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Abstract. We study non-terminating graph rewriting models, whose local rules
are applied non-deterministically—and yet enjoy a strong form of determinism,
namely space-time determinism. Of course in the case of terminating computa-
tion it is well-known that the mess introduced by asynchronous rule applications
may not matter to the end result, as confluence conspires to produce a unique
normal form. In the context of non-terminating computation however, confluence
is a very weak property, and (almost) synchronous rule applications is always
preferred e.g. when it comes to simulating dynamical systems. Here we provide
sufficient conditions so that asynchronous local rule applications conspire to pro-
duce well-determined events in the space-time unfolding of the graph, regardless
of their application orders. Our first example is an asynchronous simulation of
a dynamical system. Our second example features time dilation, in the spirit of
general relativity.

Keywords: Causal graph dynamics · Cellular automata · Time covariance · Com-
mutation · Strong confluence · Distributed computation · Task dependencies ·
DAG · Poset · Space-like cut · Foliation

1 Introduction

In short Distributed models of physical, biological, social or technological objects are
often composed of interacting elements (particles, cells, agents, processes etc.) that
evolve according to local rules. From this local evolution, the global evolution may
be defined in various ways. Dynamical systems like cellular automata assume a global
clock, each element synchronously undergoing one local rule step at each tick. Rewrite
systems on the other hand assume that each element asynchronously performs a local
rule step, whilst the other may remain unchanged. Synchronism is often criticised for
being costly and physically unrealistic, but asynchronism leads to an inherent lack of
determinism and inconsistencies therein. The paper shows that, even for asynchronous
graph rewriting, a strong form of determinism, namely space-time determinism, is still
possible. For this purpose it introduces a formalism for graph rewriting based on a
DAG of dependencies and some local rule. It proves one proposition and one theorem,
whereby local conditions on the local rule entail that its asynchronous applications pro-
duce well-determined events.
Dynamical systems refer to the global evolution of an entire configuration at time t into
another at time t+1, t+2 etc., iteratively. Whether the dynamical system is a grid-based
model (e.g. representing particles [1,2], fluids [3,4], traffic jams [5], demographics and
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regional development or consumption [6,7]) or a more flexible graph-based model (e.g.
representing physical systems [8], computer processes [9], biochemical agents [10],
economical agents [11], users of social networks, etc.), there are just countless many
reasons why we may want to simulate them on a computer—after all this is the daily
bread of many. Usually the computer simulation of dynamical systems, whether through
numerical schemes, cellular automata or parallel graph rewriting, works by implement-
ing the global evolution as the synchronous (or almost synchronous [12]) application of
a local rule, i.e. repeatedly and simultaneously across space.

Synchronism is often criticised however, on the basis that: 1/ It is a costly resource,
which prevents parallelism unless we are willing to pay the price of expensive clock
synchronization mechanisms. 2/ It is often dubbed as physically unrealistic. One hears
sentences like : “How can you expect that nature applies the same rule everywhere at
once?”. This is a fair point as relativistic physics clearly departs from the idea of a
global time across the universe. In particular the ‘time covariance’ symmetry entails
that it is perfectly legitimate to evolve just a small region of space, whilst keeping the
rest of it virtually unchanged.

Asynchronism fits this picture better. It consists in the application of the local rule at to-
tally arbritrary places. Theoretical Computer Science draws a clear distinction between
deterministic; probabilistic; and non-deterministic evolutions—asynchronous evalua-
tion strategies belong to the later. Non-deterministic evolutions are studied for a variety
of reasons in Computer Science (e.g. complexity theory, safety analysis. . . ): one of
them is precisely that it is often more compelling to just leave the transition system
under-determined. This is typically the case in Rewriting theory, for instance when the
rewrite rules arise as a computationally-oriented version of an equality, e.g. 1 + 1→ 2.
Then, term 1 + 1 + 1 may evolve into 2 + 1, but it may also evolve into 1 + 2, non-
deterministically. This feels right, because: 1/ an underlying symmetry tells us there is
no reason to favour one over the other and 2/ ultimately, if what matters is the end result,
we are reassured by the fact that 2+ 1→ 3 and 1+ 2→ 3. Non-determinism, therefore,
is not incompatible with subtler notions of determinism. Developing such notions is a
matter in its own right, let us take a deep breath and dive in there.

Confluence ensures that the non-determinism introduced by the order of application of
the rewrite rules, will not matter to the end result, yielding a well-determined, unique
normal form e.g. 3 in the above example. More generally the confluence of a set of
rewrite rules states that if the evolutions a →∗ b and a →∗ c are possible, then the
evolutions b →∗ d and c →∗ d also are. The promise made is that: “If the computa-
tional process reaches a result, this result will be the same as that following any another
conclusive computational route”. E.g. contributions [13,14,15,16,17] deal with the case
when the computational process eventually produces a graph a result, through succes-
sive rewrites.
But, what if our computational process generates not just in one result, but a succession
of them. . . is confluence bearing any promise, then? Unfortunately, it hardly provides
any guarantee, e.g. rewrite rules yielding every possible result are trivially confluent.
Things get even worse if we are interested in modelling not just one computational pro-
cess, but an entire network of interacting processes, each of them generating one result
after the other, possibly passing them on to their neighbours. . . i.e. distributed computa-
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(a) G. (b) A345671G.

(c) A543217G. (d) A65432A345671G = A23456A345671G.

Fig. 1: Confluence yet inconsistencies. The local rule transports right-moving particles
to the right and left-moving particles to the left, without interactions. (a) We start with a
left-moving particle in 7 and a right-moving particle in 1. (b)&(c) The point of collision
between the two particles is not well defined, it depends on the evaluation strategy.
Here A71G is short for A7(A1G). (d). Still, the system is confluent, as the divergent
configurations can be both evolve into the last.

