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Although entanglement is both a central ingredient in our understanding of quantum many-body
systems and an essential resource for quantum technologies, we only have a limited ability to quantify
entanglement in real quantum materials. Thus far, entanglement metrology in quantum materials
has been limited to measurements involving Hermitian operators, such as the detection of spin
entanglement using inelastic neutron scattering. Here, we devise a method to extract the quantum
Fisher information (QFI) from non-Hermitian operators and formulate an entanglement witness for
resonant inelastic x-ray scattering (RIXS). Our approach is then applied to the model iridate dimer
system Ba3CeIr2O9 and used to directly test for entanglement of the electronic orbitals between
neighboring Ir sites. We find that entanglement is challenging to detect under standard conditions,
but that it could be achieved by analyzing the outgoing x-ray polarization or via specific choices
of momentum and energy. Our protocol provides a new handle for entanglement detection, which
offers routes to related types of entanglement witness (such as orbitally-resolved measurements) and
to the generalization to out-of-equilibrium settings accessed in ultrafast settings.

INTRODUCTION

Multipartite quantum entanglement refers to the en-
tanglement of a quantum system across multiples of its
subsystems. While all entanglement measures express in
some form the non-locality that is a fundamental aspect
of quantum mechanics, the phenomenology of multipar-
tite entanglement is, in general, much richer than that
given by bipartite measures such as the Rényi and von
Neumann entanglement entropies. Multipartite entan-
glement is also a driver of quantum technologies where
entanglement across multiple sites acts as a resource
[1] that enables quantum communication [2], enhanced
quantum metrology [3], quantum sensing [4], quantum
machine learning [5], and quantum imaging [6, 7]. Given
its centrality, it is important to be able to characterize
multipartite entanglement in materials.

Although there are many approaches for quantifying
bipartite entanglement in synthetic quantum systems [8–
20], most of these are impractical for solid-state quantum
materials, due to either the large number of atoms in
such materials or the lack of fine-scale control. Entan-
glement in magnetic materials between spin pairs can be
inferred from magnetic susceptibility [21–25], magnetic
specific heat [26], or the dynamical spin structure factor
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[27–29]. A more general approach both capable of de-
tecting arbitrary amounts of multipartite entanglement
and that is potentially compatible with a variegated set
of experimental solid state probes is the quantum Fisher
information (QFI) [30]. The QFI is a concept from quan-
tum metrology [3, 31–33] that pertains to the probability
distribution of measurements and the corresponding pa-
rameter estimation in a multiparticle quantum system.
If the precision of a parameter estimation exceeds the
classical limit, then it can be deduced that the system
must have multipartite entanglement [34–38]. As shown
in Ref. [36], the QFI can be deduced from appropri-
ately weighted energy-integrals of dynamical susceptibil-
ities. This approach depends on the operator associated
with the susceptibility being both Hermitian and hav-
ing bosonic statistics. Since the spin operator fulfills this
criterion, the formulae in Ref. [36] can be directly ap-
plied to inelastic neutron scattering, and this has been
successfully used to detect entanglement in quasi-one-
dimensional quantum magnets [30, 39, 40].

RIXS is a fast-evolving experimental technique that
can probe charge, spin, and orbital degrees of freedom
[41–44]. Given its flexibility to probe multiple degrees
of freedom and its ability to measure very small sample
volumes and in ultrafast pump-probe modalities, it offers
exciting possibilities to expand the frontier of entangle-
ment metrology in quantum materials [44–46]. However,
while the RIXS intensity is bosonic, it is non-Hermitian,
so Ref. [36]’s formalism cannot be directly applied. One
way to circumvent this difficulty is to convert the RIXS
intensity into an approximate estimate for the dynamical
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FIG. 1. Witnessing orbital entanglement using RIXS. a, The crystal structure of Ba3CeIr2O9 is shown with the dimer
units highlighted in red, which host Ir 5d orbitals. b, In this letter, we develop a joint experimental-theoretical method to obtain
an orbital entanglement witness from the RIXS intensity, which probes the material through a scattering process involving the
absorption (Di) and the subsequent emission (D†

o) of x-rays shown as wavy blue and purple lines. c, We first obtain the witness
operator from the RIXS intensity using the numerical codebase EDRIXS and subsequently obtain the normalized quantum
Fisher information (nQFI) for detection of the quantum entanglement.

spin structure factor [47].
The key result of this letter is that we show how to

extend Ref. [36]’s formalism to cover non-Hermitian op-
erators and use it to directly formulate an entanglement
witness that exploits the full complexity of the RIXS re-
sponse. We use this theoretical advance to convert mea-
sured RIXS intensities of Ba3CeIr2O9 to the normalized
QFI. This material features face-sharing Ir octahedra,
which makes it an ideal test case for detecting a pro-
totypical two-partite entanglement between its t2g elec-
tronic orbitals. An overview of this process is illustrated
in Fig. 1.

