steady state dynam-
ics (see Appendix D). This enables us to calculate the heat
currents, the fluctuations in power (∆PC), and the fluctuation
in heat currents (∆Jx

C). With heat current from the hot bath
⟨J̇h

C⟩, we may compute the heat-to-work conversion efficiency
ηC = −⟨PC⟩/⟨J̇h

C⟩ of CQHEs.

III. QUANTUM ENHANCEMENTS IN COHERENT
ENGINES

An evaluation of the performance of a continuous quantum
heat engine requires a comprehensive analysis of three met-
rics: (i) efficiency, which signifies how efficiently heat is be-
ing converted into work; (ii) power, which is the rate of work
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FIG. 2. Comparisons of energetic coherence and power outputs in coherent and incoherent engines. The computations are carried out
with the parameters γ0 = 0.01, ωh = 10, ωc = 5. (a) The figure on the left illustrates the variation in energetic coherence CC = C(σC) and
CI = C(σI) for both coherent and incoherent heat engines, respectively with respect to the driving field strength α, for βh = 0.01 and βc = 0.8.
The expressions of energetic coherence are given Eqs. (7) and (8). The traces in solid-blue and dashed-blue represent CC and CI , respectively.
The corresponding power outputs PC and PI , given in Eq. (9), by coherent and incoherent engines, are presented with the solid-red and
dashed-red traces, respectively. (b) The figure of the right displays the ratio of powers PC/PI = CC/CI of the coherent and incoherent heat
engine, with βh = 0.001, against α and βc. In fact, for these parameters, the ratio can be PC/PI ≥ 135. See text for more details.

output; and (iii) noise-to-signal ratio (NSR) in power, which
signifies the relative fluctuation or inverse of precision in the
power output. We compare these metrics for coherent and in-
coherent heat engines and demonstrate that the former have
substantial quantum enhancements in performance over the
latter.

Our analysis reveals that the engine performance is related
to the energetic coherence present in the steady state σX (for
X = I,C) in the rotating frame. Henceforth, a steady state
refers to the steady state in the rotating frame. The quantum
enhancements in the performance of CQHEs over the IQHEs
are the direct consequence of the fact that the energetic coher-
ence in σC is higher than that of σI , in general. Note that the
energetic coherence in the steady state results from a balance
between two opposing processes - the (periodic) driving that
creates coherence and the dissipation(s) that destroys coher-
ence in the qutrit. Due to coherent heat transfer, the dissipative
‘tendency’ in CQHEs is weaker compared to the dissipative
‘tendency’ in IQHEs. As a result, we observe more energetic
coherence in the former.

We start our analysis by studying the coherence in the
steady states. In what follows, we set γh = γc = γ0 and equal
driving strength α for fair comparisons. The energetic coher-
ence is measured using the l-1 norm of coherence [61], given
by C(σX) =

∑
i, j |σ

(i j)
X |, where σ(i j)

X = ⟨i|σX | j⟩. For CQHEs
and IQHEs, σ(i j)

X = σ
( ji)∗
X , and the corresponding amount of

energetic coherence in the steady states are given by

C(σC) =
4α γ0(nh − nc)

8α2 + γ2
0(nhc + 2ncnh)2

, (7)

C(σI) =
4α γ0(nh − nc)

4α2(3nhc + 4) + γ2
0nhc(nhc + 3nhnc)

, (8)

where nhc = nh + nc. We refer to Appendices A and B for
detailed derivation. For fixed γ0, nh, and nc, the energetic
coherence is a function of the driving strength α. As shown
in Fig. 2(a), the energetic coherence C(σC) for CQHEs
are higher than the energetic coherence C(σI) of IQHEs in
general. Even for some reasonable values of system and
bath parameters, the C(σC) becomes more than 135 times of
C(σI), i.e., C(σC) ≥ 135 C(σI). We also note that, for fixed
nh, nc, and γ0, there is a critical value of the driving strength
αcr for which C(σC) = C(σI). We calculate the critical
value (see Appendix C) and observe that C(σC) ≤ C(σI) for
α ≤ αcr. However, the αcr is generally very small, repre-
senting extremely weak periodic driving, except for the case
of the baths with very high temperatures, i.e., nh ≈ nc ≫ 1.
In all reasonable physical situations, the engines operate
with α > αcr, which we consider for evaluating engine
performances below.

Power and efficiency – Now, we study power and efficiency.
The power delivered by a steady state engine has a monotonic
relation with the energetic coherence present in the steady
state, and it is given by (see Appendices A and B)

PX = |⟨PX⟩| = α (ωh − ωc) C(σX), (9)

which is a non-linear function of α. As shown in Fig. 2(a), it
increases with α. The power is proportional to coherence for a
given α. In fact, the ratio of the powers of CQHEs and IQHEs
becomes equal to the ratio of the energetic coherence present
in their respective steady states, i.e., PC/PI = C(σC)/C(σI).
Given that C(σC) > C(σI) in general, the power of CQHEs is
higher than the power delivered by IQHEs or PC/PI > 1. A
numerical analysis of the power ratio is presented in Fig. 2(b)
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FIG. 3. Comparisons of noise-to-signal ratios (NSRs) in coherent and incoherent engines. The parameters γ0 = 0.01, ωh = 10, and
ωc = 5 are considered for all the figures. (a) The figure on the left displays the ratio NI/NC of NSRs in power (see Eq. (12)) corresponding to
incoherent and coherent heat engines against βc and α, while βh = 0.001. Note,NI > NC signifies that the coherent engine produces less NSR
in power than the incoherent engine, and the ratio can reach up toNI/NC ≥ 330. (b) The figure in the middle shows the difference between the
NSR and its lower bound for CQHEs and IQHEs (i.e., degree of saturation of qTUR) in Eq. (12), involving NSRs and their quantum bounds
with respect to α for βh = 0.01 and βc = 0.8. The traces in dark-blue and light-red representNC− fC andNI− fI for the coherent and incoherent
engines, respectively. The dashed-green trace corresponds to the zero value. (c) The figure on the right represents the saturation of qTUR by
CQHEs for the parameters βh = 0.01 and βc = 3 with a large amount of energetic coherence. Here, CC = C(σC) represents the energetic
coherence in the steady state of CQHEs.

with respect to the bath temperatures and the driving strength,
which displays that not only PC/PI is greater than one, but
also the ratio may reach more than 135. Clearly, CQHEs ex-
hibit quantum enhancements over IQHEs in power.

The heat current from the hot bath is given by

⟨J̇h
X⟩ = α ωh C(σX), (10)

for both coherent and incoherent heat engines, and it has a
monotonic relation with energetic coherence in the steady
states. Yet again, due to energetic coherence, the heat cur-
rent in CQHEs is higher than in IQHEs. In other words,
the CQHEs have a higher capacity to draw heat from the
hot bath than the IQHEs. However, the former also pro-
duces more power than the latter. Consequently, the efficiency
ηX = −⟨PX⟩/⟨J̇h

X⟩ remains same for both the engines, i.e.,

ηI = ηC = 1 − ωc/ωh. (11)

Thus, CQHEs perform as good as IQHEs as far as heat-to-
work conversion efficiency is concerned. See Appendices A
and D 2 for the derivations.

Noise-to-signal ratio (NSR) in power – In microscopic heat
engines, power output often fluctuates. This, in turn, delimits
the reliability or stability of the engines. The fluctuation is
usually expressed in terms of the variance of power ∆PX , for
X = I,C. For CQHEs and IQHEs, they are

∆PX = λ
X
1 ⟨PX⟩ − λ

X
2 ⟨PX⟩

3,

where coefficients λX
i s are functions of system and bath pa-

rameters. See Appendix D for more details.
Ideally, a good engine is expected to deliver high power out-

put and low power output fluctuations. This quality is charac-
terized by the NSR in power, i.e., the ratio between the fluc-
tuation in power ∆PX , and the square of the average power

output ⟨PX⟩
2, and it is lower bounded by a quantum limit [54]

as

NX =
∆PX

⟨PX⟩
2 ≥ fX , (12)

where the lower bound fX is determined by quantum dynam-
ical activity and coherent dynamical contribution. This rela-
tion is known as the quantum thermodynamic uncertainty re-
lation (qTUR), and it is derived using quantum Cramér-Rao
bound [54]. The bounds fX in Eq. (12) are different for coher-
ent and incoherent heat engines as they depend on the under-
lying Markovian dynamics. We find that the NX depends on
the energetic coherence present in the steady states and, for
CQHEs and IQHEs, they are (see Appendices D 1 and D 2)

NC =
Fp

α C(σC)

(
1 −

3
2
C(σC)2

)
, (13)

NI =
Fp

α C(σI)

(
1 −

k
Fp
C(σI)2

)
, (14)

respectively, where

Fp =
2nhnc + nhc

nh − nc
, k =

4α2 + γ2
0(n2

hc + 2nhc + 3nhnc)

γ2
0(nh − nc)

. (15)

From the Eqs. (13) and (14), it is seen that the NSR in both
coherent and incoherent engines can be suppressed by ac-
cessing energetic coherence in the steady state for fixed nh
and nc. We observe that the NSR for CQHEs is, in general,
much lower than that of IQHEs, which is the consequence of
C(σC) ≫ C(σI). As shown in Fig. 3(a), the NSR in CQHEs
can be as less as 330 times or lower than the NSR attained
in IQHEs. Clearly, CQHEs are more reliable or deliver more
precision in power than IQHEs.