tion, possibly non-terminating, including dynamical systems, e.g. particle systems. For
instance, Fig. 1 shows left and right-moving particles on a line, where left versus right
is indicated by the ports along the edges. The local rule simply has them move, a little
thought show that the system is confluent. Yet, depending upon the chosen order of ap-
plications, one finds that one particle propagates much faster than the other, yielding the
collision to occur at very different places. Whilst this example is designed to emphasize
these issues, it is clear that, when it comes to dynamical systems, asynchronous evalu-
ation strategies may lead to inconsistent results, nonphysical effects (e.g. superluminal
signalling), and pathological dynamical behaviours (e.g. over boolean networks [18,19]
and cellular automata [20,21]). This is a major deterrent to their usage, and the notion
of confluence is no fix to that. To fix this, we need a stronger such “subtle notion of
determinism”, here are two.
Weak consistency is the promise each of our interacting processes will systematically
obtain the same succession of results, independent of the concrete order of asynchronous
application of the local rule. I.e. this is a local version of unique normal form property,
repeated across space-time. We obtain a weak consistency proposition, stating that if
local rule applications commute, then the normal form of each space-time event t.x is,
if reached, well-determined in terms of its internal state and connectivity. In our formal-
ism, the normal form of an event is a minimal vertex of the DAG, as it no longer awaits
for a previous result in order to get computed.
Full consistency, a.k.a. space-time determinism, is the even stronger property that all
events in space-time be well-determined. For our interacting processes, this is the promise
that each of them will systematically obtain the same provisional results, provisional
upon the information that is yet to be retrieved from the neighbouring processes. I.e.
“same progress, same result”. For simulating dynamical systems this is the relevant no-
tion, as illustrated by Fig. 5 & 6 and discussed at length when we present this example,
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which fixes the issues with the asynchronous computer simulation left and right-moving
particles. Notice how in this example the internal state associated to a space-time event
t.x depends upon its set incoming ports. This is in line with Physics, where the state of
a field at a space-time point does depend on the way space-time is foliated at this point,
i.e. on the angle of the space-like cut. We obtain a full consistency theorem, stating that
if local rule applications commute and strictly decrease the privately accessible incom-
ing ports of all modified vertices (Fig. 10), then the internal state and connectivity of
each vertex is fully determined by its incoming ports (Fig. 9).
Dynamical geometry. We do not restrict ourselves to work over a fixed lattice or a fixed
boolean network, here. Our processes starts with some given neighbours, but they can
then connect with the neighbours or their neighbours, as well as disconnect. The DAG
of dependencies is both a constraint upon the evolution, and a subject of the evolution,
allowing us to express intriguing effects such as time dilation, reminiscent of general
relativity, see Fig. 8.
Applications. Whilst mainly of theoretical nature, we hope to have convinced the reader
that this work may contribute to the efficient parallel schemes for the implementation of
dynamical system and distributed systems—doing away with any expensive clock syn-
chronisation mechanisms and replacing it with a cheap DAG. This was not our original
motivation: the applications we pursue lie at the crossroad with Physics, as we seek for
a mathematically sound, constructive framework for discrete models of general relativ-
ity [22]. From a general philosophy of science point of view, we find it compelling to
reconcile asynchronism and determinism.
Plan of the paper. Sec. 2 makes specific the kind of DAG we use, the way we name
each vertex, the fact that edges are between ports of vertices, and what is meant by a
local rule. Sec. 3 provides an example of how to perform the asynchronous simulation
of a dynamical system, at the cost of introducing “metric” information in the form of
these DAG so as to capture the relative advancement of the computation in a region with
respect to another. Sec. 4 shows how, having introduced this DAG, one can manipulate
it to achieve time dilation effects. An analogy is drawn with general relativity, where
the concepts of time covariance, metric, background-independence and dynamical ge-
ometry, lead to time dilation. Sec. 5 introduces weak and full consistency as well as the
corresponding theorems, constituting our main technical contributions. Sec. 6 summa-
rizes the results, compares them to the related works, and provides some perspectives.

2 Graphs and local rules

We start by formally introducing the type of graph that we consider: coloured directed
acyclic port graphs. Vertex names t.x are made of a time tag t and a position x.

Definition 1 (Positions, ports, states, names). Let X be an infinite countable set of
positions. Let π be a finite set of ports and Σ be a finite set of states. Let us denote
V := { t.x | (t, x) ∈ Z × X } and call its elements names.

For any subset U ⊆ V, let us define (U : π) := { (u : a) | u ∈ U, a ∈ π }. Let us also
denote U := V \ U, and Z.U := { t.x | t ∈ Z, x ∈ X(U) }. Given any u = t.x ∈ V, let us
denote t′.u for (t′ + t).x ∈ V.
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(a) G (b) GX−

Fig. 2: Border of graph, border of set. We consider a graph G and a set of positions
X = X− ∪ BX = {xi | xi < {x5, x0}} corresponding to the internal (X− in dark blue–e.g.
t3.x3) and border vertices (BX in cyan) of an induced subgraph GX− . Entire graphs have
borders, as shown pointed by the dashed lines for (a) G and (b) GX− . But we also say
that the set X has border BX in G if X− is the largest subset X′ ⊆ X ∩ X(IG) such that
VGX′ ⊆ Z.X. This is the case in (a) and (b).

Definition 2 (Graphs). A graph G is given by a tuple (IG,BG,EG, σG) where:
■ IG ⊆ V has its elements called internal vertices of G,
■ BG ⊆ V has its elements called border vertices of G,
■ EG ⊆ ((IG ∪ BG) :π)2 \ (BG :π)2 has its elements called (oriented) edges, and
■ σG : IG → Σ maps each internal vertex to its states.
We denote VG := IG ∪ BG. This tuple has to be such that:
■ Vertex partitioning: IG ∩ BG = ∅,
■ Unicity of positions: ∀t.x, t′.x′ ∈ VG, x = x′ ⇒ t = t′,
■ Port non-saturation. ∀(u :a, v :b), (u′ :a′, v′ :b′) ∈ EG, u :a , v′ :b′ ∧ u :a = u′ :a′ ⇔

v :b = v′ :b′, and
■ Border attachment: ∀u ∈ BG, ∃(v :a, v′ :a′) ∈ EG such that u ∈ { v, v′ }, and
■ Acyclicity: the set of edges does not induce any cycle.
We denote by G the set of all graphs. Given G ∈ G, we call Past(G) ⊆ VG the minimal
vertices of G.

Summarizing, each position x only appears once, each vertex port : a can only be used
once, and border vertices are only there to express dangling edges from (or to) internal
vertices. Next, the subgraph induced by vertices U is the smallest graph containing U
and the edges attached to U (see Fig. 2):

Definition 3 ((Induced) subgraph and borders.). We write H ⊆ G and say that H is
a subgraph of G whenever:

VH ⊆ VG ∧ IH ⊆ IG ∧ EH ⊆ EG ∧ σH = σG |IH
,
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(a) G (b) Ax1G

Fig. 3: Action of a local rule A(−) centered on a vertex u1 = t1.x1. It affects the vertices
of Z.Nx(G) that are circled dark blue & cyan. Dark blue vertices (e.g. u1, u4) can be
almost arbitrarily modified whereas cyan vertices must have their names and external
edges preserved. Internal states Σ = {0, 1} are represented by white and black.

where σG |IH
denotes the function σG restricted to the domain IH . This relation is a

partial order on G. We denote by G ∪G′ and G ∩G′ the join and meet of G and G′ in
the ⊆-order when they exist.

We write H ⊑ G and say that H is an induced subgraph of G whenever H ⊆ G and
H is the biggest subgraph of G having this set of internal vertices, i.e. ∀H′ ∈ G,H′ ⊆
G ∧ IH′ = IH =⇒ H′ ⊆ H. This is also a partial order on G and we denote by G ⊔G′

and G ⊓G′ the join and meet of G and G′ in the ⊑-order when they exist.
Given a subset U ⊆ V, we write GU for the induced subgraph of G such that

IGU = U∩IG. We also write Gu for G{u}. For a subset X ⊆ X, we write GX for the induced
subgraph GZ.X . We write X−(G) or just X− the set {x ∈ X | x ∈ X(IG) ∧ VGx ⊆ Z.X}, and
call these the internal vertices of X in G. We write BX(G) or just BX the set BGX−

, and
call these the border vertices of X in G, see Fig.2.