DESIGNING RIXS AS AN ENTANGLEMENT
WITNESS

Entanglement: Quantum entanglement is a property of
the many-body wave function of a quantum system. To
define multipartite entanglement [48, 49], first consider
a pure state ρ = |ψ⟩⟨ψ| of a N -site system. The state
is said to be m-separable if one can write the state as a
product of states ρj involving mj ⩽ m sites:

ρ = ⊗M
j=1ρj ,

M∑

j=1

mj = N. (1)

If the state cannot be further factorized into smaller
pieces, it is said to possess m-partite entanglement. A
mixed, i.e., thermal, state, ρ =

∑
i ρi|ψi⟩⟨ψi|, is said to

possess m-partite entanglement if the maximally entan-
gled wavefunction, |ψi⟩, in the mixture has m-partite en-
tanglement [30, 34, 35, 50, 51]. The physical consequence
of entanglement is that a measurement of one site in the
system, represented by the action of an operator on that
site, necessarily affects the other entangled sites.

Quantum Fisher information: The quantum Fisher
information (QFI) provides a way to connect bounds
on the multipartite entanglement with spectroscopic
probes that can be measured experimentally. The QFI,
FQ(ρ, Â), governs the sensitivity of the quantum density

matrix ρ to unitary rotations U†ρU , U = eiθÂ, defined in
terms of a Hermitian operator Â [35, 52]. The variance
by which the parameter θ can be determined by a single
measurement is given by (∆θ)2 ≥ FQ(ρ, Â)

−1.
The QFI is expressible in terms of the response func-

tion relative to the operator Â, the key observation of
Ref. [36]:

FQ(ρ, Â) = 4

∫ ∞

0

dω tanh

(
βω

2

)
χ′′
AA(ω), (2)

where χ′′
AA(ω) is the imaginary part of the retarded cor-

relation function

χ′′
AA(ω)=Im

[
i

∫ ∞

0

dt

π
eiωt Tr

(
ρ
[
Â(t), Â(0)

]) ]
. (3)

It has been shown that if the QFI exceeds a certain bound
[34, 50, 51, 53], the state is guaranteed to have a cer-
tain level of multipartite entanglement. In metrologi-
cal terms, this means that the presence of multipartite
entanglement makes measurements of the parameter, θ,
more accurate than would be possible if the state were
purely classical without any entanglement. To quantify
this bound, we assume that the operator Â is a sum
over local operators defined at each site of the system

Â =
∑N

i=1 Âi, and we denote the maximum and mini-

mum eigenvalues of Âi as ai,max and ai,min respectively.
If the QFI satisfies

FQ(ρ, Â)∑N
i=1(∆ai)

2
> m, ∆ai = ai,max − ai,min, (4)
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then the state ρ is guaranteed to have (m + 1)-partite
entanglement. The left-hand side of the inequality in
Eq. (4) is referred to as the normalized QFI (nQFI).

Exploiting this connection between FQ(ρ, Â) and χ
′′
AA,

the multipartite entanglement of quasi-1D quantum mag-
nets was determined from neutron scattering measure-
ments of the dynamic spin structure factor, i.e., Â = Ŝ
[30, 39, 40]. The key challenge of applying this approach

to RIXS is that the relevant operator Â for RIXS is not
Hermitian so Ref. [36]’s formalism cannot be straightfor-
wardly employed.

RIXS as an entanglement witness: In RIXS, x-rays
with energy ℏωin, momentum ℏki, and polarization ϵi
excite a core electron to the valence band. The result-
ing core hole is then refilled by a valence electron and
an outgoing photon with energy loss ω, momentum ℏko

and polarization ϵo is emitted. The corresponding RIXS
intensity is described by the the Kramers-Heisenberg for-
mula [41, 44, 54]

IRIXS (ωin, ω,ki,ko, ϵi, ϵo) =
∑

g

e−βEg

∑
g′ e−βEg′

∑

f

∑

n

∣∣∣∣∣∣

〈
f
∣∣∣D̂†

o

∣∣∣n
〉〈

n
∣∣∣D̂i

∣∣∣ g
〉

ωin − En + Eg + iΓc

∣∣∣∣∣∣

2

Γ/π

(ω − Ef + Eg)
2
+ Γ2

.

(5)

Here, |g⟩ and |f⟩ are the initial and final eigenstates of

the Hamiltonian without a core hole Ĥ0, with eigenvalues
of Eg and Ef , respectively. |n⟩ is the eigenstate of the

Hamiltonian with the core hole present Ĥn, with eigen-
value En. T = (kBβ)

−1 is the sample temperature. Γ
is the inverse lifetime of the final state, Γc is the inverse
lifetime of the core-hole state. D̂i(ki, ϵi) and D̂o(ko, ϵo)
are the dipole transition operators [55]. For experiments
that do not discriminate the final-state polarization, we
also need to sum over ϵo in Eq. (5).

