
Defect Fusion and Casimir Energy
in Higher Dimensions

Oleksandr Diatlyk, Himanshu Khanchandani, Fedor K. Popov,
and Yifan Wang

Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA

Abstract

We study the operator algebra of extended conformal defects in more than two spacetime
dimensions. Such algebra structure encodes the combined effect of multiple impurities on
physical observables at long distances as well as the interactions among the impurities. These
features are formalized by a fusion product which we define for a pair of defects, after isolating
divergences that capture the effective potential between the defects, which generalizes the
usual Casimir energy. We discuss general properties of the corresponding fusion algebra and
contrast with the more familiar cases that involve topological defects. We also describe the
relation to a different defect setup in the shape of a wedge. We provide explicit examples
to illustrate these properties using line defects and interfaces in the Wilson-Fisher CFT and
the Gross-Neveu(-Yukawa) CFT and determine the defect fusion data thereof.
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1 Introduction and Summary

Impurities in many-body systems embody a vast array of rich physical phenomena, such
as phase transitions, symmetry breaking and universality under renormalization group (RG)
flows. Interestingly this is the case even when the bulk system is weakly coupled or free. One
famous example is the Kondo effect [1], that describes a strongly coupled spin impurity in a
sea of essentially free electrons (see [2] for a review). Quantum Field Theory (QFT) provides
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a general and powerful framework to explain the dynamics of impurities in the continuum
limit. For the prototypical Kondo model, this is achieved by modeling the impurity, in
the so-called s-wave limit, by a boundary condition for the d = 2 theory of free fermions.
Under RG, it flows to certain strongly coupled conformal boundary condition in the infra-
red (IR) which can be identified by Conformal Field Theory (CFT) methods [2–5]. More
generally, under mild assumptions, universality classes of isolated impurities that extend
in p ≥ 1 spacetime directions are modeled by conformal defects that preserve the so(p +

1, 1) conformal symmetry. We will focus on the case where the bulk system is gapless
and described by a CFT. If the bulk is gapped instead, a p-dimensional conformal defect
therein is not much different from a conventional p-dimensional local CFT coupled to certain
topological backgrounds (in higher dimensions).

In recent years, a lot of progress has been made in the study of conformal defects in
CFT, especially thanks to the bootstrap philosophy. The bootstrap approach has proven to
be extremely successful in constraining and solving the local operator data of CFT based
on very general principles such as unitarity, locality and conformal symmetry (see [6–8] for
recent reviews). The challenge is to bring that success to the more general CFT observables
that incorporate defects. Thus far most of the works on conformal defects have focused on the
setup with a single defect insertion, which already produces a large body of interesting results
that capture the physics of isolated impurities, in particular from the operator-product-
expansion (OPE) between a single defect and one or more local (point) operators [9]. However
impurities also interact with one another in a nontrivial way, especially when immersed in
an interacting bulk system. In particular, one expects a generalization of the OPE between
the corresponding conformal defects, which capture the physical signature of a collection of
interacting impurities observed from far away. Such an OPE for conformal defects would also
be important for formulating bootstrap-type constraints with multiple defects in CFT [10].

Here we consider the simplest nontrivial setting that consists of a pair of parallel p-
dimensional conformal defects D1 and D2 extending along Rp ⊂ Rd and separated in a trans-
verse direction. Each conformal defect preserves the subalgebra so(p, 1)×so(d−p) ⊂ so(d, 1)

where so(p, 1) is the conformal symmetry along the defect worldvolume and so(d− p) is the
transverse rotation symmetry.1 In the special situations where one or both of the defects are
topological, this OPE is non-singular (in fact topological) and equivalently defines the fusion

1In this paper we focus on defects that are local with respect to other local operators. For example, the
correlation functions of local operators ⟨O1(x1) . . .On(xn)⟩D in the presence of the defect D is single-valued.
This excludes defects that are attached to topological defects of one-dimension higher, and more generally
defects that are not invariant under the transverse rotation so(d− p).
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product of the defects (see [11] for general aspects of topological defects). In the former case,
the topological defects that close under fusion give rise to generalized global symmetries in the
theory and in the latter case, the general (non-topological) conformal defects are organized
into modules with respect to these generalized symmetries. See recent reviews [12–17] on
topological defects which discuss these fusion products that contain important information
about the generalized symmetries and their representations. In particular, the generalized
Kondo models with multiple impurities studied in [18–27] are solved by the topological OPE
(fusion) of the relevant topological defects [28] in the d = 2 chiral (unfolded) free fermion
theory.2 On the other hand, the OPE (and fusion) of non-topological defects is more subtle
due to divergences at small separation and less explored, and thus will be the focus here.
Previous works on such non-topological OPE between parallel defects can be found in [29–31]
for non-topological defects in the d = 2 free fermion and free boson theories. Specifically, the
fusion product D1 ◦D2 of a pair of parallel conformal defects D1,D2 are defined by a limit of
the vanishing transverse separation between the defects, after subtracting a divergence that
originates from the nontrivial Casimir energy due to the defect insertions [29]. This fusion
product, together with the direct sum operation, defines an algebra of conformal defects in
the d = 2 CFT, which includes the well-studied topological defects as a subalgebra and is
much richer.

In this work, we generalize this fusion product to p-dimensional conformal defects in
higher dimensions d > 2. Previous related works that study correlation functions of two
defects in specific CFTs can be found in [32–34]. Here we describe the general structure of
the defect fusion in Section 2 and comment on properties thereof in comparison to those of
the more familiar fusion product that involves topological defects. In particular, we will see
in Section 2.1 that the fusion product is in general not associative, namely D1 ◦ (D2 ◦ D3) ̸=
(D1 ◦ D2) ◦ D3 and furthermore a conformal defect D in general may not have a dual D′

defined such that their fusion product contains the trivial defect 1 as a direct summand
(i.e. D ◦ D′ ∋ 1 and D′ ◦ D ∋ 1). Another key difference between the topological fusion
product and the more general fusion product introduced here is the divergence in the limit of
vanishing separation as mentioned above. The divergence structure for the fusion of general
p-dimensional conformal defects is constrained by conformal symmetry up to a few constant
coefficients which we refer to as the Casimir coefficients, and the leading divergence captures
the Casimir energy density ED1D2 for the CFT vacuum in the presence of the parallel defects
D1 and D2. These Casimir coefficients encode nontrivial interactions between the defect

2These defects are chiral (thus topological) in the theory of left-moving fermions and they correspond to
the conformal boundary condition in the non-chiral CFT by the folding trick [21].
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whose properties are to be further explored. In setups where the defects can be treated
as probe particles, strings or branes in the CFT, these Casimir coefficients determine the
effective potential between the defects (potentially of complicated shapes). Here we focus on
the fusion of flat (straight) defects in flat space (up to conformal transformations), in which
case, only the leading Casimir coefficient (namely the Casimir energy density) contributes.
For line defects modeled by a pair of probe particle and antiparticle separated by transverse
distance r in a conformal gauge theory, such as two conformal Wilson lines W,W of conjugate
representations in the d = 4 N = 4 super-Yang-Mills theory, EWW

r
is the familiar particle-

antiparticle potential that is consistent with scale invariance and the coefficient EWW depends
quadratically on the charges of particles.

To illustrate the general properties we describe in Section 2, we compute the fusion
algebra of conformal defects explicitly in the bosonic O(N) Wilson-Fischer CFT and the
fermionic Gross-Neveu(-Yukawa) CFT. For concreteness, we consider the fusion of line defects
and interface defects in these theories. In particular, we find that the pinning field defects
(also known as magnetic line defects) in the O(N) model generate a non-associative algebra
with interesting features such as symmetry enhancement under fusion. It contains an SN−1

family of one dimensional associative subalgebras Aid = {D(n̂)} generated by a pinning field
defect D(n̂) pointing in the direction n̂ ∈ SN−1 and each D(n̂) corresponds to an idempotent
(i.e. D(n̂) ◦ D(n̂) = D(n̂)) in the full fusion algebra. The same algebra Aid also governs
the fusion of the scalar Wilson line in the Gross-Neveu-Yukawa CFT. For interface fusion,
we consider factorized interfaces IB1B2 ≡ |B1⟩⟨B2| constructed from a pair of conformal
boundary conditions B1,B2 in the O(N) Wilson-Fischer CFT and in the Gross-Neveu CFT.
The fusion product for these factorized interfaces is clearly given by IB1B2 ◦ IB3B4 = IB1B4 ,
which is associative but not commutative.

We also determine the Casimir energy density ED1D2 that controls the leading divergence
for defect fusion in these examples. Here we note that, for line defect D and its orientation
reversal D, it is well-known that the Casimir energy (i.e. particle-antiparticle potential in
the probe picture) is closely related to another type of defect observable, the cusp anomalous
dimension ΓD(τ) of the line defect D with a cusp of size τ (i.e. a deflection angle of θ = π−τ),
in the limit of θ → 0 (see Section 2.2 for details). Here we generalize this relation to a pair
of p-dimensional conformal defects D1,D2. The cusped line defect is then replaced by a
wedge consisting of planar defects D1 and D2 meeting along Rp−1 in the flat space. By
a conformal transformation, this is mapped to a configuration on Sd−p × Hp, where both
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defects wrap Hp and are located at two points on Sd−p with angular separation θ.3 We
will find this last description to be an efficient approach to compute the Casimir energy
density for conformal boundary conditions, such as in the O(N) model, and correspondingly
the leading divergences in the fusion of factorized interfaces. Our results both extend and
provide nontrivial consistency checks for previous calculations of the Casimir energy between
such boundary conditions obtained from other methods [35–39].

The rest of the paper is organized as follows. In Section 2, we discuss general properties
that arise in the fusion of conformal defects, emphasizing both similarities and differences
with the better-understood cases that involve topological defects. This general discussion is
then followed by a number of explicit examples. In Section 3, we first determine the fusion
algebra and the Casimir energy of the magnetic line defects in the O(N) Wilson-Fisher CFT
using d = 4 − ϵ expansion. Then in Section 3.4, we study the fusion of the scalar Wilson
line in the Gross-Neveu-Yukawa CFT. We move onto the fusion of factorized interfaces in
the O(N) and Gross-Neveu CFTs in Section 4, where we extract the Casimir energy for
a pair of boundary conditions from the free energy of the wedge using hyperbolic space.
In particular, for the cases that involve extraordinary boundary conditions for the O(N)

model, we identify a simple dual classical mechanical problem in Section 4.1.4. We also
discuss numerical methods to determine the Casimir energy directly at d = 3 in the large N
limit in Section 4.3. We end with a discussion of future directions in Section 5.

2 General Properties of Defect Fusion

In this section, we define the fusion product between general conformal defects in CFTs.
As explained in the introduction, this captures the combined physical signature of a pair of
parallel defects viewed from far away.

2.1 Fusion Algebra of Conformal Defects

We generalize the fusion product of conformal defect lines in d = 2 CFTs [29] to that of
p-dimensional conformal defects in higher dimensions as follows,4

(D1 ◦ D2)(Σ) ≡ lim
r→0

e
∑⌊p/2⌋

n=0

´
Σ r

2n−pC
(n)
D1D2

Rn

D1(Σr)D2(Σ) , (2.1)

3The information of the (p− 1)-dimensional defect at the corner of the wedge is mapped to the boundary
condition at the asymptotic infinity of Hp.

4More generally, the conformal defects that participate in the fusion do not need to have the same
dimensionality p [40].
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where the worldvolumes of the parallel conformal defects D1 and D2 are denoted as Σr and Σ

respectively, which are separated in the transverse z direction by r. The possible divergences
in the r → 0 limit are constrained by conformal symmetry such that the counterterms
are precisely those in (2.1) given by degree n curvature invariants on Σ (both intrinsic
Riemann curvature and extrinsic curvature from the embedding) of the schematic form Rn

with constant coefficients C(n)
D1D2

that render the limit (thus the fusion product D1 ◦ D2)
finite.5 We will refer to C

(n)
D1D2

as the Casimir coefficients for the fusion of the defects D1

and D2. We emphasize that all these Casimir coefficients C(n)
D1D2

are physical (independent of
local counterterms on the defect) and capture dynamical information for the pair of defects.
In particular for d = 2 and p = 1, the only relevant Casimir coefficient C(0)

D1D2
is proportional

the smallest scaling dimension hD1D2
gap of defect changing operators between D1 and D2,

C
(0)
D1D2

= hD1D2
gap − c

24
, (2.2)

where c is the conformal central charge of the 2d CFT. This is also known as the Casimir
energy of the vacuum with the defects D1,D2 inserted along the time direction. When either
D1 or D2 is topological, all Casimir coefficients vanish identically since the fusion (2.1) is
topological.

As mentioned before, here we focus on the simplest case where Σ and Σr are flat parallel
Rp hypersurfaces in the flat spacetime Rd. We will split the Rd coordinates as xµ = (y⃗, z, x⃗)

where y⃗ label the longitudinal Rp directions to the defects and x⃗ are the common Rd−p−1

directions transverse to the defects. Consequently all Casimir coefficients disappear in (2.1)
since the curvatures vanish, except for the leading divergence with n = 0 which captures the
Casimir energy between the defects. To ease the notation, in the rest of the paper we will
denote this coefficient as,

ED1D2 ≡ C
(0)
D1D2

, (2.3)

and refer to it as the Casimir energy (coefficient) associated with the defects D1 and D2.
Let us comment on some general features of the fusion product defined in (2.1). Firstly,

this fusion product is commutative for p ≤ d− 2 as a consequence of the transverse rotation
symmetry so(d − p) and in general noncommutative for codimension-one defects (i.e. p =

d−1). Secondly, the resulting defect D1◦D2 is in general decomposable, and can be expressed
5For even p, the n = p/2 term in the exponent of (2.1) should be interpreted as a logarithmic divergence

with coefficient C
(p/2)
D1D2

.
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as a direct sum of irreducible defects

D1 ◦ D2(Σ) =
⊕
i

Ci(Σ)Di(Σ) . (2.4)

Each summand above is dressed by a decoupled p-dimensional TQFT living on the defect
volume Σ which we denote as Ci(Σ). This generalizes the fusion coefficients in the same way
as for the fusion of topological defects discussed in [41–44]. In contrast to the topological
case, the fusion product of conformal defects as defined in (2.1) is in general not associative.
This is not surprising since we are dealing with a truncated OPE for the defects and we will
provide explicit examples in Section 3.

Furthermore, given a conformal defect D, we define its dual D by its orientation reversal,
namely

D(Σ) = D(Σ) , (2.5)

where the worldvolume Σ is related to Σ by flipping the orientation. For topological defects
that generate a (higher) fusion category, the fusion product of a defect and its dual, namely
D◦D (also D◦D), always contains the trivial topological defect 1, which is a property known
as dualizability.6 However general conformal defects are not dualizable as we will illustrate
in examples.

2.2 Casimir Energy, Wedge Free Energy and Hyperbolic Space

As pointed out in the introduction, the Casimir energy for line defects modeled by a probe
particle-antiparticle pair is related to the cusp anomalous dimension of the Wilson loop that
represents the particle [47]. More concretely, consider a Wilson loop W in a conformal gauge
theory with a cusp of size τ . Then by the usual conformal transformation that maps plane
to cylinder centered at the corner, this cusped Wilson loop can be mapped to a pair of quark
and antiquark lines running along the cylinder separated by a relative angle θ = π − τ on
Sd−1. In the limit of small θ, the cusp anomalous dimension of the Wilson loop is related to
the Casimir energy by [47]

ΓW (τ) =
EWW

θ
, θ → 0 , (2.6)

where EWW is the Casimir energy associated with the parallel defect lines, and in this case,
the potential energy between a probe quark and a probe antiquark.

