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By examining the characteristics of a rotating ferromagnetic spinor condensate through the per-
spective of large spin, we uncover a novel kind of topological point defect in the magnetization
texture. These defects are predicted not by the conventional homotopy group analysis but by the
Riemann-Hurwitz formula. The spin texture in the system is described by an equal-area mapping
from the plane to the sphere of magnetization, forming a lattice of uniformly charged Skyrmions.
This lattice carries doubly-quantized (winding number = 2) point defects arranged on the sphere
in a tetrahedral configuration. The fluid is found to be rotating rigidly, except at the point defects
where the vorticity vanishes. This vorticity structure contrasts with the well-known vortex lattice
in scalar rotating superfluids, where vorticity concentrates exclusively within defect points, forming
an unconventional “unvortex” lattice. Numerical results are presented, which are in agreement with
the aforementioned predictions.

One fundamental characteristic of ordinary
(scalar) superfluids is their irrotational flow. In
contrast, spinor Bose-Einstein condensates exhibit
an intrinsic coupling between the superfluid velocity
field v (r) and the magnetization unit vector field
n̂ (r). This coupling is defined by the well-known
Mermin-Ho relation [1]:

(∇× v)k =
h̄

2m
Fεijkn̂ · (∂in̂× ∂jn̂) , (1)

where m and F are the mass and spin of each con-
densed particle, respectively. For a planar (d = 2)
condensate, this relation holds an intriguing geomet-
rical interpretation: the right-hand side is propor-
tional to the Jacobian of the transformation n̂ (r) :
R2 → S2 mapping the physical space to the sphere
of spin states.

A rich variety of intriguing magnetization textures
and flow fields are ubiquitous in spinor condensates
[2–20]. One such phenomenon is that the Mermin-Ho
relation eliminates the need for vortices of diverging
velocity [21–23]. In its ground state, a non-rotating
ferromagnetic condensate features uniform magneti-
zation. Upon rotation, maintaining uniform magne-
tization would lead to an irrotational flow around
a quantized vortex lattice, as in ordinary superflu-
ids. However, the Mermin-Ho relation enables en-
ergy reduction by adopting non-uniform magnetiza-
tion, leading to a non-trivial flow field [3, 4, 24–26].
This phenomenon inspires a significant interest in
studying the behavior of spinor condensates under
rotation.

In this work we provide an analytical approach

to study the system using a viewpoint of large spin
(F ≫ 1). Most experimental realizations of spinor
condensates have involved spin-1, 2 and 3 atoms [27–
32]. Therefore, one might ask ‘Why should we care
about large spin results?’. First, although spinor
condensates of larger spin values have not been re-
alized yet, potential candidates such as spin-6 168Er
and spin-8 164Dy are present [2]. We hope that un-
veiling the unique properties of larger spin systems
will encourage their experimental exploration. More-
over, beyond predicting the characteristics of future
condensates, this work aims to establish a framework
applicable to explaining properties of smaller spin
condensates through perturbative methods. A com-
parison with numerical simulations for spin values of
order 1 shows that the large spin approach explains
many of the properties of smaller spin systems effec-
tively. Additionally, a forthcoming publication [33]
will describe the system also from the perspective of
small spin (F ≪ 1). Leveraging both limits provides
a fairly accurate description for all spin values, even
of order 1.

Exploring this system is further motivated by its
role as an elegant case study for many interesting
concepts. It reveals a novel topological defect in the
magnetic texture, relevant to systems involving map-
pings between topologically inequivalent spaces, such
as liquid crystals and topological insulators. These
defects impact various properties of the system, such
as the flow field, as indicated by the Mermin-Ho
relation. Notably, regions of depleted vorticity are
formed around the magnetic defects, disrupting a
rigid flow for large F condensates. The resulting vor-
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tex lattice, shown in Fig. (1), stands as an antithesis
to the traditional vortex lattice in superfluids, where
all the vorticity concentrates within the defect itself.

Figure 1. The “unvortex” lattice. Numerical results for
the normalized vorticity of an F = 100 condensate, dis-
playing a triangular lattice of cores that form around
each point defect, where there is a deviation from rigid
rotation.