The saturation of the relation (12), i.e., NX = fX , implies
that the engine is producing the least possible NSR in power
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that is given by its quantum bound. This is the best possible
operating condition one would desire from an engine. A
numerical analysis presented in Fig. 3(b) demonstrates that
the CQHEs can operate in a regime where they yield very low
NSR in power close to the quantum bound. In contrast, the
IQHE has more NSR in power, which is far from its quantum
bound. In addition, the CQHEs can saturate the qTUR by
harnessing a large amount of energetic coherence, as shown
in Fig. 3(c). Overall, the CQHEs are highly reliable and
exhibit substantial quantum enhancements over IQHEs.

Violations of cTUR – For classical heat engines, it is known
that the rate of entropy production and the noise-to-signal ratio
(NSR) in power follow a trade-off relation. This feature has
been studied in terms of classical thermodynamic uncertainty
relation (cTUR) [44], given by

Q = ṠN ≥ 2, (16)

where Ṡ = −βh⟨J̇h⟩ − βc⟨J̇c⟩ is the entropy production rate
due to steady state dynamics and N = ∆P/⟨P⟩2 is NSR in
power. It implies that a reduction in NSR can be achieved at
the cost of increasing the entropy production rate Ṡ , particu-
larly when the bound in (16) is saturated. This, in turn, rep-
resents more degree of irreversibility in the engine operation,
leading to a reduced heat-to-work conversion efficiency. A
similar conclusion is also drawn from another relation, known
as the power-efficiency-constancy trade-off relation [45]. In-
terestingly, it coincides with cTUR for CQHEs and IQHEs
(see Appendix E).

We have discussed earlier that, for both coherent and inco-
herent heat engines, the NSR in power can be reduced while
keeping the engine efficiency the same. This is why we wit-
ness violations of cTUR by CQHEs and IQHEs for some val-
ues of system-bath parameters, signifying that the engines can
operate in the quantum regime.

The left-hand side of relation (16) reduces to (for X = I,C)

QX = ln
(

nh(nc + 1)
nc(nh + 1)

)
FX . (17)

Here FX =
∆ṄX

⟨ṄX⟩
is the Fano factor, where ⟨ṄX⟩ = |⟨PX⟩|/(ωh −

ωc) is the photon current and ∆ṄX = ∆PX/(ωh − ωc)2 is
the fluctuation in photon current. The violation of cTUR
by CQHEs and IQHEs implies the violation of QC ≥ 2 and
QI ≥ 2, respectively. Interestingly, the corresponding Fano
factor can be expressed in terms of energetic coherence as

FC = Fp

(
1 −

3
2
C(σC)2

)
, (18)

FI = Fp

(
1 −

k
Fp
C(σI)2

)
, (19)

where Fp and k are given in Eq. (15). We refer to Appendix E
for the derivations. In the absence of energetic coherence, Q =
ln

(
nh(nc+1)
nc(nh+1)

)
Fp. In that case, the cTUR is respected because

ln
(

nh(nc+1)
nc(nh+1)

)
Fp ≥ 2 [37]. On the contrary, for quantum engines,

I

C
0.0 0.1 0.2 0.3 0.4 0.5

1.97
1.98
1.99
2.00
2.01
2.02

α

(a) Range of violations of cTUR
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FIG. 4. Violations of cTUR by CQHEs and IQHEs. (a) The figure
on the left displays the range of violations of cTUR by coherent and
incoherent heat engines with respect to α, for the parameters γ0 =

0.01, ωh = 10, ωc = 5, βh = 0.01, and βc = 0.1. (b) The figure on
the right depicts the depth of violation of cTUR for the parameters
γ0 = 0.01, ωh = 10, ωc = 5, βh = 0.003, and βc = 0.7. The figures
show that the CQHE violates cTUR for a wider range of parameter
α. Further, the minimum value of QI is 1.997 while the minimum
value of QC can be 1.24. See text for more details.

the violations of cTUR can necessarily be attributed to the
presence of energetic coherence in the steady states.

The important point we highlight here is that the CQHEs
violate cTUR not only for a wider range of parameters but
also by a higher amount than IQHEs. This is, yet again, due
to the fact that C(σC) > C(σI) in general. A numerical study
is carried out to compare QC and QI and presented in Fig. 4(a)
and 4(b). We observe that QC can have values as low as 1.24,
while the lowest value of QI remains very close to 1.997.
Thus, IQHEs only marginally violate the classical limit. Over-
all, the violations of cTUR for a wider range of parameters
and with a larger amount indicate that CQHEs possess more
non-classical features than IQHEs.

IV. SUMMARY

Recent studies have indicated that the performance of mi-
croscopic heat engines can be enhanced by harnessing quan-
tum mechanical features, like energetic quantum coherence.
To harness more energetic coherence, we have introduced
continuous quantum heat engines that utilize coherent energy
(heat) transfers between the working system and the baths
via two-photon transitions (Raman transitions). These coher-
ent heat engines are analogous to the traditional Scovil and
Schulz-DuBois (SSD) engines, except that the latter only al-
low incoherent heat transfers via one-photon transitions. The
analysis and results presented above clearly demonstrate that,
due to coherent heat transfers, coherent heat engines harness
much more energetic coherence in the working system than
traditional (incoherent) quantum engines. Consequently, the
power and noise-to-signal ratio in power is enhanced by hun-
dreds of folds compared to their incoherent analogs. The
noise-to-signal ratio in power has a fundamental lower bound
derived from the quantum Cramér-Rao bound, and the in-
equality is termed the quantum thermodynamic uncertainty
relation (qTUR). We have shown that coherent engines can
yield a substantially low noise-to-signal ratio in power, which
is very close to the lower bound (quantum limit). Even the
CQHEs can saturate this quantum bound by harnessing high
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energetic coherence. This suggests that saturation of qTUR
requires a high amount of coherence. Thus, coherent engines
are highly reliable. In addition, unlike incoherent engines,
coherent engines violate classical thermodynamic uncertainty
relation for a much wider range of parameters and by a much
higher amount. Altogether, the coherent engines possess more
quantum features and greatly outperform conventional quan-
tum and classical heat engines, manifesting genuine quantum
enhancements.

Two-photon Raman transitions provide a very common and
standard tool in contemporary applications of quantum op-
tics (cf. [62–65]). This paves the way for the realization
of coherent quantum heat engines on various experimental
platforms. Raman transitions have been easily demonstrated
in various experimental setups, such as superconducting cir-
cuits [66, 67], atom-optical systems [68, 69], and nitrogen-
vacancy centers in diamond [70], among others. Thus, our
present analysis and results not only improve the understand-
ing of quantum thermal devices, particularly how energetic
coherence greatly enhances engine performance, but also
open up new avenues for quantum-enabled technologies in the
near future.

An executive summary of our main results is below.

• A new model of continuous quantum heat engines is in-
troduced that enables coherent heat transfer between the
working system (qutrit) and the baths via two-photon
transitions.

• These coherent engines harness a much greater amount
of energetic coherence in the qutrit than the analogous
incoherent engines, where the latter are the traditional
SSD engines.

• The coherent engines yield much higher power and
much less signal-to-noise ratio in power compared to
incoherent engines, while the efficiency remains the
same.

• The coherent engines can operate at or very close to the
quantum limit on the noise-to-signal ratio in power im-
posed by quantum thermodynamic uncertainty relation.
Thus, the coherent engines are highly reliable.

• The improvements in performance by coherent en-
gines, exhibiting genuine quantum enhancements, are
attributed to the presence of high energetic coherence,
which is a consequence of coherent heat transfer.

• The new model of engines with coherent heat transfer
and the improved understanding of the role of quan-
tum properties in their performance are expected to find
important implications in emerging quantum-enabled
technologies.
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Appendix A: Steady state solution of incoherent quantum heat engines in rotating frame

For incoherent engines, the total Hamiltonian of the qutrit system and two photonic (bosonic) thermal baths can be written as

H = HS + HBh + HBc + HI
S BhBc
, (A1)

where the Hamiltonian and of the qutrit system is given by

HS = ωh |2⟩⟨2| + (ωh − ωc) |1⟩⟨1| , (A2)

with ωh and ωh − ωc being the frequencies corresponding to the energy gaps. The Hamiltonians of the photonic thermal baths
HBh and HBc and the interaction HI

S BhBc
given in the main text. The corresponding Lindblad master equation describing the local

dynamics of the qutrit is given in Eq. (2) in the main text. In a rotating frame, given by BR = eiH̃tBe−iH̃t and any operator B and
[H0, H̃] = 0, the master equation becomes

ρ̇R = − i[HS − H̃ + HdR, ρR] +Dh(ρR) +Dc(ρR). (A3)

Without loss of generality, we consider HS = H̃. Thus, the steady-state solution of the above master equation can be obtained
by solving ρ̇R = 0 (we denote the steady state by σI), and it is

σI =
4α2(γc + γh + γcnc + γhnh + γcγhnc(nh + 1)(γcnc + γhnh)

4α2(γc(3nc + 2) + γh(3nh + 2)) + γcγh(3ncnh + nc + nh)(γcnc + γhnh)
|0⟩⟨0|

−
2iαγcγh(nh − nc)

4α2(γc(3nc + 2) + γh(3nh + 2)) + γcγh(3ncnh + nc + nh)(γcnc + γhnh)
|0⟩⟨1|

+
2iαγcγh(nh − nc)

4α2(γc(3nc + 2) + γh(3nh + 2)) + γcγh(3ncnh + nc + nh)(γcnc + γhnh)
|1⟩⟨0|

+
4α2(γc + γh + γcnc + γhnh + γcγhnh(nc + 1)(γcnc + γhnh)