6In TQFTs, it is possible to have topological defects that are not dualizable [45]. A simple example is a
factorized interface |B1⟩⟨B2| where |B1⟩ and |B2⟩ are two topological boundary conditions of the TQFT [46].
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Here we generalize this relation (2.6) to general conformal defects. As we will see in
later sections, this gives us a useful tool to compute the Casimir energy coefficient in specific
examples by evaluating partition functions on certain geometries.

To start, let us discuss the case of conformal boundaries B1 and B2. In particular, to
extract the Casimir energy for a pair of conformal boundaries, one can calculate the free
energy of the theory in a slab of width r and the slab free energy in the limit of small r
(compared to the size of the slab) will give us the Casimir energy (see Figure 1). Equivalently,
we can calculate the free energy of the CFT in a wedge, and in the limit of small opening
angle θ, we expect to recover the Casimir energy (generalizing the case of a cusped line). Note
that in general, CFT inside a slab and CFT inside a wedge give rise to different observables,
but in the limit of small opening angle, the wedge imitates the slab (see Figure 1). The
geometry we use on the wedge may be described using cylindrical coordinates as below,

ds2 = dy⃗2 + dρ2 + ρ2dφ2 = ρ2
(
dy⃗2 + dρ2

ρ2
+ dφ2

)
= ρ2ds2S1

θ×Hd−1 , (2.7)

where 0 < φ < θ, y⃗ are the coordinates along the d−2-dimensional corner of the wedge, and
ρ is the distance from the corner. As indicated in the above equation, we can conformally
map the setup to S1

θ ×Hd−1 where S1
θ represents a circular arc of size θ , Hd−1 is the d− 1-

dimensional hyperbolic space and the corner of the wedge now locates at the asymptotic
boundary of the Hd−1 (see Figure 2). The free energy on S1

θ × Hd−1 in the limit of small θ
takes the following form

FB1B2 =
Vol(Hd−1) EB1B2

θd−1
, θ → 0 , (2.8)

with EB1B2 being the Casimir energy for the two conformal boundaries, generalizing (2.6)
for line defects. In Section 4, we verify the above formula explicitly by comparing with the
Casimir energy E computed from the slab setup [35–39].

Note that the idea of using hyperbolic space to describe conformal defects in a wedge
like configuration can be applied to defects of any dimension. Consider flat p-dimensional
conformal defects D1 and D2 joined by a cusp which has an opening angle θ. The geometry
in this case with the origin located at the cusp can be written as

ds2 = dy⃗2 + dρ2 + ρ2ds2Sd−p = ρ2
(
dy⃗2 + dρ2

ρ2
+ ds2Sd−p

)
= ρ2ds2Sd−p×Hp , (2.9)

where y⃗ are the coordinates on the p − 1 dimensional corner of the wedge and the defects
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r

Rd−1

Rd−1

(a)

θ Rd−1

Rd−1

(b)

Figure 1: Slab and wedge geometry. In the limit of small angle θ, the wedge imitates a
parallel slab.

θ Rd−1

Rd−1

Weyl

transform

co
rn
er θ

Hd−1

Hd−1

Figure 2: Weyl transformation of the wedge in flat space to hyperbolic space.

are separated by a relative angle θ along the d−p dimensional sphere Sd−p. As is evident by
using a conformal transformation, we can map the configuration to Sd−p ×Hp where corner
of the wedge sweeps an arc of size θ on Sd−p. As before, this allows us to relate the free
energy on Sd−p×Hp to the Casimir energy for the parallel defects in the limit of small angle,

FD1D2 =
Vol(Hp) ED1D2

θp
, θ → 0 . (2.10)

The relation (2.6) for the cusp anomalous dimension for line defects (p = 1) is a special case
of this formalism for which we get a usual cylinder after the Weyl transformation.

We emphasize that for general p, the Sd−p ×Hp description makes manifest the residual
conformal symmetry of the problem (as isometries), which leads to simplifications in the
evaluation of the free energy as we will see in later sections.7 We also note that the wedge
configuration is only fully specified if we also identify the p− 1-dimensional defect operator
at the corner (junction). As long as such a junction defect exists (which we assume to be the
case), its specific choice does not matter in the relation (2.10) as it contributes sub-extensively
compared to the volume factor Vol(Hp). Therefore, we will often make convenient choices for

7The idea of using hyperbolic space to describe conformal defects was introduced in [48] to study mon-
odromy defects.
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the junction defect to facilitate the computation as we will explain in Section 4. Of course
the free energies FD1D2 (and related observables) we obtain that are exact functions of θ
(before the small angle limit) contain information of the junction defect and will be a useful
starting point to analyze bootstrap equations on conformal wedges. We will briefly comment
on this in the conclusion.

3 Fusing Line Defects at d > 2

In this section we illustrate the general properties of defect fusion discussed in Section 2
using concrete examples. We start with the study of localized magnetic field lines in the
critical O(N) model introduced in [49, 50]. We denote these defects as D(n̂) where the unit
vector n̂ ∈ SN−1 specifies the orientation of the defect in the O(N) directions. We will show
that the fusion product among the defect lines labeled by n̂, m̂ ∈ SN−1 takes the following
intuitive form

D(n̂) ◦ D(m̂) = D

(
n̂+ m̂√

2(1 + n̂ · m̂)

)
. (3.1)

We will also determine the associated Casimir energy using the ϵ expansion. Then in Sec-
tion 3.4, we study a similar line defect in fermionic CFTs which was introduced in [51].

3.1 Line defects in Wilson-Fisher theory

Here we study the magnetic line defects in the O(N) invariant Wilson-Fisher theory described
by the ϕ4 interaction in d = 4 − ϵ dimensions. We consider two parallel line defects and
use coordinates x = (y, z, x⃗) such that the defects are extended along the y direction and
separated along the z direction by distance r. We will first consider the case where both the
defects are coupled to the field ϕ1 so a common residual O(N − 1) symmetry is preserved.
The action for the coupled system with the two line defects is

S =

ˆ
ddx

(
1

2
(∂µϕ

I)2 +
λbΛ

4−d
T

4
(ϕIϕI)2

)
+ h1,ba

d−4
2

D

ˆ
dyϕ1(y, z = 0, x⃗ = 0) + h2,ba

d−4
2

D

ˆ
dyϕ1(y, z = r, x⃗ = 0) .

(3.2)

Before proceeding to analyze this system, let us briefly discuss what scales are at play. First
we have a UV cutoff of the bulk theory ΛT (roughly speaking the lattice size if one uses a
lattice regularization), then there is a UV cutoff of the individual defects ΛD ∼ a−1

D (where
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aD is the width of the defect) and finally we have the distance between the defects r. We
will assume the following hierarchy8 ΛT ≫ ΛD ≫ 1

r
, so that the bulk theory and the defects

are already described by consistent CFT and DCFTs therein as ΛT ,ΛD → ∞. Thus, the
renormalized couplings λ, h1 and h2 will flow to their fixed points (in a fixed scheme) in the
coupled action (3.2), which take the following values [50],

λ∗ =
8π2

(N + 8)
ϵ , h± = ±h∗ , h∗ =

[
√
N + 8 +

4N2 + 45N + 170

4(N + 8)
3
2

ϵ

]
+O(ϵ2) . (3.3)

There are two distinct conformal magnetic line defects in this theory depending on whether
we tune the defect coupling to h+ or h−, which are obviously related by the bulk Z2

global symmetry that reflects ϕ1. They correspond to the conformal lines D(±n̂) for n̂ =

(1, 0, . . . , 0) ∈ SN−1 respectively. In the following, we will consider all possible fusion prod-
ucts of two such defects D1,D2 = D(±n̂) in the limit r → 0 as defined in (2.1).

To determine the fusion product, we study the one-point function of the field ϕ1 when it
is located far from both the defects.9 To leading order in λ, the diagrams that contribute are
shown in Figure 3. We will start by writing down expressions for finite defect regulator aD
and bare couplings h1,b, h2,b, and then describe how they change when we tune the defects
to criticality. After normalizing by the expectation value of the product of two defects, we
obtain the following one-point function of ϕ1 with the defect insertions,

⟨D1D2ϕ
1(x)⟩

= −h1,ba
d−4
2

D

ˆ
dy⟨ϕ1(x)ϕ1(y, z = 0, x⃗ = 0)⟩ − h2,ba

d−4
2

D

ˆ
dy⟨ϕ1(x)ϕ1(y, z = r, x⃗ = 0)⟩

+
λb
24

Λ4−d
T a

3(d−4)
2

D

ˆ
ddx′

(
3∏

k=1

dyk

)〈
ϕ1(x)(ϕIϕI)2(x′)

[
h31,b

(
3∏

k=1

ϕ1(yk, z = 0, x⃗ = 0)

)

+ h32,b

(
3∏

k=1

ϕ1(yk, z = r, x⃗ = 0)

)
+ 3h21,bh2,bϕ

1(y3, z = r, x⃗ = 0)
2∏

k=1

ϕ1(yk, z = 0, x⃗ = 0)

+ 3h1,bh
2
2,bϕ

1(y3, z = 0, x⃗ = 0)
2∏

k=1

ϕ1(yk, z = r, x⃗ = 0)

]〉
.

(3.4)
8Naively, we could have set ΛT = ΛD as is commonly adopted in the literature [50, 52–54], but in the

limit ΛT → ∞ such a configuration could lead to a trivial defect. To make the statements more general and
more robust we will treat these scales ΛT and ΛD separately.

9In general, to fully identify a conformal defect, one needs to specify the one-point functions with all bulk
primary operators. For the specific setup here (described by (3.2)) it suffices to study the one-point function
of ϕ1.
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Figure 3: Feynman diagrams that contribute to the one-point function ⟨D1D2ϕ
1(x)⟩. The

filled circle represents defect coupling while the filled box represents the bulk coupling.

We are assuming that the bulk is critical, so the corrections that induce a bulk mass term,
for instance the tadpole contributions have been tuned away. Note that here and below, the
expressions are only valid to first order in λ unless otherwise specified. In other words, we
will work to the leading order in the ϵ expansion where the correlation function ⟨D1D2ϕ

1(x)⟩
will be sufficient to pin down the fusion product of the defect lines. As we will see later, to
correctly account for this correlator when the defects D1,D2 are tuned to their fixed points,
one must include contributions that are higher order in λ (and enhanced by divergences in
the ϵ→ 0 limit). Resummations of such contributions can be done via the Callan-Symanzik
equation, which we implement explicitly in (3.9) to resum diagrams that are attached to a
single defect (such as the first four diagrams in Figure 3). For diagrams that involve both
defects (such as the last two diagrams in Figure 3), we present an alternative method to
perform the resummation using the Schwinger-Dyson equation (3.19).

Let us first analyze the contributions in (3.4). Performing the integrals along the y

direction longitudinal to the defects in (3.4), we obtain

⟨D1D2ϕ
1(x)⟩ = −

h1,ba
d−4
2

D Γ
(
d−3
2

)
4π

d−1
2 (x⃗2 + z2)

d−3
2

−
h2,ba

d−4
2

D Γ
(
d−3
2

)
4π

d−1
2 (x⃗2 + (z − r)2)

d−3
2

+

+
λbΛ

4−d
T a

3(d−4)
2

D Γ
(
d−3
2

)3
2(3d− 11)(4− d)(4π

d−1
2 )3

(
h31,b

(x⃗2 + z2)
3d−11

2

+
h32,b

(x⃗2 + (z − r)2)
3d−11

2

)
+ 3λbΛ

4−d
T a

3(d−4)
2

D (h21,bh2,bI1 + h1,bh
2
2,bI2) ,

(3.5)
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where the coefficients I1,2 are given by following integrals

I1 =
Γ
(
d−3
2

)4
(4π

d−1
2 )4

ˆ
dd−2x⃗′dz′

((x⃗− x⃗′)2 + (z − z′)2)
d−3
2 ((x⃗′)2 + z′2)d−3((x⃗′)2 + (z′ − r)2)

d−3
2

,

I2 =
Γ
(
d−3
2

)4
(4π

d−1
2 )4

ˆ
dd−2x⃗′dz′

((x⃗− x⃗′)2 + (z − z′)2)
d−3
2 ((x⃗′)2 + z′2)

d−3
2 ((x⃗′)2 + (z′ − r)2)d−3

.

(3.6)

It is easy to see that the above integrals are finite as long as r > 0, and only diverge when
r → 0. So the leading divergences in (3.5) (at r > 0) come from diagrams that only involve
one of the defects rather than both. From these divergences we obtain the following relations
between the renormalized and the bare couplings at the leading order in ϵ,

λb = λ+O(λ2) ,

h1,b = h1 +
1
ϵ

λh31
32π2 (ΛTaD)

ϵ +O(λ2) ,

h2,b = h2 +
1
ϵ

λh32
32π2 (ΛTaD)

ϵ +O(λ2) .