Inspecting Eq. (5), we identify the RIXS operator Â†
R

via its matrix elements:

〈
f, ϵo

∣∣∣Â†
R

∣∣∣ g, ϵi
〉
=

∑

n

〈
f
∣∣∣D̂†

o(ϵo)
∣∣∣n

〉〈
n
∣∣∣D̂i(ϵi)

∣∣∣ g
〉

ωin − En + Eg + iΓc
.

(6)
Then the RIXS intensity can be written as

IRIXS (ω) =
χ′′
ARAR

†(ω)

1− e−βω
, (7)

where we have omitted the dependencies on the incoming
and outgoing photons for notational conciseness.

To convert IRIXS(ω) into a witness of entanglement

despite the non-Hermiticity of ÂR, we consider instead
the real and imaginary parts of the RIXS operator:

ÂR,Re =
1

2

(
ÂR + Â†

R

)
, ÂR,Im =

1

2i

(
ÂR − Â†

R

)
.

(8)

We can thus define the QFI for both:

FQ(ρ, ÂR,Re), FQ(ρ, ÂR,Im). (9)

Each of these QFI’s individually is not connected to a
spectroscopy that can be experimentally measured. How-
ever, as one of our key results, the sum of the two is
related to the RIXS intensity IRIXS(ω) measured at all
frequencies, both positive and negative:

FQ(ρ, ÂR,Re) + FQ(ρ, ÂR,Im)

= 2

∫ ∞

0

dω tanh

(
βω

2

)[
χ′′
ARAR

†(ω) + χ′′
AR

†AR
(ω)

]

= 2

∫ ∞

−∞
dω tanh

(
βω

2

)(
1− e−βω

)
IRIXS(ω).

(10)

Akin to Eq. (4), if this QFI sum satisfies

FQ(ρ, ÂR,Re) + FQ(ρ, ÂR,Im)
∑N

i=1

[
(∆ai,Re)

2
+ (∆ai,Im)

2
] > m, (11)

then our material has at least (m + 1)-partite entangle-
ment. Here we have written our RIXS operator as a sum

over sites in the system, Â†
R =

∑N
i=1 Â

†
R,i, where Â

†
R,i

excites/deexcites a core hole on site i. In the following
section, we will show how to obtain these necessary quan-
tities in the case of dimer iridates, which are attractive
in that they offer a prototypical bipartite entanglement
between the neighboring Ir atoms.
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FIG. 2. Comparison of the incident energy dependence
of the RIXS spectra between measurement and sim-
ulation. a, Measured RIXS spectra with varying incident
energy at fixed momentum transfer Q = (−0.5, 0, 18.94) in
reciprocal lattice units (r.l.u.). The signals below 2 eV energy
loss correspond to intra-t2g transitions while the ones above
2 eV mainly come from inter-t2g-eg transitions. b, Calcu-
lated incident-energy-dependent RIXS spectra at the same
fixed momentum transfer.
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FIG. 3. Comparison of the L dependence of the RIXS
spectra between measurement and simulation. a,
Measured L-dependent RIXS spectra showing periodic mod-
ulation, where the momentum transfer is Q = (−0.5, 0, L)
r.l.u., and the incident energy ℏωin is fixed to 11.216 keV.
Only the intra-t2g transitions are presented since they are the
dominating signals at this particular incident energy. b, Cal-
culated L-dependent RIXS spectra at the same fixed incident
energy. QL is the momentum transfer along the L direction.
For convenience, the same momentum scale is displayed in
two units. On top, we use units of 2π/cL where cL is the unit
cell lattice constant along L direction. On bottom, we use
units of 2π/d, where d is the distance between the two dimers
along the L direction.

CASE STUDY IN IRIDATE DIMER MATERIALS

As shown in Fig. 1, Ba3CeIr2O9 features two Ir sites in
its basic structural motif hosting ten 5d electrons between
them. Ir L-edge RIXS involves interference between pro-
cesses that create a core hole at either one of these sites
and can be used to formulate a RIXS witness for the
simplest form of multiparticle entanglement — that of
bipartite entanglement — between these sites.