Spinor condensates can exhibit various phases de-
termined by the interatomic interaction parameters
[2, 34, 35]. Our focus is on the ferromagnetic phase,
which can occur for any F for some range of val-
ues of the spin-dependent interactions. Assuming
a constant density profile [36], the condensate in
this phase can be described solely using the two
fields v (r) and n̂ (r). An alternative description in-
volves angles: the superfluid phase θ (r), and the
magnetic polar and azimuthal angles ϕ (r) and χ(r).
Using these angles, the magnetization texture is
n̂ = (sinϕ cosχ, sinϕ sinχ, cosϕ), and the velocity
field is

v (r) =
h̄

m
[∇θ − F cosϕ∇χ] (2)

[37]. This relation is given in the non-rotating frame
of reference. Taking the curl yields the Mermin-Ho
relation, equivalent to Eq. (1) after rescaling, in
terms of ϕ and χ:

∇× v =
h̄

m
F sinϕ∇ϕ×∇χ. (3)

When rotated with an angular velocity of ω = ωẑ,
the energy functional of the system is

E =
h̄2ρ

2m

ˆ
d2r

[m2

h̄2
(
v−ω × r

)2
+

1

2
F
(
∇n̂

)2] (4)

[36–38]. We want to identify the important contri-
butions in the large F limit. Although a cursory
examination of the energy functional may seem to
suggest a dominance of the second (magnetic) term,
this overlooks the F dependence of the velocity field,
as indicated in Eq. (2). To overcome this issue, we
propose employing a rescaling technique.

We rescale the lengths using r̃ = F− 1
2 r to elimi-

nate the dependence of the magnetic term on F , and
the phase using θ̃ = F−1θ to simplify the resulting
expression. After both rescalings, the resulting ve-
locity field is expressed as

ṽ =
1√
F
v =

h̄

m

[
∇̃θ̃ − cosϕ∇̃χ

]
. (5)

As velocity measures the change in position over
time, it was also rescaled to account for the rescal-
ing of lengths. This resulting rescaled velocity field
is independent of F . The energy, which is rescaled
by Ẽ = F−1E to account for the rescaling of lengths,
becomes

Ẽ =
h̄2ρ

2m

ˆ
d2r̃

[m2

h̄2
F
(
ṽ−ω× r̃

)2
+

1

2

(
∇̃n̂

)2]
. (6)

Contrary to the original energy (4), the rescaled en-
ergy functional exhibits a remarkably simple depen-
dence on F . Surprisingly, the important term in the
large F limit is the kinetic one. Deviations from a
state minimizing this term result in a high energetic
cost, implying that the condensate rotates rigidly by
having a rescaled velocity field of ṽ = ω × r̃, also
indicating v = ω × r. A previous proposal to re-
alize rigidly-rotating superfluids involves the use of
spin-orbit coupling [39]. Our study predicts a natu-
ral occurrence of this phenomenon in large-F spinor
condensates.

The vorticity ∇ × v for rigid rotation is a con-
stant, 2ω, resulting in a constant right-hand side of
the Mermin-Ho relation (3) as well. As mentioned,
this expression is proportional to the Jacobian of the
mapping r → n̂ (r), implying that this mapping must
be area-preserving (up to a positive scaling factor of
2mω/h̄F ). This Jacobian is also proportional to the
Skyrmionic charge density of the system [24, 40, 41],
where the Skyrmionic charge Q is the number of
times the sphere is covered by the mapping. From
this perspective, the area-preserving map describes
a system uniformly charged with Skyrmionic charge.

As we shall see shortly, any area-preserving map-
ping, or more generally, any surjective (covering)
mapping from the plane to the sphere, must have
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defects. These defects can appear in various forms,
such as lines or points. Our focus is on point defects,
as other types of singularities incur a large amount
of energy.