(3.7)

Note that here we are using a scheme where ΛT and aD are independent scales.
We now resum diagrams that involve a single defect using the familiar Callan-Symanzik

equation for the one-point function

⟨D1ϕ
1(x)⟩ ≡ x

2−d
2

⊥ Φ (ΛDx⊥, h) , (3.8)

that we consider as a function of the renormalized coupling constant h, perpendicular dis-
tance x⊥ =

√
x⃗2 + z2 to the defect and a defect width ΛD = a−1

D . The Callan-Symanzik
equation states that physical observables should not depend on defect width Λ−1

D and renor-
malized coupling constant h,(

ΛD
∂

∂ΛD
+ β(h)

∂

∂h

)
Φ (ΛDx⊥, h) = 0 , (3.9)

as long as we change h accordingly to its beta function,

β(h) ≡ ΛD
dh

dΛD
= −4− d

2
h+

λ

16π2
h3 . (3.10)

The general solution to (3.9) is given by the method of characteristics. Namely we look for

13



h̄(x⊥) that satisfies the following equation and boundary condition,

− dh̄

d log x⊥
= − ϵ

2
h̄+

λ

16π2
h̄3 , h̄ (x⊥ = aD) = h , (3.11)

and then Φ(ΛDx⊥, h) = Φ̄(h̄(x⊥)) for general Φ̄ produces the desired solution to (3.9).
Solving (3.11) explicitly, we have then (assuming h > 0)

⟨D1ϕ
1(x)⟩ = 1

x
d−2
2

⊥

Φ̄

 1√
λ

8π2(4−d) +
(

1
h2

− λ
8π2(4−d)

)
(ΛDx⊥)

d−4

 . (3.12)

Now, requiring that to the leading order in the h expansion the solution should match the
perturbative calculation in (3.5),

⟨D1ϕ
1(x)⟩ = −

ha
d−4
2

D Γ
(
d−3
2

)
4π

d−1
2 xd−3

⊥

+O(h3, λ) , (3.13)

we can fix the unknown function Φ̄ in (3.12) and the final result takes the following form,

⟨D1ϕ
1(x)⟩ = −

Γ
(
d−3
2

)
4π

d−1
2

1

(x⃗2 + z2)
d−2
4

1√
λ

8π2(4−d) +
(

1
h2

− λ
8π2(4−d)

)
(x⃗2 + z2)

d−4
2 a4−dD

. (3.14)

Taking the limit aD → 0, we obtain the one-point function for the conformal defect (see
(3.3)),

⟨D1ϕ
1(x)⟩ = − h∗

4πx
d−2
2

⊥

. (3.15)

Thus after resumming the diagrams that are attached to a single defect, we obtain that the
two defects would individually flow to a conformal defect,

⟨D1D2ϕ
1(x)⟩ = − 1

4π

h1∗

(x⃗2 + z2)
d−2
4

− 1

4π

h2∗

(x⃗2 + (z − r)2)
d−2
4

+ cross-terms , (3.16)

where h1∗, h2∗ = ±h∗ (see (3.3)) depending on which of the two conformal lines D(±n̂) de-
scribes the fixed point. The “cross-terms” above refers to contributions from all the diagrams
that involve both of the defects (such as the last two diagrams in Figure 3). In the following
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we will resum such contributions to fully determine ⟨D1D2ϕ
1(x)⟩ for x⊥ ≫ r to the leading

order in ϵ.
Naively, if we omit these diagrams, the one-point function measured far away (i.e. x2⊥ =

x⃗2 + z2 ≫ r2) would simply be the sum of the one-point functions from a single defect,
already at zeroth order in ϵ,

⟨D1D2ϕ
1(x)⟩ = −(h1∗ + h2∗)

4πx
d−2
2

⊥

. (3.17)

In particular, if both of the defects are described by the same conformal defect D(n̂) at
large distance, the resulting effective coupling for ϕ1 on the defect would be doubled. This
is in contradiction with the RG equation which admits one unique conformal line defect
(up to a sign). This mismatch happens because we have to take into account the infinite
contributions coming from diagrams that involve both defects to obtain the correct result
even at the leading order in ϵ. To show this, let us take a closer look at the cross-terms in
(3.16), coming from the diagrams involving both defects (for example the last two diagrams
in Figure 3). Since we have already resummed all diagrams attached to a single defect,
the integrals I1,2 should be modified accordingly. Consequently, the leading pieces in the
cross-terms take the following form

Î1 =
1

(4π)3
Γ
(
d−3
2

)
4π

d−1
2

ˆ
dd−2x⃗′dz′

((x⃗− x⃗′)2 + (z − z′)2)
d−3
2 ((x⃗′)2 + z′2)

d−2
2 ((x⃗′)2 + (z′ − r)2)

d−2
4

,

Î2 =
1

(4π)3
Γ
(
d−3
2

)
4π

d−1
2

ˆ
dd−2x⃗′dz′

((x⃗− x⃗′)2 + (z − z′)2)
d−3
2 ((x⃗′)2 + z′2)

d−2
4 ((x⃗′)2 + (z′ − r)2)

d−2
2

.

Let us estimate their contributions in the limit x⊥ =
√
x2 + z2 ≫ r,

λ(h21∗h2∗Î1 + h1∗h
2
2∗Î2) ∼

3λ (h21∗h2∗ + h2∗h
2
1∗)

d− 4

1

x
3d−10

2
⊥

≫ 2h∗

x
d−2
2

⊥

, (3.18)

which dominates over the naive solution (3.17) at large distances and modifies the effective
coupling to ϕ1 on the defect. To nail down the right value of this effective coupling, we
have to resum the contributions that come from diagrams involving both of the defects. In
particular, we have to sum up all the diagrams that behave as (λ/ϵ)n when the separation
r → 0 but are finite otherwise. Once we plug in the fixed point value of λ in (3.3), all
of these contribution will add up to cancel the naive factor of two we encounter in (3.17)
when h1∗ = h2∗ = h∗. We could perform this resummation explicitly using again the Callan-
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Symanzik equation, but instead we would like to present another method for resummation
of these contributions in the spirit of [55] using the Schwinger-Dyson equation.

In the following, to ease the notation we will simply use ϕ1(x) to denote the one-point
function ⟨D1D2ϕ

1(x)⟩. We notice that to leading order in λ this resummation is equivalent
to solving the classical equation for the field ϕ1,

□ϕ1 − λ∗

x4−d⊥
(ϕ1)3 = 0 , (3.19)

where □ is the scalar Laplacian, with specific boundary conditions determined by the inser-
tion of defects,

ϕ1(x) =


− h1∗

4π(x⃗2+z2)
d−2
4
, x⃗, z → 0 ,

− h2∗

4π(x⃗2+(z−r)2)
d−2
4
, x⃗, (z − r) → 0 .

(3.20)

Note that in (3.19) we have taken into account that at the fixed point of the bulk theory the
coupling constant must depend on the distance.

We first consider the case when both defects are aligned (e.g. D1,2 are both described
D(n̂) in the conformal limit) so that both defect coupling constants are tuned to the same
value h1∗ = h2∗ = h∗. Then one can check that near both of the defects, the corrections are
small and we can trust the approximation

ϕ1(x) ≈ − h∗

2πx
d−2
2

⊥

, |x⃗|, |z| ≲ r (3.21)

On the other hand, in the limit x⊥ ≫ r, we expect that the field ϕ(x) should depend only
on x⊥ and satisfy the following equation

(ϕ1)′′(x⊥) +
d− 2

x⊥
(ϕ1)′(x⊥)−

λ∗

x4−d⊥
(ϕ1)3(x⊥) = 0 , (3.22)

subject to the behavior (3.21) for small x⊥.
To solve this equation we perform the following change of variables

ϕ1(x⊥) = −g(ϵ log(x⊥))

4πx
d−2
2

⊥

, (3.23)
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that leads to the following equation for the function g(ϵ log(x⊥)),

ġ − ϵg̈ =
1

4
(d− 2)g − λ∗

16ϵπ2
g3 . (3.24)

Taking into account that we work in the limit d → 4 and λ∗ ∝ (4 − d), we can neglect the
term containing g̈ in the above equation and obtain the following

ϵġ =
ϵ

2
g − λ∗

16π2
g3 . (3.25)

Notice that this coincides with the RG equation for the renormalized coupling constant h
(3.10) and consequently we conclude that in the limit x⊥ → ∞,

ϕ1(x⊥) → − h∗

4πx
d−2
2

⊥

. (3.26)

Next, we consider the case when the two defects are anti-aligned and the coupling con-
stants have the opposite fixed point values h1 = −h2 = h∗. Close to the defects, we have the
following approximation

ϕ1(x⃗, z) = ϕ(0)(x⃗, z) =
zh∗r

4π (x⃗2 + z2)
d+2
4

, |x⃗|, |z| ≲ r . (3.27)

Let us compute the first correction to this behaviour for large x⊥ treating the interaction
term λ∗ in (3.19) perturbatively as in

ϕ1 = ϕ(0) + λ∗ϕ(1) + . . . . (3.28)

The solution is

ϕ(1) =
h3∗r

3

7(4π)3(4− d)x
3
2
d+1

⊥

(
z3 +

6

5(d− 6)
zx2⊥

)
≪ ϕ(0) , x⊥ → ∞ , (3.29)

therefore we can conclude that the profile of ϕ1 does not receive large corrections in x⊥ → ∞,
and we can trust the solution ϕ1(x⃗, z) = ϕ(0)(x⃗, z) even far away from the pair of defects.
Since ϕ(0) vanishes in the limit r → 0, we conclude that the fused defect is trivial.

To sum up, if h1∗+h2∗ = 0, then the one-point function ϕ1(x⊥) falls off faster than 1/x⊥.
This implies that no defect is detectable in the limit of long distances, resulting in a trivial
defect. On the other hand, if we start with h1∗ + h2∗ ̸= 0 then ϕ1(x⊥) would flow back to
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the conformal solution described by h = h∗ sgn(h1∗ + h2∗). Thus we have established the
following fusion rules

D(n̂) ◦ D(n̂) = D(n̂) , D(−n̂) ◦ D(−n̂) = D(−n̂) , D(n̂) ◦ D(−n̂) = 1 , (3.30)

confirming (3.1) for the special case where the two defects are aligned or anti-aligned in the
O(N) directions.

3.2 Symmetry Enhancement

We can generalize the above computations to a situation when the two original defects are
coupled to different components of ϕI , for instance ϕ2 and ϕ1. We have the same action as
in (3.2), but now h2,b couples to ϕ2 instead. In that situation, we start with having only
an unbroken O(N − 2) symmetry. But as we show now, at long distances, it gets enhanced
back to O(N − 1). The resulting one-point function of ϕ1 to leading order in the coupling
constant λ is computed by the following,

⟨D1D2ϕ
1(x)⟩

= −
h1,ba

d−4
2

D Γ
(
d−3
2

)
4π

d−1
2 (x⃗2 + z2)

d−3
2

+
λbΓ

(
d−3
2

)3
h31,bΛ

4−d
T a

3(d−4)
2

D

2(3d− 11)(4− d)(4π
d−1
2 )3(x⃗2 + z2)

3d−11
2

+ λbh1,bh
2
2,bΛ

4−d
T a

3(d−4)
2

D I2 .

(3.31)

As discussed in the previous subsection, when we study these defects at finite transverse
distance r ≫ aD, the coupling h1,b gets resummed to h± (when we sum over all leading
diagrams stemming from the same defect). This yields again naively

⟨D1D2ϕ
1(x)⟩ = − h1∗

4π
√
x⃗2 + z2

= ∓
√
N + 8

4π
√
x⃗2 + z2

, (3.32)

and the same holds for the other component

⟨D1D2ϕ
2(x)⟩ = − h2∗

4π
√
x⃗2 + z2

= ∓
√
N + 8

4π
√
x⃗2 + (z − r)2

, (3.33)

which are valid close to either one of the defects but corrections are important for more
general x including when x⊥ ≫ r. To see this, note that we have the following RG equations
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for h1 and h2

µ
dh1
dµ

= − ϵ

2
h1 +

λ

16π2
h1(h

2
1 + h22) ,

µ
dh2
dµ

= − ϵ

2
h2 +

λ

16π2
h2(h

2
1 + h22) .

(3.34)

This implies that at the fixed point for the coupled two-defect system h21+h
2
2 = h2∗ to leading

order in ϵ and the naive solution from h21 + h22 = 2h2∗ is not allowed. Thus we have to take
into account diagrams that involve both of the defects.

As in the previous subsection, we will resum these diagrams using the Schwinger-Dyson
equation with boundary conditions specified by the defects. In fact, we can tackle the more
general case when h1 couples to n̂ direction of the field ϕ⃗ while h2 couples to the component
along m̂. In this case, the equation reads

□ϕ⃗− λ∗

x4−d⊥
(ϕIϕI)ϕ⃗ = 0 , (3.35)

with the following boundary behavior near the defects,

ϕ⃗(x) =


− h∗n̂

4π(x⃗2+z2)
d−2
4
, x⃗, z → 0 ,

− h∗m̂

4π(x⃗2+(z−r)2)
d−2
4
, x⃗, (z − r) → 0 .

(3.36)

We can solve the above equation following the similar steps as the previous section. Far
away from the defects, equation (3.35) becomes,

(ϕ⃗)′′(x⊥) +
d− 2

x⊥
(ϕ⃗)′(x⊥)−

λ∗

x4−d⊥
(ϕIϕI)ϕ⃗ = 0 , (3.37)

with the following boundary condition in the near defects region,

ϕ⃗(x) = −h∗ (n̂+ m̂)

4πx
d−2
2

⊥

, x⊥ → 0 . (3.38)

We can then argue as we have done in the previous subsection that at large distances,

ϕ⃗(x) → − h∗(n̂+ m̂)

4πx
d−2
2

⊥
√
2(1 + n̂ · m̂)

. (3.39)
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(a) (b) (c) (d)

Figure 4: Feynman diagrams that contribute to the defect two-point function
⟨⟨D1(n̂)D2(m̂)⟩⟩ in the critical O(N) vector model.

This establishes the fusion rules as in (3.1)

D(n̂) ◦ D(m̂) = D

(
n̂+ m̂√

2(1 + n̂ · m̂)

)
. (3.40)

Note that even though we started from a defect configuration which only preserves O(N−2)

symmetry, at distances larger than the separation of the two defects, there is a symmetry
enhancement and we recovers O(N − 1) symmetry.

3.3 Casimir Energy

Now we are in position to compute the Casimir energy of the two defects to the leading
order in ϵ. We start with the configuration of defects which are coupled to n̂ · ϕ⃗ and m̂ · ϕ⃗
respectively where n̂, m̂ ∈ SN−1. To isolate this scheme independent observable, we need to
calculate the expectation value of the product of defects and normalize this quantity by the
product of the expectation values of the individual defects:

⟨⟨D1(n̂)D2(m̂)⟩⟩ = ⟨D1D2⟩
⟨D1⟩⟨D2⟩

= exp

(
−E(n̂, m̂)L

r

)
. (3.41)

To leading order in λ, we have contributions from the diagrams shown in Figure 4:

E(n̂, m̂)L

r
= −(n̂ · m̂)

h1,bh2,ba
d−4
D LΓ

(
d−3
2

)
4π

d−1
2 (r2)

d−3
2

+
λbΛ

4−d
T a

2(d−4)
D L

(r2)
3d−11

2

(
Γ
(
d−3
2

)
4π

d−1
2

)4

× (3.42)

[
2(n̂ · m̂)h1,bh2,b(h

2
1,b + h22,b)π

d−1
2

Γ
(
d−3
2

)
(4− d)(3d− 11)

+
(1 + 2(n̂ · m̂)2)h21,bh

2
2,bπ

d−1
2 Γ

(−d+5
2

)2
Γ
(
3d−11

2

)
2Γ (d− 3)2 Γ (5− d)

]
.
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Notice that this calculation is being done for finite separation r. Consequently the diagrams
that involve both defects do not diverge (as ϵ→ 0) and there is no need to sum up an infinite
series as when we were calculating the one-point functions ⟨D1D2ϕ

1(x)⟩ in the limit r → 0.
As usual, when we substitute bare couplings in terms of renormalized couplings (3.7), the
divergences cancel and we get to leading order in ϵ

E(n̂, m̂)L

r
= −(n̂ · m̂)

h1h2L

4πr
− (n̂ · m̂)

(
γ + log 4π + 2 log

(
r
aD

))
ϵh1h2L

8πr

+
L

r

[
(n̂ · m̂)

λh1h2(h
2
1 + h22)

(
3 + γ + log 4π + 2 log

(
r
aD

))
128π3

+
(1 + 2(n̂ · m̂)2)λh21h

2
2

512π

]
.

(3.43)

After plugging in the fixed point values of the couplings (3.3), the Casimir energy is given
by

E(n̂, m̂) =− (n̂ · m̂)
N + 8

4π
− ϵ

4π

(
(n̂ · m̂)

N2 − 3N − 22

2(N + 8)
− (1 + 2(n̂ · m̂)2)π2(N + 8)

16

)
.

