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Theories of Frege structure equivalent to Feferman’s system T0

Daichi Hayashi

Abstract

Feferman [9] defines an impredicative system T0 of explicit mathematics, which is proof-theoretically equivalent to

the subsystem ∆1
2
-CA + BI of second-order arithmetic. In this paper, we propose several systems of Frege structure

with the same proof-theoretic strength as T0. To be precise, we first consider the Kripke–Feferman theory, which

is one of the most famous truth theories, and we extend it by two kinds of induction principles inspired by [21].

In addition, we give similar results for the system based on Aczel’s original Frege structure [1]. Finally, we equip

Cantini’s supervaluation-style theory with the notion of universes, the strength of which was an open problem in [23].
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1. Introduction

Aczel [1] introduced the framework of Frege structure, which is essentially a model of lambda calculus augmented

with the notions of truth and proposition, to analyse Russell’s paradox in Frege’s Grundgesetze. While Aczel’s study

was model-theoretic, Frege structure can be seen as an axiomatic theory of truth formulated over an applicative theory

(see Section 2). In addition, depending on what kinds of truth and proposition are assumed, various theories of Frege

structure have been proposed (for an overview, see, e.g., [7]). As another applicative framework, Feferman formulated

systems of explicit mathematics [9], in which types, second-order objects for sets, are generated by individual terms,

called names.

Although these two frameworks are different at a glance, there are, as Aczel anticipated [1, p. 34], various tech-

nical correspondences between them. In particular, for various systems of explicit mathematics, we can find proof-

theoretically equivalent theories of Frege structure, as displayed in Table 1, where EM is a system of explicit mathe-

matics (see Definition 2.3); EMU is an extension of EM by universes (cf. [33]); NEM is an extension of EM by name

induction (cf. [26]); T0 is an extension of EM by inductive generations (see Definition 2.5); KF and PT are theories

of Frege structure based on Kripke-Feferman logic and Aczel-Feferman logic, respectively (see Definition 3.1 and

5.1); KFU and PTU are respectively extensions of KF and PT by universes (see Definition 3.3 and 5.4); and VF is a

theory of Frege structure based on supervaluation logic (see Definition 7.1). The table also contains the correspond-

ing subsystems of second-order arithmetic and their proof-theoretic ordinals. The system Σ1
1
-AC has the schema Σ1

1

axiom of choice; ATR + (Σ1
1
-DC) consists of the arithmetical transfinite recursion ATR with the Σ1

1
dependent choice;

Π
1
1
-CA–

0 is the parameter-free Π1
1

comprehension schema; and ∆1
2
-CA + BI is the ∆1

2
comprehension schema with the

bar induction. For details of their proof-theoretic ordinals, see, e.g., [20, 29]).

Table 1: Applicative theories

Ordinal strength Explicit mathematics Frege structure Second-order arithmetic

ψΩ(εI+1) T0 ? ∆
1
2
-CA + BI

ψΩ(εΩ+1) NEM VF Π
1
1
-CA–

0

ϕ1ε00 EMU KFU,PTU ATR + (Σ1
1
-DC)

ϕε00 EM KF,PT Σ
1
1
-AC

As the table shows, the correspondence between explicit mathematics and Frege structure has so far been obtained

only up to the strength of (Π1
1
-CA)–

0
. Therefore, this paper aims to provide well-motivated theories of Frege structure

proof-theoretically equivalent to T0.

This task also has importance from the foundational viewpoint if Frege structure is seen as a theory of truth. In

axiomatic theory of truth, it has been one of the central tasks to obtain stronger truth theories. For one thing, Halbach

[15] argues that an expressively strong truth theory can, to some extent, reduce ontological assumptions on sets to

semantic assumptions. Thus, perhaps such a theory, if it is well motivated, can take the place of set theory as a

foundation for a large part of mathematics. As far as the author knows, Fujimoto’s system Aut(VF) [14], formulated

over Peano arithmetic (PA), is so far the strongest among well-motivated truth theories.1 Since the strength of Aut(VF)

lies strictly between ∆1
2
-CA and ∆1

2
-CA + BI, the author believes that the theories proposed in this paper break the

record, though our base theory is not PA. Moreover, since T0 is expressively rich enough to interpret various set

theories (cf. [27, 34, 35]), we can expect our theories of Frege structure to contribute to Halbach’s programme.

The structure of this paper is as follows: In Section 2, we define the total applicative theory TON as the common

base theory of explicit mathematics and Frege structure. We also define the theories of explicit mathematics, EM and

its extension T0. In Section 3, following Kahle’s formulation [23, 24], we introduce Kripke-Feferman-style theories

of Frege structure, KF and its extension KFU. In Section 4, we expand KFU by the proposition induction schema,

to obtain a theory KFUPI that is as strong as T0. In Section 5, we consider Aczel-Feferman-style theories of Frege

structure, PT and its extension PTU. In conclusion, we can obtain a theory PTUPI that has the same strength as T0.

1However, the author also remarks that Cantini gave a recursion-theoretically motivated system of Frege structure which is at least as strong

as T0 [7, p. 253]. Over Peano arithmetic, Schindler [31] formulated a disquotational truth theory of the same consistency strength as the full

second-order arithmetic.
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In Section 6, we formulate an alternative principle least universes schema, and then we show that this also gives the

strength of T0 to both KFU and PTU. In Section 7, we introduce a supervaluation-style Frege structure essentially

based on Kahle’s formulation [23]. Then, following Kahle’s suggestion [23, p. 124], we extend VF by universes and

prove that the resulting theory VFU is proof-theoretically equivalent to T0. Therefore, one of Kahle’s open questions

is solved.

2. Technical preliminaries

This section defines Feferman’s system T0 of explicit mathematics. We first define the total applicative theory

TON, which, in this paper, is used as the common base theory of explicit mathematics and Frege structure.

2.1. Total applicative theory

The first-order language L for the total operational theory (TON) (see, e.g. [24]) consists of the standard logical

symbols, individual variables (x, y, z, x0, x1, . . . , a, b, c, . . . , f , g, h), individual constants k, s (combinators), p, p0, p1

(pairing and projections), 0 (zero), sN (successor), pN (predecessor), dN (definition by numerical cases), a binary

function symbol App(x, y) (application), and a unary predicate N(x) (natural numbers). Formulae ofL are constructed

from atomic formulae by the logical symbols ¬A, A ∧ B, A → B, and ∀x. A. We assume that ∨ and ∃ are defined in

a standard manner, whereas→ is given as a primitive symbol. The meaning of each symbol is clear from its defining

axioms below.

We shall use the following abbreviations in this paper:

1. ab := (ab) := App(a, b).

2. a1a2a3 . . . an :≡ ((· · · ((a1a2)a3 · · · )an).

3. (x, y) := pxy.

4. (x)i := pix for i ∈ {0, 1}.

5. s , t := ¬(s = t).

6. ∀x0, x1, . . . xn. A :≡ ∀x0.∀x1. . . .∀xn. A.

Definition 2.1. The L-theory TON consists of the following axioms:

• kab = a,

• sabc = ac(bc),

• (a, b)0 = a ∧ (a, b)1 = b,

• N(0) ∧ ∀x. N(x)→ N(sNx),

• ∀x. N(x)→ sN x , 0 ∧ pN(sNx) = x,

• ∀x. N(x) ∧ x , 0→ N(pNx) ∧ sN(pNx) = x,

• N(a) ∧ N(b) ∧ a = b→ dNuvab = u,

• N(a) ∧ N(b) ∧ a , b→ dNuvab = v,

• A(0) ∧ [∀x. N(x) ∧ A(x)→ A(sNx)]→ ∀x. N(x)→ A(x), for every L-formula A.

In this paper, we will repeatedly use the following well-known fact :

Fact 2.2 (cf. [7]).

λ-abstraction. For each variable x and an L-term t, we can find a term λx.t such that TON ⊢ (λx.t)x = t.

Recursion. There is a term rec such that TON ⊢ ∀ f . rec f = f (rec f ).

3



2.2. Explicit mathematics

We define systems of explicit mathematics over TON. Usually, theories of explicit mathematics are defined in

second-order language. For simplicity, however, we shall formulate them as first-order ones, similar to [17].