Notice how G = GX ⊔ GX . This decomposition will allow us to define the action
of our local rules. We will proceed as follow. First we define operators A(−) which,
given a position x rewrite the graph G as AxG. Second we define a neighbourhood
scheme N which, given a position x, selects a subset of nearby positions Nx(G). Third
we say that A(−) is N-local if the action of Ax is to replace just the left hand side of
G = GNx(G) ⊔ G

Nx(G), independently of the right hand side—an operation which can
likely be formalised as a double push-out [23].

Definition 4 (Neighbourhood scheme). A neighbourhood scheme N is an operator
from P(X) × G to P(X) mapping a pair (ω,G) to Nω(G) ⊆ X such that:
■ Reachability: ∀x ∈ Nω(G), ∃p : ω→ x.
where p : ω→ x denotes a directed path in EG from some element of ω to x.
The input ω is formally a set of vertices, however we will often apply N to ω ∈ X∗
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(a) GNx1
. (b) Ax1GNx1

.

Fig. 4: The local rule for the particle system. Ax acts by consuming the internal state
i = σr

G(v) of vertex v (and symmetrically with j = σl
G(w)), thereby moving those

particles at x if they are present. It also updates ports from a, b to a′, b′, flips the arrows
pointing to x, and increments its timetag, in order to move the vertex from past u = t.x
to future u′ = (t + 1).x. Dashed edges and vertices do not influence the local rule.

implicitly referring to the underlying set. When G is clear from context, we write Nω
instead of Nω(G).

Note that N−ω refers to the internal vertices of Nω with respect to G as in Def. 2. No-
tice also that our definition of a neighbourhood schemes is quite abstract and permis-
sive, possibly allowing for global criteria to decide whether a closeby vertex should
be encompassed within the neighbourhood or not. To forbid this to happen we define
extensivity. It asks that the neighbourhood Nω(G) as computed by the function N over
a graph G, be the same as that computed over a big enough subgraph of G. This can
be understood as a form of graph-locality of the neighbourhood scheme N() itself, for
instance if Nω(G) is computed step by step starting from ω until it hits a ‘wall’ i.e. a
local ending criterion, then it will be extensive.

Definition 5 (Extensivity). GNω ⊑ H ⊑ G implies Nω(G) = Nω(H).

Definition 6 (Local rule). A local rule is an operator over graphs A(−) : X → (G → G)
which is N-local for some neighborhood scheme N, i.e.

∀G ∈ G,∀x ∈ X(Past(G)), AxG = (AxGNx ) ⊔G
N x
.

From now on Ayx will stand for AyAx. We say that ω ∈ X∗ is a valid sequence in G
if, for all ω1, ω2 ∈ X

∗ such that ω = ω2xω1, we have x ∈ X(Past(Aω1G)). We denote
ΩG(A) ⊆ X∗ the set of valid sequences in G.

An additional property that can be required, without difficulty, of our operators, is
renaming-invariance [24]. We will skip this here.

Remark 1. Notice that AxG must be well defined for any graph G. As a consequence,
so must Ax(GNω ) ⊔G

Nx
. This implies that :

■ the border vertices BGNω cannot be modified (dashed vertices in Fig. 3).
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■ the border edges EGNω \ (IGNω :π)2 cannot be modified (dashed edges in Fig. 3).
■ new vertices VAxG \ VG are exclusively vertices in Z.N−x (G) with time tags increased

by Ax (the vertices in dark blue (e.g. u1, u2) in Fig. 3).

Now that we have a precise definition of the considered graphs and the kind of local
transformations that we allow on them, let us state our goal informally. Consider a graph
G, a local rule A(−) and all possible sequences ω,ω′, . . . ∈ ΩG(A). If one applies Aω, one
obtains one possible evolution of the system. But Aω′ , Aω′′ ,. . . are equally legitimate
different orders of local rule applications. We aim to define precisely what it means
for all these possible evolutions to actually agree on a consistent common story, i.e. a
consistent space-time diagram. To motivate the remaining formalization, we consider
examples. Later we give sufficient conditions for a local rule to induce such consistent
space-time diagrams.

Definition 7 (Space-time diagram). Given a graph G and an local rule A(−), their
space-time diagramMA(G) := { AωG | ω ∈ ΩG(A) } is the set of all generated graphs.
We sometime omit A and G.

To visualize how the graphs inM share common vertices and edges, some space-time
background are depicted (Figs 5, 6, and 8), each as pseudo-graph M defined by :

VM =
⋃

G∈M

VG EM =
⋃

G∈M

EG

and without internal states.

3 Particle system example

We now show how asynchronous applications of a local rule can represent a dynamical
system of left and right moving particles, consistently, thereby fixing the issues of Fig. 1.
The logic of this example borrows to the well-studied ‘marching soldiers’ scheme [25],
as best formalised by [26]—although this particular instance taps on the reversibility of
the dynamics for best state optimisation, and uses the DAG of dependency, rather than
extra internal states, as its mechanism for local, relative synchronisation.
The vertices of our graphs have names of the form u = t.x, they must be thought of
as events in space-time. The internal state of each vertex are pairs of bits σG(u) =
(σl

G(u), σr
G(u)), representing the presence of a left-moving particle or not, and of a

right-moving particle or not. The edges are oriented and go from port : a to : a′ or
from port : b to : b′, thereby indicating a spatial direction (a versus b) and a temporal
orientation (unprimed versus primed). Altogether each graph must be thought of, not as
a space-time diagram, but as a space-like cuts of a space-time diagram, see Fig. 5. In
particular, they can never contain both vertices u = t.x and u′ = (t + 1).x. It follows that
the local rule Ax will act unambiguously on the unique vertex of the form u = t.x.
Edges must be thought of as dependencies between events, i.e. if u = t.x points to
v = t′.y, then v is ahead in time of u, and frozen awaiting for information from u. The
action of Ay on v is therefore trivial, preventing y to be computed too far ahead and
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Fig. 5: Particle system example. In black we highlight just the graphs G and G′′ belong-
ing to the space-time diagramM(A,G). The local rule here moves the left-side particle
towards the right and the right-side particle towards the left. Note how the problem
raised by Fig. 1 is solved. The only point in space-time which can contain both parti-
cles is u.

providing a weak synchronisation mechanism. The action of Ax on u is non-trivial only
if u is minimal. Such a u can be thought of as lagging behind in time, and no longer
awaiting for any information—it has reached its local normal form. The action of Ax

is to dispose of it by communicating its information to v and other dependencies, and
creating vertex u′ = (t + 1).x in some provisional state. In our example this is done
according to Fig. 4.
The local rules allow us to evolve one graph G, understood as a space-like cut, into an-
other later space-like cut G′′, as in Fig. 5. But the point is that the graph G can also be
evolved asynchronously into H or H′ as in Fig. 6. All of these graphs agree with each
other with respect to the particle’s worldline. More generally, this local rule is space-
time deterministic, it produces well-determined events. But notice that this property is
a bit subtle to formulate, e.g. the state associated to the event v seems different in H
and H′, as the particle got ‘consumed’ from v to w. The important point is that the state
of every event v (in terms of its internal state and connectivity) remains a function of
how it is traversed in the space-like cut, which is here represented by its set of incoming
ports. I.e. the example is fully consistent in the sense that the state of each vertex is fully
determined by its set of incoming ports.
This ‘particle consumption mechanism’ of this example is a design choice, willingly
taken in order illustrate three points: 1/ space-time determinism is really the idea that all
events are well-determined, given the angle of their space-like-cut. E.g. in Physics the
non-scalar quantum field associated to an event does depend on this angle. 2/Ultimately
this can be traced back to the nature of quantum information, which gets ‘consumed’
as it gets ‘read out’, because it cannot be ‘copied’. Our formalism is therefore compat-
ible with the idea of linear evolutions, as will be required when we study reversible or
quantum versions of these rules. 3/ The weak consistency criterion cares only for local
normal vertices (aka Past), but in this example they are always empty (Figs 5 and 6).
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(a) Here σG(v) = (0, 1) . . . (b) . . . whereas there σH(v) = (0, 0).