To apply our QFI metrology, we need an estimate for
the single site eigenvalue spread, ∆ai,Re/Im. To obtain
this, we need to model the material-specific RIXS opera-
tor. This is done using the numerical toolkit EDRIXS, we
tune four material parameters (one crystal field splitting
parameter κ and three hopping integrals Vddσ, Vddπ, Vddδ,
see Table I, Refs. 56 and 57) together with a single over-
all scale factor to reproduce the experimentally measured
RIXS intensity. The results are shown in Figs. 2, 3, and
4. It can be seen from the figures that the constructed
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Q=(0.5, 0, 17.48)
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FIG. 4. Comparison of RIXS spectra between mea-
surement and simulation at representative momen-
tum transfers. a, Representative RIXS spectra at the indi-
cated momentum transfers in r.l.u., and the incident energy
ℏωin is fixed to 11.216 keV. Only the intra-t2g transitions are
presented since they are the dominant signal at this particu-
lar incident energy. b, Calculated RIXS spectra at the same
momentum transfers and the same fixed incident energy. The
model faithfully reproduces the trends seen in the experiment.
The first two inelastic features around 0.7 and 0.9 eV are
strong at L = 14.57 and weak at L = 17.48 due to construc-
tive or destructive inter-site interference, respectively. The
feature around 1.2 eV has different symmetry and the oppo-
site trend in L.

RIXS operator indeed reproduces the essential features of
the measured RIXS intensity, especially the major RIXS
peaks below the energy loss gap around 2 eV, and these
RIXS peaks are the dominant signal for incident energy
around 11.216 keV.

To better understand the electronic characteristics of
these major RIXS peaks at low energy losses, we trace
the evolution of the eigenenergies with the spin-orbit cou-
pling (SOC), the crystal electric field (CEF) due to trigo-
nal distortion, and the hopping amplitude. This is shown
in Fig. 5, where we can see that the ground state lies in
the t2g orbital manifold, and the excitations below 2 eV
are primarily intra-t2g.

With the RIXS operator at hand, we can calculate the
nQFI from Eqs. (11) and (10) for different incident en-
ergies and different momentum transfers, which corre-
spond to different choices of entanglement witnesses. To
do this, we also use the model verified on the energy
loss data to compute IRIXS(ω) for ω < 0. This is nec-
essary because such processes are thermally suppressed
so that they cannot be seen directly in the spectra but,
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FIG. 5. Tracing the evolution of the eigenenergies from ED calculations. a, For a single Ir4+ ion with octahedral
coordination, the degenerate t2g orbital manifold is split into J = 1/2 and J = 3/2 multiplets due to the strong spin-orbit
coupling (SOC). For two Ir4+ ions, these make three combinations of |1/2⟩⊗|1/2⟩ (red), |1/2⟩⊗|3/2⟩ (purple), and |3/2⟩⊗|3/2⟩
(blue). b, The inclusion of trigonal distortion induced crystal electric field (CEF) leads to the splitting of the J = 3/2 state. c,
The inter-atomic hopping mixes and rearranges all the states which contribute to the RIXS spectra in d. e, The orbital-energy
diagram summarizing a–c indicates that the ground state of the system is a Jeff = 0 singlet state originating from the two
interacting J = 1/2 Ir doublets and the strongest RIXS peak at around 0.7 eV corresponds to the Jeff = 1 triplet state.
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b Simulation
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FIG. 6. The entanglement witness - comparison be-
tween simulation and measurement. a is for fixed mo-
mentum transfer at Q = (−0.5, 0, 18.94) r.l.u and different in-
cident energies; b is for fixed incident energy at ℏωin = 11.216
keV and different momentum transfers Q = (−0.5, 0, L) r.l.u.

the weighted integral in Eq. (10) involves a countervail-
ing factor causing them to contribute appreciably to the
entanglement estimate.

Firstly, we perform this calculation with the same in-
cident energies and momentum transfers as the existing
experimental data, as plotted in Fig. 6. We can see that
a large momentum transfer severely suppresses the nQFI
across a range of incident energies, thus a suitable en-
tanglement witness should favor relatively small momen-
tum transfers and wavevectors that involve constructive
interference between the sites. On the other hand, if
the incident energy is fixed to around 11.216 keV, where
the intra-t2g transitions dominates and the inter-t2g-eg

0 1 2 3
QL (2 /d)

0.2

0.4

0.6

0.8

1.0

1.2

nQ
FI

a Simulation
Measurement

0 1 2 3
QL (2 /d)

b in , out 
in , out 

0 6 12 18
QL (2 /cL)

0 6 12 18
QL (2 /cL)

FIG. 7. Witness measurements with scattered x-ray
polarization discrimination can detect entanglement.
a reproduces the right panel of Fig. 6; b is for the same setup
as a but with final state polarization discrimination. The red
dashed line is the nQFI threshold for 2-partite entanglement.
The legend in the right panel documents the polarizations
for the final state (out) and incident beam (in), where the π
polarization is in the incident plane, σ polarization is out of
the incident plane.