The first-order language LEM of explicit mathematics is an extension of L with two predicates: a unary predicate

symbol R(x),meaning that x represents a set, and a binary predicate symbol x ∈ y,meaning that x is contained in y. We

define ∀x ∈ y. A(x) to be ∀x. x ∈ y → A(x). In addition, LEM has individual constant symbols, called generators: int

(intersection), j (join), nat (natural numbers), id (identity), dom (domain), inv (inversion), and i (inductive generations).

Definition 2.3. The LEM -theory EM consists of the following axioms:

Natural numbers. R(nat) ∧ ∀x. x ∈ nat↔ N(x).

Identity. R(id) ∧ ∀x. x ∈ id↔ ∃y. x = (y, y).

Complements. R(x)→ R(co(x)) ∧ ∀y. y ∈ co(x)↔ y < x.

Intersections. R(x) ∧ R(y)→ R(int(x, y)) ∧ ∀z. z ∈ int(x, y)↔ z ∈ x ∧ z ∈ y.

Domains. R(a)→ R(dom(a)) ∧ ∀x. x ∈ dom(a)↔ ∃y. (x, y) ∈ a.

Inverse images. R(a)→ R(inv(a, f )) ∧ ∀x. x ∈ inv(a, f )↔ f x ∈ a.

Joins. R(x) ∧ [∀y ∈ x. R( f y)]→ R(j(x, f )) ∧ Σ(x, f , j(x, f )), where

Σ(x, f , y) :≡ ∀u. u ∈ y↔ ∃v,w. u = (v,w) ∧ v ∈ x ∧ w ∈ f v.

The above axioms explain how a new set is generated from existing ones. For instance, the join axiom says that given

a set x and a function f whose domain is x, there exists the disjoint union j(x, f ) of the range of f .

Fact 2.4 (cf. [3]). EM is proof-theoretically equivalent to Σ1
1
-AC.

2.3. Universes and inductive generations

A universe in explicit mathematics is a set that is closed under the name-generating operations in Definition 2.3.

More formally, the fact that a is a universe is expressed by the formula:

U(a) :≡ [∀b. C(a, b)→ b ∈ a]→ ∀b ∈ a. R(b),

where C(a, b) is the disjunction of the following:

1. a = nat ∨ a = id,

2. ∃x. b = co(x) ∧ x ∈ a,

3. ∃x, y. b = int(x, y) ∧ x ∈ a ∧ y ∈ a,

4. ∃x. b = dom(x) ∧ x ∈ a,

5. ∃ f , x. b = inv(x, f ) ∧ x ∈ a,

6. ∃ f , x. b = join(x, f ) ∧ x ∈ a ∧ ∀y ∈ x. f y ∈ a.

Of course, we require an additional axiom to assure the existence of universes. Here, we introduce the limit axiom

[33]. For a new constant symbol l, the limit axiom is the following:

R(x)→ R(lx) ∧ x ∈ lx.

Then, the system EMU is defined as EM equipped with the limit axiom. From Strahm’s proof [33], it follows

that EMU is proof-theoretically equivalent to ÎD<ε0
, the arithmetical fixed-point theory iterated up to ε0. While the

proof-theoretic strength of EMU is beyond the range of predicativity, that is, its proof-theoretic ordinal is larger than

the Feferman–Schütte ordinal Γ0, it is still weaker than impredicative theories, such as the theory ID1 of arithmetical

inductive definitions (for the definition, see [30]). Therefore, the strength of EMU is called metapredicative [33].
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Feferman [9] formulated a highly strong principle for explicit mathematics called inductive generation:

R(a) ∧ R(b)→ R(i(a, b)) ∧ Closed(a, b, i(a, b)). (IG.1)

R(a) ∧ R(b) ∧ Closed(a, b, A)→ ∀x ∈ i(a, b). A(x), (IG.2)

where A is any formula, and

• y <b x :≡ (y, x) ∈ b;

• Closed(a, b, A(•)) :≡ ∀x ∈ a. [∀y ∈ a. y <b x→ A(y)]→ A(x).

Definition 2.5. The LEM -theory T0 consists of EM with (IG.1) and (IG.2).

The proof-theoretic strength of T0 is far beyond EMU.

Fact 2.6 ([18]). T0 is proof-theoretically equivalent to ∆1
2
-CA + BI.

3. Frege structure by Strong Kleene schema

In this section, we introduce the Kripke–Feferman theory KF of Frege structure and its extension by universes.

We first define the base language LFS over which our theories of Frege structure are formulated.

The languageLFS is L augmented with the following symbols:

• individual constants =̇, ¬̇, ∧̇, →̇, ∀̇, Ṅ, l;

• unary predicates T(x),U(x).

Here, T(x) is intended to mean the truth predicate; U(x) means that x is a universe (see below for more details); and

the constant l is used to generate universes, similar to the one in explicit mathematics. The other individual constants

are used as sentence-constructing operators. For example, the term x∧̇y := ∧̇(x, y) informally denotes (the code of) a

conjunctive sentence consisting of x and y. We can similarly understand the terms ¬̇x, Ṅx, and ∀̇ f . We also use the

notations (x=̇y) := (=̇(x, y)) and (x→̇y) := (→̇(x, y)), whose informal meaning should be clear.

3.1. System KF

The theory KF, as a theory of truth, was semantically introduced by Kripke [28]; Feferman [10] then gave its

first-order axiomatisation. Cantini [6] later formulated KF as a theory of Frege structure. In KF, each sentence is

monotonically evaluated based on the Strong Kleene evaluation, as displayed in the following truth table. Note that

the conditional A→ B is definable as ¬A ∨ B.

¬

T F

U U

F T

∨ T U F

T T T T

U T U U

F T U F

∧ T U F

T T U F

U U U F

F F F F

→ T U F

T T U F

U T U U

F T T T

The formal system KF, as an LFS -theory, is defined straightforwardly from the above table.

Definition 3.1 (cf. [7, 8, 23, 24]). The LFS -theory KF has TON with the full induction schema for LFS and (the uni-

versal closure of) the following axioms:

Compositional axioms.

(K=) T(x=̇y)↔ x = y

(K,) T(¬̇(x=̇y))↔ x , y

(KN) T(Ṅx)↔ N(x)

(K¬N) T(¬̇(Ṅx))↔ ¬N(x)
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(K¬¬) T(¬̇(¬̇x))↔ T(x)

(K∧) T(x∧̇y)↔ T(x) ∧ T(y)

(K¬∧) T(¬̇(x∧̇y))↔ T(¬̇x) ∨ T(¬̇y)

(K→) T(x→̇y)↔ T(¬̇x) ∨ T(y)

(K¬→) T(¬̇(x→̇y))↔ T(x) ∧ T(¬̇y)

(K∀) T(∀̇ f )↔ ∀x. T( f x)

(K¬∀) T(¬̇(∀̇ f ))↔ ∃x. T(¬̇( f x))

Consistency.

(T-Cons) ¬[T(x) ∧ T(¬̇x)]

The system KF is proof-theoretically stronger than TON. In particular, KF can relatively interpret EM. To see this,

we define a translation ′ : LEM → LFS . First, the vocabularies of L are unchanged. Second, we define (x ∈ y)′ to

be T(yx), which can be read as ‘y is true at x.’ As for the translation of R(x), we define predicates C( f ) and P(x),

where P(x) means that x is a proposition, that is, x is determined to be true or false; and C( f ) means that f is a class

(propositional function), that is, f x is a proposition for every object x.

C( f ) := ∀x. P( f x) := ∀x. T( f x) ∨ T(¬̇( f x)).

Then, we let R′(x) :≡ C(x). Finally, as is remarked in [7, p. 59], for each generator of LEM , we can find a term

such that the translation of the defining axiom of c in EM is derivable in KF (see also the proof of Lemma 7.7). To

summarise, the following is obtained:

Fact 3.2 ([7]). For each LEM-formula A, if EM ⊢ A, then KF ⊢ A′.

We also remark that EM and KF are proof-theoretically equivalent (for the proof, see, e.g., [7, Section 57]).

3.2. Universes for KF

In order to strengthen a given truth theory, iterating truth predicates is effective in many cases (cf. [10, 20, 14]).

In the framework of Frege structure, an analogous idea is realisable by using the notion of universes (cf. [7, 24]).

Following [24], we let f ⊏ g (g reflects on f ) be the following formula:

[∀x. T( f x)→ T(g( f x))] ∧ [∀x. T(¬̇ f x)→ T(g(¬̇ f x))].

The predicate f ⊏ g informally means that both positive and negative facts about f are expressed as positive state-

ments within g.