Fig. 6: States depend on the cut. Both graphs H and H′ belong to the same space-time
diagram MA(H0) with H0 containing a right-moving particle in u. They both contain
vertex v. In H′, the particle that was present in H has moved to point w. The state
associated to v thus depends on the way it is cut, which is captured by its set of incoming
ports e.g. {a′, b′} versus just {a′}.

This suggests that weak consistency is too weak a conditions as it dangerously fails to
capture the essence of this dynamical system: particles flying around. Altogether, this
example shows that it is perfectly possible to consistently simulate a dynamical sys-
tem by means of asynchronous rule applications. The aim sets the aim of the paper: to
understand when asynchronism meets space-time determinism.

4 Time dilation example

Our second example extends the internal state space Σ used in Sec. 3 with two more
states: the green and red states. The same local rule is extended so that if one such
particle is found in position x, it will stay there, oscillating between both colours and
altering the very texture of space-time as in Fig. 7. This results in time dilation as can
be seen from Fig. 8: time ticks twice as slower on the right hand side of the red particle.
Yet, the very same local rule is being applied left and right of the red particle. Such a
phenomenon is reminiscent of general relativity, e.g. time flows slower on Earth than it
does in the stratosphere, as measured by identically made clocks. Yet, the same laws of
Physics apply in the stratosphere and on Earth. How did we get there?

Maybe this is not quite a coincidence. To some extent, the construction of this model
mimics some of the key steps of the construction of general relativity as derived from
physical symmetries. Indeed, let us remind the reader that the standard derivation pro-
ceeds by: 1/ Assuming the existence of a well-determined space-time. 2/ Requiring
covariance, i.e. invariance under changes of coordinates, which in particular implies a
form of asynchronism as one can choose coordinates whereby one region of a space-like
cut will evolve (large time lapse), but not the other (small time lapse). 3/ Concluding
that in order to obtain covariance, one needs to provide extra causality structure at each
point, namely the metric field. 4/ Assuming background-invariance, namely enabling
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(a) GNx . (b) Ax(GNx ). (c) HNx . (d) Ax(HNx ).

Fig. 7: The local rule for time dilation. We define here the behaviour of Ax when u = t.x
is colored—i.e. σ(u) = green ∨ σ(u) = red. In both cases particles get destroyed when
reaching the colored vertex and we flip the color in x. When applied to a green vertex (c
& d) Ax behaves as we are used to. When applied to a red vertex ((a) & (b)) Ax creates
an anomaly. The edge between (t + 1).x and w is reversed, thus we will be forced to
apply Ax again before updating w. Note that this evolution is still port-decreasing (see
Def.12) because b′ is replaced by a smaller port b′′.

the possibility that space-time be curved by the presence of this newly allowed metric.
5/ Providing a dynamic upon the metric itself.
Here, in the discrete, we: 1/ enforced a well-determined space-time, 2/ in spite of an
asynchronous evaluation strategy, 3/ thanks to the introduction of extra causality struc-
ture, namely a DAG of dependencies. 4/We then allowed ourselves to consider graphs
with exotic such DAG, and 5/ rules manipulating them.

5 Obtaining space-time determinism

One might have hoped for a simple definition of space-time determinism, whereby any
two graphs of a space-time diagramMmust agree on the state of a vertex u ∈ V, if it so
happens to appear in both of them. But the example in Sec. 3 (Fig. 6) shows that things
are more subtle. Its discussion motivates a definition of (full) consistency whereby any
two graphs ofM must agree on the state of a vertex v (in terms of its neighbourhood
and internal state) whenever they agree on the set of incoming ports to that vertex v. In
particular this implies that the state of v should be the same for every graph ofM such
that v ∈ Past(G), which can be understood as stating that the “result state” (a.k.a. normal
form) at v is well-determined. We refer to this weaker demand as weak consistency (see
Fig. 9).

Definition 8 (Consistency). Two graphs G and H are consistent iff for all v ∈ IH ∩ IG:

π.EG(v) = π.EH(v) =⇒ Gv = Hv.

where EG(v) the set of edges ending in v, and π.EG(v) denotes the set of incoming ports
of v. Consistency is denoted G ∥ H. The graphs G and H are called weakly consistent if
they respect this condition in the special case where EG(v) = ∅. We say that a space-time
diagramM is (resp. weakly) consistent if each pair of graphs inM is (resp. weakly)
consistent.
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Fig. 8: Time dilation example. In black we highlight two graphs G and G′′ belonging to
the space-time diagram. We start with two particles, one on the left and the other on the
right of the red. Notice how, even if the same local rule gets applied everywhere, times
flows twice faster for the particle on the left.

(a) G (b) H

Fig. 9: Weak consistency versus consistency. The set of graphs {G,H} is weakly consis-
tent but not consistent. Indeed we have Gu = Hu but consistency fails in v because we
have EG(v) = EH(v) but Gv , Hv. As a consequence (see Prop. 2) we have G , H
whilst Past(G) = Past(H).

We now embark in the quest for a set of properties ensuring that an N-local rule
A(−) generates only consistent space-time diagrams. We start with two properties. The
first one asks for timetags to only increase. The second one, akin to strong confluence
or sequential independence in parallel graph transformations, states that a set of inde-
pendent rule applications on a graph G applied in any order should always lead to the
same graph.

Definition 9 (Time-increasing commutative local rules). A local rule A(−) is
■ time-increasing iff ∀t.y ∈ VG, ∀t′.y ∈ VAxG, t ≤ t′, with t < t′ if y = x;
■ commutative iff ∀x, y ∈ X(Past(G)), AxAy(G) = AyAx(G).

These two properties place strong constraints on the past vertices of a space-time di-
agram MA(G): they already entail weak consistency. Moreover each space-like cut is
fully determined its set of past elements.
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Proposition 1. (Obtaining weak consistency). Let A(−) be a time-increasing commu-
tative local rule. For all graph G,MA(G) is weakly consistent.

Proposition 2. (Pasts determine space-like cuts) Let A(−) be a time-increasing com-
mutative local rule. Let G be a graph. Let H, J ∈ MA(G). If Past(J) = Past(H) then
J = H.