4α2(γc(3nc + 2) + γh(3nh + 2)) + γcγh(3ncnh + nc + nh)(γcnc + γhnh)
|1⟩⟨1|

+
(4α2 + γcγhncnh)(γcnc + γhnh)

4α2(γc(3nc + 2) + γh(3nh + 2)) + γcγh(3ncnh + nc + nh)(γcnc + γhnh)
|2⟩⟨2| . (A4)

The l-1 norm of energetic coherence [61] in the steady state on the rotating frame is

C(σI) = |σ
(01)
I | + |σ

(10)
I | =

4αγcγh(nh − nc)
4α2(γc(3nc + 2) + γh(3nh + 2)) + γcγh(3ncnh + nc + nh)(γcnc + γhnh)

, (A5)

where σ(i j)
I = ⟨i|σI | j⟩. Now, the average power and the average heat currents in IQHEs corresponding to the hot and cold baths

are given by

⟨PI⟩ = −i tr([HS ,HdR]σI) = −iα(ωh − ωc)(σ(01)
I − σ(10)

I ) = −α(ωh − ωc) C(σI), (A6)

⟨J̇h
I ⟩ = Tr[Dh(σI)HS ] = α ωh C(σI), (A7)

and ⟨J̇c
I ⟩ = Tr[Dc(σI)HS ] = −α ωc C(σI), (A8)

respectively. Accordingly, the heat-to-work conversion ratio for IQHEs is

ηI = −
⟨PI⟩

⟨J̇h
I ⟩
= 1 −

ωc

ωh
. (A9)

Appendix B: Derivation of Lindblad master equation for coherent quantum heat engines

In this section, we derive the Lindblad master equation for a three-level quantum system coupled with the two photonic
(bosonic) thermal baths (hot and cold baths), where the system and baths interact via two-photon transitions (Raman Interactions,
i.e., three-body interactions). Our derivation follows the standard textbook approach discussed in Refs. [57, 71]. The total
Hamiltonian of the system and two photonic thermal baths can be written as

H = HS + HBh + HBc + HC
S BhBc
. (B1)
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where suffixes h and c correspond to hot and cold baths, respectively. We assume ℏ = kB = 1 throughout this work. In Eq. (B1),
the system Hamiltonian HS describes a three-level system (qutrit), given by

HS = ωh |2⟩⟨2| + (ωh − ωc)b†hcbhc = ωh |2⟩⟨2| + (ωh − ωc) |1⟩⟨1| , (B2)

where ωh and ωh − ωc refers to the frequencies corresponding to the energy gaps, and b†hc = |1⟩⟨0| and bhc = |0⟩⟨1|. In Eq. (B1),
the photonic baths are a collection of infinite dimensional systems whose total Hamiltonian is given as

HBh + HBc =
∑

k

Ωk,ha†k,hak,h +
∑

k′
Ωk′,ca†k′,cak′,c. (B3)

Furthermore, in Eq. (B1), the interaction Hamiltonian between the system and the baths has the following form [58–60]

HC
S BhBc

= g0

∑
kk′

(ak,ha†k′,cb†hc + a†k,hak′,cbhc), (B4)

Here, we consider system-baths coupling to be very weak, i.e., g0 ≪ 1. The total Hamiltonian of the composite system
(system + baths) in the interaction picture can be written as

H̃(t) = g0

∑
k,k′

(ak,h(t)a†k′,c(t)b†hc(t) + a†k,h(t)ak′,c(t)bhc(t)), (B5)

where bhc(t) = bhce−i(ωh−ωc)t, b†hc(t) = b†hcei(ωh−ωc)t, ap(t) = ape−iωpt and a†p(t) = a†peiωpt. For convenience, we can write the above
Hamiltonian

H̃I(t) = g0

∑
k,k′

∑
α={1,2}

Aα(t) ⊗ Bα,kk′ (t), (B6)

where A1(t) = b†hc(t), A2(t) = bhc(t), Bkk′,1(t) = ak,h(t)a†k′,c(t) and Bkk′,2(t) = a†k,h(t)ak′,c(t). In the interaction picture, the dynamics
of the composite system is given by the von Neumann equation,

dρ̃(t)
dt
= −i[H̃(t), ρ̃(t)]. (B7)

For the cases where the system and baths are initially in a product state and very weakly coupled, using Born and Markov
approximations, we obtain the following dynamical equation of the system

dρ̃(t)
dt
= −g2

0

∑
αβ

∑
kk′ ss′

∫ ∞

0
dτ{Bαβ,kk′ ss′ (τ, 0)[Aα(t), Aβ(t − τ)ρ̃(t)] + Bβα,ss′kk′ (0, τ)[ρ̃(t)Aβ(t − τ), Aα(t)]}, (B8)

where Bαβ,kk′ ss′ (τ, 0) = tr
(
eiHBτBα,kk′e−iHBτBβ,ss′ρβh ⊗ ρβc

)
and Bβα,ss′kk′ (0, τ) = tr

(
Bβ,ss′eiHBτBα,kk′e−iHBτρβh ⊗ ρβc

)
. Here HB =

HBh + HBc is total free Hamiltonian of the baths. The states ρβh and ρβc are the thermal states of hot and cold baths at inverse
temperatures βh and βc. The above dynamical equation in the frequency domain can be written as

dρ̃(t)
dt
= −g2

0

∑
kk′ ss′

[ ∫ ∞

0
dτB12,kk′ ss′ (τ, 0)eiωhcτ[b†hc, bhcρ̃(t)] +

∫ ∞

0
dτB21,kk′ ss′ (τ, 0)e−iωhcτ[bhc, b

†

hcρ̃(t)]

+

∫ ∞

0
dτB12,kk′ ss′ (0, τ)e−iωhcτ[ρ̃(t)b†hc, bhc] +

∫ ∞

0
dτB21,kk′ ss′ (0, τ)eiωhcτ[ρ̃(t)bhc, b

†

hc]
]
, (B9)

where ωhc = ωh − ωc. The bath correlation functions can be simplified as∑
kk′ ss′

∫ ∞

0
dτB12(τ, 0)eiωhcτ =

∑
kk′ ss′

∫ ∞

0
dτ⟨ak,h(τ)a†k′,c(τ)a†s,has′,c⟩eiωhcτ =

∑
kk′

(nk,h(Ωk,h) + 1)nk′,c(Ωk′,c)
∫ ∞

0
dτe−i(∆kk′ ,hc−ωhc)τ,

∑
kk′ ss′

∫ ∞

0
dτB21(τ, 0)e−iωhcτ =

∑
kk′

(nk,c(Ωk,h) + 1)nk′,h(Ωk′,c)
∫ ∞

0
dτei(∆kk′ ,hc−ωhc)τ,

∑
kk′ ss′

∫ ∞

0
dτB12(0, τ)e−iωhcτ =

∑
kk′

(nk,h(Ωk,h) + 1)nk′,c(Ωk′,c)
∫ ∞

0
dτei(∆hc−ωkk′ ,hc)τ,

∑
kk′ ss′

∫ ∞

0
dτB21(τ, 0)e−iωhcτ =

∑
kk′

(nk,c(Ωk,h) + 1)nk′,c(Ωk′,h)
∫ ∞

0
dτe−i(∆kk′ ,hc−ωhc)τ,

∑
kk′ ss′

∫ ∞

0
dτe±i(∆kk′ ,hc−ωhc)τ =

∑
kk′
πδ(∆kk′,hc − ωhc) ± iP(

1
∆kk′,hc − ωhc

),
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where ∆kk′,hc = Ωk,h − Ωk′,c. Here we have used the relations ⟨a†pap′⟩ = npδpp′ , ⟨apa†p′⟩ = (np + 1)δpp′ and ⟨apap′⟩ =

⟨a†pa†p⟩ = 0 to simplify the bath correlation functions. To further simplify these functions, now we also convert
∑

p
∑

p′ =∫ ∞
0

∫ ∞
0 dΩdΩ′D(Ω)D(Ω′), where D(Ω) is the photon density of states, i.e. the number of photon modes in a small frequency

interval [Ω,Ω + dΩ]. Ignoring the principal value part for the moment, we then obtain

∑
k,k′

f
(
nh(Ωk,h), nc(Ωk′,c)

) ∫ ∞

0
dτe±i(∆kk′ ,hc−ωhc)τ

= π

∫ ∞

0
dΩhD(Ωh)

∫ ∞

0
dΩcD(Ωc) f (nh(Ωh), nc(Ωc)) δ ((Ωh −Ωc) − (ωh − ωc)) , (B10)

where f is a function of nh(Ωk,h) and nc(Ωk′,c). The double integral on the right-hand side is correlated. To match it with the
incoherent quantum heat engines case, we enforce the resonance condition (Ωc = ωc) and (Ωh = ωh). As a consequence, the
expression reduces to∑

k,k′
f (nh(Ωk,h), nc(Ωk′,c))

∫ ∞

0
dτe±i(∆kk′ ,hc−ωhc)τ = π

∫ ∞

0
dΩhD(Ωh)

∫ ∞

0
dΩcD(Ωc) f (nh(Ωh), nc(Ωc))δ(Ωh−ωh)δ(Ωc−ωc), (B11)

and finally to ∑
k,k′

f (nh(Ωk,h), nc(Ωk′,c))
∫ ∞

0
dτe±i(∆kk′ ,hc−ωhc)τ = π f (nh(ωh), nc(ωc))D(ωc)D(ωh). (B12)

After substituting the expression of simplified bath correlation functions in Eq. (B9), we obtain the Lindblad master equation

dρ̃(t)
dt
= γ1

(
bhcρ̃(t)b

†

hc −
1
2
{b†hcbhc, ρ̃(t)}

)
+ γ2

(
b†hcρ̃(t)bhc −

1
2
{bhcb†hc, ρ̃(t)}

)
,

where γ1 = γ0nc(nh + 1), γ2 = γ0nh(nc + 1), γ0 = 2g2
0πD(ωc)D(ωh) is Weiskopf-Wigner decay constant, and nx = 1/(eβxωx − 1)

is average boson number of the bath ’x’ with inverse temperature βx (x = h, c). The Lindblad master equation derived above is
in the interaction picture. It can be expressed in Schrodinger’s Picture as

dρ(t)
dt
= −i[HS , ρ(t)] + γ1

(
bhcρ(t)b

†

hc −
1
2
{b†hcbhc, ρ(t)}

)
+ γ2

(
b†hcρ(t)bhc −

1
2
{bhcb†hc, ρ(t)}

)
.