Definition 3.3 (cf. [23, 24]). The LFS -theory KFU has TON and (the universal closure of) the following axioms:

Compositional axioms in U.

(U=) U(u)→ ∀x, y. T(u(x=̇y))↔ x = y

(U,) U(u)→ ∀x, y. T(u(¬̇(x=̇y)))↔ x , y

(UN) U(u)→ ∀x. T(u(Ṅx))↔ N(x)

(U¬N) U(u)→ ∀x. T(u(¬̇(Ṅx)))↔ ¬N(x)

(U¬¬) U(u)→ ∀x. T(u(¬̇(¬̇x)))↔ T(ux)

(U∧) U(u)→ ∀x, y. T(u(x∧̇y))↔ T(ux) ∧ T(uy)

(U¬∧) U(u)→ ∀x, y. T(u(¬̇(x∧̇y)))↔ T(u(¬̇x)) ∨ T(u(¬̇y))

(U→) U(u)→ ∀x, y. T(u(x→̇y))↔ T(u(¬̇x)) ∨ T(uy)
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(U¬→) U(u)→ ∀x, y. T(u(¬̇(x→̇y)))↔ T(ux) ∧ T(u(¬̇y))

(U∀) U(u)→ ∀ f . T(u(∀̇ f ))↔ ∀x. T(u( f x))

(U¬∀) U(u)→ ∀ f . T(u(¬̇(∀̇ f )))↔ ∃x. T(u(¬̇( f x)))

Consistency in U.

(U-Cons) U(u)→ ∀x. ¬[T(ux) ∧ T(u(¬̇x))]

Structural properties of U.

(U-Class) U(u)→ C(u)

(U-True) U(u)→ ∀x. T(ux)→ T(x)

(Lim) C( f )→ U(l f ) ∧ f ⊏ l f

In the above definition, the predicate U(u) indicates that u is a universe. The compositional axioms and the

consistency axiom for U ensures that each universe satisfies the axioms of KF; thus, universes work as quasi-truth

predicates. Of course, KF-axioms relativised to universes do not have any logical strength unless we do not further

postulate the existence of universes. Thus, we added the axiom (Lim) in Definition 3.3, which generates an infinite

series of universes: u0 ⊏ u1 ⊏ u2 ⊏ · · · ⊏ un ⊏ · · · . This roughly corresponds to a hierarchy of infinitely iterated

truth predicates for KF, whence the strength of KFU exceeds that of KF. Moreover, Kahle showed that KFU is a proper

extension of KF:

Fact 3.4 ([24, Proposition 14]). KF is a subtheory of KFU.

Fact 3.5 ([24, Theorem 33]). KFU and EMU have the same L-theorems.

4. Extension by proposition induction

While adding universes makes KF stronger, KFU falls within metapredicativity in strength, so it is still much

weaker than impredicative theories such as Π1
1
-CA–

0. This section aims to propose a stronger principle that gives the

same strength as T0.

For our first attempt, we shall borrow an idea from the system NAI of explicit mathematics in [21]. In the system

EMU, names are inductively generated by several axioms, such as join and the limit axiom. The system NAI is

then defined as an extension of EMU with induction principles requiring that the whole universe of names only

contains those inductively generated by these axioms. Despite lacking inductive generations, NAI is shown to be

proof-theoretically equivalent to T0 [21, Conclusion 25]. Since class in Frege structure is an analogue of name in

explicit mathematics, we can expect to get a theory of Frege structure equivalent to T0 by considering an induction

principle for classes or propositions.

4.1. Proposition induction

How, then, should we inductively characterise propositions in KF? For example, let us consider the conjunction.

In the Strong Kleene schema, A ∧ B is a proposition when both A and B are propositions. In fact, we can derive

P(x) ∧ P(y) → P(x∧̇y) in KF. On the other hand, once we establish the falsity of either A or B, the conjunction A ∧ B

is determined to be false regardless of the other conjunct. This could be expressed, for example, as ([P(x) ∧ T(¬̇x)] ∨

[P(y) ∧ T(¬̇y)]) → P(x∧̇y), which is indeed provable in KF. So, in KF, we can characterise conjunctive propositions

in two ways. Understanding the other logical symbols similarly, we can characterise propositions for KF as follows:

Lemma 4.1. KF derives the following:

1. P(x=̇y) ∧ P(Ṅx),

2. P(¬̇x)↔ P(x),

3. P(x∧̇y)↔ [P(x) ∧ P(y)] ∨ [P(x) ∧ T(¬̇x)] ∨ [P(y) ∧ T(¬̇y)],

4. P(x→̇y)↔ [P(x) ∧ P(y)] ∨ [P(x) ∧ T(¬̇x)] ∨ [P(y) ∧ T(y)],

7



5. P(∀̇ f )↔ [∀x. P( f x)] ∨ [∃y. P( f y) ∧ T(¬̇( f y))].

Remark 4.2. This inductive characterisation of propositions is nearly the same as that of determinateness in [16],

where Halbach and Fujimoto advocate the definition by appealing to the function of truth as a generalising device [16,

p. 5]. We also remark that in KF, it might also be natural to treat each proposition and its negation independently. For

instance, in the Strong Kleene evaluation, ¬(A ∧ B) is true when either ¬A or ¬B is true. So, whether ¬(A ∧ B) is a

proposition can be determined by ¬A and ¬B, rather than by A ∧ B. Formally speaking, KF derives:

P(¬̇(x∧̇y))↔ [P(¬̇x) ∧ P(¬̇y)] ∨ [P(¬̇x) ∧ T(¬̇x)] ∨ [P(¬̇y) ∧ T(¬̇y)].

The same remark applies to the other negated propositions ¬¬A, ¬(A→ B), and ¬∀x. A.

Finally, the axiom (Lim) generates a new class l f from a given class f . In particular, we have:

KFU ⊢ C( f ) → ∀x. P(l f x).

In summary, we can express the above construction of propositions in KFU by a single operator A . For each

LFS -formula B and a free variable x, the formula A (B(•), x) 2 is the disjunction of the following:

1. ∃y, z. x = (y=̇z) ∧ y = z

2. ∃y. x = (Ṅy) ∧ N(y)

3. ∃y. x = ¬̇y ∧ B(y)

4. ∃y, z. x = y∧̇z ∧ {[B(y) ∧ B(z)] ∨ [B(y) ∧ T(¬̇y)] ∨ [B(z) ∧ T(¬̇z)]}

5. ∃y, z. x = y→̇z ∧ {[B(y) ∧ B(z)] ∨ [B(y) ∧ T(¬̇y)] ∨ [B(z) ∧ T(z)]}

6. ∃g. x = ∀̇g ∧ {[∀y. B(gy)]∨ ∃y. B(gy) ∧ T(¬̇(gy))}

7. ∃ f , y. x = l f y ∧ ∀z. B( f z)

Then, the proposition induction schema (PI) is given by:

[∀x. A (B(•), x)→ B(x)]→ ∀x. P(x)→ B(x), (PI)

for all LFS -formulas B(x).

The schema (PI) assures that all propositions are obtained by the inductive construction as explained above.

For the proof-theoretic purposes, we also need the following axioms.

Definition 4.3. The schema (UG) consists of axioms asserting that each constant symbol in {=̇, ¬̇, ∧̇, →̇, ∀̇, Ṅ, l} can

be uniquely decomposed. For example, (UG) has the following:

∧̇ , ¬̇,

∧̇a = ∧̇b→ a = b.

With the help of (UG), we can verify in KFU that P(x) is an A -closure:

KFU + (UG) ⊢ ∀x. A (P(•), x)→ P(x).

Definition 4.4. The LFS -theory KFUPI is KFU with the schemata (UG) and (PI).

2Here, • means every occurrence of some fixed free variable (placeholder).

8



4.2. Lower bound of KFUPI

The remainder of this section is devoted to the proof-theoretic analysis of KFUPI. In this subsection, we give a

relative interpretation of T0 into KFUPI by extending the translation ′ used in Fact 3.2. For each symbol except i,

we can employ the same interpretation as given in the proof of Fact 3.2. In particular, recall that the predicate R( f )

is interpreted as C( f ), namely the statement that f is a class. Moreover, x ∈ y is interpreted as the formula T(yx).