(3.44)
For example, depending on if we are fusing aligned or anti-aligned defects, Casimir energies
are given by

E++ = E(n̂, n̂) = −N + 8

4π
− ϵ

4π

(
N2 − 3N − 22

2(N + 8)
− 3π2(N + 8)

16

)
, (3.45)

E+− = E(n̂,−n̂) = N + 8

4π
+

ϵ

4π

(
N2 − 3N − 22

2(N + 8)
+

3π2(N + 8)

16

)
. (3.46)

This is consistent with the results in [33].10. On the other hand, when we fuse defects
that couple to different components ϕ1 and ϕ2 respectively, which corresponds to n̂ = ê1 =

(1, 0, . . . , 0) and m̂ = ê2 = (0, 1, . . . , 0), the leading contribution to the Casimir energy comes
from the order λ term:

E(ê1, ê2) =
(N + 8)ϵπ

64
. (3.47)

10Our results match those of [33] at the level of integrands, however there was an algebra error in the
evaluations of the integrals there (see equations (46)-(50) in [33]).
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3.4 Fusing Scalar Wilson Lines in Fermionic CFTs

In this section, we extend our analysis to fermionic theories. In particular, we focus on the
Gross-Neveu-Yukawa model.

3.4.1 Gross-Neveu-Yukawa model

Similar to the magnetic line defect in O(N) model, there is also a scalar Wilson line in the
Gross-Neveu-Yukawa model which was studied in [51]. In this section we study the fusion of
two such lines. The action for the coupled system with two insertions of these lines is given
by

S =

ˆ
ddx

(
(∂µs)

2

2
−
(
Ψ̄iγ · ∂Ψi + g1,bsΨ̄iΨ

i
)
+
g2,b
24
s4
)

+ h1,b

ˆ
dys(y, z = 0, x⃗ = 0) + h2,b

ˆ
dys(y, z = r, x⃗ = 0) , (3.48)

where i = 1, . . . , Nf and we will use N = Nfcd with cd being the number of components of
a Dirac fermion in d dimensions, i.e. cd = 2[

d
2
], where [d

2
] is the greatest integer less than

or equal to d
2
. As was shown in [51], in d = 4 − ϵ expansion, the Wilson line defect for the

scalar field s(x) has a fixed point. The couplings (both bulk and defect) at the fixed point
are given below,

g21∗ =
(4π)2

N + 6
ϵ , g2∗ =

(4π)2
(
−N + 6 +

√
N2 + 132N + 36

)
6(N + 6)

ϵ ,

h2∗ =
108

6−N +
√
N2 + 132N + 36

. (3.49)

Note that the defect preserves the U(Nf ) global symmetry in the bulk but breaks the Z2

parity symmetry since s(x) is parity odd. Correspondingly, there are two inequivalent con-
formal scalar Wilson lines related by parity. We refer to them as D± which are defined by
fixed point couplings h = ±h∗ respectively.

Following the same reasoning as in the scalar O(N) model case, it can be shown that for
r ̸= 0, both of the lines in (3.48) must flow individually to one of the two conformal defects
D±. By inspecting the diagrams, it is easy to see that their fusion products are identical
to the scalar theory when both the defects are aligned (or anti-aligned) in the same O(N)

direction. However the defect Casimir energy will be different, due to one additional diagram
(last diagram in Figure 5), compared to the O(N) model case. For simplicity, we will choose
the defect and bulk regulators to satisfy aDΛT = 1 below.
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(a) (b) (c) (d) (e)

Figure 5: Feynman diagrams that contribute to the defect two-point function ⟨⟨D1D2⟩⟩
in the Gross-Neveu-Yukawa model. Here solid lines represent fermion propagators.

3.4.2 Casimir Energy

Similarly to the scalar case in Section 3.3 the Casimir energy is defined as:

⟨⟨D1D2⟩⟩ =
⟨D1D2⟩
⟨D1⟩⟨D2⟩

= exp

(
−EL

r

)
. (3.50)

To leading order in ϵ, we have contributions from the diagrams shown in Figure 5,

−EL
r

= h1,bh2,b

ˆ
dy1dy2⟨s0sr⟩ −

g2,bh
3
1,bh2,b

24

ˆ
dy1dy2d

dx⟨(s0)3srs4(x)⟩

−
g2,bh1,bh

3
2,b

24

ˆ
dy1dy2d

dx⟨s0(sr)3s4(x)⟩ −
g2,bh

2
1,bh

2
2,b

16

ˆ
dy1dy2d

dx⟨(s0)2(sr)2s4(x)⟩

+
g21,bh1,bh2,b

2

ˆ
dy1dy2d

dxddy⟨s0srΨ̄iΨ
is(x)Ψ̄iΨ

is(y)⟩ , (3.51)

where we have introduced the shorthand s0 = s(y, z = 0, x⃗ = 0) and sr = s(y, z = r, x⃗ = 0)

for the field s inserted at two different line defects. Performing the integrations, we get

−EL
r

=
h1,bh2,bLΓ

(
d−3
2

)
4π

d−1
2 (r2)

d−3
2

− g2,bL

6(r2)
3d−11

2

(
Γ
(
d−3
2

)
4π

d−1
2

)4 [
2h1,bh2,b(h

2
1,b + h22,b)π

d−1
2

Γ
(
d−3
2

)
(4− d)(3d− 11)

+
3h21,bh

2
2,bπ

d−1
2 Γ

(−d+5
2

)2
Γ
(
3d−11

2

)
2Γ (d− 3)2 Γ (5− d)

]
−
g21,bh1,bh2,bLNΓ

(
d
2
− 1
)2

Γ
(
d− 7

2

)
64Γ(d− 2)(4− d)πd−

1
2 (r2)d−

7
2

.

(3.52)

Plugging in the bare coupling constants in terms of the renormalized one [51],

hb = µ
ϵ
2

(
h+

g2h
3

192π2ϵ
+
g21hN

32π2ϵ

)
, g1,b = µ

ϵ
2

(
g1 +O(g31, g

2
2)
)
, g2,b = µϵ

(
g2 +O(g31, g

2
2)
)
,

(3.53)
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and expanding in ϵ, we obtain the following

− EL
r

=
L

r

[
h1h2
4π

+
(γ + log 4π + 2 log(µr)) ϵh1h2

8π
− g2h

2
1h

2
2

1024π
+

g21h1h2N
(
ψ(0)

(
1
2

)
− 2 log(µr)− 2− log(π)

)
128π3

− g2h1h2(h
2
1 + h22) (3 + γ + log 4π + 2 log(µr))

768π3

]
.

(3.54)
Note that for simplicity, here we are using the RG scheme such that ΛT = 1/aD = µ so we
only have a single RG scale in the problem. Plugging in the fixed point values of couplings
(3.49), we obtain the following results to leading order in ϵ, depending on the type of the
line defect D± in the Gross-Neveu-Yukawa model,

E++ = − 27

π(6−N +
√
N2 + 132N + 36)

− 27ϵ (8N + 9 (8 + π2))

8π(N + 6)(N − 6−
√
N2 + 132N + 36)

,

E+− =
27

π(6−N +
√
N2 + 132N + 36)

− 27ϵ (−8N + 9 (−8 + π2))

8π(N + 6)(N − 6−
√
N2 + 132N + 36)

]
. (3.55)

Moreover, we have E−− = E++ and E−+ = E+− as in the previous section as a consequence
of the Z2 symmetry.

4 Fusing Interfaces and Boundaries in d > 2

In this section, we study fusion of codimension-one defects. In particular, we focus on
factorized interfaces IB1B2 ≡ |B1⟩⟨B2| constructed from a pair of conformal boundaries |B1⟩
and |B2⟩. The nontrivial information in the fusion product of such interfaces is contained
in the fusion of corresponding conformal boundaries, with nontrivial Casimir energy. To
determine the boundary Casimir energy, we will make extensive use of wedge geometry and
study CFT inside a wedge. In Section 4.1 we review various boundary conditions of the
scalar O(N) model. We then discuss the simple case of free scalars in a wedge and then
move on to describe the critical O(N) model in the same configuration. Along the way, we
will also clarify some confusing claims and issues discussed in the literature about the critical
O(N) model in a wedge. In Section 4.1.4 we consider the case with extraordinary boundary
condition which only exists for the critical O(N) model, and study its fusion with other
boundary conditions by recasting it into a particular classical mechanical problem. Then
in Section 4.2 we generalize our calculations to fermionic theories and study the fusion of
conformal boundaries in free fermions and the Gross-Neveu model. Finally in Section 4.3,
we make progress towards studying defect fusion directly in d = 3 by numerically solving
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the large N O(N) model in a three dimensional wedge.

4.1 O(N) Model in d = 4− ϵ

Here we will consider fusion of boundary conditions for the critical O(N) model. There
are two well-known O(N) symmetric conformally invariant boundary conditions, which are
Dirichlet and Neumann. In the free theory, they are characterized respectively by either
vanishing of the field or its normal derivative at the boundary

ϕ|bdy = 0 or ∂⊥ϕ|bdy = 0 . (4.1)

The interacting theory defined by the familiar O(N) invariant action,

S =

ˆ
ddx

(
1

2
(∂µϕ

I)2 +
λ

4
(ϕIϕI)2

)
. (4.2)

has a perturbative fixed point in d = 4− ϵ dimensions as we have reviewed around (3.3). At
the interacting bulk fixed point, the Dirichlet and Neumann boundary conditions in (4.1)
continue perturbatively into what are known as ordinary (O) and special (sp) boundary fixed
points respectively. In addition to these two, there is an additional boundary condition in the
interacting theory called the extraordinary (E) boundary condition.11 This is characterized
by a non-zero vacuum expectation value for the field ϕI and breaks the O(N) symmetry to
O(N − 1). This non-zero vacuum expectation value is given by the following solution in flat
half-space to the classical equation of motion

⟨ϕN(x)⟩ = ±
√

2

λ

1

z
, (4.3)

where the boundary is located at z = 0 and we picked ϕN to be the field that gets non-zero
vacuum expectation value. For more details on boundary conditions in the O(N) model
see [61–66,66–74] and references therein.

The fusion of boundaries in the critical O(N) model for ordinary and special boundary
conditions was considered before by studying the model in a slab geometry in [35–39]. In
particular, for a slab of width r, the free energy per unit area inside the slab for small r

11We are studying the theory in d = 4− ϵ so the distinction between extraordinary and extraordinary-log
boundary conditions [56] will not be important for us. We will also not study the extraordinary-log interface
because it continues to a dimension two interface and not a codimension one interface in d = 4− ϵ [57–60].
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should go like
F/A =

E
rd−1

. (4.4)

The coefficient E , called the critical Casimir energy, for the case of O(N) model with different
pairs of boundary conditions (special or ordinary) was found to be [38]

E (sp,sp) = −Nπ
2

1440
+
Nϵπ2

2880

(
1− γ − log(4π) +

2ζ ′(4)

ζ(4)
+

5(N + 2)

2(N + 8)

)
− Nπ2ϵ

3
2

72
√
6

(
N + 2

N + 8

) 3
2

,

E (O,O) = −Nπ
2

1440
+
Nϵπ2

2880

(
1− γ − log(4π) +

2ζ ′(4)

ζ(4)
+

5(N + 2)

2(N + 8)

)
+O(ϵ2) , (4.5)

E (sp,O) =
7Nπ2

11520
+
Nϵπ2

23040

(
5(N + 2)

N + 8
+ 6 log 4− 7

(
1− γ − log(π) +

2ζ ′(4)

ζ(4)

))
+O(ϵ2) .

Notice that for the (sp, sp) case, the expansion involves a non-analytic term of order ϵ3/2, that
correspond to the presence of a zero mode (see discussion in the later part of Section 4.1.3).

Here we will reproduce the above and provide new results when one of the boundaries is an
extraordinary boundary condition by studying the O(N) model in a wedge geometry [75–77].
As explained in Section 2.2, at small angles, the wedge imitates the slab and can be used to
calculate the Casimir energy. Furthermore, to facilitate the computation, we will also map
the wedge to hyperbolic space as described in Section 2.2. The geometry we use may be
described using cylindrical coordinates as below,

ds2 = dy⃗2 + dρ2 + ρ2dφ2 = ρ2
(
dy⃗2 + dρ2

ρ2
+ dφ2

)
= ρ2ds2S1

θ×Hd−1 , (4.6)

where y⃗ are the coordinates on the corner of the wedge, ρ is the distance from the corner
and 0 < φ < θ is the angular coordinate around the corner.

4.1.1 Free Scalar in a Wedge

We first discuss a free massive scalar in the geometry of S1
θ ×Hd−1. Having in mind that we

will soon move on to the interacting case, here we will refer to the Dirichlet and Neumann
boundary conditions in (4.1) as ordinary and special respectively. With respect to these
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boundary conditions, we have the following mode decompositions of the scalar field ϕ on S1
θ :

ϕ(x) =

√
2

θ

∞∑
n=1

ϕn(ρ, y⃗) sin
(nπφ

θ

)
(O,O)

ϕ(x) =
ϕ0(ρ, y⃗)√

θ
+

√
2

θ

∞∑
n=1

ϕn(ρ, y⃗) cos
(nπφ

θ

)
(sp, sp)

ϕ(x) =

√
2

θ

∞∑
n=0

ϕn(ρ, y⃗) sin

(
(n+ 1

2
)πφ

θ

)
(O, sp)

(4.7)

Next, we calculate the two-point function of the field ϕ which will be used later to study the
interacting theory. Let us first focus on the (O,O) case and the other cases will be similar.
After performing a Kaluza-Klein reduction on the S1

θ , we obtain the following action for
massive scalars ϕn on the Hd−1,

S =
1

2

∞∑
n=1

ˆ
dρdy⃗

ρd−1

[
(∂iϕn)

2 +

(
m2 +

n2π2

θ2

)
ϕ2
n

]
, (4.8)

where m2 is the mass term for ϕ on S1
θ ×Hd−1.

The two-point function of the field ϕ on the hyperbolic cylinder is given by a sum over
bulk-to-bulk propagators of each mode ϕn,

⟨ϕ(x1)ϕ(x2)⟩ =
2

θ

∞∑
n=1

sin
(nπφ1

θ

)
sin
(nπφ2

θ

)
G∆n(ξ), ξ =

y⃗212 + ρ212
4ρ1ρ2

, (4.9)

where ξ is a cross-ratio and ∆n is the scaling dimension of the corresponding operator on
the boundary of the Hd−1 (i.e. corner of the wedge). The scaling dimension ∆n is related to
the mass of ϕn by the usual holographic dictionary on Hd−1,

∆n(∆n − d+ 2) = m2 +
n2π2

θ2
. (4.10)

For our purpose here, the scalar ϕ is conformally coupled on S1
θ × Hd−1 with scalar

curvature R = −(d− 1)(d− 2) and therefore the induced mass satisfies,

m2 =
(d− 2)

4(d− 1)
R = −(d− 2)2

4
, (4.11)
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which fixes the corner scaling dimensions via (4.10),

∆n =
d

2
− 1 +

nπ

θ
. (4.12)

Note that the other solution ∆n = d
2
− 1 − nπ

θ
to (4.10) for the conformal case is forbidden

because it would violate the unitarity bound for θ < π (we will be interested in small θ).
Finally the bulk-bulk propagator for general dimensions ∆ is given by

G∆(ξ) =
Γ (∆)

2π
d
2
−1Γ

(
∆+ 2− d

2

)
(4ξ)∆

2F1

(
∆,∆− d− 3

2
, 2∆− d+ 3;−1

ξ

)
. (4.13)

From this two-point function (4.9) in the wedge we can extract the one-point function of the
operator ϕ2. We take the short distance (ξ → 0, φ1 → φ2) limit of (4.9) and use the MS
scheme to obtain

⟨ϕ2(φ)⟩ =
2Γ
(
3−d
2

)
(4π)

d−1
2 θ

∞∑
n=1

sin2
(nπφ

θ

) Γ (∆n)

Γ (3− d+∆n)
. (4.14)

As a consistency check, we want to evaluate this sum in d = 4 to compare with the results
of [77]. To this end, we separate the divergent and finite pieces of the above sum at large n

⟨ϕ2(φ)⟩ =
2Γ
(
3−d
2

)
(4π)

d−1
2 θ

∞∑
n=1

sin2
(nπφ

θ

)[(nπ
θ

)d−3

− (d− 4)(d− 3)(d− 2)

24

(nπ
θ

)d−5

+
Γ
(
d
2
− 1 + nπ

θ

)
Γ
(
2− d

2
+ nπ

θ

) − (nπ
θ

)d−3

+
(d− 4)(d− 3)(d− 2)

24

(nπ
θ

)d−5
]
.