transitions are suppressed, the resulting nQFI still can-
not exceed the threshold for 2-partite entanglement, irre-
spective of the choice of momentum transfer. We tested
whether downfolding the model to the t2g manifold only
would give us the desired enhancement of the nQFI to
the extent where the 2-partite entanglement threshold
can be exceeded, but it cannot.
Following the typical practice for hard x-ray RIXS, our

experiments used fixed incident x-ray polarization, but
did not discriminate the scattered x-ray polarization. We
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account for this by enlarging the Hilbert space in con-
structing the RIXS operator [see Eq. (6)] and exclude
polarization as an extra witness selector. Still, we can
use the tuned parameters to simulate the situation that
can discriminate the final-state polarization, where we
exclude the polarization from the Hilbert space and in-
clude it as another witness selector. The results for the
same incident energy and momentum transfers as the ex-
isting experimental data are shown in Fig. 7. We can
see that the nQFI is substantially enhanced by measur-
ing RIXS intensity at the same polarization as the in-
cident beam, which can eventually exceed the threshold
for 2-partite entanglement at relatively small momentum
transfers. In contrast, the nQFI corresponding to a final
state polarization orthogonal to the incident beam is sub-
stantially suppressed, making the nQFI with final state
summation over polarizations inefficient in detecting the
entanglement.

11.21 11.22 11.23
Incident energy (kev)

0.0

0.5

1.0

1.5

2.0

nQ
FI

a sum
in , out 
in , out 

0 1 2
QL (2 /d)

b sum
in , out 
in , out 

0 6 12
QL (2 /cL)

FIG. 8. Using higher incident energies allows en-
tanglement detection. a is for fixed momentum trans-
fer at Q = (−0.5, 0, 6) r.l.u; b is for fixed incident energy
at ℏωin = 11.220 keV and different momentum transfers
Q = (−0.5, 0, L) r.l.u. Both summation (blue) and discrimi-
nation of the scattered x-ray polarizations (orange and green)
are shown. The red dashed line is the nQFI threshold for 2-
partite entanglement, and the black dashed line is the upper
bound for nQFI in a dimer system.

Although the discrimination of the final state polariza-
tion provides us a handle to enhance the efficiency of the
entanglement detection using RIXS, it requires special-
ized experimental equipment. It is then desirable to find
an alternative solution that has less stringent require-
ments on the equipment. Indeed, as can be observed from
Fig. 2, there is more inelastic intensity if the incident
energy is tuned upward toward 11.220 keV. Although
these intensities come from the inter-t2g-eg transitions,
they still play an equally important role as the intra-t2g
transitions, according to Eq. (10). We performed the
corresponding calculations, and the results are shown in
Fig. 8. Indeed, by tuning the incident energy around
11.220 keV, we can find efficient entanglement witnesses
across a range of relatively small momentum transfers.
As a comparison, we also performed the corresponding

calculation that discriminates the final state polariza-
tions, and the results are also shown in Fig. 8. We can
see that the same final state polarization as the incident
beam can push the nQFI toward the upper bound for the
2-partite entanglement, the natural limit for the dimer
system under consideration.

CONCLUSION AND DISCUSSION

In this letter, we have generalized the protocol of us-
ing the QFI for entanglement detection to the case with
a non-Hermitian operator, and applied it to iridate dimer
systems using RIXS as the entanglement witness. Sur-
prisingly, we find that a large fraction of the measure-
ment phase space cannot detect any entanglement. We
predict, however, that measurements at lower momen-
tum transfer, higher incident energy resonant with the
eg manifold, or with scatter-beam polarization analysis
could detect entanglement. It is unexpected that to de-
tect the entanglement between the t2g orbitals, a more
efficient choice would be to include the inter-t2g-eg tran-
sitions. This reflects the complexity of the formula for
QFI in Eq. (10). Another insight is that strategic choices
for the x-ray polarization can be used to increase the ef-
fectiveness of the entanglement witness. This gives us a
hint that we would benefit from designing and choosing
an entanglement witness with a higher degree of tunabil-
ity.
Our result constitutes the first approach to experimen-

tally detect orbital electronic quantum entanglement in a
real quantum material. Experimental detection of quan-
tum entanglement has been previously reported only for
synthetic few-body systems [8, 9, 11–14, 17–20, 58], and
for bosonic degrees of freedom in low-dimensional quan-
tum magnets [21–30, 39, 40, 59]. Besides, quantum en-
tanglement detection has been simulated theoretically for
bosonic degrees of freedom in several 1D strongly corre-
lated model systems out of equilibrium [47, 60]. We have
generalized the protocol of using the QFI for entangle-
ment detection to non-Hermitian operators, enabling the
direct detection of electronic quantum entanglement. As
a result, our protocol can utilize other entanglement wit-
nesses, such as the RIXS intensity considered in this let-
ter, which enlarges the class of quantum materials whose
quantum entanglement is subject to experimental detec-
tion. This is particularly helpful in the case of the iridate
dimers, where inelastic neutron scattering is impractical.
Apart from the results for Ba3CeIr2O9 presented above

in the main text, we have also performed the same analy-
sis for Ba3TaIr2O9. The results are presented in the Sup-
plementary Information and are consistent with those for
Ba3CeIr2O9 [55], confirming the generality of the appli-
cability of our protocol.
Apart from the site degree of freedom, there are also

spin and orbital degrees of freedom involved in the iridate
dimers. RIXS offers possibilities for separating different
orbitals via specific selection of energies. We tested this
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for the current case of Ba3CeIr2O9, but determined that
the t2g-eg mixing is too large.