For readability, we sometimes refer to T(yx) as x∈̇y. Also, ∀x∈̇y. A(x) means ∀x. x∈̇y → A(x). Finally, we want to

interpret the inductive generation i as an appropriate term acc. In other words, we need to find a term acc such that

KFUPI derives the translation of the axioms (IG.1) and (IG.2) in Definition 2.5:

(IG.1)′ C(a) ∧ C(b)→ C(acc(a, b)) ∧ Closed′(a, b,T(acc(a, b)(•)));

(IG.2)′ C(a) ∧ C(b) ∧ Closed′(a, b, A(•))→ ∀x∈̇acc(a, b). A(x),

where A is any LFS -formula. We used the notations:

• y<̇bx :≡ (y, x)∈̇b :≡ T(b(y, x));

• Closed′(a, b, A(•)) :≡ ∀x∈̇a. [∀y∈̇a. y<̇bx→ A(y)]→ A(x).

We essentially follow the proof of the lower bound of LUN ([21, pp. 153-156]), to derive the above formulas.

Roughly speaking, the interpretations of (IG.1) and (IG.2) are derivable by (L1) and (L2), respectively. Let ⊕ be a term

such that

⊕(u, v) = λz.[((z)0=̇0∧̇u((z)1)) ∨̇ (¬̇((z)0=̇0)∧̇v((z)1))],

which represents the disjoint sum of u and v. By recursion, we can construct a term t such that

t(u, v,w) = ∀̇y(⊕(u, v)(0, y)→̇[⊕(u, v)(1, (y,w))→̇t(u, v, y)]).

The term t(u, v,w) informally says that in u, every v-predecessor y of w satisfies t(u, v, y). Of course, t(u, v,w) is not,

in general, a proposition even if u and v are classes; hence, we cannot simply employ t as the interpretation of i.

Nevertheless, by attaching the limit constant l to t, we can treat t as a proposition. Thus, for the interpretation of i, we

further define a term acc such that

acc(u, v)x =
(
⊕(u, v)(0, x)

)
∧̇
(
∀̇y(⊕(u, v)(0, y)→̇[⊕(u, v)(1, (y, x))→̇(l(⊕(u, v))(t(u, v, y))])

)
.

By the following lemma, the term acc(a, b) is indeed a class whenever a and b are classes, so the first conjunct of

(IG.1)′ is derived.

Lemma 4.5. KFU ⊢ C(a) ∧ C(b)→ C(⊕(a, b)) ∧ C(acc(a, b)).

Proof. Assume C(a) ∧ C(b). First, taking any z, we show that ⊕(a, b)z is a proposition in order to show that ⊕(a, b) is

a class. By the definition of ⊕, ⊕(a, b)z is of the form:

((z)0=̇0∧̇a((z)1)) ∨̇ (¬̇((z)0=̇0)∧̇b((z)1)).

Here, (z)0=̇0 and ¬̇((z)0=̇0) are propositions by Lemma 4.1, and a((z)1) and b((z)1) are also propositions by the

assumption C(a) ∧ C(b). Therefore, ⊕(a, b)z is a proposition, again by Lemma 4.1. Since z is arbitrary, ⊕(a, b) is a

class, and thus so is l(⊕(a, b)) by the axiom (Lim). Second, we deduce that acc(a, b)x is a proposition for any x. Recall

that acc(a, b)x is of the form

⊕(a, b)(0, x)∧̇∀̇y(⊕(a, b)(0, y)→̇[⊕(a, b)(1, (y, x))→̇(l(⊕(a, b))(t(a, b, y)))]).

Since we have shown that ⊕(a, b) and l(⊕(a, b)) are classes, Lemma 4.1 implies that acc(a, b)x is a propositon, as

required. �

The following is the second half of (IG.1)′.

Lemma 4.6. Recall: Closed′(a, b, B(•)) :≡ ∀x∈̇a. [∀y∈̇a. y<̇bx→ A(y)]→ A(x).

Then, KFU ⊢ C(a) ∧ C(b)→ Closed′(a, b,T(acc(a, b)(•))).
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Informally, this lemma says that if every b-predecessor of x is contained in the b-accessible part of a, then x is also

contained in the b-accessible part of a.

Proof. Assume C(a) and C(b). Taking any c, we further assume that T(ac) and ∀y. T(ay)→ T(b(y, c))→ T(acc(a, b)y),

then we have to derive T(acc(a, b)c). The first conjunct T(⊕(a, b)(0, c)) of T(acc(a, b)c) is equivalent to T(ac) in KF

and is nothing but one of the assumptions. To derive the second conjunct of T(acc(a, b)c), we take any d, and we will

derive:

T((⊕(a, b)(0, d))→̇(⊕(a, b)(1, (d, c))→̇(l(⊕(a, b))t(a, b, d)))). (1)

Then, the axioms of KF yield the desired conclusion.

Since the term ⊕(a, b) is a class by Lemma 4.5 and is reflected by l(⊕(a, b)), the axioms of KF imply that the

formula (1) is equivalent to:

T(⊕(a, b)(0, d))→ T(⊕(a, b)(1, (d, c)))→ T(l(⊕(a, b))t(a, b, d)).

Hence, we suppose that T(⊕(a, b)(0, d)) and T(⊕(a, b)(1, (d, c))) in order to derive T(l(⊕(a, b))t(a, b, d)). These sup-

positions are equivalent to T(ad) and T(b(d, c)), respectively; thus, letting y := d, the initial assumption ∀y. T(ay) →

T(b(y, c))→ T(acc(a, b)y) implies T(acc(a, b)d), and hence

T(∀̇y(⊕(a, b)(0, y)→̇(⊕(a, b)(1, (y, d))→̇(l(⊕(a, b))t(a, b, y)))))

by the definition of acc. By the axioms (K∀) and (K→), we have

∀y. T(⊕(a, b)(0, y))→ T(⊕(a, b)(1, (y, d)))→ T(l(⊕(a, b))t(a, b, y)).

As ⊕(a, b) is a class, the axioms (U-True) and (Lim) imply that

∀y. T(l(⊕(a, b))(¬̇(⊕(a, b)(0, y))))∨ T(l(⊕(a, b))(¬̇(⊕(a, b)(1, (y, d)))))

∨T(l(⊕(a, b))t(a, b, y)).

Therefore, by using the axioms (U→) and (U∀), we obtain

T(l(⊕(a, b))(∀̇y(⊕(a, b)(0, y)→̇(⊕(a, b)(1, (y, d))→̇t(a, b, y))))),

which is nothing but the desired formula T(l(⊕(a, b))t(a, b, d)). Therefore, the formula (1) is derived. �

Finally, we want to derive (IG.2)′ :

C(a) ∧ C(b) ∧ Closed′(a, b, A(•))→ ∀x. T(acc(a, b)x)→ A(x).

The author shall roughly explain the basic idea of the proof, which is essentially based on a standard technique found

in, e.g., [4, 8, 21, 26]. Taking any x, we want to deduce A(x) from the assumptions C(a),C(b),Closed′(a, b, A(•))

and T(acc(a, b)x). By the definition of t and acc, the last assumption implies that t(a, b, x) is true, and hence is a

proposition. In addition, by Lemma 4.8 below, whether A(x) holds or not can be reduced to whether t(a, b, x) is a

proposition. Therefore, A(x) follows, as required.

We require the following lemma for the proof of Lemma 4.8.

Lemma 4.7. KFU derives the following:

C(u) ∧ C(v) ∧ w∈̇acc(u, v)→ ∀x∈̇u. x<̇vw→ x∈̇acc(u, v).

Informally, it says that if w is contained in the v-accessible part of u, then its every v-predecessor x in u also

belongs in the v-accessible part of u.
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Proof. Assume C(u),C(v), and w∈̇acc(u, v). In addition, we take any x such that x∈̇u and x<̇vw. Then, our purpose is

to derive x∈̇acc(u, v). Recall that w∈̇acc(u, v) is the following formula:

T(⊕(u, v)(0,w))∧̇∀̇y(⊕(u, v)(0, y)→̇[⊕(u, v)(1, (y,w))→̇(l(⊕(u, v))(t(u, v, y)))]).

Thus, in a similar way as the proof of Lemma 4.6, we obtain:

∀y. T(⊕(u, v)(0, y))→ T(⊕(u, v)(1, (y,w)))→ T(l(⊕(u, v))(t(u, v, y)))).

For y := x, it follows from the assumptions that T(l(⊕(u, v))(t(u, v, x)))).Therefore, from the definition of t(u, v, x), we

similarly have:

∀y. T(⊕(u, v)(0, y))→ T(⊕(u, v)(1, (y, x)))→ T(l(⊕(u, v))(t(u, v, y)))).

