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Abstract

We describe a system of plane algebraic curves defined over Z, attached
naturally to the exponential function. One of these is a remarkable curve of
degree 6 that has genus equal to 1, and looks like

As the sextic curve has rational points, it is an elliptic curve and can be trans-
formed over Q into the curve 1584.j1 of the LMFDB. One is left to wonder what
the number 11, appearing in the factorisation 1584 = 24 · 32 · 11, has to do with
the exponential function.

1. The exponential function ex is the first object we encounter in elementary analysis
that transcends the algebraic geometrical world of algebraic functions. Being its own
derivative and having no zeros or poles, it seems to lack clear geometrical features.
A little later we learn to extend ex into the complex domain and study the function
ez, z = x + iy, and discover that it has an imaginary period 2πi, and is related, via

ex+iy = ex (cos y + i sin y) ,

to the functions sin and cos, the circle and the rest of trigonometry and cyclotomy.

2. In the real domain, the function stretches between the limit value 0 for x = −∞
and +∞ for x = +∞, thus showing that the point z = ∞ is an essential singularity. To

*Johannes Gutenberg University, Institut für Mathematik, Staudingerweg 9, 55128 Mainz, Ger-
many

1

ar
X

iv
:2

40
4.

05
85

2v
1 

 [
m

at
h.

H
O

] 
 8

 A
pr

 2
02

4



study this special point, it is convenient to perform the inversion z 7→ 1/z and study
e1/z in a neigbourhood of z = 0. Decomposing z = x + iy in real and imaginary
parts, the reciprocal transformation takes the form

(x, y) 7→ (x/(x2 + y2),−y/(x2 + y2)),

The level sets of |ez| = ex are the vertical lines x = constant and these are mapped
to the system of circles tangent to line x = 0 and with center on the line y = 0, the
level sets of |e1/z| = ex/(x2+y2).

If we approach the origin z = 0 from right halfplane x = Re(z) > 0, the function
e1/z is unbounded; coming from the left halfplane Re(z) < 0, the function approches
0. The restriction to the imaginary axis x = 0 is e1/(iy) and has cos(1/y) as real part
and exhibits the well-known wild oscillatory behaviour near 0.

3. To get a clearer view of what is happening, one can plot, for small x = constant,
the function Re(e1/(x+iy)) = ex/(x2+y2) cos y

x2+y2 . For y large this function tends
rapidly to its limiting value 1 so we look at a small interval around y = 0. For x < 0
one observes an oscillatory behaviour, whose amplitude suddenly drop to very
small values, forming a valley around the origin. For x > 0 we have complementary
behaviour: function is small well away from the origin, but develops oscillations
that suddenly blow up when we approach the origin.

Plot of Re(e1/(x+iy)) for x = −0.05 (left) and x = 0.05 (right).
(Note the difference in scaling on the axes.)
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The graphs of |e1/(x+iy))| = ex/(x2+y2) for x = constant suggests the presence of two
inflectional points that may serve to demarcate the location of the regions of there
the function is very small.

Plot of |(e1/(x+iy)| for x = −0.05 (left) and x = 0.05 (right).
(Note the difference in scaling on the axes.)

These pictures ilustrate the striking difference in scale for positive and coresponding
negative values of x: the width of the valley for x = −c < 0 seems to be much
bigger than the width of the corresponding peak for x = c > 0.

4. It is easy to calculate the location of these inflectional points by computing the
second derivative of ex/(x2+y2) with respect to y. Its vanishing is determined by the
polynomial factor xF2(x, y), where

F2(x, y) := (x2 − 3y2)(x2 + y2)− 2xy2,

which defines an irreducible quartic curve C2 with a surprising singularity of type
D5 at the origin, consisting of a smooth branch and a transverse cuspidal branch.

The rational curve C2 defined by F2 = 0.

Hence we are dealing with a rational curve and it can be parametrised by the
pencil of lines through 0, which intersect the curve C2 in a unique further point; the
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substitution y = mx leads to

x =
2m2

(1 + m2)(1 − 3m2)
, y = m · x.

In the halfspace x > 0, C2 exhibits it cuspidal branch, which is intersected by the
line x = c in two points, which span an interval of length

Rc = 2

√
1
2

c3/2(1 +
c
2
+ . . .).

whereas in the halfspace x < 0 the curve C2 is approximated near 0 by a parabola,
and now the two points of intersection of C2 with the line x = c span an interval of

length Lc = 2
√

2
3(−c)1/2(1 + c

2 + . . .). The ratio between these intervals is

Rc/L−c ∼
√

3
4
· c.