Overall, our work delivers a new approach for entan-
glement detection with RIXS, which offers routes to new
types of entanglement metric for different degrees of free-
dom. Given the flexibility of RIXS, this also opens routes
to entanglement measurements in thin films and in non-
equilibrium settings.

METHODS

Sample synthesis: Single crystals of Ba3CeIr2O9 were
grown using the melt-solution technique in BaCl2 flux.
Stoichiometric quantities of BaCO3, CeO2, and IrO2

were used as starting materials. After growth, the
crystals were mechanically separated from the flux and
washed with water to remove flux residues. The crystal
possesses a P63/mmc (No. 194) space group with lat-
tice constants of a = b = 5.9035(9) Å, c = 14.715(3) Å,
α = β = 90◦ and γ = 120◦ [56]. Within this crystal
structure, the Ir atoms forming the dimer are separated
by d = 2.5361(7) Å along the sample c-axis direction.

RIXS measurements: The RIXS experiments were per-
formed at the 27-ID-B endstation of the Advanced Pho-
ton Source at Argonne National Laboratory. We used a
spherically bent Si (844) diced analyzer and a Si (844)
channel cut monochromator. The overall energy resolu-
tion was around 42 meV. The sample was mounted with
its H and L reciprocal lattice vectors in the horizontal
scattering plane and horizontally (π)-polarized incident
x-rays were used. Data were collected at 9 K unless oth-
erwise specified. For all the resonant inelastic x-ray scat-
tering (RIXS) data presented in the manuscript, a con-
stant background has been subtracted using the energy-
gain side followed by self-absorption correction for each
spectrum.

Exact diagonalization calculations: The ED calcula-
tions for Ba3CeIr2O9 were performed using the EDRIXS
software based on a two-Ir-site cluster [54]. For the
Hamiltonian, we explicitly include the onsite Coulomb
interactions and spin orbit coupling, which depend pri-
marily on the atomic properties of Ir and are therefore
fixed to U = 3 eV, JH = 0.4 eV and ζ = 0.33 eV ac-

cording to previous experience. The octahedral crystal
field splitting can be seen directly in the different res-
onant energies of the t2g and eg manifolds and is fixed
to 10Dq = 3.5 eV. The trigonal distortion is included
through the approach described in Ref. 57, in which θ, the
Ir-Ir-O angle, is fixed to the experimental value of the ma-
terial, leaving κ the only tunable parameter. The direct
hoppings between the neighboring Ir atoms are described
by three Slater-Koster parameters, Vddσ, Vddπ and Vddδ,
all of them are treated as tunable parameters. Regard-
ing the Hartree-Fock basis, we consider t102ge

0
g and t92ge

1
g

configurations only considering the negligible double eg
occupancy. The richly-structured experimental data al-
low us to find a combination of parameters that can re-
produce the collected RIXS data, the full list of which
is presented in Table I. The RIXS spectra are calculated
using the Kramers-Heisenberg formula in the dipole ap-
proximation with the experimental geometry explicitly
considered. The calculations overall show excellent agree-
ment with only four tunable parameters.

Our model is similar to that used in Ref. 56 but with
the key improvement to include eg occupancy in addition
to t2g occupancy. It has been discovered that spin orbital
coupling will mix t2g and eg levels up to 20% [61].

DATA AVAILABILITY

The RIXS data generated in this study have been de-
posited in the Zenodo database under accession code [to
be assigned].

CODE AVAILABILITY

The exact diagonalization is done using the codebase
EDRIXS [54]. The code used in this study is available
from the authors upon reasonable request.

REFERENCES

[1] E. Chitambar and G. Gour, Quantum resource theories,
Rev. Mod. Phys. 91, 025001 (2019).

[2] A. Piveteau, J. Pauwels, E. H̊akansson, S. Muhammad,
M. Bourennane, and A. Tavakoli, Entanglement-assisted
quantum communication with simple measurements, Na-
ture Communications 13, 7878 (2022).

[3] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in
quantum metrology, Nature Photonics 5, 222 (2011).