Since ⊕(u, v) is a class, we obtain:

T(∀̇y(⊕(u, v)(0, y)→̇[⊕(u, v)(1, (y, x))→̇(l(⊕(u, v))(t(u, v, y)))]).

Moreover, by the assumption, we also have T(⊕(u, v)(0, x)); thus (K∧) yields x∈̇acc(u, v), as required. �

Lemma 4.8. For an LFS -formula A(x), define BA(u, v,w) to be the formula ∀x. T(acc(u, v)x)→ FA(u, v,w, x), where

FA(u, v,w, x) is the conjunction of the following formulas:

1. w = t(u, v, x) → A(x),

2. ∀z. w = {(⊕(u, v)(1, (z, x)))→̇(t(u, v, z))} → T(⊕(u, v)(1, (z, x)))→ A(z),

3. ∀z. w = {(⊕(u, v)(0, z))→̇(⊕(u, v)(1, (z, x))→̇t(u, v, z))} → T(⊕(u, v)(0, z))→ T(⊕(u, v)(1, (z, x)))→ A(z).

Then, KFUPI derives the following:

C(u) ∧ C(v) ∧ Closed′(u, v, A(•))→ ∀w. A (BA(u, v, •),w)→ BA(u, v,w).

Proof. Assume C(u),C(v),Closed′(u, v, A(•)) and A (BA(u, v, •),w). Then, we need to prove BA(u, v,w). So, taking

any x such that T(acc(u, v)x), we show FA(u, v,w, x). The proof is mainly divided into three cases according to the

form of w.

1. Assume w = t(u, v, x) := ∀̇z(⊕(u, v)(0, z)→̇(⊕(u, v)(1, (z, x))→̇t(u, v, z))). Then, we have to show A(x). Now, w is

of the universal form ∀̇ f , thus by the definition of A (BA(u, v, •),w) and (UG), we have:

[∀z. BA(u, v, f z)] ∨ ∃z. BA(u, v, f z) ∧ T(¬̇( f z)).

However, in a similar manner to the proof of Lemma 4.6, the assumption T(acc(u, v)x) implies, in KFU,

∀z. T( f z); that is,

∀z. T(⊕(u, v)(0, z)→̇(⊕(u, v)(1, (z, x))→̇t(u, v, z))).

Thus, ∃z. T(¬̇( f z)) is false by (T-Cons). Therefore, it follows that ∀z. BA(u, v, f z). Then, the assumption

acc(u, v)x yields ∀z. FA(u, v, f z, x). Since f z is of the conditional form, the third conjunct of FA(u, v, f z, x) is

applied, and thus, for all z, we have:

T(⊕(u, v)(0, z))→ T(⊕(u, v)(1, (z, x)))→ A(z),

which is equivalent to ∀z∈̇u. z<̇vx → A(z). Because T(acc(u, v)x) implies x∈̇u, the assumption Closed′(u, v, A(•))

implies the formula A(x), as required.

2. Taking any z, we assume w = (⊕(u, v)(1, (z, x)))→̇t(u, v, z). Then, we will deduce T(⊕(u, v)(1, (z, x))) → A(z).

Thus, similar to the case of w = t(u, v, x), the assumption A (BA(u, v, •),w) implies the following:

T(⊕(u, v)(1, (z, x)))→ BA(u, v, t(u, v, z)). (2)

By the assumption T(acc(u, v)x) and Lemma 4.7, we have T(acc(u, v)z). Therefore, (2) implies:

T(⊕(u, v)(1, (z, x)))→ FA(u, v, t(u, v, z), z).

Thus, the first conjunct of FA(u, v, t(u, v, z), z) is applied, and we get

T(⊕(u, v)(1, (z, x)))→ A(z).
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3. The case w = ⊕(u, v)(0, z)→̇(⊕(u, v)(1, (z, x))→̇t(u, v, z)) is similarly proved as the second case.

4. If w is of the other form, we trivially have BA(u, v,w). �

Using the above lemma, we can derive (IG.2)′.

Lemma 4.9. KFUPI derives the following:

C(a) ∧ C(b) ∧ Closed(a, b, A)→ ∀x. T(acc(a, b)x)→ A(x).

Proof. We assume C(a),C(b),Closed(a, b, A) and T(acc(a, b)c) for an arbitrary c. Then, we have to derive A(c). From

the assumptions and Lemma 4.8, we obtain ∀w. A (BA(u, v, •),w)→ BA(u, v,w). Thus, (PI) yields:

∀x. P(x)→ BA(a, b, x).

Letting x := t(a, b, c),we want to show P(t(a, b, c)), from which BA(a, b, t(a, b, c)) follows. Then, we can immediately

obtain the conclusion A(c) by the assumption T(acc(a, b)c) and the definition of BA.

In order to prove P(t(a, b, c)), it suffices to derive the following:

∀y. T(⊕(a, b)(0, y))→ T(⊕(a, b)(1, (y, c)))→ T(t(a, b, y)). (3)

In fact, this formula implies, in KFU, T(t(a, b, c)) and thus P(t(a, b, c)) because ⊕(a, b) is a class. However, the formula

(3) follows from the assumption T(acc(a, b)c). �

To summarise, we obtain the interpretation of T0 into KFUPI, in which L-vocabularies are preserved.

Theorem 4.10. For each LEM -sentence A, if T0 ⊢ A, then KFUPI ⊢ A′.

4.3. Kahle’s model for KFU

In this subsection, we introduce Kahle’s model construction for KFU [24, pp. 214-215] and observe that this model

also satisfies KFUPI. The upper-bound proof of KFUPI in Section 4.4 is essentially based on this model.

First, the base theory TON is interpreted by the closed total term model CTT (e.g. [7, p. 26]); the domain of

CTT is the set of all closed L-terms; the constant symbols are interpreted as themselves; the application function

App(x, y) is defined to be the juxtaposition of x and y; and it is defined that the equation x = y holds when x and y are

β-equivalent in the standard sense. Then, N(x) holds when x reduces to a numeral. To interpret the predicates T and

U, we define an operator Φ(X, Y, a, α) for an ordinal number α :

1. a ∈ Y,

2. ∃b, c. α = 0 ∧ a = (b=̇c) ∧ b = c,

3. ∃b, c. α = 0 ∧ a = ¬̇(b=̇c) ∧ b , c,

4. ∃b. α = 0 ∧ a = Ṅb ∧ N(b),

5. ∃b. α = 0 ∧ a = ¬̇(Ṅb) ∧ ¬N(b),

6. ∃b. a = ¬̇(¬̇b) ∧ a < Y ∧ b ∈ X,

7. ∃b, c. a = (b∧̇c) ∧ a < Y ∧ b ∈ X ∧ c ∈ X,

8. ∃b, c. a = ¬̇(b∧̇c) ∧ a < Y ∧ [¬̇b ∈ X ∨ ¬̇c ∈ X],

9. ∃b, c. a = (b→̇c) ∧ a < Y ∧ [¬̇b ∈ X ∨ c ∈ X],

10. ∃b, c. a = ¬̇(b→̇c) ∧ a < Y ∧ b ∈ X ∧ ¬̇c ∈ X,

11. ∃ f . a = (∀̇ f ) ∧ a < Y ∧ ∀x. f x ∈ X,

12. ∃ f . a = ¬̇(∀̇ f ) ∧ a < Y ∧ ∃x. ¬̇( f x) ∈ X,

13. ∃b, c. α ∈ Suc ∧ a = lbc ∧ a < Y ∧ ¬̇a < Y ∧ [∀x. bx ∈ Y ∨ ¬̇(bx) ∈ Y] ∧ c ∈ Y,

14. ∃b, c. α ∈ Suc ∧ a = ¬̇(lbc) ∧ a < Y ∧ ¬̇a < Y ∧ [∀x. bx ∈ Y ∨ ¬̇(bx) ∈ Y] ∧ c < Y,

where α ∈ Suc means that α is a successor ordinal.

A Φ-sequence (Zα) of least fixed points Zα is defined as follows:
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1. Z0 := ∅.