(4.15)

Now the second line of the above equation is finite, and may be numerically evaluated in
any dimension (it actually vanishes in d = 4) and the first line may be evaluated by zeta
function regularization. In d = 4, this gives

⟨ϕ2(φ)⟩ = π2 − θ2

48π2θ2
− 1

16θ2 sin2
(
πφ
θ

) (O,O),

⟨ϕ2(φ)⟩ = π2 − θ2

48π2θ2
+

1

16θ2 cos2
(
πφ
θ

) (sp, sp) . (4.16)

For the (sp, O) case, we need to sum over half integers instead,

⟨ϕ2(φ)⟩ = −
2θ2 + π2

[
1 + 6 cot

(
πφ
θ

)
csc
(
πφ
θ

)]
96π2θ2

(O, sp) . (4.17)
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These results agree with what was found in [77].12

4.1.2 Interacting Wedge in ϵ Expansion

The ϵ expansion of the O(N) model inside a wedge in 4−ϵ dimensions was studied in [75,77].
Here we will only emphasize one aspect of it which was missed in the previous studies.

As we saw in the previous section, when we impose Neumann boundary conditions on
both boundaries corresponding to the (sp, sp) case, the lowest mode at the corner of the
wedge is the n = 0 mode with scaling dimension ∆0 = d

2
− 1. It turns out that this lowest

operator at the corner acquires an anomalous dimension of order
√
ϵ. This behavior was

missed in the previous studies of this setup.
We start by considering the bulk-wedge two-point function of the bulk field ϕI and a

boundary operator OJ
n in the fundamental representation of O(N) group. This two-point

function is constrained by conformal symmetry and O(N) symmetry to take the following
form

⟨ϕI(ρ, φ, y⃗)OJ
n(y⃗1)⟩ =

δIJf(φ)

ρ∆ϕ−∆n ((y⃗ − y⃗1)2 + ρ2)∆n
. (4.18)

Here we are again considering a wedge in the flat space. Since the bulk field satisfies an
equation of motion, this implies the following relation in the leading order in λ

□⟨ϕI(ρ, φ, y⃗)OJ
n(y⃗1)⟩ = λ∗(N + 2)⟨ϕ2⟩⟨ϕI(ρ, φ, y⃗)OJ

n(y⃗1)⟩ , (4.19)

which can be used to deduce the dimensions of the fields OJ
n . Thus, acting with the Laplacian

on the equation (4.18) we get

□⟨ϕI(ρ, φ, y⃗)OJ
n(y⃗1)⟩ =(

(∆ϕ −∆n)
2 + ∂2φ

ρ2
+

2∆n (2∆ϕ − d+ 2)

(y⃗ − y⃗1)2 + ρ2

)
δIJf(φ)

ρ∆ϕ−∆n ((y⃗ − y⃗1)2 + ρ2)∆n
, (4.20)

where ∆ϕ = d− 2 to first order in ϵ. Then we can solve this equation order by order in ϵ by
expanding

f = f (0) + f (1) , ∆n = ∆(0)
n + γn . (4.21)

Focusing now on the case of n = 0 mode for (sp, sp) boundary condition, to zeroth order in
12Note that the one-point function of scalar operators on S1 ×Hd−1 is constant along Hd−1 and is related

by a Weyl transformation to the wedge in flat space.
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ϵ, this corresponds to ∆
(0)
n = ∆ϕ and f (0) = f

(0)
0 = const. The equation for f (1) is

ϵ∂2φf
(1) + γ20f

(0)
0 − λ∗(N + 2)f

(0)
0

(
π2 − θ2

48π2θ2
+

csc2
(
πφ
θ

)
16θ2

)
= 0 , (4.22)

with the following solution,

ϵf (1)(φ) = A+ Bφ+
φ2f

(0)
0

2

(
λ∗(N + 2)(π2 − θ2)

48π2θ2
− γ20

)
− λ∗(N + 2)f

(0)
0

16π2
log sin

(πφ
θ

)
.

(4.23)
Imposing Neumann boundary conditions at both φ = 0 and θ requires setting the following
derivatives to zero

ϵ∂φf
(1)(φ)|φ=0 = −λ∗(N + 2)f

(0)
0

16π2φ
+ B ,

ϵ∂φf
(1)(φ)|φ=θ = −λ∗(N + 2)f

(0)
0

16π2(φ− θ)
+ B + θf

(0)
0

(
λ∗(N + 2)(π2 − θ2)

48π2θ2
− γ20

)
.

(4.24)

The 1/φ and 1/(φ−θ) terms correspond to exchanged operators at the boundaries and should
not be set to zero. Since we have special boundary conditions at both the boundaries, the
exchanged operator is the field ϕ at the boundary, i.e. ϕ̂, which has dimensions d/2− 1 = 1,
and this explains the powers of φ and (φ− θ) in the exchange terms. Setting other terms to
zero then requires B = 0 and

γ0 =

√
λ∗(N + 2)(π2 − θ2)

48π2θ2
=⇒ ∆0 =

d

2
− 1 +

√
(N + 2)(π2 − θ2)ϵ

6θ2(N + 8)
, (4.25)

where we used the fixed point value of the coupling constant λ∗ given in (3.3). Note that
this

√
ϵ piece in the anomalous dimension vanishes for θ = π, which is expected since in this

case, the wedge reduces to a plane and hence results in a BCFT and there is no term of
order

√
ϵ for a BCFT [74]. This

√
ϵ behavior of the anomalous dimension was missed in [77]

which led them to incorrectly conclude that the n = 0 mode is not conformal for θ ̸= π.
Another way to see this

√
ϵ behavior of anomalous dimension is to add explicitly a

cϕ2 interaction localized on the corner of the wedge. This is the lowest dimension O(N)

symmetric operator and is classically marginal on the corner. Such an interaction for a
codimension two defect was studied in the context of Renyi twist defect in Wilson-Fisher
theory [78]. They found that for c = 0, the operator ϕ2 on the wedge is actually marginally
relevant in d = 4 − ϵ. They found that there is a non-trivial stable fixed point for the
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coupling c with the value of the coupling being of order
√
ϵ at the fixed point. We suspect

that calculating the anomalous dimension of the lowest mode in the presence of this coupling
will reproduce the

√
ϵ anomalous dimension that we found above using equations of motion.

4.1.3 Free Energy on S1
θ ×Hd−1

We now move on to calculate the Casimir energy for a pair of boundaries. To do that, we
just need to compute the free energy on S1

θ ×Hd−1. In the leading order in λ this is given by

F (θ) =F0(θ) + I(θ)

=
NVol(Hd−1)

2(4π)
d−1
2 Γ(d−1

2
)

ˆ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
∞∑
n

log

(
ν2 +

ω2
nπ

2

θ2

)
+
λ

4

ˆ
ddx⟨

(
ϕIϕI

)2⟩ ,
(4.26)

where the frequency sums are defined such that ωn = 1, . . . ,∞ for (O,O), ωn = 0, . . . ,∞
for (sp,sp) and ωn = 1/2, . . . ,∞ for (O,sp). To deduce the above result, we have used that
the eigenvalues of the scalar Laplacian −□Hd−1 on hyperbolic space is ν2 + (d−2)2

4
(see also

(4.8) and (4.11)) and the spectral density can be found in [79, 80]. We are interested in the
leading term in the free energy in the expansion at very small θ. To simplify the expression
in (4.26), we first differentiate F0(θ) with respect to θ

∂F0(θ)

∂θ
= − NVol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∞∑
n=1

ˆ ∞

−∞
dν

|Γ(iν + d−2
2
)|2ω2

nπ
2

|Γ(iν)|2
(
ν2 + ω2

nπ
2

θ2

)
θ3

= −
NVol(Hd−1)Γ(3−d

2
)

(4π)
d−1
2

∞∑
n

Γ
(
d−2
2

+ ωnπ
θ

)
ω2
nπ

2

Γ
(
2− d

2
+ ωnπ

θ

)
θ3

,

(4.27)

where the integral over ν is evaluated using Cauchy theorem. To proceed further, we expand
the gamma functions at small θ [81] and then perform the sum over n which gives

∂F0(θ)

∂θ
= −

NVol(Hd−1)Γ(3−d
2
)

(4π)
d−1
2

∞∑
n

(nπ)d−1

θd
. (4.28)
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Integrating and dropping the unimportant constant, we obtain the following for the different
pairs of boundary conditions,

F
(sp,sp)
0 (θ) = F

(O,O)
0 (θ) =

NVol(Hd−1)Γ(3−d
2
)

(4π)
d−1
2 (d− 1)

πd−1ζ(1− d)

θd−1
,

F
(O,sp)
0 (θ) =

NVol(Hd−1)Γ(3−d
2
)

(4π)
d−1
2

πd−1(21−d − 1)ζ(1− d)

θd−1
.

(4.29)

As discussed in Section 2.2, the coefficient of the Vol(Hd−1)
θd−1 dependence determines the critical

Casimir energy. To take into account the contribution I(θ) of the interaction term in (4.26),
at leading order in ϵ, we may just use the one-point functions in the free theory from (4.16)
and (4.17). For instance, for (O,O) and (sp, sp), we have

λ

4

ˆ
ddx⟨

(
ϕIϕI

)2⟩∣∣∣∣
θ≪1

=
Vol(Hd−1)N(N + 2)ϵπ2

1152(N + 8)θ3
. (4.30)

Combining the free and the interaction pieces, and expanding in d = 4−ϵ, we indeed recover
the results in (4.5), up to the ϵ3/2 piece for the (sp, sp) case which we will come to below.

In the case of (sp,sp) the situation is more subtle because of the presence of a zero-mode
giving rise to the non-analytical contributions. To properly take it into account we should
first find the spectrum of the following differential equation

(
−∂2φ −□Hd−1 + λ∗

(
ϕJϕJ

))
ϕI = EϕI . (4.31)

The above equation implies that bulk-wedge two-point function should satisfy

[
−∂2φ −□Hd−1 + λ∗(N + 2)⟨ϕ2 (φ)⟩

]
⟨ϕIO(y⃗∥)⟩ = E⟨ϕIO(y⃗∥)⟩ , (4.32)

where O(y⃗∥) is an arbitrary boundary operator, and we have used Wick theorem to compute
the interaction term to the leading expansion for small ϵ. By implementing the reduction of
the scalar field on S1 as in (4.7), we obtain the following equation for the individual modes,[

−□Hd−1 +
π2n2

θ2
+ λ∗(N + 2)⟨ϕ2(φ)⟩

]
⟨ϕInO(y⃗∥)⟩ = En⟨ϕInO(y⃗∥)⟩ . (4.33)

For non-zero n, we can safely neglect the interaction term in the equation since we are
working to leading order in ϵ, and deduce that En̸=0 = ν2 + π2n2

θ2
. However, for n = 0, we
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must include the first correction to the zero mode energy E0 by λ∗ given below,

E0 = ν2 + E
(1)
0 with E

(1)
0 =

λ∗(N + 2)

θ

θˆ

0

dφ⟨ϕ2 (φ)⟩ , (4.34)

where the one-point function in d = 4 is given in (4.16). To regularize the divergent integral
in (4.34) we use dimensional regularization,

θˆ

0

dφ
1

cos2
(
πφ
θ

) =⇒
θˆ

0

dφ
1[

cos
(
πφ
θ

)]α . (4.35)

After performing the integration, and setting α = 2 one can show that the integral in (4.35)
vanishes and thus only the φ independent part of ⟨ϕ2(φ)⟩ in (4.16) contributes, producing

E
(1)
0 =

λ∗(N + 2)(π2 − θ2)

48π2θ2
=

(π2 − θ2)(N + 2)

6θ2(N + 8)
ϵ . (4.36)

Now, we can calculate contribution of the zero mode to the free energy in the case of (sp, sp),

δF =
NVol(Hd−1)

2 (4π)
d−1
2 Γ

(
d−1
2

) +∞ˆ

−∞

dν

∣∣Γ (iν + d−2
2

)∣∣2
|Γ (iν)|2

log
(
ν2 + E

(1)
0

)
. (4.37)

After first taking derivative over E(1)
0 , we can easily compute the integral over ν as before,

∂δF

∂E
(1)
0

=
1

2

NVol(Hd−1)

(4π)
d−1
2

Γ

(
3− d

2

)(
E

(1)
0

) d−3
2

+O
(

1

θd−1

)
. (4.38)

Integrating over E(1)
0 back, and neglecting the constant of integration which is independent

of θ, we get

δF =
1

d− 1

NVol(Hd−1)

(4π)
d−1
2

Γ

(
3− d

2

)(
E

(1)
0

) d−1
2
. (4.39)

In the case of d = 4 and small θ, we have

δF = −NVol(H3)

72θ3
π2ϵ

3
2

√
6

(
N + 2

N + 8

) 3
2

, (4.40)
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which produces the order ϵ3/2 contribution to the Casimir energy in (4.5) as promised.

4.1.4 Classical Mechanical Analogy for Extraordinary Boundary Conditions

In this section, we discuss the situation when one of the boundaries of the wedge has ex-
traordinary boundary conditions, i.e. one of the field components, ϕN , acquires a non-zero
vacuum expectation value. Working at leading order in ϵ, this vacuum expectation value is
given by the classical solution of the equation(

∂2φ +
(d− 2)2

4

)
ϕN − λ(ϕN)3 = 0 . (4.41)

Multiplying this equation by ∂φϕN we arrive at the following conservation law

Ẽ =
1

2

(
∂φϕ

N
)2

+
(d− 2)2

8
(ϕN)2 − λ

(ϕN)4

4
= const in φ . (4.42)

To simplify the analysis, we rescale the angle and the field variables as below,

φ =
2

d− 2
t , ϕN =

1√
λ

d− 2

2
y , Ẽ =

1

λ

(
d− 2

2

)4

E , (4.43)

which produces the following conserved quantity,

E =
1

2
(∂ty)

2 + V (y) , V (y) =
1

2
y2 − 1

4
y4 . (4.44)

that describes classical trajectories y(t) subject to potential V (y) and conserved energy E.

y

V (y)

E > E∗

E < E∗

Figure 6: The classical potential V (y) that governs the O(N) CFT on a wedge with
extraordinary boundary conditions.
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To leading order in ϵ, the free energy of the O(N) CFT on the wedge corresponds to the
action of this classical system,

F = S =

ˆ
dt

[
1

2
(∂ty)

2 − V (y)

]
, (4.45)

Thus, the study of the extraordinary boundary conditions and their fusion with various
boundary conditions is reduced to the study of various trajectories in the potential (4.44).
Let us note that the extraordinary boundary condition corresponds to the situation when
the trajectories start at spatial infinity ϕN (φ = 0) = +∞ and after finite time (measured
by φ or t related by rescaling (4.43)) reach one of the following values at φ = θ:

1. it reaches ϕN (φ = θ) = 0 (corresponding to extraordinary-ordinary (E-O)),

2. it reaches a turning point ∂φϕN (φ = θ) = 0 (corresponding to extraordinary-special
(E-sp)),

3. it passes through the potential to ϕN (φ = θ) = −∞ or returns back to ϕN (φ = θ) =

+∞ (extraordinary-extraordinary (E-E)).