However Sec. 3 discussed how weak consistency can be trivially realised even for
non-trivial dynamics, and justified going for full consistency. To have sufficient con-
dition for full consistency, we place new hypotheses on the neighbourhood scheme,
namely extensivity, monotony and privacy.

Note that all this properties are respected by the neighbourhoodN used in examples
of Secs 3 and 4 defined by :

∀x ∈ X,Nx(G) = VGx ∀ω ∈ X∗,Nω(G) =
⋃
x∈ω

Nx(G)

First we demand that Nω(G) be big enough to contain the neighbourhood of each
vertex x ∈ ω, at the time Ax is to be computed. This closure property of N is called
monotony (see Fig.10), it ensures that for any valid sequence ω, Aω will not modify
beyond Nω(G).

Definition 10 (Monotony). A neighbourhood scheme N is monotonous iff for every
sequence ω = γβα ∈ ΩG(A) we have :

Nβ(AαG) ⊆ Nω(G).

In particular we have Nβ(AαG) ⊆ Nβα(G) and Nα(G) ⊆ Nω(G).
Second, privacy will demand that any disjoint sequences ω,ω′ have their Nω(G)

and Nω′ (G) intersecting only on their border vertices and the edges in between them
(see Fig. 10), a property that is akin to parallel independence [13]. Combining the two
together will ensure that concurrent influences happen only at these joint borders, an
essential ingredient of full consistency, as illustrated in Fig. 11a and 11b).

Definition 11 (Privacy). A neighbourhood scheme N is private, iff for any graph G
and any disjoint valid sequences ω,ω′ ∈ ΩG(A), we have :

N−ω′ (G) ∩ Nω(G) = ∅.

Lastly we want to forbid that a local rule modifies a vertex without altering its in-
coming ports, as this would immediately infringe full consistency (see Fig. 11c and 11d).
Moreover the modification needs be decreasing—otherwise we could apply Ax twice in
a row and get to the exact same counter example. This idea that Ax should decrease
the incoming ports of the vertex v it modifies, can be understood as a natural way of
‘locally reflecting the progress of the computation of v’, i.e. geometrically accounting
for the fact that the dependency between x and v has been reduced, and hence their
space-time relationship has changed. In Sec. 3 the local rule is port decreasing because
we suppress an incoming edge each time we modify a vertex. In Sec. 4 the local rule is
port decreasing for more subtle reasons in the case of a red vertex : we decrease b′ into
b′′ (see Fig. 7a and 7b).
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(a) Monotony. (b) Privacy and port decreasing.

Fig. 10: Monotony and privacy. (a) The monotony condition demands that given a graph
G and a list of vertices ω = βα monotony demands that the neighbourhood computed
at the beginning Nω(G) (red) is larger that Nα(G) (yellow) and that any future neigh-
bourhood Nβ(AαG) (orange). Given a set of disjoint vertices ω′ privacy demands that
the neighbourhood Nω (blue & cyan) and Nω′ (red & orange) only intersect on their
borders. (b) The port decreasing condition demands that, in order to modify a vertex, Aω
must pay the price of decreasing one of its incoming private ports. Here, x ∈ GNω∩GNω′
can be modified by both Aω and Aω′ as each of them has private access to it.

Definition 12 (Port decreasing). An N-local rule A(−) is port decreasing iff for any
graph G, position x ∈ X(Past(G)) and vertex u ∈ VG ∩ VAxG whenever G0

u , (AxG)0
u we

have
π.(EG(VG, u) \ EG(N−ω , u)) > π.(EAxG(VAxG, u) \ EG(N−ω , u))

for a order ≤ over sets of ports which is for any A, B, A′, B′ ∈ P(π) :
■ inclusive i.e. A ⊇ A′ =⇒ A ≥ A′

■ monotonous i.e. A ∩ B = ∅ ∧ A ≥ A′ ∧ B > B′ =⇒ A ∪ B > A′ ⊎ B′

where EG(Y, u) denotes the set of edges in G from any v ∈ Z.Y to u, and π.EG(Y, u) the
corresponding set of ports incoming to u.

Note that we ask a port decreasing operator to decrease the port of a private edge,
i.e. an edge starting from N−. Without this assumption we can give a counter example
by considering the graph of Fig. 10. Say both Aω and Aω′ were to modify the internal
state of v and decrease the port associated to the shared edge coming from u. Then we
could have π.EAωG(v) = π.EAω′G(v) whilst σAω′G(v) , σAωG(v).

Finally we state our main result.

Theorem 1. (Obtaining consistency) Let A(−) be a port-decreasing time-increasing
commutativeN-local rule, withN an extensive monotonous and private neighbourhood
scheme. For all graph G,MA(G) is consistent.

The proof is quite intricated, but we can give the following intuition. On the one
hand the commutation hypothesis ensures that AωG ∥ Aω′G as long as ω′ is a permu-
tation of ω. On the other hand as long as N is extensive, monotonous and private two
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(a) G (b) AuG/AvG (c) G (d) AuG

Fig. 11: Inconsistent dynamics examples. The example of (a)&(b) relies on a neighbour-
hood scheme which is not private as w ∈ N−u (G)∩N−v (G). It follows that AuG and AvG
disagree on the internal states of w, whilst both updating its incoming port in the same
fashion (b becomes a < b). The example of (c)&(d) is not port decreasing. It follows
that G and AuG disagree on v but its set of incoming ports stay the same.

disjoint operators necessarily modify different subgraphs, albeit with a common border.
Then, by decreasing the private incoming port of each modified vertex, we obtain full
consistency by dismissing its premise.

6 Conclusion

Summary of results. We introduced graphs that must be thought of as a space-like cuts
of space-time diagrams. The vertices have names of the form u = t.x, they must be
thought of as events. The edges must be thought of as dependencies between events,
i.e. if u = t.x points to v = t′.y, then v is ahead in time of u, awaiting for information
from u. The action of a local rule Ax on u is non-trivial only if u is minimal: it disposes
of it by communicating its information to v and other dependencies, and creates vertex
u′ = (t + 1).x in some provisional state.
We argued that the right notion of space-time determinism is full consistency: the state
of each event (in terms of its internal state and connectivity) needs be a function of its
set of incoming ports, as these represent the angle at which the space-like cut traverses
the event. We gave sufficient conditions for the asynchronous applications of a local rule
to be fully consistent: they must be commuting and port-decreasing, with respect to an
extensive, monotonous, private notion of neighbourhood. We also looked at a weaker
notion of consistency, requiring that only the normal forms of events across space-time
be well-determined: commutation alone suffices then.
Throughout, we argued of the potential implications for distributed computation (weak
consistency), asynchronous simulation of dynamical systems (full consistency and our
first example), and discrete toy models of general relativity (our second example).
Related works. Geometry is dynamical in a our work. We thus hope it makes useful
addition to the already wide literature on Graph Rewriting [27,28]. We are aware that
the dominating vocabulary to describe them is now that of Category theory [29,30,23],
in which ways of combining non-commuting rules [31] and notions of space-time dia-
grams have been developed [32,33,34,35].
We instead use the vocabulary of dynamical systems, as we came to consider Graph