2. Zα+1 := the least fixed point of Φ(X, Zα, x, α + 1).

3. Zα := the least fixed point of Φ(X,
⋃
β<α Zβ, x, α), for a limit ordinal α.

Since this sequence (Zα) is monotonically increasing, we eventually reach the least ordinal ι such that Zι = Zι+1.
3

Then, we interpret T(t) as t ∈ Zι, and U(u) as ∃ f . u = l f ∧ ∀x. f x ∈ Zι ∨ ¬̇( f x) ∈ Zι. Combining this with the

above interpretation, we obtain an LFS -modelMKF.

Proposition 4.11. MKF |= KFUPI.

Proof. Kahle [24, p. 215] already showedMKF |= KFU + (UG); thus, we concentrate on the schema (PI):

[∀x. A (B(•), x)→ B(x)]→ ∀x. P(x)→ B(x).

We take any LFS -formula B such thatMKF |= ∀x. A (B(•), x)→ B(x). Then, by induction on α ≤ ι, we prove that if

x ∈ Zα or ¬̇x ∈ Zα, thenMKF |= B(x).

For example, we consider the case x = l f y with ¬̇(l f y) ∈ Zα. Then, we must showMKF |= B(l f y).By the definition

of the operatorΦ, the crucial case is when α is the least successor ordinal such that ∀z. f z ∈
⋃
β<α Zβ∨¬̇( f z) ∈

⋃
β<α Zβ.

Thus, by the induction hypothesis, we obtainMKF |= ∀x. B( f z). Since B is A -closed, it follows thatMKF |= B(l f y).

The other cases are similarly proved by using subinduction on the construction of Zα. �

Remark 4.12. As Kahle remarks [24, p. 215], the modelMKF also satisfies the following principles:

(U-Tran) U(u) ∧ U(v)→ [T(v(ux))→ T(vx)].

(U-Dir) U(u) ∧ U(v)→ ∃w. U(w) ∧ u ⊏ w ∧ v ⊏ w.

(U-Nor) U(u)→ ∃ f . C( f ) ∧ u = l f .

(U-Lin) U(u) ∧ U(v)→ u ⊏ v ∨ v ⊏ u ∨ ∀x.x∈̇u↔ x∈̇v.

Therefore, Proposition 4.11 also verifies the consistency of KFUPI + (U-Tran) + (U-Dir) + (U-Nor) + (U-Lin).

4.4. Upper bound of KFUPI

In order to obtain the upper bound of KFUPI, we interpret the truth predicate of KFUPI as the least fixed point

of a non-monotone operator which is almost the same as Φ in Section 4.3. In the operator Φ, the truth condition of

¬̇(lbc) for a class b was characterised as the non-truth of c, where non-monotonicity concerns. That is why monotone

inductive operators are not enough to formalise MKF. Thus, we use the theory FID([POS,QF]) of non-monotone

inductive definition in [19].

Let L′ be an language of Peano arithmetic (PA) that contains symbols for all primitive recursive functions. Let

L′(X) be the extension ofL′ with a new unary predicate symbol x ∈ X. An operator formB(X, u) is anL′(X)-formula

in which at most one variable u occurs freely. We write B(A, u) as the result of replacing each occurrence of t ∈ X by

a formula A(t). An operator form B(X, u) is in POS if X occurs only positively in B; an operator form B(X, u) is in

QF if it contains no quantifier. We consider the particular operators A0 ∈ POS and A1 ∈ QF, which are defined below.

Then, the operator A is defined to be the following formula:

A(X, u) := A0(X, u) ∨ ([∀x. A0(X, x)→ x ∈ X] ∧ A1(X, u)).

Let the two-sorted languageLK be the extension of L′ with ordinal variables α, β, . . . , a binary relation symbol <

on the ordinals, and the binary relation symbol PA for the above operator A.

We shall use the following notations:

• Pα
A

(s) := PA(α, s),

3In fact, this ordinal ι is identical to the first recursively inaccessible ordinal, for the definition of which, see, e.g. [2].
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• P<α
A

(s) := ∃ξ < α. P
ξ

A
(s),

• PA(s) := ∃α. Pα
A

(s).

Definition 4.13. The LK -theory FID([POS,QF]) consists of PA with the full induction schema for LK and the fol-

lowing axioms:4

1. α ≮ α ∧ (α < β ∧ β < γ→ α < γ) ∧ (α < β ∨ α = β ∨ α > β).

2. (OP.1) Pα
A

(s)↔ P<α
A

(s) ∨ A(P<α
A
, s),

(OP.2) A(PA, s)→ PA(s).

3. [∀ξ. {∀η < ξ. A(η)} → A(ξ)]→ ∀ξ. A(ξ), for all LK -formulae A(α).

Based on [24, Section 5.2.2], we now formalise the closed total term model of KFUPI within FID([POS,QF]).

First, we define a translation ⋆ : L → L′. Fixing some Gödel-numbering, each closed term t is assigned the corre-

sponding natural number ptq; thus, the domain of CTT can be seen as a subset of N, which is expressed by some

arithmetical formula. Thus, the quantifier symbols are relativised to this formula. The translation App⋆ of the ap-

plication function is defined to be the standard Kleene bracket {x}(y), which returns the result of the partial recursive

function {x} at y if it has a value. Each constant symbol c is interpreted as a code e such that {e}(ptq) ≃ pctq for each

closed term t. Similarly, N⋆(x) is an arithmetical formula expressing that x is the code of a numeral, and an arithmeti-

cal formula x =⋆ y is true when x and y have the same reduct. Under this interpretation, every theorem of TON is

derivable in PA (cf. [7, Theorem 4.13]). Next, to expand ⋆ to the language LFS , we need to define the extension of

the truth predicate T.

We define the operator form A0(X, a) ∈ POS to be the disjunction of the following:

1. ∃b, c. a = (b=̇c) ∧ b = c

2. ∃b, c. a = ¬̇(b=̇c) ∧ b , c

3. ∃b. a = (Ṅb) ∧N(b)

4. ∃b. a = ¬̇(Ṅb) ∧ ¬N(b)

5. ∃b. a = ¬̇(¬̇b) ∧ b ∈ X

6. ∃b, c. a = (b∧̇c) ∧ b ∈ X ∧ c ∈ X

7. ∃b, c. a = ¬(b∧̇c) ∧ [¬̇b ∈ X ∨ ¬̇c ∈ X]

8. ∃b, c. a = (b→̇c) ∧ [¬̇b ∈ X ∨ c ∈ X]

9. ∃b, c. a = ¬̇(b→̇c) ∧ b ∈ X ∧ ¬̇c ∈ X

10. ∃ f . a = ∀̇ f ∧ ∀b. f b ∈ X

11. ∃ f . a = ¬̇(∀̇ f ) ∧ ∃b. ¬̇( f b) ∈ X

12. ∃ f . a = l f (0=̇0) ∧ ∀b. f b ∈ X ∨ ¬̇ f b ∈ X

Note that the last clause is given to record that f is a class at the stage. Next, let an operator form A1(X, a) ∈ QF be

the disjunction of the following:

1. ∃ f , b. a = l f b ∧ l f (0=̇0) ∈ X ∧ l f (Ṅ0) < X ∧ b ∈ X.

2. ∃ f , b. a = ¬̇(l f b) ∧ l f (0=̇0) ∈ X ∧ l f (Ṅ0) < X ∧ b < X.

It should be clear that A1 can be given as a quantifier-free formula. The condition that f is a class is now given by the

quantifier-free formula l f (0=̇0) ∈ X, so A1(X, a) can dispense with quantifier symbols. The condition l f (Ṅ0) < X is

used to ensure that every term of the form l f u or ¬̇(l f u) is simultaneously determined to be true or false at some stage

(see Lemma 4.14). Finally, the operator form A is defined, as explained above:

A(X, a) := A0(X, a) ∨ ([∀x. A0(X, x)→ x ∈ X] ∧ A1(X, a)).

To complete the definition of the translation ⋆, let T⋆(t) be PA(t), and U⋆(u) be ∃ f . u = l f ∧ ∀x.PA( f x) ∨ PA(¬̇( f x)).

Under the interpretation ⋆, we want to derive all the theorems of KFUPI in FID([POS,QF]). For that purpose, we use

the following lemma, which shows that when f is a class, l f b is determined to be true or false at some stage α, and

the truth value never changes at the later stages.

4In contrast to Jäger and Studer’s formulation of FID([POS,QF]) in [19], we now consider only one operator form A for simplicity.
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Lemma 4.14. We work in FID([POS,QF]).