E > E∗

(E-O)

{
ϕN(φ = 0) = +∞
ϕN(φ = θ) = 0

(E-E−)

{
ϕN(φ = 0) = +∞
ϕN(φ = θ) = −∞

E < E∗

(E-sp)

{
ϕN(φ = 0) = +∞
(ϕN)′(φ = θ) = 0

(E-E+)

{
ϕN(φ = 0) = +∞
ϕN(φ = θ) = +∞

Table 1: Correspondence between boundary conditions for the CFT on a wedge and
boundary conditions for the classical trajectories. The critical energy is located at E∗ =

1
4 .

Note that there are two possible extraordinary boundary conditions, because the field
ϕN near the boundary can behave like ±1/z where z is the perpendicular distance. We can
either have same signs on both the boundaries (which we will call (E-E+)) or opposite signs
(which we will call (E-E−)). We summarize all the possibilities in Table 1.

All of these cases correspond to various cases of fusion between boundary conditions in
the O(N) CFT. We start by identifying the exact trajectories in (4.46) and (4.49) and use
these exact trajectories to calculate the free energy of the solution in (4.59). Then starting
from (4.63), we explain an alternative strategy which does not require the knowledge of an
exact trajectory to calculate the free energy at small opening angle θ, which is all we need
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for determining the Casimir energy. We present the final results for the Casimir energy for
all the combinations of boundary conditions in (4.65).

To start, we notice that V (y) has a critical point at y = ±1 that gives the critical energy
E∗ =

1
4
. Then we have two qualitatively different scenarios depending on E,

1. E > 1
4
: this corresponds to the red trajectory in Figure 6. The solution in this case is

given by a Jacobi elliptic sine amplitude function (denoted by sn) [82]:

y(t) = −
√

1−
√
1− 4E sn

√1 +
√
1− 4E

2
(t− T (E)),

1−
√
1− 4E − 2E

2E

 ,

(4.46)

where T (E) is the half-period of this function,

T (E) =
iK
(

−1+
√
1−4E+4E
2E

)
+ 2K

(
1−

√
1−4E−2E
2E

)
√

1+
√
1−4E
2

, (4.47)

where

K(m) =

π/2ˆ

0

dα√
1−m sin2 α

(4.48)

is a complete elliptic integral of the first kind. It is clear that in this case y′(t) ̸= 0 thus
Neumann (special) boundary condition is not admissible at the opposite side of the
wedge. Instead the allowed trajectory can reach the point y = 0, which corresponds to
the Dirichlet boundary condition (the case of (E-O) in Table 1). Also, the trajectory
can go to y = −∞ which corresponds to the extraordinary-extraordinary (E-E−) case
in Table 1. To identify the range of t, we note that the solution (4.46) blows up at
t = 0, 2T (E) and vanishes at t = T (E). We conclude from Table 1 that t ∈ [0, T (E)]

for (E-O) and t ∈ [0, 2T (E)] for (E-E−).

2. E < 1
4
: this corresponds to the blue trajectory in the Figure 6. The corresponding so-

lution with the energy E is given by a Jacobi elliptic delta amplitude function (denoted
by dn) [82]

y(t) =

√
2

2− k
dn

(
i√

2− k
(t− T (E)), k

)
, E =

1− k

(k − 2)2
, (4.49)
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with k ∈ [0, 2), and T (E) is the half period given by

T (E) =
√
2− kK(1− k) . (4.50)

In this situation, the trajectory can never reach y = 0 but instead the turning point
y′ = 0 which corresponds to the Neumann boundary condition (the (E-sp) case in
Table 1). Furthermore it can bounce back and go back to y = +∞ which corresponds
to the (E-E+) case. As before, the ranges for t are fixed to be t ∈ [0, T (E)] for (E-sp)
and t ∈ [0, 2T (E)] for (E-E+).

Let us first focus on the case of extraordinary-ordinary (E-O) boundary conditions for
which t ∈ [0, T (E)] and solution (4.46) satisfies the following boundary conditions:

y(t = 0) = +∞ , y (t = T (E)) = 0 . (4.51)

From (4.43) and (4.46), we deduce that the half period T (E) is related to θ by

θ =
2

d− 2
T (E) . (4.52)

Since we are interested in the limit θ → 0 and thus T (E) → 0, we take energy E → +∞.
Expanding (4.46) in this limit we obtain

T (E) =
ei

π
4K(2)

E
1
4

+O
(

1

E
3
4

)
=⇒ E =

1

θ4

(
1

d− 2

Γ
(
1
4

)2
2
√
π

)4

+O
(

1

θ2

)
, (4.53)

where we have used the following representation of K(2) [82],

ei
π
4K(2) =

π

2
ei

π
4 2F1

(
1

2
,
1

2
, 1, 2

)
=

Γ
(
1
4

)2
4
√
π
. (4.54)

Now let us compute the corresponding free energy density of this solution, which is simply
given by evaluating the Lagrangian on this classical configuration,

L =
1

2

(
∂φϕ

N
)2 − [(d− 2)2

8
(ϕN)2 − λ

(ϕN)4

4

]
=

1

λ

(
d− 2

2

)4(
1

2
(∂ty)

2 − V (y)

)
. (4.55)

However, the above expression is divergent near t ∼ 0, corresponding to the contribution to
the free energy coming from each individual BCFTs residing on the boundaries of the wedge.
These divergences are universal (E independent) and can be easily take into account. First
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we rewrite the action as

S =

T (E)ˆ

0

dt

(
1

2
(∂ty)

2 − V (y)

)
=

T (E)ˆ

0

dt (∂ty)
2 − E T (E) . (4.56)

The integral of the first term on the RHS can be recasted in the following way [83],

A(E) =

T (E)ˆ

0

dt (∂ty)
2 = −

+∞ˆ

0

dy ∂ty =

+∞ˆ

0

dy
√

2(E − V (y)) , (4.57)

which satisfies the following,

dA(E)

dE
=

+∞ˆ

0

dy
1√

2(E − V (y))
= −

+∞ˆ

0

dy

∂ty
= T (E) ⇒ A(E) =

Ê

0

T (E)dE + const ,

where the constant term does not depend on energy E and contains all divergences. Since
we are interested only in the E dependence at large E, we use (4.53) to evaluate the action,

S =

Ê

0

T (E)dE − E T (E)

=
Γ
(
1
4

)2
12
√
π
E

3
4 +O

(
1

E
1
4

)
=

1

3θ3

(
Γ
(
1
4

)2
4
√
π

)4(
2

d− 2

)3

+O
(

1

θ2

)
,

(4.58)

which determines the wedge free energy in the case of (E-O) boundary conditions,

F (E-O) =
1

3λθ3
Vol(Hd−1)

(
Γ
(
1
4

)2
4
√
π

)4

. (4.59)

Similarly, in the case of (E-E−) boundary conditions, the action in the limit E → +∞ takes
the following form,

S =

2T (E)ˆ

0

dt

(
1

2
(∂ty)

2 − V (y)

)
= 2

T (E)ˆ

0

dt (∂ty)
2 − 2E T (E) =

Γ
(
1
4

)2
6
√
π
E

3
4 +O

(
1

E
1
4

)
.

(4.60)

Since the period is doubled compared with the case of (E-O) (see (4.52)), we have the
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following identification between E and θ,

θ =
4

d− 2
T (E) =⇒ E =

1

θ4

(
1

d− 2

Γ
(
1
4

)2
√
π

)4

+O
(

1

θ2

)
. (4.61)

Consequently the free energy in this case evaluates to,

F (E-E−) =
16

3λθ3
Vol(Hd−1)

(
Γ
(
1
4

)2
4
√
π

)4

= 16F (E-O) . (4.62)

The method presented above relies on the fact that we have found the exact form of the
classical solution (4.46) and it gives us access to the wedge free energy as an exact function
of E (equivalently θ). However since we are mainly interested in the E → ∞ limit, we can
also determine the Casimir energy without the explicit solution and by directly expanding
around E = ∞. To illustrate how this works we again consider the case of (E-O) boundary
conditions.

In the E → +∞ limit, the period of motion from y = +∞ to y = 0 can be determined
as follows. We first note the following integral representation for the half-period,

T (E) =

+∞ˆ

0

dy√
2(E − 1

2
y2 + 1

4
y4)

=
1

√
2E

1
4

+∞ˆ

0

dx
1√

1 + 1
4
x4 − 1

2
√
E
x2
, (4.63)

where in the second step we have rescaled y = E
1
4x. Expanding around E → ∞ gives,

T (E) =
1

√
2E

1
4

+∞ˆ

0

dx
1√

1 + 1
4
x4

+O
(

1

E
1
2

)
=

1

E
1
4

Γ
(
1
4

)2
4
√
π

+O
(

1

E
1
2

)
, (4.64)

which indeed coincides with the first term of period T (E) in (4.53).
Analogous calculations for the (E-sp) and (E-E±) cases are straightforward. The critical

Casimir energy then follows from the relation (2.10) with the free energy after plugging in
the fixed point coupling (3.3). Below we summarize the final results to leading order in ϵ for
the fusion of extraordinary boundary conditions with various boundary conditions,

E (E-O) =
1

6144

N + 8

π4ϵ
Γ

(
1

4

)8

, E (E-E−) =
1

384

N + 8

π4ϵ
Γ

(
1

4

)8

, (4.65)

E (E-sp) =
1

24576

N + 8

π4ϵ
Γ

(
1

4

)8

, E (E-E+) =
1

1536

N + 8

π4ϵ
Γ

(
1

4

)8

.
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It would be interesting to understand if the hierarchy among the Casimir energies above can
be understood in terms of the RG flows connecting the different boundary conditions on the
one side of the wedge.

4.2 Gross-Neveu Model in d = 2 + ϵ

In this section, we study the critical Casimir energy of fusion between conformal boundaries
in the Gross-Neveu (GN) CFT described by the following action

S = −
ˆ
ddx

√
g
(
Ψ̄iγ∇Ψi +

g

2

(
Ψ̄iΨ

i
)2)

, (4.66)

where again i = 1, . . . , Nf and we introduce N = Nfcd with cd defined earlier in Section 3.4.1.
In d = 2 + ϵ, the theory admits a fixed point with critical coupling [84] (or see [85] for a
review)

g∗ =
π

Nf − 1
ϵ , (4.67)

The conformal boundary conditions in this model have been recently studied in [86] and are
defined as

γ⊥Ψ
i = ±Ψi, γ⊥ = (n⃗ · γ⃗) , (4.68)

where n⃗ is a normal vector to the boundary and the two possibilities are related by parity.
These boundary conditions ensure that there is no particle current through the boundary
[87–89]. As we have done for the scalars, we will study this fermionic model inside a wedge
with an opening angle θ. We show below that the leading contribution to the free energy F
in the limit of small opening angle θ is of the expected form

F

V
=

EGN
θd−1

, (4.69)

where the critical Casimir energy EGN for d = 2 + ϵ for different boundary conditions is,

E+−
GN = E−+

GN = −Nfπ

24
+
ϵπ

48
Nf

(
γ + log π − 2

ζ ′(2)

ζ(2)

)
+O(ϵ2) ,

E++
GN = E−−

GN =
Nfπ

12
− ϵπ

24
Nf

(
γ + log 4π − 2

ζ ′(2)

ζ(2)
− 3

2

(2Nf − 1)

(Nf − 1)

)
+O(ϵ2) .

(4.70)

In Section 4.2.1, we first study properties of free fermions inside a wedge. We then consider
the interacting model in Section 4.2.2 and determine the Casimir energy.
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4.2.1 Free Fermions in a Wedge

We start by analyzing the two-point function of free fermions in the wedge geometry. The
main result of this subsection which will be useful in the following subsections is the one-point
function of the fermion bilinear operator inside the wedge given in (4.81) and its expansion
in d = 2 + ϵ dimensions given in (4.87).

To simplify notation we consider a single fermion with a fixed flavor ψ = Ψ1. The Dirac
equation in the wedge with cylindrical coordinates (4.6) is given by13

(
γρ∂ρ1 +

γφ

ρ1
∂φ +

γρ

2ρ1
+ γ⃗ · ∂⃗1

)
Gψ(φ1, ρ1, φ2, ρ2, y⃗12) = −δ

(d)(x1 − x2)

ρ1
, (4.71)

where y⃗12 ≡ y⃗1 − y⃗2. In addition, we have a choice of boundary conditions at the boundaries
of the wedge, i.e. at φ = 0 and at φ = θ,

γφGψ = +Gψ or γφGψ = −Gψ . (4.72)

Consequently, we label the possible wedge configurations by ++,−−, +− or −+, where the
first sign corresponds to the boundary condition at φ = 0, and the second at φ = θ. This
two-point function is related by a Weyl transformation to that on S1 × Hd−1. We find the
following solutions depending on the boundary conditions,

Gψ =



π

θ

∑
n∈Z≥0

αn
P̂± (n, φ1)G

Hd−1

ψ (ρ1, ρ2, y⃗12)P̂∓ (−n, φ2)

2π(ρ1ρ2)
d−1
2

, ++ /−−

π

θ

∑
n∈Z≥0+

1
2

αn
P̂± (n, φ1)G

Hd−1

ψ (ρ1, ρ2, y⃗12)P̂∓ (−n, φ2)

2π(ρ1ρ2)
d−1
2

, +− /−+

, (4.73)

where we have introduced the projector and constant αn defined below,

P̂± (n, φ) ≡ e−
iπγφ

4

(
ei

πn
θ
φ ± γφe−i

πn
θ
φ
)
, αn =

{
1, n ̸= 0
1
2
, n = 0

. (4.74)

This projector ensures that the corresponding two-point function satisfies the correct bound-
ary conditions.

13For simplicity, we will often drop the argument of the propagator when there is no room for confusion.
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The Green’s function GHd−1

ψ on Hd−1 with a mass nπ
θ

satisfies the following equation,(
ρ1

(
γρ∂ρ1 + γ⃗ · ∂⃗1

)
− d− 2

2
γρ +

nπ

θ

)
GHd−1

ψ (ρ1, ρ2, y⃗12) = −ρd−1
1 δ(ρ1 − ρ2)δ

(d−2) (y⃗1 − y⃗2) .