This dynamics leads to a steady state ρss, i.e., ρ̇ss = 0, given by

ρss =
γ1

(γ1 + γ2)
|0⟩⟨0| +

γ2

(γ1 + γ2)
|1⟩⟨1| . (B13)

For the steady state, the ratio of populations of exited state |1⟩ and ground state |0⟩ is given as

ρ(11)
ss

ρ(00)
ss

=
γ2

γ1
= e−(βhωh−βcωc) = e−

(βhωh−βcωc )
(ωh−ωc ) (ωh−ωc)

, (B14)

where ρ(i j)
ss = ⟨i|ρss| j⟩. To have an engine operation by utilizing two-photon transitions, we need population inversion, i.e.,

ρ(11)
ss

ρ(00)
ss
> 1. For this, the required condition is βhωh − βcωc < 0. This also implies nh > nc.

1. Steady state solution of coherent quantum heat engines in rotating frame

With an external periodic driving on the qutrit Hd(t) = α(e−iωt |1⟩⟨0| + eiωt |0⟩⟨1|), the Lindblad master equation describing the
dynamics of a coherent quantum heat engine becomes

ρ̇ = − i[HS + Hd(t), ρ] +Dhc(ρ), (B15)

where the master equation involves single dissipatorDhc(ρ), given by

Dhc(ρ) = γ1(bhcρ(t)b
†

hc −
1
2
{b†hcbhc, ρ(t)}) + γ2(b†hcρ(t)bhc −

1
2
{bhcb†hc, ρ(t)}). (B16)
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We can transform the above Lindblad master equation to the rotating frame using the transformation BR = eiH̃tBe−iH̃t, where B
is an arbitrary operator and [HS , H̃] = 0, as follows:

ρ̇R = − i[HS − H̃ + HdR, ρR] +Dhc(ρR), (B17)

where HdR corresponds the driving Hamiltonian Hd(t) in rotating frame. Without loss of generality, we consider HS = H̃.
A steady-state solution of the above master equation can be obtained by solving ρ̇R = 0 (we denote the steady state by σC),

which yields

σC =
4α2 + γ1(γ1 + γ2)
8α2 + (γ1 + γ2)2 |0⟩⟨0| +

2iα(γ1 − γ2)
8α2 + (γ1 + γ2)2 |0⟩⟨1| −

2iα(γ1 − γ2)
8α2 + (γ1 + γ2)2 |1⟩⟨0| +

4α2 + γ2(γ1 + γ2)
8α2 + (γ1 + γ2)2 |1⟩⟨1| . (B18)

The l-1 norm of coherence [61] of the steady state in CQHEs can be expressed as

C(σC) = |σ(01)
C | + |σ

(10)
C | =

4γ0α(nh − nc)
8α2 + γ2

0(2nhnc + nh + nc)2
, (B19)

where σ(i j)
C = ⟨i|σI | j⟩. The average power is directly related to energetic coherence as

⟨PC⟩ = −i tr([HS ,HdR]σC) = −iα(ωh − ωc)(σ(01)
C − σ(10)

C ) = −α(ωh − ωc) C(σC). (B20)

The dynamics due to heat transfer with the baths is governed by single dissipator Dhc, unlike in IQHEs discussed in Ap-
pendix A, and it takes into account the contributions from hot and cold baths together. Because of that, we cannot directly
calculate the heat currents from the hot and cold baths with the dissipator. We overcome this limitation by employing the full
counting statistics (FCS) of the steady-state dynamics in the rotating frame (see Appendix D).

Appendix C: Comparison of energetic coherences in coherent and incoherent heat engines

The energetic coherence in the steady state of the qutrit is non-linearly dependent on the driving parameter α for both coherent
and incoherent heat engines. It is, in general, higher in the coherent heat engines compared to the incoherent ones. However,
for some values of α, the energetic coherence in the coherent heat engines can be lower than the incoherent ones. The driving
parameter has a critical value, given by αcr, below which the energetic coherence is higher for incoherent heat engines. We
determine the αcr by solving the condition

C(σC) = C(σI), (C1)

and it is

αcr = γ0

√
(nh + nc)(nh + nc + 3nhnc) − γ2

0(nc + nh + 2ncnh)2

8 − 4 (3(nh + nc) + 4)
. (C2)

The C(σC) > C(σI) for α > αcr and C(σC) ≤ C(σI) for α ≤ αcr. Note that we need to satisfy the condition nh > nc for the
continuous device to operate as a heat engine. However, for reasonable values of the parameters nh, nc, and γ0, the critical value
αcr remains very small, corresponding to a very weak external driving. Fig. 5 illustrates how αcr varies with respect to inverse
temperatures of the baths. In the exceptional cases where the baths are extremely hot, i.e., nh ≈ nc ≫ 1, the αcr becomes very
high. Nevertheless, considering the usual experimental situations, the engines operate with α > αcr, and the coherent engines
yield more energetic coherence in their steady state than the incoherent engines.

Appendix D: Full Counting Statistics

Full Counting Statistics (FCS) provides an analytical approach to determine the statistics of the quantity of interests M, such
as power, currents corresponding to each bath, and their fluctuations in an open quantum system dynamics [72]. This approach
incorporates counting fields into the master equation. Suppose ρ(χ, t) represents the solution of the dressed Lindblad master
equation. In that case, we define the moment-generating function M(χ, t) and the cumulant-generating function F (χ, t) as
follows:

M(χ, t) = tr{ρ(χ, t)}, and F (χ, t) = lnM(χ, t). (D1)
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FIG. 5. The figure depicts the variation of the critical value of the driving parameter against the inverse temperature of the cold bath. Here we
consider γ0 = 0.01, ωh = 10, ωc = 5, and βh = 0.001.

Sometimes, a description in terms of cumulants is more convenient. The advantage lies in the fact that the dominant eigenvalue
of the Liouvillian usually determines the long-time evolution of the cumulant-generating function:

C(χ, t) ≈ λ(χ)t, (D2)

where λ(χ)is the eigenvalue of L(χ) = L(χ, 0) with the largest real part (uniqueness assumed) and it vanishes when χ = 0.
In the long-time limit, the cumulants of the quantity of interest M in the steady state can be obtained using the following

formula:

⟨⟨Mk⟩⟩ =

( d
d(iχ)

)k
λ(χ)

∣∣∣∣∣
χ=0
. (D3)

The first and second cumulants correspond to the mean and variance of the quantity of interest M, respectively:

⟨M⟩ =
( d
d(iχ)

)
λ(χ)

∣∣∣∣∣
χ=0
, and ∆M = ⟨⟨M2⟩⟩ =

( d
d(iχ)

)2
λ(χ)

∣∣∣∣∣
χ=0
. (D4)

A direct computation of λ(χ) is not straightforward. To analytically determine the mean and variance from the derivatives, we
follow the method outlined in Refs. [37, 52, 73, 74]. Consider the characteristic polynomial of L(χ)∑

n

anλ(χ)n = 0, (D5)

where the terms an are functions of χ. Derivatives of an are defined as

a′n = i
d

dχ
an|χ=0, and a′′n =

(
i

d
dχ

)nan|χ=0. (D6)

With a little analysis, we can express mean and variance as (for more details, see appendices of Refs. [37, 52, 74]):

⟨M⟩ = −
a′0
a1
, and ∆M =

(a′′0
a′0
−

2a′1
a1

)
⟨M⟩ −

2a2

a1
⟨M⟩2. (D7)

Note that the above expressions of mean and variance hold for all systems with Lindblad dynamics with a unique steady state.