Assume ∀x. PA( f x)∨PA(¬̇( f x)). Then, there exists an ordinal α such that Pα
A

(l f (Ṅ0))∧¬P<α
A

(l f (Ṅ0)). Furthermore,

for this α, we have the following:

1. ∀b. PA(l f b)↔ Pα
A

(l f b),

2. ∀b. PA(¬̇(l f b))↔ Pα
A

(¬̇(l f b)).

Proof. We assume that ∀x. PA( f x) ∨ PA(¬̇( f x)). Firstly, we prove PA(l f (Ṅ0)). For a contradiction, we suppose

¬PA(l f (Ṅ0)). Since (OP.2) implies that PA is closed under A0, we have PA(l f (0=̇0)). Again by (OP.2), it follows

that ∀a. A1(PA, a) → PA(a). Therefore, by the supposition ¬PA(l f (Ṅ0)), we obtain PA(l f (Ṅ0)), a contradiction.

Thus, PA(l f (Ṅ0)) is proved. By the transfinite induction schema, we also have an ordinal α such that Pα
A

(l f (Ṅ0)) ∧

¬P<α
A

(l f (Ṅ0)).

Next, we show PA(l f b) → Pα
A

(l f b). Note that the right-to-left direction is obvious. Since P<α
A

(0=̇0), it suffices to

consider the case b , (0=̇0). Now, we assume PA(l f b), and hence we can take a least β such that P
β

A
(l f b). Then, β

is clearly equal to α, and thus we have Pα
A

(l f b), as required. We can similarly verify the second item PA(¬̇(l f b)) ↔

Pα
A

(¬̇(l f b)). �

Lemma 4.15. For every LFS -formula A, if KFUPI ⊢ A, then FID([POS,QF]) ⊢ A⋆.

Proof. If A is an axiom of TON or (UG), we already have PA ⊢ A⋆. Thus, it suffices to deal with the axioms displayed

in Definition 3.3 and the schema (PI).

Compositional axioms in U. We consider the axiom (U∀) :

U⋆(u)→ ∀g. T⋆(u(∀̇g))↔ ∀x. T⋆(u(gx)).

Thus, we assume U⋆(u), so we can take a closed term f such that u = l f ∧ ∀x. PA( f x) ∨ PA(¬̇( f x)). By

Lemma 4.14, there exists an ordinal α such that Pα
A

(l f (Ṅ0)) ∧ ¬P<α
A

(l f (Ṅ0)). Moreover, for any closed term g,

we have:

PA(u(∀̇g))↔ Pα
A

(u(∀̇g)) (∵ Lemma 4.14)

↔ P<α
A

(∀̇g) (∵ def. of A)

↔ ∀x. P<α
A

(gx) (∵ P<α is A0-closed)

↔ ∀x. Pα
A

(u(gx)) (∵ def. of A)

↔ ∀x. PA(u(gx)). (∵ Lemma 4.14)

Therefore, we obtain ∀g. T⋆(u(∀̇g))↔ ∀x. T⋆(u(gx)). The other compositional axioms are similarly treated.

Consistency in U. We consider the axiom (U-Cons):

U⋆(u)→ ∀x. ¬[T⋆(ux) ∧ T⋆(u(¬̇x))].

As above, from the assumption U⋆(u), we take a closed term f such that u = l f ∧∀x.PA( f x)∨ PA(¬̇( f x)). Also,

we get an ordinal α such that Pα
A

(l f (Ṅ0)) ∧ ¬P<α
A

(l f (Ṅ0)). In order to get a contradiction, we further take any

closed term x such that PA(ux) and PA(u(¬̇x)). Then, Lemma 4.14 implies Pα
A

(ux) and Pα
A

(u(¬̇x)), and thus we

also have the inconsistency P<α
A

(x) ∧ ¬P<α
A

(x) by the definition of A1.

Structural properties of U. We consider the axiom (Lim):

C⋆( f )→ U⋆(l f ) ∧ ( f ⊏ l f )⋆.

We assume C⋆( f ), then U⋆(l f ) is clear from the definition. Thus, we show the translation of f ⊏ l f :

1. ∀x. PA( f x)→ PA(l f ( f x)),
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2. ∀x. PA(¬̇( f x))→ PA(l f (¬̇( f x))).

As to the first item, we take any x satisfying PA( f x), and show PA(l f ( f x)). By the assumption C⋆( f ), Lemma 4.14

implies that there exists a least α such that Pα
A

(l f (Ṅ0)). Thus, by the definition of A, it follows that ∀y. P<α
A

( f y)∨

P<α
A

(¬̇( f y)). By the consistency of PA, we obtain P<α
A

( f x). Therefore, we get Pα
A

(l f ( f x)), and thus PA(l f ( f x)).

The second item is similar.

The other structural axioms are similarly proved.

Propositon induction. The proof is almost the same as that of Proposition 4.11. �

Theorem 4.16. KFUPI and T0 are proof-theoretically equivalent.

Proof. The lower bound of KFUPI is given by Theorem 4.10. As for the upper bound, Lemma 4.15 showed that

KFUPI is proof-theoretically reducible to FID([POS,QF]), which is known to be proof-theoretically equivalent to T0

[19]. �

5. Frege structure by the Aczel-Feferman schema

In the present section, we consider another theory, PT, based on Aczel’s original Frege structure [1]. Since the

notion of propositions in PT is different from that in KF, we need to change the definition of proposition induction

slightly. Nevertheless, almost the same proof-theoretic analysis as for KFUPI can be applied to PT, and hence we

obtain the theory PTUPI, which is proof-theoretically equivalent to T0 (Theorem 5.7).

5.1. System PT and universes

Whereas KF is based on Strong Kleene logic, Aczel’s original Frege structure [1] is essentially based on Aczel–

Feferman logic, a variant of Weak Kleene logic which has the following truth tables:

¬

T F

U U

F T

∨ T U F

T T U T

U U U U

F T U F

∧ T U F

T T U F

U U U U

F F U F

→ T U F

T T U F

U U U U

F T T T

Note that while A ∨ B is definable as ¬(¬A ∧ ¬B),→ cannot be defined by ¬ and ∧.

Based on the truth table, the theory PT (proposition and truth) is defined as follows.

Definition 5.1 (cf. [11]). The LFS -theory PT has TON and (the universal closure of) the following axioms:

Compositional axioms.

• T(x=̇y)↔ x = y

• T(¬̇(x=̇y))↔ x , y

• T(Ṅx)↔ N(x)

• T(¬̇(Ṅx))↔ ¬N(x)

• T(¬̇(¬̇x))↔ T(x)

• T(x∧̇y)↔ T(x) ∧ T(y)

• T(¬̇(x∧̇y))↔ [T(¬̇x) ∧ T(¬̇y)] ∨ [T(¬̇x) ∧ T(y)] ∨ [T(x) ∧ T(¬̇y)]

• T(x→̇y)↔ [T(x) ∧ T(y)] ∨ T(¬̇x)

• T(¬̇(x→̇y))↔ [T(x) ∧ T(¬̇y)]

• T(∀̇ f )↔ ∀x. T( f x)

• T(¬̇(∀̇ f ))↔ [∀x. T( f x) ∨ T(¬̇( f x))] ∧ ∃x. T(¬̇( f x))
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Consistency.

• ¬[T(x) ∧ T(¬̇x)]

In Aczel’s Frege structure, propositions can be naturally characterised inductively. Recall the notation P(x) :=

T(x) ∨ T(¬̇x). Then, the following holds.

Lemma 5.2 (cf. [1]). PT derives the following:

1. P(x=̇y) ∧ P(Ṅx),

2. P(¬̇x)↔ P(x),

3. P(x∧̇y)↔ P(x) ∧ P(y),

4. P(x→̇y)↔ P(x) ∧ (T(x)→ P(y)),

5. P(∀̇ f )↔ ∀x. P( f x).

The proof-theoretic analysis of PT is found in, e.g., [3, 8, 17, 13]:

Fact 5.3. PT and EM have the same L-theorems.

Definition 5.4. The LFS -system PTU consists of TON and the following axioms:

Compositional axioms in U.