(4.75)
As was reviewed in [86], there are two solutions to (4.75) corresponding to two possible
boundary behaviors. The first solution is called the standard quantization and satisfies the
following boundary condition,

γρGHd−1

ψ (ρ1, ρ2, y⃗12)
∣∣
ρ1→0

= − sgn(n)GHd−1

ψ (ρ1, ρ2, y⃗12)
∣∣
ρ1→0

, (4.76)

which is valid for any n. In this case the leading boundary spinor operator has dimension
∆n = d−1

2
+nπ

θ
. The other solution is called alternative quantization and satisfies the following

boundary condition,

γρGHd−1

ψ (ρ1, ρ2, y⃗12)
∣∣
ρ1→0

= sgn(n)GHd−1

ψ (ρ1, ρ2, y⃗12)
∣∣
ρ1→0

(4.77)

which is unitary only for nπ
θ
< 1

2
. In this case the leading boundary spinor operator has

dimension ∆n = d−1
2

− nπ
θ

.
Since we are interested in unitary theory the only possibility for all modes but n = 0

modes is to choose standard quantization solution with the following explicit form [86],

GHd−1

ψ =
−Γ
(
d−1
2

+ nπ
θ

)
Γ
(
1
2
+ nπ

θ

)
41+

nπ
θ (4π)

d
2
−1√ρ1ρ2

×
[
(γρρ12 + γ⃗ · y⃗12)
(1 + ξ)

d−3
2 ξ1+

nπ
θ

2F1

(
nπ

θ
+

3− d

2
, 1 +

nπ

θ
, 1 +

2nπ

θ
,−1

ξ

)
− sgn(n)

γρ (−γρ(ρ1 + ρ2) + γ⃗ · y⃗12)
(1 + ξ)

d−1
2 ξ

nπ
θ

2F1

(
nπ

θ
+

3− d

2
,
nπ

θ
, 1 +

2nπ

θ
,−1

ξ

)]
,

(4.78)
where we have introduced the cross-ratio ξ ≡ ρ212+y⃗

2
12

4ρ1ρ2
.

On the other hand, for n = 0 we have the following two choices [86],

GHd−1

ψ = −
Γ
(
d−1
2

)
2 (4π)

d−1
2

[
(γρρ12 + γ⃗ · y⃗12)√

ρ1ρ2

1

ξ
d−1
2

± γρ (−γρ(ρ1 + ρ2) + γ⃗ · y⃗12)√
ρ1ρ2

1

(1 + ξ)
d−1
2

]
,

(4.79)
which satisfy γρGHd−1

ψ (ρ1, ρ2, y⃗12)
∣∣
ρ1→0

= ±GHd−1

ψ (ρ1, ρ2, y⃗12)
∣∣
ρ1→0

respectively. As we show
below, the free energy does not depend on this choice in the leading and next to leading
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order in ϵ.
Finally, as a consistency check, using (4.75) we can verify that the solution (4.73) indeed

satisfies (4.71):(
γρ∂ρ1 +

γφ

ρ1
∂φ1 +

γρ

2ρ1
+ γ⃗ · ∂⃗1

)
Gψ

=− 1

ρ1
(δ(φ1 − φ2)∓ γφδ(φ1 + φ2)) δ(ρ1 − ρ2)δ

(d−2) (y⃗1 − y⃗2) = −δ
(d)(x1 − x2)

ρ1
,

(4.80)

where in the last step we have dropped δ(φ1 + φ2) since 0 < φ < π.
To calculate the one-point function of ⟨ψ̄ψ(x)⟩, we evaluate the trace of (4.73), expanding

it around ξ = 0, and keeping only the ξ independent term

⟨ψ̄ψ(x)⟩ = ∓2πcd
θ

∑
n

sin
(
2πn
θ
φ
)
Γ
(
3−d
2

)
Γ
(
d−1
2

+ πn
θ

)
(4π)

d
2
√
πΓ
(
3−d
2

+ πn
θ

)
ρd−1

, (4.81)

where cd = 2[
d
2
], and the overall − sign corresponds to either ++ with n ∈ Z≥0 or +− with

n ∈ Z≥0+
1
2
. Similarly, the overall + sign corresponds to either −− with n ∈ Z≥0 or −+ with

n ∈ Z≥0 +
1
2
. Note that there is no contribution of n = 0 modes to the one-point function.

The +−/−+ case with θ = π describes free fermions on the hyperbolic space Hd. Indeed,
boundary conditions (4.72) in this case can be written in a compact form as (n⃗ · γ⃗)Gψ =

±Gψ, where n⃗ denotes the normal vector at the boundary of Hd. They correspond to the
two conformal boundary conditions of [86]. As a consistency check, we show below that the
wedge one-point function ⟨ψ̄ψ(x)⟩ in this special case coincides with the one-point function
with +/− boundary conditions for the fermions in the hyperbolic space up to a Weyl factor.
Indeed, the sum in (4.81) for this case can be performed explicitly,

⟨ψ̄ψ(x)⟩θ=π = ∓ 2
∑

n∈Z≥0+1/2

sin (2nφ) cdΓ
(
3−d
2

)
Γ
(
d−1
2

+ n
)

(4π)
d
2
√
πΓ
(
3−d
2

+ n
)
ρd−1

= ∓i
cdΓ

(
3−d
2

)
(4π)

d
2
√
πρd−1

Γ
(
d
2

)
Γ
(
4−d
2

)e−iφ [2F1

(
1,
d

2
, 2− d

2
, e−2iφ

)
− e2iφ2F1

(
1,
d

2
, 2− d

2
, e2iφ

)]
.

(4.82)
Now, using the hypergeometric identity which transforms 2F1(a, b, c, 1/z) into linear combi-
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nations of 2F1(ã, b̃, c̃, z) [82], we find

2F1

(
1,
d

2
, 2− d

2
,
1

z

)
− z2F1

(
1,
d

2
, 2− d

2
, z

)
= 2d−1

√
π (1− z)−d+1 (−z)d/2

Γ
(
4−d
2

)
Γ
(
3−d
2

) ,
(4.83)

with z = e2iφ. Inserting (4.83) into (4.82), we arrive at

⟨ψ̄ψ(x)⟩θ=π = ∓
cdΓ

(
d
2

)
(4π)

d
2 (ρ sinφ)d−1

, (4.84)

which coincides with the result in [86] up to the Weyl factor (ρ sinφ)d−1 as expected.
In the case of + + / − − boundary conditions on the wedge and θ = π, we can also

perform the sum over n explicitly,

⟨ψ̄ψ(x)⟩θ=π = ∓ 2
∑
n∈Z≥0

sin (2nφ) cdΓ
(
3−d
2

)
Γ
(
d−1
2

+ n
)

(4π)
d
2
√
πΓ
(
3−d
2

+ n
)
ρd−1

= ∓i
cdΓ

(
3−d
2

)
(4π)

d
2
√
πρd−1

Γ
(
d+1
2

)
Γ
(
5−d
2

)e−2iφ

×
[
2F1

(
1,
d+ 1

2
, 3− d+ 1

2
, e−2iφ

)
− e4iφ2F1

(
1,
d+ 1

2
, 3− d+ 1

2
, e2iφ

)]
.

(4.85)
In this case the ⟨ψ̄ψ(x)⟩θ=π no longer has the simple behavior associated with a homogeneous
conformal boundary as in the previous case. Instead the corner of the wedge persists as a
nontrivial codimension-two boundary-changing defect operator at θ = π and the above
describes the one-point function of ψ̄ψ in the presence of this boundary changing operator.

We now come back to the general case and evaluate the one-point function ⟨ψ̄ψ(x)⟩ at
general θ. By separating finite and divergent pieces in (4.81) for 2 < d < 3 and applying
zeta regularization for the divergent piece, we obtain the following,

⟨ψ̄ψ(x)⟩ =∓ 2πcd
θ

∑
n

sin
(
2πn
θ
φ
)
Γ
(
3−d
2

)
(4π)

d
2
√
πρd−1

[
Γ
(
d−1
2

+ πn
θ

)
Γ
(
3−d
2

+ πn
θ

) − ( θ

nπ

)2−d
]

∓ 2π

θ

∑
n

cd
sin
(
2πn
θ
φ
)
Γ
(
3−d
2

)
(4π)

d
2
√
πρd−1

(
θ

nπ

)2−d

.

(4.86)

The first line above is finite and vanishes in d = 2 case, while the sum in the second line can
be performed explicitly. For example, in the case of +− /−+ boundary conditions, it can
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be represented through the Lerch transcendent function. In d = 2 + ϵ, we obtain

⟨ψ̄ψ(x)⟩ =


∓ 1

2θρ
cot πφ

θ
+O(ϵ) + + /−− ,

∓ 1

2θρ sin πφ
θ

+O(ϵ) +− /−+ .
(4.87)

The special cases of θ = π agree with (4.84) and (4.85) as expected.

4.2.2 Interacting Wedge in ϵ Expansion and Free Energy

We are now ready to determine the Casimir energy of fusion for conformal boundaries in
the Gross-Neveu model. As before, the wedge free energy receives contributions from the
free fermions and the interaction term and one can derive the following formula using the
hyperbolic space picture,

F (θ) = F0(θ) + I(θ)

= − NVol(Hd−1)

(4π)
d−1
2 Γ

(
d−1
2

)∑
n

ˆ ∞

0

dλ
|Γ
(
d−1
2

+ iλ
)
|2 log

(
λ2 + n2π2

θ2

)
|Γ
(
1
2
+ iλ

)
|2

− g∗
2

ˆ
ddx⟨

(
Ψ̄iΨ

i
)2⟩ ,
(4.88)

where the sum is over n ∈ Z≥0 for + + / − − boundary conditions and n ∈ Z≥0 +
1
2

for
+ − / − + boundary conditions. In the first term of the second line above, we have used
that the degeneracy of Nf free massive fermions on Hd−1 is given by [80,90,91],

µ(λ) =
NVol(Hd−1)

(4π)
d−1
2 Γ

(
d−1
2

) |Γ (d−1
2

+ iλ
)
|2

|Γ
(
1
2
+ iλ

)
|2

. (4.89)

Indeed, working on S1
θ ×Hd−1, we can decompose the fermion field ψ in the wedge on S1

θ as:

ψ(x) =
1√
2θ

1

ρ
d−1
2

∑
n∈Z≥0+

1
2

P̂± (n, φ)χn(ρ, y⃗) +−/−+

ψ(x) =
1

2
√
θ

1

ρ
d−1
2

P̂± (0, φ)χ0(ρ, y⃗) +
1√
2θ

1

ρ
d−1
2

∞∑
n=1

P̂± (n, φ)χn(ρ, y⃗) + +/−−

(4.90)

After performing a Kaluza-Klein reduction on S1
θ and using that ψ̄ = ψ†γi and (γφ)† = γφ,

we obtain the following action for the massive fermion modes on Hd−1 for the + − / − +
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cases,

S = −
∑

n∈Z≥0+
1
2

ˆ
dρdy⃗

ρd−1
χ̄n

[
ρ
(
γρ∂ρ + γ⃗ · ∂⃗

)
− d− 2

2
γρ +

nπ

θ

]
χn , (4.91)

while for ++ /−− we have,

S = −
ˆ
dρdy⃗

ρd−1
χ̄0

[
ρ
(
γρ∂ρ + γ⃗ · ∂⃗

)
− d− 2

2
γρ
] [

1± γφ

2

]
χ0

−
+∞∑
n=1

ˆ
dρdy⃗

ρd−1
χ̄n

[
ρ
(
γρ∂ρ + γ⃗ · ∂⃗

)
− d− 2

2
γρ +

nπ

θ

]
χn ,

(4.92)

which includes the fermion zero mode. The formula for the free energy (4.88) then follows
as before for the bosonic case.

To proceed with the evaluation of (4.88), we first consider the free part F0, which we
determine in the small θ expansion and the result is given in (4.97). We then study the
interaction piece I(θ) that eventually produces the final result summarized in (4.102).

Applying the same trick as we have done in the scalar case, we differentiate F0(θ) with
respect to θ to obtain,

∂F0(θ)

∂θ
=

NVol(Hd−1)

(4π)
d−1
2 Γ

(
d−1
2

)∑′

n

+∞ˆ

−∞

dλ
|Γ
(
d−1
2

+ iλ
)
|2

|Γ
(
1
2
+ iλ

)
|2

1(
λ2 + n2π2

θ2

) n2π2

θ3
, (4.93)

where
∑′

n
means that the n = 0 mode is excluded and we will treat the contribution from

the zero mode separately below. By closing the contour in upper half λ plane, we have

∂F0(θ)

∂θ
=

NVol(Hd−1)

(4π)
d−1
2 Γ

(
d−1
2

)∑′

n

n2π2

θ3

[
Γ
(
d−1
2

− nπ
θ

)
Γ
(
d−1
2

+ nπ
θ

)
nπ
θ

cos
nπ2

θ

− cot

(
(d− 1)π

2

)
Γ
(
d−1
2

− nπ
θ

)
Γ
(
d−1
2

+ nπ
θ

)
nπ
θ

sin
nπ2

θ

]
, (4.94)

where the first term in the square brackets comes from the residues at λ = inπ
θ

and the
second term is the sum over residues at λ = i

(
d−1
2

+ s
)

with s = 0, 1, .... The above can be
further simplified to,

∂F0(θ)

∂θ
=
NVol(Hd−1)Γ

(
3−d
2

)
(4π)

d−1
2

∑′

n

nπ

θ2
Γ
(
d−1
2

+ nπ
θ

)
Γ
(
3−d
2

+ nπ
θ

) . (4.95)

46



Expanding in small θ with lim
z→∞

Γ(z+α)
Γ(z+β)

= zα−β, and then integrating over θ, we get

F0(θ) =
NVol(Hd−1)

(4π)
d−1
2

Γ

(
1− d

2

)
1

2

∑′

n

(nπ)d−1

θd−1
. (4.96)

which can be evaluated using zeta regularization,

F++
0 (θ) = F−−

0 (θ) = NVol(Hd−1)
π− d

2

2dθd−1
Γ

(
d

2

)
ζ(d) ,

F+−
0 (θ) = F−+

0 (θ) = −NVol(Hd−1)
π− d

2

2dθd−1
Γ

(
d

2

)(
1− 21−d

)
ζ(d) .

(4.97)

The above is consistent with the results in [88] where the slab geometry was considered.
For the case of ++/−− boundary conditions we should be more careful, because we also

need to take into account the contribution from the n = 0 mode. As in the case of scalars,
we need to incorporate the first correction to the free energy from the zero mode otherwise
the wedge free energy will have IR divergences. By applying the same logic as in Section 4
(see around (4.34)), we find that the correction to the zero mode energy in this case,

E
(1)
0 =

g∗
2

(
Nf −

1

2

) ˆ
ddxχ̄0χ0⟨ψ̄ψ(x)⟩ = O(ϵ2) , (4.98)

where χ0 = χ0(ρ, y⃗) is the zero mode and we have used (4.86). Since we are only interested in
the wedge free energy to leading orders in ϵ, the θ dependent part of (4.97) does not receive
additional contribution from the zero mode to this order. This is in contrast to the scalar
case where the zero modes correct the Casimir energy to order ϵ3/2. Thus, as discussed
around (4.79), the two choices of boundary conditions on Hd−1 for n = 0 in the case of
++ /−− produce the same free energy in the leading order in ϵ.