As a consequence, the central peak is indeed much narrower for small x = c > 0
than the corresponding central valley for x = −c < 0, explaining the feature ob-
served in 3.

5. Surprised by the beauty of the curve C2, one asks: why not take a look at higher
derivatives of ex/(x2+y2)? The third derivative factors out the irreducible polynomial

F3(x, y) = 6(x2 − y2)(x2 + y2)2 + 3x5 − 6x3y2 − 9xy4 − 2x2y2.

The curve defined by F3 = 0 is a sextic C3, with a fourfold point at the origin, where
we find two smooth and a cuspidal branch. One of the smooth branches closes up
at the point (x, y) = (−1/2, 0) to a loop lying in the left halfplane.

The curve C3 defined by F3 = 0.

In the affine x, y-plane, the curve has the origin as unique singular point. But we
will look at the projective closure of this curve, lying in the projective closure of
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the complexification C2 of C considered as R-vector space. As is visible from the
equation, it passes doubly through the two circle points (±i : 1 : 0) on the line
at infinity. As we have two smooth and one cuspidal branch at the origin, and
each pair of branches have mutual intersection multiplicity = 2, we obtain for the
δ-invariant of C3 at 0:

δ(C3, 0) = 1 + 0 + 0 + 2 + 2 + 2 = 7.

Together with the double points of C3 at the circle points, we find by the Riemann-
Clebsch formula:

genus(C3) =
(6 − 1)(5 − 2)

2
− 7 − 1 − 1 = 1,

so C3 is a curve of genus 1. As we have the rational point (−1/2, 0) lying on C3, the
curve is in fact an elliptic curve defined over Q. We note the presence of the further
rational points (−1/6,±1/6) on C3.

6. The pencil of lines through the origin intersect the curve C3 in two further points,
representing C3 as double cover of the projective line of directions at 0. Setting
y = mx in F3(x, y), we obtain

F3(x, mx) = −x4(Ax2 + Bx + C),

where

A = 6(m − 1)(m + 1)(m2 + 1)2, B = 3(3m2 − 1)(m2 + 1), C = 2m2.

The x-coordinate of the two further intersection points of C3 with the line y = mx
are the roots of Ax2 + Bx + C. So the ramification points of the double cover are
determined by the discriminant

D = B2 − 4AC = 3(m2 + 1)2(11m4 − 2m2 + 3)

of the quadratic term. This shows that the curve C3 is a double cover ramified over
the four roots of the quartic

11m4 − 2m2 + 3.

From this we readily compute the j-invariant as

j =
62500

33
=

22 · 56

3 · 11
,

which determines the elliptic curve as a complex curve. However, the above quartic
has only complex roots, and it is not directly clear how to find the familiar Weier-
strass normal form from here.

7. It is much more convenient to first perform the inversion z 7→ 1/z, or (x, y) 7→
(x/(x2 + y2),−y/(x2 + y2)) on our curve, so in a way ’undoing’ the initial inversion
to go from ez to e1/z. The corresponding substitution into F3 leads to:

F3

(
x

x2 + y2 ,− y
x2 + y2

)
=

G3(x, y)
(x2 + y2)4 ,
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where
G3 := −2x2y2 + 3x3 − 9xy2 + 6x2 − 6y2.

As the inversion is an involutory transformation, we also have

G3

(
x

x2 + y2 ,− y
x2 + y2

)
=

F3(x, y)
(x2 + y2)4 .

Indeed, from the standpoint of projective geometry, we are performing a Cremona
transformation based at 0 and the two circle points. Any quadric through these
three points (i.e. any linear combination of xz, yz, x2 + y2) intersects C3 generally in
2 · 6 − 4 − 2 − 2 = 4 further points, so this transforms our sextic C3 to a quartic curve
Q, defined by vanishing of the above polynomial G3.

The quartic curve Q defined by G3 = 0.

The (projective closure of) the curve Q has (0 : 0 : 1) and (0 : 1 : 0) as singular
points, so the genus is indeed 3 − 1 − 1 = 1. We note that the equation for Q is of a
very special form:

0 = −(2x2 + 9x + 6)y2 + 3x2(x + 2), y2 = 3x2 x + 2
2x2 + 9x + 6

.