1. Counting field statistics for coherent quantum heat engines

Here, we re-derive the Lindblad master equation of coherent heat engine by introducing counting fields, which will help us
to evaluate current and power statistics [72]. The total Hamiltonian for the system and the baths (in the presence of driving) is
given as

H = HS + Hd(t) + HBh + HBc + HC
S BhBc
. (D8)
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where Hd(t) represents the external driving field acting on the three-level system and the rest of the Hamiltonians defined in
the previous section. Here, we are considering a situation where the two baths continuously interact with the system, and the
interaction between the system and the baths is weak. We choose the initial state as a product state, i.e., ρ(0) = ρS (0)⊗ρB, where
ρB = ρβh ⊗ ρβc and the baths are prepared in thermal states with respective Hamiltonians HBh , HBc and inverse temperatures βh
and βc, respectively. To measure the observables are the Hamiltonians HBh and HBc and to get the corresponding probability
distributions of their measurement, we introduce counting field χ j ( j = h, c) to each bath. We introduce χ ≡ {χh, χc} to denote
collectively both the counting variables. The modified density matrix ρ(χ, t) of composite system is given as

ρ(χ, t) = U(χ, t)ρ(0)Ū(−χ, t), (D9)

with

U(χ, t) = e−i(χhHBh+χcHBc )/2U(t)ei(χhHBh+χcHBc )/2 and Ū(−χ, t) = ei(χhHBh+χcHBc )/2U†(t)e−i(χhHBh+χcHBc )/2

being the counting field-dressed evolution operator. Here U(t) is the unitary evolution operator generated by the total Hamilto-
nian H. The time evolution of modified density matrix ρ(χ, t) is given by following master equation

dρ(χ, t)
dt

= −i[H(χ, t)ρ(χ, t) − ρ(χ, t)H(−χ, t)], (D10)

where, H(χ, t) = e−i(χhHBh+χcHBc )/2Hei(χhHBh+χcHBc )/2. In the interaction picture, one gets (the operators are labeled by tilde)

ρ̃(χ, t) = U0ρ(χ, t)U
†

0 , (D11)

where U0 is the unitary operator generated by the Hamiltonian H0(t) = HS (t) + HB. Here we have denoted HS (t) = HS + Hd(t)
and HB = HBh + HBc . In the interaction picture, the dressed total Hamiltonian is given by

H̃I(χ, t) = U0HS B(χ, t)U†0 =
∑
α,kk′

Aα(t) ⊗ Bα,kk′ (χ, t) and H̃I(−χ, t) = U0HS B(χ, t)U†0 =
∑
α,kk′

Aα(t) ⊗ Bα,kk′ (−χ, t), (D12)

where Bα,kk′ (χ, t) = Bh
α,k(χh, t) ⊗ Bc

α,k′ (χc, t) and Bh(c)’s are bath operators corresponding to hot (cold) bath. In the interaction
picture, the evolution equation can be written as

dρ̃(χ, t)
dt

= −i[H̃I(χ, t)ρ̃(χ, t) − ρ̃(χ, t)H̃I(−χ, t)]. (D13)

Next, considering the weak coupling assumption and performing the standard Born-Markov approximation, we arrive at the
following master equation

dρ̃S (χ, t)
dt

= −

∫ ∞

0
dτTrB[H̃I(χ, t)H̃I(χ, t − τ)ρ̃S (χ, t)ρB − H̃I(χ, t)ρ̃S (χ, t)ρBH̃I(−χ, t − τ)

− H̃I(χ, t − τ)ρ̃S (χ, t)ρBH̃I(−χ, t) + ρ̃S (χ, t)ρBH̃I(−χ, t − τ)H̃I(−χ, t)], (D14)

where we have used TrB[H̃I(χ, t) ρB] = 0, and ρB = ρβh ⊗ ρβc . After simplification, the above equation can be written as

dρ̃S (χ, t)
dt

= −g2
0

∫ ∞

0
dτ

∑
αβkk′ ss′

(
Aα(t)Aβ(t − τ)ρ̃S (χ, t) Tr

[
Bα,kk′ (χ, t)Bβ,ss′ (χ, t − τ)ρB

]
− Aα(t)ρ̃S (χ, t)Aβ(t − τ) Tr

[
Bα,kk′ (χ, t)ρBBβ,ss′ (−χ, t − τ)

]
− Aα(t − τ)ρ̃S (χ, t)Aβ(t) Tr

[
Bα,kk′ (χ, t − τ)ρBBβ,ss′ (−χ, t)

]
+ρ̃S (χ, t)Aα(t − τ)Aβ(t) Tr

[
ρBBα,kk′ (−χ, t − τ)Bβ,ss′ (−χ, t)

])
.

After further simplifying the bath correlation function, we obtain

dρ̃S (χ, t)
dt

= − g2
0

∫ ∞

0
dτ

∑
αβ

∑
kk′ ss′

(Aα(t)Aβ(t − τ)ρ̃S (χ, t) tr
[
Bα,kk′ (τ)Bβ,ss′ (0)ρB

]
− Aα(t)ρ̃S (χ, t)Aβ(t − τ) tr

[
Bβ,ss′ (−2χ, τ)Bα,kk′ (0)ρB

]
− Aα(t − τ)ρ̃S (χ, t)Aβ(t) tr

[
Bβ,ss′ (−2χ, t)Bα,kk′ (0)ρB

]
+ ρ̃S (χ, t)Aα(t − τ)Aβ(t) tr

[
Bα,kk′ (−τ)Bβ,ss′ (0)ρB

]
).



14

Using the explicit form of system and bath operators A1(t) = b†hc(t), A2(t) = bhc(t), Bkk′,1(t) = ak,h(t)a†k′,c(t), Bkk′,2(t) =
a†k,h(t)ak′,c(t), bhc(t) = bhce−i(ωh−ωc)t, b†hc(t) = b†hcei(ωh−ωc)t, ap(t) = ape−iωpt and a†p(t) = a†peiωpt, and solving the bath correla-
tion function and converting sums into integrals as considered in the previous section B, we get the following dressed Lindblad
master equation in Schrodinger picture as

dρ(χ, t)
dt

= −i[HS + Hd(t), ρ] + γ1(ei(ωhχh−ωcχc)bhcρ(t)b
†

hc −
1
2
{b†hcbhc, ρ(t)}) + γ2(e−i(ωhχh−ωcχc)b†hcρ(t)bhc −

1
2
{bhcb†hc, ρ(t)}),

(D15)

where γ1 = γ0nc(nh + 1), γ2 = γ0nh(nc + 1), γ0 = 2g2πD(ωc)D(ωh) is Weiskopf-Wigner decay constant, and nx = 1/(eβxωx − 1) is
the average photon number in the bath with inverse temperature βx. In the rotating frame, the above master equation reduces to

dρ(χ, t)
dt

= −i[HdR, ρ] + γ1(ei(ωhχh−ωcχc)bhcρ(t)b
†

hc −
1
2
{b†hcbhc, ρ(t)}) + γ2(e−i(ωhχh−ωcχc)b†hcρ(t)bhc −

1
2
{bhcb†hc, ρ(t)}), (D16)

and the corresponding full Liouvillian super-operator with counting fields is

L(χh, χc) =


−γ1 −iα iα γ2e−i(χhωh−χcωc)

−iα −
γ1
2 −

γ2
2 0 iα

iα 0 −
γ1
2 −

γ2
2 −iα

γ1ei(χhωh−χcωc) iα −iα −γ2

 . (D17)

For calculating power statistics, we set χh = χc = χ. Following the previous discussion in this section, we can determine the
polynomial factors with respective derivatives

a1 = 2α2(γ1 + γ2) +
1
4

(γ1 + γ2)3,

a2 =
1
4

(
16α2 + 5(γ1 + γ2)2

)
,

a′0 = α
2(γ1 − γ2)(γ1 + γ2)(ωh − ωc),

a′′0 = −α
2(γ1 + γ2)2(ωh − ωc)2,

and a′1 = 2α2(γ1 − γ2)(ωh − ωc).

The expression for the average (mean) and variance of power are given by

⟨PC⟩ =
4α2(γ1 − γ2)

8α2 + (γ1 + γ2)2 (ωh − ωc), and ∆PC = Fp(⟨PC⟩ −
3

2α2(ωh − ωc)2 ⟨PC⟩
3)(ωh − ωc), (D18)

where Fp =
2nhnc+nh+nc

nh−nc
. Similarly, we can determine the average and variance of heat current corresponding to a bath with

inverse temperature βx by setting χx = χ and χy = 0 in the Liouvillian super-operator. The average heat currents from the hot
and cold baths are

⟨J̇h
C⟩ =

4α2(γ2 − γ1)
8α2 + (γ1 + γ2)2ωh, and ⟨J̇c

C⟩ =
4α2(γ1 − γ2)

8α2 + (γ1 + γ2)2ωc, (D19)

respectively, and the corresponding variances in heat currents are

∆J̇h
C =

4α2(γ1 + γ2)
(
64α4 − 8α2

(
γ2

1 − 10γ1γ2 + γ
2
2

)
+ (γ1 + γ2)4

)
(
8α2 + (γ1 + γ2)2)3 ω2

h, (D20)

and ∆J̇c
C =

4α2(γ1 + γ2)
(
64α4 − 8α2

(
γ2

1 − 10γ1γ2 + γ
2
2

)
+ (γ1 + γ2)4

)
(
8α2 + (γ1 + γ2)2)3 ω2

c . (D21)

With this, the heat-to-work conversion efficiency of CQHEs becomes

ηC = −
⟨PC⟩

⟨J̇h
C⟩
= 1 −

ωc

ωh
. (D22)

It is important to note that IQHEs and CQHEs have the same efficiency. Further, the noise-to-signal ratio of the power of CQHEs
is

NC =
∆PC

⟨PC⟩
2 = Fp

( 1
⟨PC⟩

−
3

2α2(ωh − ωc)2 ⟨PC⟩
)
(ωh − ωc) =

Fp

αC(σC)
(1 −

3
2
C(σC)2), (D23)

where ⟨PC⟩ = −α(ωh − ωc)C(σC), and C(σC) is l-1 norm of coherence of the steady state σC . It is important to note that the
noise-to-signal ratio of currents, power, and photon number flux is the same for CQHEs.
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2. Counting field statistics for Incoherent quantum heat engines

To determine the power statistics in incoherent heat engines, we again use the Full Counting Statistics (FCS) technique, which
includes counting fields in the master equation. Let χh and χc be counting fields for the hot and cold baths, respectively. The
dressed Lindblad master equation (A3) of IQHEs in the rotating frame becomes

ρ̇R = − i[HdR, ρR] + γh(nh + 1)(e−iωhχh bhρRb†h −
1
2
{b†hbh, ρR}) + γhnh(eiωhχh b†hρRbh −

1
2
{bhb†h, ρR}) (D24)

+ γc(nc + 1)(e−iωcχc bcρRb†c −
1
2
{b†cbc, ρR}) + γcnc(eiωcχc b†cρRbc −

1
2
{bcb†c , ρR}).