To describe what these point defects are, we use
polar coordinates (r, α) on the plane, having the ori-
gin placed at a point defect. Additionally, we rotate
the sphere such that n̂ points to the north pole at
this origin. When this point is encircled, the angle
χ (r, α) must satisfy

χ (r0, α0 + 2π) = χ (r0, α0) + 2πk (7)

for every r0 and α0, where k is an integer resem-
bling the winding number. The magnetization tex-
ture around such a point forms a k-to-1 mapping
from the plane to the sphere.

Not every integer k can describe the magnetization
texture around a point in the system. Specifically,
assuming an area-preserving map, non-positive val-
ues (k ≤ 0) are excluded because the Jacobian of the
mapping cannot be strictly positive around them.
Additionally, k = 1 does not represent the spin tex-
ture of a defect but rather a regular 1-to-1 texture,
observed around almost all points. Therefore, we
define point defects as the k ≥ 2 points.

Figure 2. An example of a k = 2 spin texture around a
defect.

The presence of defects in the mapping n̂ (r) is dic-
tated by the Riemann-Hurwitz formula, a topolog-
ical theorem that establishes a connection between
defects in a mapping and the topological properties
of the spaces it connects. Let P and S be two closed
Riemann surfaces, and let n̂ : P → S be a surjec-
tive mapping, with no defects other than point de-
fects of the kind described earlier. Suppose that the
surface S is covered Q times by the mapping from
the entirety of P , and suppose that the mapping n̂
has defects at N different points of P , where these
defects possess the topological numbers k1, . . . , kN .

Then the Riemann-Hurwitz formula states that

2p− 2 = (2s− 2)Q+

N∑
i=1

(ki − 1) , (8)

when p = genus (P ) and s = genus (S) [42–45].
In our case, the mapping n̂ (r) is a mapping from

the unit cell P of the spin texture on the plane to
the sphere of spin states S, and is surjective because
any equal-area mapping from the plane to the sphere
must be covering. The genus of the unit cell P is p =
1 as it is topologically equivalent (homeomorphic)
to a torus, and the genus of the sphere S is s = 0.
Therefore, the Riemann-Hurwitz formula (8) yields

2Q =
N∑
i=1

(ki − 1) . (9)

The significant conclusion from this formula is a sur-
prising result: there must be stable k ≥ 2 defects in
the system. The formula further emphasizes that a
k = 1 texture does not describe a defect; k = 1 points
do not contribute to the Riemann-Hurwitz formula.
It is important to note that the defects do not oc-
cur just in excited states, but are intrinsic features
manifesting even in the ground state of rotating sys-
tem. This parallels the presence of point defects in
the ground state of an ordinary rotating superfluid.

The Riemann-Hurwitz formula provides the num-
ber of defects N in each unit cell. Specifically, if all
the defects share the same k value, the number of
defects in each unit cell is

N =
2Q

k − 1
. (10)

By employing both the Riemann-Hurwitz formula
and the Mermin-Ho relation, we can also calculate
the density of defects. Integrating the Mermin-Ho
relation (3) over a unit cell for a rigidly rotating con-
densate provides us an equation for its area A:

4πQ =

ˆ
sinϕ (∇ϕ×∇χ) · ẑd2r =

2mω

h̄F
A, (11)

which yields

A =
2πh̄

mω
FQ. (12)

Combining this result with the Riemann-Hurwitz
formula (10) yields the density of defects:

N

A
=

1

πF (k − 1)

mω

h̄
. (13)
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Note that Q does not appear in this identity. For
a specific condensate rotating at angular velocity ω,
the density of the realized defects depends only on
their k value. It can be shown that the mapping
n̂ (r) is surjective for any value of F (even when it is
not area-preserving), making the Riemann-Hurwitz
formula applicable also in the general F case. Fur-
thermore, the size of the unit cell (12) remains un-
changed regardless of F , although the derivation is
beyond the scope of this paper. Consequently, the
results described here hold true for any F value. No-
tably, for F = 1 and k = 2, this formula coincides
with the Feynman relation for ordinary vortex lat-
tices [46]. We would like to again underscore the
significance of the results derived from the remark-
able Riemann-Hurwitz formula: it provides us with
a prediction of an entirely new class of topological
defects, distinct from the usual kind of topological
point defects characterized by the fundamental ho-
motopy group.