[4] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum
sensing, Rev. Mod. Phys. 89, 035002 (2017).
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(Dated: April 10, 2024)

Supplementary Note 1: Transition Operators
In the formula for the RIXS intensity presented in the main text, we encounter the transition operators Di(ki, ϵi),

Df (ko, ϵo). Under the dipole approximation, they can be written as [1]

D̂i =
∑

a=x,y,z

ϵi,aT̂i,a, D̂†
o =

∑

a=x,y,z

ϵ∗o,aT̂
†
o,a,

T̂i,x = eiki·Rx̂R, T̂i,y = eiki·RŷR, T̂i,z = eiki·RẑR,

T̂o,x = eiko·Rx̂R, T̂o,y = eiko·RŷR, T̂o,z = eiko·RẑR,

(1)

where R is the coordinate for the scattering site-R, and x̂R, ŷR, ẑR are position operators of electrons bound to the
site-R.

Supplementary Note 2: Quantum Fisher Information
We consider a Herimitian operator Â. For a pure state, the QFI is expressible as [2]

FQ(ρ, Â) = 4
(
⟨ψ|Â2|ψ⟩ − ⟨ψ|Â|ψ⟩2

)
. (2)

If instead of a pure state, the quantum state is described by a thermal density matrix given by ρ =
∑

k λk|k⟩⟨k|,
where λk is the k-dependent Boltzmann factor, the QFI is expressible as [2]

FQ(ρ, Â) = 2
∑

k,k′

(λk − λk′)2

λk + λk′
|⟨k|Â|k′⟩|2. (3)

Supplementary Note 3: Quantum Fisher Information and Susceptibility
To relate the QFI for a thermal ensemble to the dynamic susceptibility with a Hermitian operator Â [3], let’s express

the dynamic susceptibility χ′′
AA in terms of the Lehmann representation:

χ′′
AA(ω) =

1

Z

∑

m,n

e−βEm
(
1− e−βω

) ∣∣∣⟨m|Â|n⟩
∣∣∣
2

δ (ω + Em − En) . (4)

Using the fact that

∫ ∞

−∞
dω tanh

(
βω

2

)
δ (ω + Em − En) = tanh

(
β (En − Em)

2

)
=
ρm − ρn
ρm + ρn

, (5)
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Supplementary Table I. Full list of parameters used in the exact diagonalization (ED) calculations for Ba3TaIr2O9. As
mentioned in the main text, the crystal field splitting parameters such as θ and κ are defined in Ref. 4, and ζ is the spin-orbit
coupling parameter for the Ir 5d orbitals while the one for the 2p core orbitals is fixed to the atomic value 1140.332 eV. The
inverse core-hole lifetime is set to the atomic value 2.47 eV. All parameters except θ and κ are in units of eV.

Crystal field splitting and spin-orbit coupling Hopping integrals

10Dq θ κ ζ Vddσ Vddπ Vddδ

3.5 49.00 0.1 0.33 -0.96 -0.60 0.20

Core-hole potential On-site Coulomb interactions

F 0
dp F 2

dp G1
dp G3

dp F 0
dd F 2

dd F 4
dd

2.574 0.927 0.800 0.475 2.543 3.446 2.154

it can easily verify that

FQ(ρ, Â) = 2

∫ ∞

−∞
dω tanh

(
βω

2

)
χ′′
AA(ω) = 4

∫ ∞

0

dω tanh

(
βω

2

)
χ′′
AA(ω), (6)

where the fact χ′′
AA(ω) = −χ′′

AA(−ω) is used. We have generalized the above formulation to a non-Hermitian operator

Â, in which case, the QFI is modified as

FQ(ρ, ÂRe) + FQ(ρ, ÂIm) = 2

∫ ∞

−∞
dω tanh

(
βω

2

)[
χ′′
AReARe

(ω) + χ′′
AImAIm

(ω)
]

=

∫ ∞

−∞
dω tanh

(
βω

2

)
[χ′′

AA†(ω) + χ′′
A†A(ω)]

= 2

∫ ∞

0

dω tanh

(
βω

2

)
[χ′′

AA†(ω) + χ′′
A†A(ω)] ,

(7)

where we have used the fact that χ′′
AA†(ω) = −χ′′

A†A(−ω). The efficiency of this combined QFI as an entanglement
witness can be seen from the following inequality:

min

{
FQ(ρ, ÂRe)∑N
i=1(∆ai,Re)2

,
FQ(ρ, ÂIm)∑N
i=1(∆ai,Im)

2

}
⩽ FQ(ρ, ÂRe) + F (ρ, ÂIm)∑N

i=1 [(∆ai,Re)2 + (∆ai,Im)2]
⩽ max

{
FQ(ρ, ÂRe)∑N
i=1(∆ai,Re)2

,
FQ(ρ, ÂIm)∑N
i=1(∆ai,Im)

2

}
,

(8)

so it racks in between the entanglement witnesses provided by ÂRe and ÂIm individually.