Accordinlgly, the full Liouvillian super-operator L(χh, χc) with counting fields is

−g1 − g3 0 0 0 g4eiχcωc 0 0 0 g2eiχhωh

0 −
g1
2 −

g3
2 −

g4
2 −iα 0 0 0 0 0 0

0 −iα −
g1
2 −

g2
2 −

g3
2 0 0 0 0 0 0

0 0 0 −
g1
2 −

g3
2 −

g4
2 0 0 iα 0 0

g3e−iχcωc 0 0 0 −g4 −iα 0 iα 0
0 0 0 0 −iα −

g2
2 −

g4
2 0 0 iα

0 0 0 iα 0 0 −
g1
2 −

g2
2 −

g3
2 0 0

0 0 0 0 iα 0 0 −
g2
2 −

g4
2 −iα

g1e−iχhωh 0 0 0 0 iα 0 −iα −g2


,

where g1 = γh(nh + 1), g2 = γhnh, g3 = γc(nc + 1) and g4 = γcnc. We set χh = χc = χ to calculate the power statistics. Following
the previous discussion in this section, we find the polynomial factors with respective derivatives:

a1 = −
1
64

(γcnc + γhnh)
(
4α2 + (γc + γh + 2γcnc + γhnh)(γc + γh + γcnc + 2γhnh)

)2 (
4α2(γc(3nc + 2) + γh(3nh + 2))

+γcγh(3ncnh + nc + nh)(γcnc + γhnh)) ,

a2 = −
1
64

(4α2 + (γc + γh + 2γcnc + γhnh)(γc + γh + γcnc + 2γhnh))((γc)5n2
c(nc + 1)(2nc + 1)2 + (γc)2(γh)3(5n2

c + (nc

(238nc + 157) + 25)n3
h + (6nc(39nc + 19) + 11)n2

h + nc(67nc + 18)nh) + (γc)3(γh)2(n3
c(nh(238nh + 157) + 25) + n2

c

(6nh(39nh + 19) + 11) + ncnh(67nh + 18) + 5n2
h) + γc(γh)4nh(nc(nh(nh(82nh + 113) + 47) + 6) + nh(28n2

h + 30nh

+ 7)) + 64α4(γc + γh + 2γcnc + 2nhnh) + 4α2(((γc)3(3nc + 2)2(6nc + 1) + ((γc)2(γh(nc(2(91nc + 85)nh + 85nc + 72)

+ 36nh + 12) + (γc((γh)2(2nc(nh(91nh + 85) + 18) + nh(85nh + 72) + 12) + ((γh)3(3nh + 2)2(6nh + 1)) + ((γc)4(γhnc

(nc(nc(nc(82nh + 28) + 113nh + 30) + 47nh + 7) + 6nh) + ((γh)5n2
h(nh + 1)(2nh + 1)2),

a′0 =
1
16
γcγh(nc − nh)(ωh − ωc)(γcnc + γhnh)

(
4α3 + α(γc + γh + 2γcnc + γhnh)(γc + γh + γcnc + 2γhnh)

)2
,

a′′0 =
1

16
α2γcγh(2ncnh + nc + nh)(ωc − ωh)2(γcnc + γhnh)

(
4α2 + (γc + γh + 2γcnc + γhnh)(γc + γh + γcnc + 2γhnh)

)2
,

and a′1 =
1
8
α2γcγh(nc − nh)(ωh − ωc)

(
4α2 + (γc)2(nc(8nc + 7) + 1) + γcγh(17ncnh + 7nc + 7nh + 2) + (γh)2(nh(8nh + 7) + 1)

)
(
4α2 + (γc + γh + 2γcnc + γhnh)(γc + γh + γcnc + 2γhnh)

)
.

Utilizing these expressions, the average power and the variance in power of IQHEs become

⟨PI⟩ = −
4α2γhγc(nh − nc)

4α2(γc(3nc + 2) + γh(3nh + 2)) + γcγh(3ncnh + nc + nh)(γcnc + γhnh)
(ωh − ωc), (D25)

and ∆PI = (Fp⟨PI⟩ −
k

α2(ωh − ωc)2 ⟨PI⟩
3)(ωh − ωc), (D26)

where Fp =
2nhnc+nh+nc

nh−nc
and k = 4α2

γ2
0(nh−nc) +

nhnc+n2
c+n2

h
nh−nc

+ 2Fp. Now, the noise-to-signal ratio of the power of IQHEs is

NI =
∆PI

⟨PI⟩
2 =

(
Fp

⟨PI⟩
−

k
α2(ωh − ωc)2 ⟨PI⟩

)
(ωh − ωc) =

Fp

αC(σI)

(
1 −

k
Fp
C(σI)2

)
, (D27)

where ⟨PI⟩ = −α(ωh − ωc)C(σI), and C(σI) is l-1 norm of coherence of the steady state σI . It is important to note that the
noise-to-signal ratio of currents, power, and photon number flux is the same for IQHEs.
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Appendix E: Classical thermodynamic uncertainty relation and power-efficiency-constancy trade-off relation

Classical steady-state heat engines always exhibit trade-off relationships between relative fluctuation in output power, the
thermodynamic cost (quantified by the rate of entropy production Ṡ ), and heat-to-work conversion efficiency. There are two
trade-off relations

Q = Ṡ
∆P
⟨P⟩2

≥ 2, (E1)

andD = (ηCor − η)
∆P
⟨P⟩

βcωh

(ωh − ωc)
≥ 2, (E2)

where Ṡ the rate of entropy production, η = 1 − ωc
ωh

is the engine efficiency for both coherent and incoherent engines, and ηCor =

1− βh
βc

is the Carnot efficiency. Note, Eq. (E1) is referred to as the classical thermodynamic uncertainty relation (cTUR) [44] and
Eq. (E2) is referred to as the power-efficiency-constancy trade-off relation [45]. The entropy production rate Ṡ for coherent and
incoherent engines can be written as (for X = C, I)

Ṡ X = −βh⟨J̇h
X⟩ − βc⟨J̇c

X⟩ = ln
(

nh(nc + 1)
nc(nh + 1)

)
⟨ṄX⟩ > 0, (E3)

where ⟨ṄX⟩ = |⟨PX⟩|/(ωh −ωc) is the average photon number current, J̇X
h and J̇X

c are average heat currents corresponding hot and
cold baths, respectively. Moreover, we can write

(ηCor − η)
βcωh

(ωh − ωc)
= ln

(
nh(nc + 1)
nc(nh + 1)

)
. (E4)

To obtain above expression we have used the relation nx = 1/(eβxωx − 1) for x = h, c. Using above relations, we can show that

QX = DX = ln
(

nh(nc + 1)
nc(nh + 1)

)
FX . (E5)

Here FX =
∆ṄX

⟨ṄX⟩
is known as the Fano factor of photon number current (Ṅ), where ⟨ṄX⟩ = |⟨PX⟩|/(ωh − ωc) and ∆ṄX =

∆PX/(ωh − ωc)2 are variance and average of photon number current for the steady state dynamics. The Eq. (E5) indicates that
in the context of CQHEs and IQHEs, both the cTUR and the power-efficiency-constancy trade-off relation coincide. By using
the expression of ⟨PX⟩ and ∆PX , the Fano factors for CQHEs and IQHEs can be respectively written in terms of population and
energetic coherence as,

FC = Fp

(
1 −

3
2

(C(σC))2
)
, and FI = Fp

(
1 −

k
Fp

(C(σI))2
)
. (E6)

Appendix F: Quantum Thermodynamic Uncertainty Relation

A quantum formulation of the thermodynamic uncertainty relation was recently obtained for Markovian dynamics (described
by the Lindblad master equation) using the quantum Cramér-Rao bound. To read the steady-state version of qTUR, one reads as
follows [54]:

N =
∆P
⟨P⟩2

≥ f =
1

Υ + Ψ
. (F1)

In the above bound (F1), Υ denotes the quantum dynamical activity, which is the average rate of transitions in the steady-state
and reads

Υ =
∑

k

Tr
(
L†k Lkρss

)
, (F2)

where ρss represent the steady state of the given system, Lk and L†k represent the jump operators and its ad-joint operators,
respectively. In the above bound (F1), Ψ denotes the coherent-dynamics contribution and reads

Ψ = −4(⟨⟨I|LLL
+LR|ρss⟩⟩ + ⟨⟨I|LRL

+LL|ρss⟩⟩), (F3)
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where |ρss⟩⟩ denotes the vectorized steady-state density matrix ρss, |I⟩⟩ =
∑

i |i⟩∗ ⊗ |i⟩ is the vectorized identity. L+ denotes the
Drazin inverse of vectorized Liouvillian super operator (L = LR +LL) and the expression of LR and LL reads as follows

LR = −iI ⊗ H +
1
2

∑
k

(L∗k ⊗ Lk − I ⊗ L†k Lk),

and

LL = iHT ⊗ I +
1
2

∑
k

(L∗k ⊗ Lk − (L†k Lk)T ⊗ I),

where H is the Hamiltonian of the system and I is the identity matrix. The vectorized Liouvillian super operator can be
written as L =