To determine the contribution of the interaction term I(θ), at leading order in ϵ, we use
the one-point function computed in the previous subsection,

g∗
2

ˆ
ddx⟨ψ̄ψ(x)2⟩ = g∗

2
Nf

(
Nf −

1

2

)ˆ
ddx⟨ψ̄ψ(x)⟩2 , (4.99)

at d = 2 given in (4.87) since g∗ ∼ ϵ. To regularize the divergent integral over φ, one can use
dimensional regularization similar to the scalar case (see around (4.35)). Instead we can also
regularize the divergence in (4.99) by starting from the sum representation of the one-point
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function (4.81) and perform the integral over φ first,

ˆ
ddx⟨ψ̄ψ(x)⟩2 =

ˆ
dVHd−1ρ2−d

θ

2

(
cd
2πΓ

(
3−d
2

)
θ(4π)

d
2
√
π

)2 ∑′

n

(Γ
(
d−1
2

+ πn
θ

)
Γ
(
3−d
2

+ πn
θ

))2

−
(nπ
θ

)2d−4


+

ˆ
dVHd−1ρ2−d

θ

2

(
cd
2πΓ

(
3−d
2

)
θ(4π)

d
2
√
π

)2 ∑′

n

(nπ
θ

)2d−4

,

(4.100)
where the sum in the first line is convergent for 2 < d < 3 and can be performed numerically,
and the sum in the second line can be performed analytically with zeta regularization.
Restricting to the d = 2 case, where the sum in the first line of (4.100) vanishes, we find,

−g∗
2
Nf

(
Nf −

1

2

) ˆ
d2x⟨ψ̄ψ(x)⟩2 =

0 +− /−+ ,

Vol(H1)
θ

π
16

Nf (2Nf−1)

(Nf−1)
ϵ ++ /−− .

(4.101)

Thus, expanding the free fermion contribution (4.97) around d = 2 + ϵ and combining
with (4.101), we obtain the critical Casimir energy below,

E+−/−+
GN =− Nfπ

24
+
ϵπ

48
Nf

(
γ + log π − 2

ζ ′(2)

ζ(2)

)
+O(ϵ2) ,

E++/−−
GN =

Nfπ

12
− ϵπ

24
Nf

(
γ + log 4π − 2

ζ ′(2)

ζ(2)
− 3

2

(2Nf − 1)

(Nf − 1)

)
+O(ϵ2) .

(4.102)

4.3 Numerical Treatment of the Large N Model

In this section we will consider critical O(N) model in the wedge using lattice regularization.
We will tackle this problem numerically directly at large N , which should provide insights on
the analytical treatment of the problem at the physical dimension d = 3. Such an approach
also serves as a complementary counterpart to what was discussed in the previous subsection.

Let us briefly review the critical large N vector models in flat space (see [85] for a more
detailed review). We start with the following action as before

S[ϕI ] =

ˆ
ddx

[
1

2

(
∂µϕ

I
)2

+m2
0(ϕ

I)2 +
λ0
4N

Λ4−d (ϕIϕI)2] , (4.103)

where m0, λ0 are bare mass and coupling constants, which should be fine-tuned to bring the
theory to criticality. We introduce the Hubbard-Stratonovich (HS) field σ and integrate over
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the fields ϕI to obtain the following effective action for σ,

S[σ] = N

[
1

2
tr log [−∆+ σ] +

ˆ
ddx

(
µ0σ + Λd−4 σ

2

4λ0

)]
, µ0 =

m0

λ0
, (4.104)

which can be evaluated by saddle-point function in the large N limit. The saddle-point
equation for σ, also known as the gap equation, reads[

1

−∆+ σ

]
R
(x, x) = µ0 + Λd−4 σ

4λ0
, (4.105)

after choosing a regularization scheme R. To reach critically, we solve for µ0 = µcrit by
requiring that σ = 0 in the flat space time. One can check that if 4 > d > 2 the second
term on the RHS of (4.105) is irrelevant in the IR and can be neglected. Thus to the leading
order in the large N limit, it boils down to solving the following equation,[

1

−∆+ σ

]
R
(x, x) = µcrit . (4.106)

Now we can apply this technique to our setup which involves the vector model on a wedge
geometry. We work with the physical dimension d = 3. Note that the metric and the HS
field σ on such a background take the following form

ds2 = dx2⊥ + dρ2 + ρ2dφ2 , φ ∈ [0, θ] , σ(r, φ) =
1

r2
σ(φ) , (4.107)

where σ(φ) is some unknown function and to be determined by minimizing the effective
action (free energy) for σ. Once σ(φ) is fixed, then in principle we can determine any
correlator in this geometry in the large N limit. Below, we will calculate the wedge free
energy by taking the coincident point limit of the two-point function as we have done in the
previous subsections using ϵ expansion. We will encounter some divergences in the process
which we will regulate by working on a lattice. We will then minimize this free energy to
determine the profile of σ and hence get the free energy at the critical point.

The scalar propagator of ϕI satisfies the following equation,(
−∂2z − ∂2ρ −

1

ρ
∂ρ +

−∂2φ + σ(φ)

ρ2

)
G(x⊥, ρ, φ, x

′
⊥, ρ

′, φ′) =
1

ρ
δ(ρ− ρ′)δ(φ− φ′)δ(z − z′) .

Note that the angular part is completely decoupled and we can find the corresponding
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eigenfunctions and eigenvalues

(
−∂2φ + σ(φ)

)
ξn(φ) = E2

nξn(φ) ,
∑
n

ξ∗n(φ)ξn(φ
′) = δ(φ− φ′) . (4.108)

Then using these eigenfunctions, we can expand the propagator into the following sum,

G(x⊥, ρ, φ, x
′
⊥, ρ

′, φ′) =
∑
n

ξ∗n(φ)ξn(φ
′)

1√
ρρ′

Gn(ρ, ρ
′, x⊥, x

′
⊥) , (4.109)

where Gn is the propagator for a massive scalar field with mass
√
E2
n − 1/4 on H2 which

satisfies

(
−ρ2(∂2x⊥ + ∂2ρ) +

(
E2
n − 1/4

))
Gn(ρ, ρ

′, x⊥, x
′
⊥) = ρ2δ(ρ− ρ′)δ(x⊥ − x′⊥) . (4.110)

The explicit solutions are given by Legendre Q-functions [92]

Gn(r, r
′, x⊥, x

′
⊥) ≡ Gn(Z) = Q− 1

2
+En

(Z) , Z ≡ 1 +
(ρ− ρ′)2 + (x⊥ − x′⊥)

2

2ρρ′
. (4.111)

Expanded near Z = 1, the above becomes [93]

Q− 1
2
+En

(Z) =
1

2
log 2− γ − ψ

(
En +

1

2

)
− 1

2
log(Z − 1) +O(Z − 1) , (4.112)

where ψ(x) is the digamma function. We will adopt the MS scheme to regularize the prop-
agator and obtain at coincident points,

ρG(ρ, φ) = −
∑
n

ξ∗n(φ)ξn(φ)ψ

(
En +

1

2

)
. (4.113)

This sum is still divergent, which we will handle with a lattice regularization. We first
consider the case when there is no wedge (i.e. θ = 2π) and we approximate this circle by a
lattice of N sites located at the angles φi = 2πi

N
. In this situation, we can approximate the

Schrödinger operator in (4.108) by the following finite dimensional matrix N ×N ,

H = −
[
∂2φ
]
N×N + [σ(φ)]N×N , (4.114)
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with

[
∂2φ
]
N×N =

N2

(2π)2



2 −1 0 . . . −1

−1 2 −1 . . . 0

0 −1 2 . . . 0

. . . . . . . . . . . . . . .

−1 0 0 . . . 2


, [σ(φ)]N×N = diag

[
σ

(
2πi

N

)]N
i=1

. (4.115)

Such a matrix can be diagonalized using Matlab to find energies Ên and eigenfunctions

ξ̂n(φi), which are normalized as
N∑
n=1

ξ̂n(φi)ξ̂
∗
n(φj) = Nδij. The regularized propagator at

coincident points then follows from

ρG(ρ, φi) = −
N∑
n=1

ξ̂∗n(φi)ξ̂n(φi)ψ

(
En +

1

2

)
. (4.116)

In the large N vector models, this regularized one-point function by the virtue of the equa-
tions of motions is equal to the parameter µ

−
N∑
n=1

ξ̂∗n(φi)ξ̂n(φi)ψ

(
En +

1

2

)
= µ , (4.117)

and by setting µ to µcrit we tune the large N vector model to criticality. In the absence
of wedge, this simply corresponds to setting σ(φ) ≡ 0. In this situation we know the
corresponding eigenfunctions and energies,

ξ̂n(φi) = e
2πin
N , En =

N2

π2
sin2 πn

N
, µcrit = −

N∑
n=1

ψ

(
N2

π2
sin2 πn

N
+

1

2

)
. (4.118)

Now we will consider that in this lattice realization of the S1 we chop a sub-lattice (a segment)
of size k and impose on the two ends the Dirichlet (ordinary) boundary conditions.14 This
would correspond to the study of the wedge CFT with angle θ = 2πk

N
. Then we can apply the

same techniques as before but instead of considering a Hamiltonian matrix of size N × N ,
we consider one of size k×k. Again, we need to solve the following spectral problem for new

14The Neumann (special) boundary conditions could be implemented in the similar fashion, but the pro-
posed numerical scheme becomes very unstable.
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Figure 7: On the left panel the dependence of the Casimir energy on the angle of the
wedge is displayed. On the right panel the typical profile of the HS field σ for θ = π

2 .

eigenvalues Ēn and eigenfunctions ξ̄n(ϕi),

Hk×kξ̄n = Ēnξ̄n,
k∑

n=1

ξ̄∗n(ϕi)ξ̄n(ϕj) = Nδij ,

−
k∑

n=1

ξ̄∗n(φi)ξ̄n(φi)ψ

(
Ēn +

1

2

)
= µcrit =

N∑
n=1

ψ

(
N2

π2
sin2 πn

N
+

1

2

)
. (4.119)

This equation could be solved using gradient descent by noticing that

∂F

∂σ
= −

k∑
n=1

ξ̄∗n(φi)ξ̄n(φi)ψ

(
Ēn +

1

2

)
− µcrit . (4.120)

In this way we can find numerically the σ(φ) configuration for any opening angle θ. If we
know the energy levels En, we can extract the free energy as below,

F

A
=

k∑
n=1

[
−Ēn
4π

log Γ

(
1

2
+ Ēn

)
+
ψ(−2)

4π

(
1

2
+ Ēn

)]
− µcrit

8π

ˆ
dφσ(φ)− f0θ , (4.121)

where f0 is a cosmological constant counterterm for the free energy. Let us emphasize that in
the above formula, there is always an contribution coming from free energy of BCFT on the
boundaries of the wedge (extensive in the boundary directions). These contributions must
be explicitly subtracted to get the Casimir energy that captures the interactions between
the boundaries.

By implementing the above numerical procedure, we find that the typical profile of the
HS field σ is of the form presented in the right panel of the Figure 7. Near the boundary
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of the wedge, we should recover the usual BCFT result. Indeed one can check that for
small φ the σ field behaves as σ ≈ −0.25

θ2
, that is in agreement with the results of [51].15

In the left panel of the Figure 7 we present the numerically computed Casimir energy as a
function of the opening angle of the wedge θ. For small θ, the dependence becomes power
like F (θ) = − (2.45±0.05)×10−3

θ2
. The 1/θ2 dependence is again as expected at small θ from

general considerations as discussed in Section 2.2.

5 Discussion

In this paper, we pursue a general investigation on the fusion of extended defect operators in
conformal field theory of dimension d > 2, which generalizes the more familiar operator prod-
uct expansion for point operators. We define a fusion product for a pair of parallel defects
after subtracting divergences at small transverse separation and explain general properties
of the corresponding fusion algebra for defects. The aforementioned divergences are them-
selves physical observables that keep track of the interactions between the pair of defect. In
particular, the leading divergence captures the Casimir energy due to the defect insertion.
Furthermore we explain the relation between parallel defect fusion and a wedge-like defect
configuration in CFT. The latter together with the utilization of hyperbolic spaces provides
an efficient tool to extract the Casimir energy between interfaces (boundaries). To supple-
ment the general discussion, we have determined these defect fusion data (e.g. fusion algebra
and Casimir energy) for a variety of concrete examples including line defects and interfaces
in the scalar O(N) CFT and the fermionic Gross-Neveu(-Yukawa) CFT.

The ideas described here can be used to study the fusion of more general defects in
CFT. One obvious target is the monodromy defect for global symmetries, such as the O(N)

monodromy defect studied in [48]. In the free theory of a single complex scalar Φ, the U(1)
monodromy defect Dϑ is defined by demanding that the scalar Φ picks up a phase as we go
around the defect (using the same coordinates as in (2.7) with the defect at ρ = 0),

Φ(y⃗, ρ, φ+ 2π) = eiϑΦ(y⃗, ρ, φ+ 2π) , ϑ ∼ ϑ+ 2π . (5.1)

Intuitively, the fusion product for such a monodromy defect is Dϑ1 ◦Dϑ2 = Dϑ1+ϑ2 . However
the Casimir energy is much less obvious. Another interesting example in this class of CFTs
is the magnetic line defect in the O(N)3 tensor model studied in [94]. In this case, there are

15For BCFT with ordinary boundary conditions, it was shown in [51] that at large N , the saddle point
value of σ is (d− 2)(d− 4)/4 which is −1/4 in d = 3.

53



a large zoo of conformal line defects corresponding to different, inequivalent choices of the
source term Jabc under the action of O(N)3, and because of that we expect the structure of
defect fusion in the tensor models to be a lot more intricate. For the fusion of codimension-one
defects, it would be interesting to consider cases with interactions localized on the boundary
[95–97], which can define a nontrivial boundary condition even when the bulk theory is
free. Another interesting phenomena to study will be the fusion of defects of different co-
dimensions, for instance, the fusion of line defects with boundaries. Apart from exploring
examples for defect fusion, it would also be important to understand general constraints on
the fusion algebra and the Casimir energy from basic principles such as unitarity and locality.

We have used the wedge geometry to analyze the fusion of conformal boundaries (also
factorized interfaces) and in particular to extract the Casimir energy in Section 4. However
studying CFT on a wedge geometry is an interesting problem in its own right, which has
received some recent attention [76, 77]. In particular, as was pointed out in [76], one can
write a crossing equation by demanding that the one-point function of bulk operators, when
expanded in terms of operators on two different boundaries agree with each other.16 It will
be interesting to exploit this crossing equation in explicit interacting examples such as the
large N critical O(N) model or Gross-Neveu model. We expect the hyperbolic space method
we have employed here to calculate the wedge free energy will be useful in this context.

Finally, most of our calculations here in the explicit models utilized the ϵ expansion. It
will be useful to develop complimentary approaches such as large N expansion which may
give us direct access to defect fusion in the strongly coupled CFT at d = 3. It is possible
to study this numerically directly in d = 3 as we have done in Section 4.3 for the fusion
of ordinary boundary conditions in d = 3 critical O(N) model. But it will be desirable
to develop an analytic approach at large N in arbitrary dimensions which can serve as a
cross-check of our results in d = 4− ϵ which apply to arbitrary N .
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