The introduction of the variable y′ := y(2x2 + 9x + 6)/x converts this into the form

y′2 = 3(x + 2)(2x2 + 9x + 6) = 6x3 + 39x2 + 72x + 36.

Completing the cube and scaling u = 6x + 13, v = 6y′ brings the equation in minimal
Weierstrass form

v2 = u3 − 75u + 74,

defining a standard elliptic curve E in the u, v-plane.
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The elliptic curve E defined by v2 = u3 − 75u + 74.

Combining the transformations, we can express x and y in u and v:

x =
u − 13

6
, y =

(v
2

) u − 13
u2 + u − 74

,

and indeed

G3(
u − 13

6
,
(v

2

) u − 13
u2 + u − 74

) =
(u − 13)2(u3 − 75u + 74 − v2)

72(u2 + u − 74)
,

checking the E is mapped to Q. The composition

(u, v) 7→ (x, y) 7→ (x/(x2 + y2),−y/(x2 + y2))

is the sought for birational map from E to the sextic C3.

7. There are powerful software tools to handle algebraic curves and in particular
elliptic curves.

Maple [5] has a nice package to deal with algebraic curves, their singularities,
Puiseux expansions, their genera, etc. It has a built-in routine Weierstrassform that
can be applied to find the Weierstrass normal form for the elliptic curve defined by
the sextic C3. However, the algorithm produces a rather complicated transformation,
whose geometric origin is obscure. The above simple algebra-geometric approach
leads to a much simpler transformation.

Pari/GP [6] is a powerful software, pitched toward the computation of arithmetical
invariants of (elliptic) curves defined over number fields. It can count points, handle
modular forms and L-functions and much more. Convenient is the command
ellidentify, which tells us that our curve E has the Cremona label 1584f1 [2], so
the conductor of our curve is 1584 = 24 · 32 · 11.

The LMFDB (L-functions and Modular Forms Data Base) [4] represents a huge
extension of the earlier tables by J. Cremona [2]; it assigns to our curve the label
1584.j1 and presents further data attached to the curve in an attractive form. We
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learn that the Mordell-Weil group of the curve is Z ⊕ Z/2. The torsion point
(u, v) = (1, 0) of E corresponds to (−2, 0) on Q and (−1/2, 0) on C3. The generator
of infinite order (u, v) = (−5, 18) is mapped to (−3, 3) on Q and to (−1/6, 1/6) of
C3. Furthermore, the curve E posseses 11 (!) points with integral coordinates, which
map to special rational points on Q and C3. From LMFDB we also learn that our
curve has the curve 264.c1 with eqation y2 = x3 + x2 − 8x as minimal quadratic
twist and that this curve has Mordell-Weil group Z/2.

For general background information on algebraic curves, among the many books
available, one of our favourites is [1]. For the arithmetic theory of elliptic curves [8]
is indispensable.

8. Why stop at the third derivative? Write ϕ := exp(x/(x2 + y2)) and ∂ := ∂/∂y, so

∂ϕ = hϕ, h := ∂(
x

x2 + y2 ).

For the n-th derivative one then has

∂nϕ = hnϕ, hn+1 = ∂hn + h · hn,

so that
hn =

fn

(x2 + y2)2n ,

where fn ∈ Z[x, y] is a polynomial of degree 3n − 1. For n odd fn factorises
as fn = xyFn, and for n even as fn = xFn, where Fn ∈ Z[x, y] is an irreducible
polynomial (of degree 3n − 3 (n odd) resp. 3n − 2 (n even)).(Note f0 = 1, f1 = −2xy,
so there are no curves C0 or C1.)

The curve C4 of genus 4 and C5 of genus 7.

The curve Cn defined by Fn = 0 has a unique singularity at the origin, where it
has (n − 1) smooth local branches with common vertical tangent and ⌊n

2 ⌋ cuspidal
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branches with common horizontal tangent. Furthermore it has ordinary (n − 1)-fold
points at the circular points. The genus of Cn can be computed to be

genus(Cn) =

{
(n − 2)(3n − 4)/4 if n is even
(3n2 + 1)/4 if n is odd

In the real domain, the curves Cn have an insect-like appearance. The (n− 1) smooth
branches are all in the halfspace x ≤ 0; ⌊n−1

2 ⌋ close up to ’heads’, whereas the re-
maining branches form pairs of ’arms’; the cuspidal branches are in the halfspace
x ≥ 0 and form the ’legs’.