16 P. Arrighi et al.

Rewriting though a series of works generalising cellular automata to synchronous,
causal graph dynamics [36], and tilings to graph subshifts [37]. We are confident that
abstracting away the essential features of our formalism could yield interesting categor-
ical frameworks, e.g. à la [38].
The closest works however turn out to come from varied communities. In algorithmic
complexity [39] uses a DAG of dependencies representation to reduce the synchroni-
sation costs of simulating a class of synchronous algorithms—we use it in the more
dynamical systems context and in order to relax synchronism altogether, whilst safe-
guarding space-time determinism. In computational Physics [40] promotes the lattice
of dependencies of local rule applications to a notion space-time, and advocates a no-
tion of ‘causal invariance’ based on the unicity of this lattice—we formalise space-
determinism mathematically and provide local conditions to achieve it. In the network
reliability community, [25] obtains a result of a similar flavour to Prop. 1—our local
rules Ax are allowed to modify the neighbouring nodes and the graph per se, plus we
reach full consistency.
Perspectives. Clock synchronisation is an expensive overhead for parallel simulation
of dynamical systems, as well as numerous distributed computation applications. The
hereby developed theoretical framework says we can just do away with them and still
obtain a strong form space-time determinism, provided that the local rule meets certain
requirements. We are looking forward to see this being applied in practice. We, on the
other hand, are likely to focus on the reversible and quantum regimes of these graph
rewriting models.
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Unfolding grammars in adhesive categories. In Alexander Kurz, Marina Lenisa, and An-
drzej Tarlecki, editors, Algebra and Coalgebra in Computer Science, pages 350–366, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

33. Nicolas Behr, Vincent Danos, and Ilias Garnier. Stochastic mechanics of graph rewriting. In
2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10.
IEEE, 2016.

34. Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König, and Paweł Sobociński.
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A Valid sequences and commutative local-rule

We notice that a past vertex must remains so, hence the well-definiteness of commuta-
tivity.

Lemma 1 (Validity of community). Let A be a (not necessarily commutative) local
rule, G be a graph and x, y ∈ X(Past(G)). The sequence yx is valid in G. Moreover, if A
is commutative, AxyG = AyxG.

Proof. As there exists no path to y in G, the reachability condition of neighbourhood
schemes implies that y < Nx(G). By N-locality Ax cannot add any incoming edge to y
which implies y ∈ X(Past(AxG)), i.e. yx is valid as wanted.
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Lemma 2 (*-validity of commutativity). Let A be a commutative local rule. Let α be
a valid sequence in G. Let x ∈ X(Past(G)) such that x < α. We have xα and αx are valid
in G and AxαG = AαxG.

Proof. We proceed by induction on the size of α. When |α| = 0 it is immediate. Let us
suppose α = yβ. By induction hypothesis, we known that (1) xβ is valid in G, (2) βx is
valid in G and (3) AxβG = AβxG. By (1), we have x ∈ X(Past(AβG)). Since α = yβ is
supposed to be valid, we also have y ∈ X(Past(AβG)). But Lem. 1 tells us that xy and yx
are both valid in AβG and Axy(AβG) = Ayx(AβG). Thus xyβ and yxβ are valid in G and
AxyβG = AyxβG = Ay(AxβG). Combining this with (2) and (3) finishes the induction and
the proof.

The two-letters commutativity condition is equivalent the ability to permute all letters
of a valid sequence.

Lemma 3 (∗-commutation). Let A(−) be a commutative local rule. Let ω be a valid
sequence in G and ω′ be a permutation of ω also valid in G. We have

AωG = Aω′G

Proof. Let us denote ω = xn . . . x2x1. We prove by induction that for all i ∈ {0, . . . , n},

Aω′G = AβAxi...x1G,

with β a permutation of xn . . . xi+1. The case i = 0 is verified with β = ω′. When i = j+1
we have Aω′G = AβAx j...x1G. By validity of ω, we know that x j+1 ∈ X(Past(Ax j...x1G)).
Consider the decomposition β = β′′x j+1β

′ with x j+1 < β
′. Lem. 2 applied to β′ and x j+1

in the graph Ax j...x1G gives us Aω′G = Aβ′′β′Ax j+1...x1G as needed to finish the induction.

B Weak consistency

For the next proof we will need a notation for the rightmost sequence subtraction. Let
ω ∈ X∗ and α ∈ X∗. We define recursively (ω \ α) ∈ X∗ as :

ω \ α =


ω if |α| = 0,
ω′′ω′ if |α| = 1, ω = ω′′αω′, and α < ω′

(ω \ x) \ α′ if α = α′x and x ∈ X.

For example if X = {0, . . . , 9}, ω = 22159892 and ω′ = 28542 we have ω \ ω′ = 2199.
This operation preserves validity.

Lemma 4 (Validity of sequence substraction). Let A(−) be a commutative local rule.
Let ω and ω′ be valid sequences. Then the sequence ω \ ω′ is valid in Aω′G.

Proof. We proceed by induction on the size of ω′. It is immediate when ω′ is empty.
When ω′ = xα, the validity of ω′ gives us that x ∈ X(Past(AαG)). The induction hy-
pothesis is that ω \ α is valid in AαG. Taking ω \ α = γβ with β the longest suffix of
ω \ α such that x < β, we have β valid in AαG.
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We can use Lem. 2 on β and x in AαG to get validity of β in AxαG and AxβαG =
AβxαG. If γ = ε we can conclude immediately. Otherwise we have γ = β′x. Since β′ is
valid in AxβαG it is also valid in AβxαG. This finishes to prove validity of β′β = ω \ xα
in AxαG.

Whilst confluence is not the primary aim of this paper, we obtain it as a corollary.

Corollary 1 (Confluence). Let A(−) be a commutative local rule. Let ω and ω′ be valid
sequences. Then the sequences ω′ \ ω and ω \ ω′ are valid respectively in AωG and
Aω′G. This enforces :

A(ω′\ω)AωG = A(ω\ω′)Aω′G

Proof. We get each validity by one application of Lem. 4. Then we get the equality by
applying Lem. 3.

In any spacetime diagramMA(G) for A time-increasing commutative, the state of a
past vertex is well-determined.

Lemma 5 (Common past vertices have been equally updated). Let A(−) be a time-
increasing commutative local rule. Let ω and ω′ be valid sequences in G. If there exists
t.x ∈ Past(AωG) ∩ Past(Aω′G) then ω′ contains as much x as ω.

Proof. We suppose without loss of generality that there is at least as much x in ω′ than
in ω. Then because x < (ω \ ω′) and t.x ∈ Past(Aω′G) we have t.x ∈ Past(A(ω\ω′)ω′G).
Using Lem. 1 this implies t.x ∈ Past(A(ω′\ω)ωG). Since t.x ∈ Past(AωG) this implies by
the time-increasing condition that ω′ \ ω does not contain any x.

Proposition 1. (Obtaining weak consistency). Let A(−) be a time-increasing commu-
tative local rule. For all graph G,MA(G) is weakly consistent.