∑
j,0 λ j|x j⟩⟩⟨⟨y j|, where |x j⟩⟩ and |y j⟩⟩ are right and left eigenvectors of vectorized Liouvillian super operator,

respectively and λ j is eigen value of vectorized Liouvillian super operator. The Drazin inverse of the Liouvillian super operator
can be obtained by inverting the eigen values L+ =

∑
j,0

1
λ j
|x j⟩⟩⟨⟨y j| [74]. The Drazin inverse also can be calculated using

some alternative methods, for more details see Ref. [74]. Employing this definition, we derived the Drazin inverse of vectorized
Liouvillian superoperators for CQHEs and IQHEs as

L+C =



4α2(γ1−3γ2)−γ1(γ1+γ2)2

(8α2+(γ1+γ2)2)2
2iα

8α2+(γ1+γ2)2 − 2iα
8α2+(γ1+γ2)2

4α2(3γ1−γ2)+γ2(γ1+γ2)2

(8α2+(γ1+γ2)2)2

4iα(4α2+(2γ1−γ2)(γ1+γ2))
(8α2+(γ1+γ2)2)2 −

2(4α2+(γ1+γ2)2)
(γ1+γ2)(8α2+(γ1+γ2)2) −

8α2

(γ1+γ2)(8α2+(γ1+γ2)2) −
4iα(4α2−(γ1−2γ2)(γ1+γ2))

(8α2+(γ1+γ2)2)2

−
4iα(4α2+(2γ1−γ2)(γ1+γ2))

(8α2+(γ1+γ2)2)2 − 8α2

(γ1+γ2)(8α2+(γ1+γ2)2) −
2(4α2+(γ1+γ2)2)

(γ1+γ2)(8α2+(γ1+γ2)2)
4iα(4α2−(γ1−2γ2)(γ1+γ2))

(8α2+(γ1+γ2)2)2

γ1(γ1+γ2)2−4α2(γ1−3γ2)

(8α2+(γ1+γ2)2)2 − 2iα
8α2+(γ1+γ2)2

2iα
8α2+(γ1+γ2)2

4α2(γ2−3γ1)−γ2(γ1+γ2)2

(8α2+(γ1+γ2)2)2


and

L+I =



a11 0 0 0 a15 a16 0 a18 a19
0 a22 a23 0 0 0 0 0 0
0 a32 a33 0 0 0 0 0 0
0 0 0 a44 0 0 a47 0 0

a51 0 0 0 a55 a56 0 a58 a59
a61 0 0 0 a65 a66 0 a68 a69
0 0 0 a74 0 0 a77 0 0

a81 0 0 0 a85 a86 0 a88 a89
a91 0 0 0 a95 a96 0 a98 a99


,

respectively, where

γ1 = γ0nc(nh + 1),
γ2 = γ0nh(nc + 1),

a11 = −
4α2γ2

0(nc + nh + 2)
(
n2

c + 6ncnh + n2
h

)
+ γ4

0(nc + nh)2
(
n2

c(nh + 1) + ncn2
h + n2

h

)
+ 64α4(nc + nh + 2)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a61 = −a81 =
2iα(nc − nh)

(
γ2

0

(
3n2

c(nh + 1) + nc(3nh(nh + 4) + 4) + nh(3nh + 4)
)
+ 12α2(nc + nh + 2)

)
(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a23 = a32 = −a74 = −a47 =
4iα

4α2 + γ2
0(2nc + nh + 2)(nc + 2nh + 2)

,

a22 = a44 = −
2γ0(nc + 2nh + 2)

4α2 + γ2
0(2nc + nh + 2)(nc + 2nh + 2)

,

a33 = a77 = −
2γ0(2nc + nh + 2)

4α2 + γ2
0(2nc + nh + 2)(nc + 2nh + 2)

,

a16 = −a18 =
2iα(nc − nh)

4α2(3nc + 3nh + 4) + γ2
0(nc + nh)(3ncnh + nc + nh)

,

a56 = −a58 =
2iα(nc + 2nh + 2)

4α2(3nc + 3nh + 4) + γ2
0(nc + nh)(3ncnh + nc + nh)

,
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a96 = a98 = −
2iα(2nc + nh + 2)

4α2(3nc + 3nh + 4) + γ2
0(nc + nh)(3ncnh + nc + nh)

,

a86 = a68 = −
4α2(3nc + 3nh + 4)

γ0(nc + nh)
(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
) ,

a66 = a88 =
−4α2(3nc + 3nh + 4) − 2γ2

0(nc + nh)(3ncnh + nc + nh)

γ0(nc + nh)
(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
) ,

a15 =
4α2γ2

0

(
−n3

c + (5nc + 4)n2
h + 2(nc − 2)ncnh + 2n3

h

)
− γ4

0nc(nc + nh)2
(
(nc − 1)nh + nc − 2n2

h

)
+ 32α4(nc + nh)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a19 =
4α2γ2

0

(
2n3

c + n2
c(5nh + 4) + 2nc(nh − 2)nh − n3

h

)
+ 32α4(nc + nh) + γ4

0nh(nc + nh)2(nc(2nc + 1) − (nc + 1)nh)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a65 = −a85 =
2iα

(
4α2

(
3n2

c + 3nc(3nh + 4) + 6nh(nh + 2) + 8
)
+ γ2

0

(
3n3

c(nh + 1) + 3n2
c(3nh(nh + 2) + 2) + ncnh

(
6n2

h + 3nh + 4
)
− 2n2

h

))
(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a95 =
4α2γ2

0

(
n2

c(2nc + 3) + (5nc + 7)n2
h + (nc + 2)(5nc + 4)nh + 2n3

h

)
− 16α4(nc + nh) + 2γ4

0nc(nh + 1)(nc + nh)2(nc + nh + 1)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a59 =
4α2γ2

0

(
2n3

c + n2
c(5nh + 7) + nc(nh + 2)(5nh + 4) + n2

h(2nh + 3)
)
− 16α4(nc + nh) + 2γ4

0(nc + 1)nh(nc + nh)2(nc + nh + 1)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a89 = −a69 =
2iα

(
4α2

(
6n2

c + 3nc(3nh + 4) + 3nh(nh + 4) + 8
)
+ γ2

0

(
6n3

cnh + n2
c

(
9n2

h + 3nh − 2
)
+ ncnh(3nh(nh + 6) + 4) + 3n2

h(nh + 2)
))

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a99 = −
4α2γ2

0

(
(7nc + 3)n2

h + 10nc(nc + 1)nh + nc(nc(4nc + 11) + 8) + n3
h

)
+ 16α4(nc + nh) + γ4

0nh(nc + nh)2(nc(4nc + nh + 5) + nh + 2)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a55 = −
4α2γ2

0

(
n3

c + n2
c(7nh + 3) + 10ncnh(nh + 1) + nh(nh(4nh + 11) + 8)

)
+ γ4

0nc(nc + nh)2
(
(nc + 5)nh + nc + 4n2

h + 2
)
+ 16α4(nc + nh)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

a51 =

4α2γ2
0

(
nc

(
nc − n2

c + 4
)
+ (5nc + 1)n2

h + 2nc(nc + 3)nh + 2n3
h − 4nh

)
− γ4

0(nc + 1)(nc + nh)2
(
(nc − 1)nh + nc − 2n2

h

)
+ 32α4(nc + nh + 2)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 ,

and

a91 =

4α2γ2
0

(
2n3

c + n2
c(5nh + 1) + 2nc(nh(nh + 3) − 2) + nh

(
nh − n2

h + 4
))
+ 32α4(nc + nh + 2) + γ4

0(nh + 1)(nc + nh)2(nc(2nc + 1) − (nc + 1)nh)

γ0

(
4α2(3nc + 3nh + 4) + γ2

0(nc + nh)(3ncnh + nc + nh)
)2 .

The superoperators LR and LL for CQHEs and IQHEs can be computed using the corresponding jump operators√
γ0nc(nh + 1)bh,

√
γ0nh(nc + 1)b†hc and

√
γ0(nh + 1)bh,

√
γ0nhb†h,

√
γ0(nc + 1)bc,

√
γ0ncb†c through a simple exercise. The

expressions of the lower bounds ( fX) on the noise-to-signal ratio of power for CQHEs and IQHEs in terms of driving and bath
parameters are as follows

1
fC
=

2
(
2α2 + γ2

0nhnc(nc + 1)(nh + 1)
) (

32α2 + γ2
0(2ncnh + nc + nh)2

)
γ0(nh + nc + 2nhnc)(8α2 + γ2

0(nh + nc + 2nhnc)2)
,

and
1
fI
=

2(nh + nc + 2)(4α2 + γ2
0nhnc)(16α2 + γ2

0(nh + nc)2)

γ0(nh + nc)(4α2(4 + 3(nh + nc)) + γ2
0(nh + nc)(nh + nc + 3nhnc))

.
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It is important to note that the noise-to-signal ratio of currents, power, and photon number flux is the same for CQHEs as well
as for IQHEs.
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[46] Krzysztof Ptaszyński, “Coherence-enhanced constancy of a
quantum thermoelectric generator,” Physical Review B 98,
085425 (2018).

[47] Junjie Liu and Dvira Segal, “Thermodynamic uncertainty rela-
tion in quantum thermoelectric junctions,” Physical Review E
99, 062141 (2019).

[48] Soham Pal, Sushant Saryal, Dvira Segal, T. S. Mahesh, and
Bijay Kumar Agarwalla, “Experimental study of the thermo-
dynamic uncertainty relation,” Physical Review Research 2,
022044 (2020).