9. Of course, we do not need to restrict y derivatives only. It is simple to show that

Pa,b := (x2 + y2)2(a+b)

(
∂a+b

∂xayb ex/(x2+y2)

)
e−x/(x2+y2)

is a polynomial of degree 3(a + b)− 1. For b an odd number, Pa,b is divisible by
y; for a = 0 there is an additional factor x. Clearing out these factors, we obtain a
polynomial Fa,b that defines an irreducible curve Ca,b and Cn = C0,n. The curve Ca,b
has the origin as only singular point in the affine plane and furthermore ordinary
a + b-fold singularities at the two circle points. The genus is basically a quadratic
function of a and b, to be more precise we have

genus(Ca,b) = 9a2/8+ 3ab+ 3b2/4− 13a/4− 5b/2+


2 if a ≡ 0 mod 2,
13/8 if a ≡ 0 mod 2, b ≡ 0 mod 4,
9/8 if a ≡ 0 mod 2, b ≡ 2 mod 4,

when b is even and

genus(Ca,b) = a2 + 3ab + 3b2/4 − 7a/2 − 3b +


7/4 if a ≡ 1 mod 2,
13/4 if a = 0,
9/4 if a ≡ 0 mod 2, a > 0,

when b is odd. Here a table of genera of the curves appearing for small a, b ≤ 5.

g(C02) = 0, g(C03) = 1, g(C04) = 4, g(C05) = 7.

g(C11) = 0, g(C12) = 3, g(C13) = 6, g(C14) = 13, g(C15) = 18.
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g(C20) = 0, g(C21) = 3, g(C22) = 10, g(C23) = 15, g(C24) = 26, g(C25) = 33.

g(C30) = 2, g(C31) = 7, g(C32) = 18, g(C33) = 25, g(C34) = 40, g(C35) = 49.

g(C40) = 7, g(C41) = 14, g(C42) = 29, g(C43) = 38, g(C44) = 57, g(C45) = 68.

g(C50) = 13, g(C51) = 22, g(C52) = 41, g(C53) = 52, g(C54) = 75, g(C55) = 88.

10. It somewhat of a mystery to me how the curve C3, with its rich specific
arithmetic geometry, like its Galois representation of conductor 1584 = 243211, can
arise without any specific choices from the exponential function, a basic function
usually considered as belonging to “algebraic geometry over F1”. Of course there are
many other algebraic geometric objects one can ’naturally’ attach to the exponential
function. For example, we can look at the Taylor polynomial

fn(x) := 1 + x +
1
2!

x2 + . . . +
1
n!

xn

of degree n of ex. The location of the roots of fn(nx) and their convergence to the
Szegő curve defined by {z ∈ C | |ze1−z| = 1} is a well-known topic in classical
analysis [7]. One can look at the sequence of hyperelliptic curves y2 = fn(x), which
for n = 3, 4 lead to two further ’natural’ elliptic curves. But, in a sense I find hard to
make precise, these curves look more artificial to me.

Rather it appears that the curves Ca,b are natural algebraic geometric sattelites of the
exponential motive defined by e1/z, and as such has some obvious generalisations.
One may look at a similar system of curves for e1/z2

. Here one also finds an
elliptic curve, 576.c3, with Mordel-Weil group Z ⊕ Z/2 ⊕ Z/2. In general, if
g, S ∈ K := Q(x1, x2, . . . , xn) are two rational functions, ∂ ∈ Der(K) a derivation of K,
and ϕ := g.eS, then repeated differentiation leads a sequence g1, g2, g3, . . . , gn, . . . ∈
Q(x1, x2, . . . , xn) defined recursively by

g1 := g, g2 = ∂(g1) + g1 · ∂S, . . . , gn+1 := ∂gn + gn · ∂S, . . .
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and which appear as prefactors of ∂nϕ = gnϕ. The classical motives attached to the
gn are in a similar way algebraic-geometrical satellites of the exponential motive
with exponential periods

∫
eSω, ω := g · dx1dx2 . . . dxn, [3].
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[7] G. Szegő, Über eine Eigenshaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges.
23 (1924), 50-64.

[8] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics,
Band 106), Second edition (2009), Springer, Berlin, Heidelberg.

11