Proof. Let ω and ω′ be valid sequences in G. Let t.x ∈ Past(AωG)∩Past(Aω′G). Lem. 5
tells us that there is as much x in ω′ than in ω. This means x < (ω \ω′) and x < (ω′ \ω).
Then, using locality and Lem. 1, we get the following equalities

(Aω′G)t.x = (A(ω\ω′)ω′G)t.x = (A(ω′\ω)ωG)t.x = (AωG)t.x.

Moreover, in any spacetime diagram MA(G) for A time-increasing commutative,
fixing set of past vertices fixes the entire space-like cut.

Proposition 2. (Pasts determine space-like cuts) Let A(−) be a time-increasing com-
mutative local rule. Let G be a graph. Let H, J ∈ MA(G). If Past(J) = Past(H) then
J = H.

Proof. We consider two graphs AωG and Aω′G such that Past(AωG) = Past(Aω′G). Let
us prove by contradiction that ω \ ω′ is empty. We suppose it non empty and call x
its right-most letter. Then validity (coming from Lem. 1) gives us t.x ∈ Past(Aω′G) =
Past(AωG). By Lem. 5, we have that ω and ω′ contains as much x as the other. So ω\ω′

does not contain x, a contradiction.
Thus we have ω \ ω′ = ∅. Symmetrically ω′ \ ω = ∅. Using Lem. 3 this proves

AωG = Aω′G.
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C Full consistency

The two hypotheses of Th. 1 (N-locality and the port decreasing condition) handle only
size 1 valid sequences. In order to prove the theorem we first have to establish that the
two hypotheses for any valid sequence. We start by extending the notion locality, to
account not just for a single position, but valid sequences of them.

Definition 13 (∗-N-Locality). Consider a neighbourhood schemeN. An operator A(−)
is said to be ω-N-local iff, for all G for which ω ∈ ΩG(A) we have

AωG = Aω(GNω ) ⊔G
Nω
.

An operator said to be N-local iff this holds for any ω ∈ ΩG(A) such that |ω| = 1, we
then say it is a local rule. It is said to be ∗-N-local if this holds for any ω ∈ ΩG(A).

Let us prove that anyN-local operator for an extensive and monotonous neighbourhood
scheme is also ∗-N-local.

Lemma 6 (N ⊆ X-locality implies X-locality). Consider an extensive neighbourhood
scheme N, a graph G and ω ∈ X∗, and any set X ⊆ X such that Nω(G) ⊆ X. If A(−) is
ω-N-local then we have :

AωG = (AωGX) ⊔GX

Proof. In order to lighten the notations of this proof we temporarily write N instead of
Nω. By extensivity of N, GN(G) ⊑ GX ⊑ G implies N(G) = N(GX).

AωGX = AωGXN(GX ) ⊔GXN (GX )

= AωGXN(G) ⊔GXN (G) by extensivity

= AωGN(G) ⊔GX∩N (G) since N(G) ⊆ X

AωGX ⊔GX = AωGN(G) ⊔GX∩N (G) ⊔GX

= AωGN(G) ⊔GX∩N (G) ⊔GX∩N (G) since X ⊆ N (G)

= AωGN(G) ⊔G
N (G)

= AωG

Lemma 7 (N-locality implies ∗-N-locality). If an operator A(−) isN-local for a monotonous
and extensive neighbourhood scheme N, then it is also ∗-N-local.

Proof. By recurrence on the size of ω. The base case ω = u is N-locality. Let ω = βα
with β, α non-empty. By monotony we have that for all G, Nα(G) ⊆ Nω(G). We can
thus use Lem. 6 to get:

AαG = (AαGNω ) ⊔G
Nω

AβAαG = Aβ((AαGNω ) ⊔G
Nω

)



22 P. Arrighi et al.

By monotony we also have thatNβ(AαG) ⊆ Nω(G). We can thus use Lem. 6 again with
X = Nω(G) :

AβAαG =
(
Aβ
(
((AαGNω ) ⊔G

Nω
)Nω(G)

))
⊔ ((AαGNω ) ⊔G

Nω
)
Nω(G)

=
(
Aβ
(
((AαGNω ) )Nω(G)

))
⊔ (( G

Nω
)
Nω(G) by Rk 1

= (AβAαGNω ) ⊔G
Nω

In a similar manner we can define ∗-port decreasing operators, by considering any
valid sequence ω, i.e. applying Aω instead of Au in definition 12. Let us show that
any port decreasing operator for a monotonous neighbourhood scheme is also ∗-port
decreasing.

Remark 2. The LHS of the port-decreasing condition (Def. 12) could have simply been
written π.EG(N−ω , x). The RHS however divides up into remainder originally private
edges and new edges, i.e. π.

(
(EAωG(x) ∩ EG(N−ω , x)) ⊎ (EAωG(x) \ EG(x))

)
.

Thus a way of understanding the port decreasing condition is the following: the subset
of π.EAuG(x) containing the remainder originally private ports and the new ports must
be smaller than the originally private ports.

Lemma 8. (Port decreasing implies ∗-port decreasing) If A(−) is port decreasing for
a monotonous neighbourhood scheme N, then A(−) is ∗-port decreasing for N.

Proof. We show this by complete induction on the length of ω.
If ω contains only one letter it comes directly from Def. 12.
Otherwise we write ω = βα with β and α non empty. We want to show that Aω is

port decreasing— i.e.

π.EGN−ω
(x) > (π.EAωG(x) ∩ π.EGN−ω

(x)) ∪ (π.EAωG(x) \ π.EG(x)).

by supposing Aα and Aβ port-decreasing.
We proceed in two steps, we will prove these inequalities :

π.(EG(x) \ EG(N−ω , x)) > π.(EAαG(x) \ EG(N−ω , x)) > π.(EAωG(x) \ EG(N−ω , x))

We start by the left inequality. Using Rk 2, the LHS is equal to EG(N−ω , x). Using
Nα ⊆ Nω as stated by monotony, we decompose it according to privacy along α.

EG(N−ω , x) = EG(GN−α , x) ⊎ (EG(GN−ω ) \ EG(GN−α , x))

Using Rk 2, the RHS is equal to

(EAαG(x) ∩ EG(N−ω , x)) ⊎ (EAαG(x) \ EG(x))

We also decompose the RHS according to privacy along α, using the same formula,
and obtain:
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(
EAαG(x) ∩ (EG(N−α , x) ⊎ (EG(N−ω ) \ EG(N−α , x)))

)
⊎ (EAαG(x) \ EG(x))

= (EAαG(x) ∩ EG(N−α , x)) ⊎
(
EAαG(x) ∩ (EG(N−ω ) \ EG(N−α , x))

)
⊎ (EAαG(x) \ EG(x))

The following inequality holds because one set is included in the other:

π.
(
(EG(N−ω ) \ EG(N−α , x))

)
≥ π.
(
EAαG(x) ∩ (EG(N−ω ) \ EG(N−α , x))

)
The remaining part of the LHS is also greater than the remaining part of the RHS

π.
(
EG(N−α , x)

)
> π.
(
(EAαG(x) ∩ EG(N−α , x)) ⊎ (EAαG(x) \ EG(x))

)
because this is the Rk 2 version of the Aα port-decreasing recurrence hypothesis. Since
the order is monotonous, this implies that the LHS is greater than the RHS.