As discussed earlier, describing the spin texture for
F = ∞ involves finding an equal-area mapping from
the unit cell to the sphere. Explicitly finding such a
mapping is a challenging task, and this paper focuses
on explaining the topological structure of the map-
pings and how considering topological defects aids
in understanding it. The objective is to identify the
mapping that emerges most simply and naturally (in
some sense), given the topological requirements.

The simplest mapping to consider is one that cov-
ers the sphere once in total (Q = 1). Since the torus
and the sphere are topologically inequivalent (hav-
ing different genus), this cannot be a 1-to-1 mapping
(homeomorphism). Consequently, any Q = 1 map-
ping must traverse certain points of the sphere more
than once: M + 1 times with a positive contribu-
tion to Q and M times with a negative contribu-
tion to Q, where M is an integer greater or equal
to 1. However, for a point to contribute negatively
to Q, the Jacobian of the mapping must be nega-
tive at that point, contradicting the requirement of
a positive constant Jacobian. Hence, all the suitable
mappings must have Q greater than 1.

In order to find a Q = 2 mapping, we consider
the arrangement of the point defects. Assuming all
the defects of the mapping are of the simplest kind,
namely k = 2, the Riemann-Hurwitz formula (10)
implies that there should be N = 4 defects in each
unit cell. To arrange the images of these four defects
on the sphere, we aim for a somewhat symmetrical
configuration, considering the rotational symmetry
of the problem. A natural arrangement is to embed

them on the sphere in the form of a tetrahedron, as
if the defects repel each other, akin to charges in the
Thomson problem [47].

Now that the four defects are in place, we divide
the sphere into four sections using great circles con-
necting the defect points (see Fig. (3)). These sec-
tions are mapped in an equal-area manner onto the
faces of a tetrahedron. There are various ways to
achieve this, resulting in different equal-area map-
pings. After the mapping to a tetrahedron, we unfold
it to create a planar triangle. Placing two such tri-
angles side by side with reversed orientations forms
a parallelogram unit cell, which can be repeated to
tile the entire plane. This yields a mapping from the
sphere to the plane, which can be inverted to obtain
the mapping n̂ (r) from the plane to the sphere. The
resulting map is a double covering (Q = 2) because
each parallelogram unit cell consists of the two tri-
angles, with each triangle covering the sphere once
under the mapping n̂ (r). On the plane, the defects
are the points around which the corresponding faces
of the tetrahedron are repeated twice, resulting in a
2-to-1 texture around them. In the purple-marked
unit cell of Fig. (3), there is one defect in the mid-
dle of the parallelogram, four halves in the middle of
the edges, and a total of one at the vertices of the
parallelogram, indeed summing up to a total of four
defects.

Numerical minimization of energy (6) using a
steepest descent algorithm confirms that the de-
scribed mapping has the same topological structure
as the ground state, even for smaller values of F .
The ground state lattice is triangular (see Fig. (1))
with tetrahedrally-arranged defects on the sphere.
These results are consistent with the prediction of
a triangular lattice for pseudospin-1/2 and spin-1
systems[3, 4], and its experimental observation for
pseudospin-1/2 [48]. However, the previous analy-
ses have predominantly focused on individual spinor
components, unlike our approach, which adopts a
geometrical SU (2) and gauge symmetric viewpoint,
and reveals the presence and significance of the de-
fects outlined in this paper.

Until now, our focus has centered on understand-
ing the defects through their influence on the mag-
netic structure. However, due to the Mermin-Ho re-
lation, they also have a crucial effect on the conden-
sate flow. To delve into this aspect, we relax the
constraint v = ω × r, allowing us to explore the
ground state of a large yet finite F system, utilizing
the Euler-Lagrange equations derived from energy
(6).
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Figure 3. Left: Plane tiled using the tetrahedral mapping. Each unit cell forms a parallelogram, such as the one
marked in purple, covers the sphere twice (Q = 2), where each of the red and blue triangles covers the sphere once. In
each unit cell there are N = 4 defect points marked in red. Encircling each of the defects on the plane once corresponds
to encircling the corresponding point on the sphere twice, identifying them as k = 2 defects. Right: The image on
the sphere, including the four defect point (in red) arranged in a tetrahedral shape. The mapping n̂ (r) is generated
by “shrinking” (and rescaling) the sphere to the tetrahedron in an equal-area manner, opening the tetrahedron to a
planar triangle, and inverting the resulting map. The great circles connecting the defects are mapped to the edges of
the tetrahedron, enclosing the regions that are mapped to each of the tetrahedron faces.