Supplementary Note 4: Detection of Quantum Entanglement in Ba3TaIr2O9.
Apart from Ba3CeIr2O9, we have also performed the analysis for the isostructural Ba3TaIr2O9. In this material,

11 electrons are shared between these two Ir ions instead of 10 in Ba3CeIr2O9, leading to distinct RIXS features. We
follow the same strategy as the main text and use the codebase EDRIXS [1] with tuned parameters in Table I to
reproduce the experimentally measured RIXS intensity, and construct the corresponding RIXS operator at the same
time. To mimic the observed lineshape of the excitation peaks, the final-state energy loss spectra are broadened using
multiple pseudo-Voigt profiles with the fraction fixed to 0.5 and full-widths at half-maximum of 0.044 and 0.108 eV
for the first and second excitation peaks, respectively, and 0.3 eV for the rest of them. The comparisons between the
measurement and simulation are shown in Figs. 1, 2, and 3, exhibiting excellent agreement. Using the constructed
RIXS operator, the nQFI for Ba3TaIr2O9 is subsequently calculated for different incident energies and momentum
transfers, and the results are shown in Figs. 4 and 6. To explore the polarization as yet another witness selector, we
simulate an experimental setup that can discriminate the final state polarization using the tuned parameters. The
results are shown in Figs. 5 and 6. We can see that all these results are consistent with those for Ba3CeIr2O9, which
supports the idea that our approach can be applied to many real quantum materials with strong correlations.

[1] Y.L. Wang, G. Fabbris, M.P.M. Dean, and G. Kotliar, “Edrixs: An open source toolkit for simulating spectra of resonant
inelastic x-ray scattering,” Computer Physics Communications 243, 151–165 (2019).

[2] Luca Pezzé and Augusto Smerzi, “Quantum theory of phase estimation,” arXiv 1411.5164 (2014).
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Supplementary Figure 1. Comparison of the incident energy dependence of the RIXS spectra between measure-
ment and simulation. a, Measured RIXS spectra with varying incident energy at fixed momentum transfer with L = 18.4
in reciprocal lattice units (r.l.u.). The signals below 1.5 eV energy loss correspond to intra-t2g transitions while the ones above
1.5 eV mainly come from inter-t2g-eg transitions. b, Calculated incident-energy-dependent RIXS spectra at the same fixed
momentum transfer.
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Supplementary Figure 2. Comparison of the L dependence of the RIXS spectra between measurement and
simulation. a, Measured L-dependent RIXS spectra showing periodic modulation, and the incident energy ℏωin is fixed to
11.216 keV. Only the intra-t2g transitions are presented since they are the dominating signals at this particular incident energy.
b, Calculated L-dependent RIXS spectra at the same fixed incident energy. QL is the momentum transfer along the L direction.
For convenience, the same momentum scale is displayed in two units. On top, we use units of 2π/cL where cL is the unit cell
lattice constant along L direction. On bottom, we use units of 2π/d, where d is the distance between the two dimers along the
L direction.
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Supplementary Figure 3. Comparison of RIXS spectra between measurement and simulation at representative
momentum transfers. a, Representative RIXS spectra at the indicated momentum transfers in r.l.u., and the incident energy
ℏωin is fixed to 11.216 keV. Only the intra-t2g transitions are presented since they are the dominating signals at this particular
incident energy. b, Calculated RIXS spectra at the same momentum transfers and the same fixed incident energy.
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Supplementary Figure 4. The entanglement witness - comparison between simulation and measurement. a is
for fixed momentum transfer with L = 18.4 r.l.u and different incident energies b is for fixed incident energy at ℏωin = 11.216
keV and different momentum transfers.

[3] Philipp Hauke, Markus Heyl, Luca Tagliacozzo, and Peter Zoller, “Measuring multipartite entanglement through dynamic
susceptibilities,” Nature Physics 12, 778–782 (2016).

[4] K. I. Kugel, D. I. Khomskii, A. O. Sboychakov, and S. V. Streltsov, “Spin-orbital interaction for face-sharing octahedra:
Realization of a highly symmetric SU(4) model,” Phys. Rev. B 91, 155125 (2015).
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Supplementary Figure 5. Witness measurements with scattered x-ray polarization discrimination can detect
entanglement. a reproduces the right panel of Fig. 4; b is for the same setup as a but with final state polarization
discrimination. The red dashed line is the nQFI threshold for 2-partite entanglement. The legend in the right panel documents
the polarizations for the final state (out) and incident beam (in), where the π polarization is in the incident plane, σ polarization
is out of the incident plane.
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Supplementary Figure 6. Using higher incident energies allows entanglement detection. a is for fixed momentum
transfer with L = 6 r.l.u; b is for fixed incident energy at ℏωin = 11.220 keV and different momentum transfers. Both summation
(blue) and discrimination of the scattered x-ray polarizations (orange and green) are shown. The red dashed line is the nQFI
threshold for 2-partite entanglement, and the black dashed line is the upper bound for nQFI in a dimer system.