Secondly we prove the right inequality. First we notice

EAαG(N−β (AαG), x) \ EG(N−ω (G), x) = EAαG(N−β (AαG), x).

because by monotony N−β (AαG) ⊆ N−ω (G), thus N−β (AαG) \ N−ω (G) = N−β (AαG).
We can therefore decompose the LHS of the right inequality as

EAαG(x) \ EG(N−ω , x) = (EAαG(N−β (AαG)) \ EG(N−ω , x)) ⊎ (EAαG(N−β (AαG)) \ EG(N−ω , x))

= EAαG(N−β (AαG)) ⊎ (EAαG(N−β (AαG)) \ EG(N−ω , x))

We now decompose the RHS:

EAωG(x) = (EAωG(x) ∩ EAαG(x)) ⊎ ((EAωG(x) \ EAαG(x))
= (EAωG(x) ∩ EAαG(N−β (AαG), x))

⊎ (EAωG(x) ∩ EAαG(N−β (AαG), x))

⊎ (EAωG(x) \ EAαG(x))

EAωG(x) \ EG(N−ω , x) = (EAωG(x) ∩ EAαG(N−β (AαG), x)) \ EG(N−ω , x)

⊎ (EAωG(x) ∩ EAαG(N−β (AαG), x)) \ EG(N−ω , x)

⊎ (EAωG(x) \ EAαG(x)) \ EG(N−ω , x)

EAωG(x) \ EG(N−ω , x) = EAωG(x) ∩ EAαG(N−β (AαG), x)

⊎ (EAωG(x) ∩ EAαG(N−β (AαG), x)) \ EG(N−ω , x)

⊎ (EAωG(x) \ EAαG(x)) \ EG(N−ω , x)

The following inequality holds because one set is included in the other:

π.
(
EAαG(N−β (AαG)) \ EG(N−ω , x)

)
> π.
(
(EAωG(x) ∩ EAαG(N−β (AαG), x)) \ EG(N−ω , x)

)
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Now by the Rk 2 version of the Aβ port-decreasing recurrence hypothesis:

EAαG(N−β (AαG)) > EAωG(x) ∩ EAαG(N−β (AαG), x)

⊎ EAωG(x) \ EAαG(x)
≥ EAωG(x) ∩ EAαG(N−β (AαG), x)

⊎ (EAωG(x) \ EAαG(x)) \ EG(N−ω , x)

Since the order is monotonous, this implies that the LHS is greater than the RHS.

Remark 3. If we have a strict inequality between two sets of ports A and A′ for an
inclusive order then the bigger set A′ necessarily contains at least one element which
does not belong to A i.e. :

A > A′ =⇒ ∃p ∈ A, p < A

Indeed otherwise we would have A ⊆ A′ which would imply the contradiction A ≤ A′.

We are now ready to tackle the case of disjoint sequences of the main theorem.

Proposition 3 (Disjoint case). Let N be a private extensive monotonous neighbour-
hood scheme. Let A(−) be a time-increasing and commutative N-local rule. Let G be a
graph. Let ω,ω′ ∈ ΩG(A). If ω∩ω′ = ∅ and A(−) is port decreasing, then AωG ∥ Aω′G.

Proof. Let us show consistency around u ∈ VAω′G ∩ VAωG.
First we notice that u must be a vertex of G. Indeed, due to Rk 1 vertices of AωG

are either vertices of G or of the form (t + ∆t).x with ∆t > 0 and t.x ∈ VG. If u =
(t + ∆t).x, then by ∗-N-locality (comming from Lem. 7) and again Rk 1, x belongs to
N−ω (G) ∩ N−ω′ (G). This contradicts privacy of N.

There are three cases :
■ The neighbourhood of u is not modified by Aω and neither by Aω′ , i.e. (AωG)u = Gu =

(Aω′G)u. This immediately implies consistency.
■ Case (AωG)0

u , Gu. We start by decomposing EG(u) according to ω and ω′ privacy :

EG(u) = EG(N−ω , u) ⊎ EG(N−ω′ , u) ⊎ (EG \ EG(N−ω ∪ N
−
ω′ , u))).

Indeed since N is private we have N−ω ∩ N
−
ω′ = ∅, therefore this decomposition is a

partition. Moreover by ∗-N-locality and Rk 1, Aω′ cannot modify the private edges of
ω :

EG(N−ω , u) ⊆ EAω′G(u).

Since Aω is ∗-port-decreasing, the action of A(−) gives us the following equations :

π.(EG(u) \ EG(N−ω , u)) > π.(EAωG(u) \ EG(N−ω , u))

This implies by Rk 3 the existence of a port p ∈ π.(EG(N−ω , u)) such that p <
π.(EAωG(u) \ EG(N−ω , u)). Since Aω′ cannot modify private edges of ω we also have
p ∈ π.EAω′G(u) and since ports are never repeated p < EG(N−ω , u)) thus p < π.EAωG(u).
Since p ∈ π.EAω′G(u) and p < π.EAωG(u) the sets differ: consistency is ensured by
dismissal of its premise.
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■ Case (Aω′G)u , Gu is symmetrical.

Theorem 1. (Obtaining consistency) Let A(−) be a port-decreasing time-increasing
commutativeN-local rule, withN an extensive monotonous and private neighbourhood
scheme. For all graph G,MA(G) is consistent.

Proof. Let ω and ω′ be valid sequences in G. Let us prove that AωG ∥ Aω′G.
We show this result by strong recurrence on the length of ω and ω′. Let us suppose

that this property holds for all words of size smaller or equal to n. Let ω and ω′ be
words of size at most n + 1.

If ω ∩ ω′ = ∅ the result follows from Lem. 3.
Otherwise we call x ∈ ω ∩ ω′, a position such that:

ω = ω2xω1 s.t. x < ω1

ω′ = ω′2xω′1 s.t. x < ω′1

ω1 ∩ ω
′
1 = ∅

First we prove that x ∈ X(Past(G)). If x < X(Past(G)) we would have by validity ofω
that x ∈ X(Past(Aω1G))\X(Past(G)) which implies that Gx , (Aω1G)x. Since Aω1 is ∗-N-
port-decreasing, there exists e = (u : a, t.x : b) ∈ EG(N−ω1

, x). By privacyN−ω1
∩Nω′1 = ∅

and so u < IGNω′1
. Thus e is at best a border edge in GNω′1 . By locality and Rk 1 this edge

cannot be modified by Aω′1 . But by validity of Aω′ , we have x ∈ X(Past(Aω′1G)) meaning
that e was removed, a contradiction.

Now we can apply Lem. 2 on ω1 and x to get

AωG = Aω2 Aω1 AxG.

Similarly,
Aω′G = Aω′2 Aω′1 AxG

which concludes the proof because we can apply the induction hypothesis on AxG.
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