It can be shown that for an area-preserving map-
ping the second derivatives of n̂ with respect to r
diverge at the defects, causing the torque δE/δϕ act-
ing on n̂ to diverge. Consequently, such a mapping
is valid only for infinite F , and should be replaced
with another solution near the defects for any finite
F . To address this, we study the cores of the defects,
defined as the regions where the area-preserving ap-
proximation breaks down significantly, and charac-
terized by a notable deviation of the vorticity from
the rigid rotation value 2ω, as can be seen in Fig.
(1). This definition differs from the typical defect
core definition, such as in scalar superfluid vortices,
which is based on a significant reduction in density.
In this sense, the defects we describe are coreless.

In the limit of large F , the area on the plane oc-
cupied by each of the cores is independent of F . Ac-
cording to the Mermin-Ho relation, the area corre-
sponding to the image of the core on the sphere is
proportional to F−1, hence its angular size scales as
ϕ ∼ F− 1

2 . For large F , this section is small, there-
fore appearing flat, which allows the Euler-Lagrange
equations in this region to be simplified by neglect-
ing the curvature of the sphere. By rotating n̂ at the
defect to the north pole, and assuming a rotation-
ally invariant structure in the vicinity of the defect,
we may take χ = kα in order to describe a k-defect.
The approximated Euler-Lagrange equation for ϕ is
then:

x
∂

∂x

(
x
∂u

∂x

)
=

(
k2 − 2kx2

)
u+ k2u3, (14)

where u =
√
Fϕ, and x =

√
mω/h̄r is a non-

dimensional form of the coordinates. Since this equa-
tion is independent of the parameters, the typical
scales for u and x are of order 1, justifying the scales
mentioned earlier. In the original variables, the core
area on the plane is of order mω/h̄ and therefore
for large F , the unit cell size, given by Eq. (12), is
much larger than the core size. Hence, the cores are
far apart, validating the analysis of each core sepa-
rately. While for the area-preserving case u ∝ x near
the defect, the solution of Eq. (14) yields u ∝ xk.
This corrects the aforementioned singularities in the
second derivatives of n̂, resulting in an infinitely dif-
ferentiable magnetization texture.

After rescaling, the Mermin-Ho relation around
the defect becomes

∇× v = ω
k

2x

∂u2

∂x
ẑ. (15)

Numerical solution of Eq. (14) for u (x) yields the
vorticity inside the core, shown in Fig. (4). The
vorticity grows from 0 to 2ω on the scale of x = 1,
consistent with the expected core size. Comparison
with one of the defects in the numerical results de-
scribed above shows convergence towards the pre-
dicted curve as F increases. A notable difference
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between the theoretical curve and the finite F so-
lutions is that the vorticity exceeds 2ω for large x.
This discrepancy, also visible in Fig. (1), results from
finite F corrections outside of the core, and will be
addressed in a subsequent paper [33].

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4. Line: normalized vorticity around a k = 2
defect, calculated from Eq. (15) using the numerical so-
lution of (14). Points: numerical gradient descent simu-
lation results for the normalized angle-averaged vorticity
around a defect for various values of F .

The contrast between the defects of the velocity
field in our system and conventional superfluid
vortices is evident. In our system, vorticity increases
gradually from zero at the defect point to 2ω as we
move away, whereas in regular superfluid vortices,
all the vorticity is concentrated within the defect
itself. This analysis, supported by independent
numerical results, shows that the positions of the
“unvortices” align precisely with the locations of the
magnetic texture defects. This alignment establishes
a connection between the defects of the fields v (r)
and n̂ (r), despite their fundamentally different
nature.
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