[49] Antoine Rignon-Bret, Giacomo Guarnieri, John Goold, and
Mark T. Mitchison, “Thermodynamics of precision in quantum
nanomachines,” Physical Review E 103, 012133 (2021).

[50] Tan Van Vu and Keiji Saito, “Thermodynamics of precision in
markovian open quantum dynamics,” Physical Review Letters
128, 140602 (2022).

[51] Leonardo da Silva Souza, Gonzalo Manzano, Rosario Fazio,
and Fernando Iemini, “Collective effects on the performance
and stability of quantum heat engines,” Physical Review E 106,
014143 (2022).

[52] Kacper Prech, Philip Johansson, Elias Nyholm, Gabriel T.
Landi, Claudio Verdozzi, Peter Samuelsson, and Patrick P.
Potts, “Entanglement and thermokinetic uncertainty relations

in coherent mesoscopic transport,” Physical Review Research
5, 023155 (2023).

[53] Gonzalo Manzano and Rosa López, “Quantum-enhanced per-
formance in superconducting andreev reflection engines,” Phys-
ical Review Research 5, 043041 (2023).

[54] Yoshihiko Hasegawa, “Quantum thermodynamic uncertainty
relation for continuous measurement,” Physical Review Letters
125, 050601 (2020).

[55] Samuel L. Braunstein and Carlton M. Caves, “Statistical dis-
tance and the geometry of quantum states,” Physical Review
Letters 72, 3439 (1994).

[56] Yoshihiko Hasegawa, “Unifying speed limit, thermodynamic
uncertainty relation and heisenberg principle via bulk-boundary
correspondence,” Nature Communications 14, 2828 (2023).

[57] Heinz-Peter Breuer and Francesco Petruccione, The Theory
of Open Quantum Systems (Oxford University Press, Oxford,
2007).

[58] Christopher C. Gerry and J. H. Eberly, “Dynamics of a raman
coupled model interacting with two quantized cavity fields,”
Physical Review A 42, 6805 (1990).

[59] Christopher C. Gerry and H. Huang, “Dynamics of a two-atom
raman coupled model interacting with two quantized cavity
fields,” Physical Review A 45, 8037 (1992).

[60] Ying Wu, “Effective raman theory for a three-level atom in the
Λ configuration,” Physical Review A 54, 1586 (1996).

[61] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying co-
herence,” Physical Review Letters 113, 140401 (2014).

[62] Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert
Grynberg, Atom-photon interactions: basic processes and ap-
plications (John Wiley & Sons, 1998).

[63] Serge Haroche and J-M Raimond, Exploring the quantum:
atoms, cavities, and photons (Oxford University Press, 2006).

[64] Pierre Meystre and Marlan O Scully, Quantum optics (Springer,
2021).

[65] Jonas Larson and Themistoklis Mavrogordatos, The Jaynes–
Cummings model and its descendants: modern research direc-
tions (IoP Publishing, 2021).

[66] Mohammed Ali Aamir, Claudia Castillo Moreno, Simon Sun-
delin, Janka Biznárová, Marco Scigliuzzo, Kowshik Erappaji
Patel, Amr Osman, D. P. Lozano, Ingrid Strandberg, and Si-
mone Gasparinetti, “Engineering symmetry-selective couplings
of a superconducting artificial molecule to microwave waveg-
uides,” Physical Review Letters 129, 123604 (2022).

[67] Maximilian Zanner, Tuure Orell, Christian M. F. Schneider, Ro-
main Albert, Stefan Oleschko, Mathieu L. Juan, Matti Silveri,
and Gerhard Kirchmair, “Coherent control of a multi-qubit dark
state in waveguide quantum electrodynamics,” Nature Physics
18, 538 (2022).

[68] A. Gauguet, T. E. Mehlstäubler, T. Lévèque, J. Le Gouët,
W. Chaibi, B. Canuel, A. Clairon, F. Pereira Dos Santos, and
A. Landragin, “Off-resonant raman transition impact in an atom
interferometer,” Physical Review A 78, 043615 (2008).

[69] Sofus L. Kristensen, Matt Jaffe, Victoria Xu, Cristian D.
Panda, and Holger Müller, “Raman transitions driven by phase-
modulated light in a cavity atom interferometer,” Physical Re-
view A 103, 023715 (2021).

[70] Florian Böhm, Niko Nikolay, Sascha Neinert, Christoph E.
Nebel, and Oliver Benson, “Ground-state microwave-
stimulated raman transitions and adiabatic spin transfer in the
15N nitrogen vacancy center,” Physical Review B 104, 035201
(2021).

[71] Daniel A. Lidar, “Lecture notes on the theory of open quantum
systems,” (2020), arXiv:1902.00967.

http://dx.doi.org/10.1103/PhysRevLett.123.240601
http://arxiv.org/abs/2310.18132
http://dx.doi.org/10.1103/PhysRevA.86.043843
http://dx.doi.org/10.1103/PhysRevA.86.043843
http://dx.doi.org/10.1103/PhysRevE.104.L012103
http://dx.doi.org/10.1103/PhysRevA.104.042203
http://dx.doi.org/10.1103/PhysRevA.104.042203
http://dx.doi.org/10.1103/PhysRevA.108.032203
http://dx.doi.org/10.1103/PhysRevA.108.032203
http://dx.doi.org/10.1073/pnas.1110234108
http://dx.doi.org/10.1073/pnas.1110234108
http://dx.doi.org/10.1103/PhysRevResearch.4.L032034
http://dx.doi.org/10.1103/PhysRevResearch.4.L032034
http://dx.doi.org/10.1103/PhysRevLett.104.207701
http://dx.doi.org/10.1103/PhysRevE.97.042120
http://dx.doi.org/10.1103/PhysRevE.97.042120
http://dx.doi.org/10.1103/PhysRevLett.114.158101
http://dx.doi.org/10.1103/PhysRevLett.114.158101
http://dx.doi.org/10.1103/PhysRevLett.120.190602
http://dx.doi.org/10.1103/PhysRevB.98.085425
http://dx.doi.org/10.1103/PhysRevB.98.085425
http://dx.doi.org/10.1103/PhysRevE.99.062141
http://dx.doi.org/10.1103/PhysRevE.99.062141
http://dx.doi.org/10.1103/PhysRevResearch.2.022044
http://dx.doi.org/10.1103/PhysRevResearch.2.022044
http://dx.doi.org/10.1103/PhysRevE.103.012133
http://dx.doi.org/10.1103/PhysRevLett.128.140602
http://dx.doi.org/10.1103/PhysRevLett.128.140602
http://dx.doi.org/10.1103/PhysRevE.106.014143
http://dx.doi.org/10.1103/PhysRevE.106.014143
http://dx.doi.org/10.1103/PhysRevResearch.5.023155
http://dx.doi.org/10.1103/PhysRevResearch.5.023155
http://dx.doi.org/10.1103/PhysRevResearch.5.043041
http://dx.doi.org/10.1103/PhysRevResearch.5.043041
http://dx.doi.org/10.1103/PhysRevLett.125.050601
http://dx.doi.org/10.1103/PhysRevLett.125.050601
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1038/s41467-023-38074-8
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1103/PhysRevA.42.6805
http://dx.doi.org/10.1103/PhysRevA.45.8037
http://dx.doi.org/10.1103/PhysRevA.54.1586
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.129.123604
http://dx.doi.org/10.1038/s41567-022-01527-w
http://dx.doi.org/10.1038/s41567-022-01527-w
http://dx.doi.org/10.1103/PhysRevA.78.043615
http://dx.doi.org/10.1103/PhysRevA.103.023715
http://dx.doi.org/10.1103/PhysRevA.103.023715
http://dx.doi.org/10.1103/PhysRevB.104.035201
http://dx.doi.org/10.1103/PhysRevB.104.035201
http://arxiv.org/abs/1902.00967


21

[72] Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel,
“Nonequilibrium fluctuations, fluctuation theorems, and count-
ing statistics in quantum systems,” Reviews of Modern Physics
81, 1665 (2009).

[73] M Bruderer, L D Contreras-Pulido, M Thaller, L Sironi,
D Obreschkow, and M B Plenio, “Inverse counting statistics for

stochastic and open quantum systems: the characteristic poly-
nomial approach,” New Journal of Physics 16, 033030 (2014).

[74] Gabriel T. Landi, Michael J. Kewming, Mark T. Mitchison, and
Patrick P. Potts, “Current fluctuations in open quantum systems:
Bridging the gap between quantum continuous measurements
and full counting statistics,” PRX Quantum 5, 020201 (2024).

http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1088/1367-2630/16/3/033030
http://dx.doi.org/10.1103/PRXQuantum.5.020201

	Coherent Heat Transfer Leads to Genuine Quantum Enhancement in Performances of Continuous Engines
	Abstract
	introduction
	Continuous coherent quantum heat engines 
	Quantum enhancements in coherent engines 
	Summary 
	Acknowledgements
	Steady state solution of incoherent quantum heat engines in rotating frame 
	Derivation of Lindblad master equation for coherent quantum heat engines 
	Steady state solution of coherent quantum heat engines in rotating frame 

	Comparison of energetic coherences in coherent and incoherent heat engines 
	Full Counting Statistics 
	Counting field statistics for coherent quantum heat engines 
	Counting field statistics for Incoherent quantum heat engines 

	Classical thermodynamic uncertainty relation and power-efficiency-constancy trade-off relation
	Quantum Thermodynamic Uncertainty Relation
	References