• U(u)→ ∀x, y. T(x=̇y)↔ x = y

• U(u)→ ∀x, y. T(x,̇y)↔ x , y

• U(u)→ ∀x. T(Ṅx)↔ N(x)

• U(u)→ ∀x. T(¬̇(Ṅx))↔ ¬N(x)

• U(u)→ ∀x. T(¬̇(¬̇x))↔ T(x)

• U(u)→ ∀x, y. T(x∧̇y)↔ T(x) ∧ T(y)

• U(u)→ ∀x, y. T(¬̇(x∧̇y))↔ [T(¬̇x) ∧ T(¬̇y)] ∨ [T(¬̇x) ∧ T(y)] ∨ [T(x) ∧ T(¬̇y)]

• U(u)→ ∀x, y. T(x→̇y)↔ [T(x) ∧ T(y)] ∨ T(¬̇x)

• U(u)→ ∀x, y. T(¬̇(x→̇y))↔ T(x) ∧ T(¬̇y)

• U(u)→ ∀ f . T(∀̇ f )↔ ∀x. T( f x)

• U(u)→ ∀ f . T(¬̇(∀̇ f ))↔ [∀x. T( f x) ∨ T(¬̇( f x))] ∧ ∃x. T(¬̇( f x))

Consistency in U.

• U(u)→ ∀x. ¬[T(x) ∧ T(¬̇x)]

Structural properties of U.

• U(u)→ C(u)

• U(u)→ ∀x. T(ux)→ T(x)

• C( f )→ U(l f ) ∧ f ⊏ l f

As far as the author knows, the system PTU has not been explicitly formulated in the literature, though Fujimoto

[14, pp. 933-935] formulated and analysed transfinite iterations of the truth theory DT, which is essentially PT formu-

lated over Peano arithmetic. Fujimoto’s proof can be adapted to the proof-theoretic analysis of PTU. As a result, we

obtain the following:

Corollary 5.5. PTU and EMU have the same L-theorems.
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5.2. PTU with proposition induction

In order to define the proposition induction for PT, we now use another operator A PT, which is based on the

inductive characterisation of propositions in Lemma 5.2. For each LFS -formula B and a free variable x, the formula

A
PT(B(•), x) is the disjunction of the following:

1. ∃y, z. x = (y=̇z) ∧ y = z

2. ∃y. x = (Ṅy) ∧ N(y)

3. ∃y. x = ¬̇y ∧ B(y)

4. ∃y, z. x = y∧̇z ∧ B(y) ∧ B(z)

5. ∃y, z. x = y→̇z ∧ B(y) ∧ [T(y)→ B(z)]

6. ∃g. x = ∀̇g ∧ ∀y. B(gy)

7. ∃ f , y. x = l f y ∧ ∀z. B( f z)

Then, the proposition induction schema (PIPT) is given by:

[∀x. A PT(B(•), x)→ B(x)]→ ∀x. P(x)→ B(x),

for all LFS -formulas B(x).

Definition 5.6. The LFS -theory PTUPI is PTU with the schemata (UG) and (PIPT).

As for the proof-theoretic strength of PTUPI, exactly the same lower-bound proof of Section 4.2 can be given in

PTUPI; thus, we have T0 ≤ PTUPI. Moreover, Kahle’s model construction in Section 4.3 and, thus, the upper-bound

proof of KFUPI in Section 4.4 are easily modified for PTUPI. As a result, we also obtain the upper bound.

Theorem 5.7. PTUPI and T0 are proof-theoretically equivalent.

6. Extension by least universes

In Sections 4 and 5, we extended theories of Frege structure by using the induction principle on propositions,

in analogy with name induction in [21]. In the same paper, Jäger, Kahle and Studer further proposed the idea of

least universes, based on which they formulated the theory LUN. As LUN is proof-theoretically equivalent to T0 [21,

Conclusion 25], we can expect to obtain a strong theory of Frege structure by requiring some kind of leastness on

universes. In fact, Burgess [4] proposed a truth theory KFµ with impredicative strength, in which the truth predicate

is intended to denote the least fixed point of the Kripke operator. Therefore, in this section, we aim to extend KF by

least universes.

In Kahle’s modelMKF in Section 4.3, each universe of the form l f reflects a class f and is a fixed point of the

Kripke operator. Thus, one could naturally introduce leastness by defining a universe l f as the least set that reflects

f and is closed under the Kripke operator.5 However, we can easily observe that universes so defined violate natural

structural properties in Remark 4.12, similar to [21, Theorem 14]. This means that such universes are incompatible

withMKF. To make matters worse, these universes are not generally fixed points of the Kripke operator, so they do not

sufficiently serve as truth predicates. This definition of leastness does not capture universes inMKF because universes

in MKF may contain other small universes. Therefore, in order to define a least universe l f compatible with MKF,

we also need to accommodate smaller universes lg such that lg ⊏ l f holds. Taking these into consideration, we shall

define the least universe l f for a class f as the least set that reflects f and other smaller universes, and is closed under

the Kripke operator. In addition, to get a strong system, we characterise least universes in terms of proposition as in

Lemma 4.1, rather than truth.

Let Cl f (x) := ∀y. Pl f (xy) := ∀y. T(l f (xy)) ∨ T(l f (¬̇(xy))). Thus, this means that x is a class within l f . Then, for

each term f , LFS -formula B and a free variable x, the formula A LU( f , B(•), x) is defined to be the disjunction of the

following:

5In LUN, the least universe lt(a) for a name a is defined to be the least set that contains a and is closed under the set constructions of EMU.
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1. ∃y, z. x = (y=̇z) ∧ y = z

2. ∃y. x = (Ṅy) ∧ N(y)

3. ∃y. x = ¬̇y ∧ B(y)

4. ∃y, z. x = (y∧̇z) ∧ {[B(y) ∧ B(z)] ∨ [B(y) ∧ T(l f (¬̇y))] ∨ [B(z) ∧ T(l f (¬̇z))]}

5. ∃y, z. x = (y→̇z) ∧ {[B(y) ∧ B(z)] ∨ [B(y) ∧ T(l f (¬̇y))] ∨ [B(z) ∧ T(l f z)]}

6. ∃g. x = (∀̇g) ∧ {[∀y. B(gy)]∨ ∃y. B(gy) ∧ T(l f (¬̇(gy))}

7. ∃y. x = f y

8. ∃g, y. x = lgy ∧ Pl f (x)

The least universe schema (LU) is given by:

[C( f ) ∧ ∀x. A LU( f , B(•), x)→ B(x)]→ ∀x. Pl f (x)→ B(x), (LU)

for all LFS -formulas B(x).

Definition 6.1. The LFS -theory KFLU is KFU with the schemata (UG) and (LU).

As an immediate consequence of the definition, we can show that each least universe is closed under the operator

A
LU :

Corollary 6.2. KFLU ⊢ C( f ) → ∀x. A LU( f , Pl f (•), x)→ Pl f (x).

For the lower bound of KFLU, we can interpret T0 into KFLU using the same translation as for KFUPI. Moreover,

the proof is almost the same as for KFUPI, except that Lemmata 4.8 and 4.9 for the derivation of (IG.2)′ are now

replaced by the following lemmata:

Lemma 6.3. For any LFS -formula A, recall that BA(u, v,w) is the formula ∀x. T(acc(u, v)x)→ FA(u, v,w, x), where

FA(u, v,w, x) is the conjunction of the following formulas:

1. w = t(u, v, x) → A(x),

2. ∀z. w = {(⊕(u, v)(1, (z, x)))→̇t(u, v, z)} → T(⊕(u, v)(1, (z, x)))→ A(z),

3. ∀z. w = {⊕(u, v)(0, z)→̇(⊕(u, v)(1, (z, x))→̇t(u, v, z))} → T(⊕(u, v)(0, z))→ T(⊕(u, v)(1, (z, x)))→ A(z).

Then, KFLU derives the following:

C(u) ∧ C(v) ∧ Closed′(u, v, A(•))→ ∀w. A LU(⊕(u, v), BA(u, v, •),w)→ BA(u, v,w).

Lemma 6.4. KFUPI derives the following:

C(a) ∧ C(b) ∧ Closed(a, b, A)→ ∀x. T(acc(a, b)x)→ A(x).

Proof. We assume C(a),C(b),Closed(a, b, A) and T(acc(a, b)c) for an arbitrary c. Then, we have to derive A(c).

From the assumptions and Lemma 6.3, we obtain C(l(⊕(a, b))) and ∀w. A LU(⊕(u, v), BA(u, v, •),w) → BA(u, v,w).

Thus, (LU) yields:

∀x. Pl(⊕(a,b))(x)→ BA(a, b, x).

Letting x := t(a, b, c), we want to show Pl(⊕(a,b))(t(a, b, c)), from which we have BA(a, b, t(a, b, c)), and thus we can

immediately obtain the conclusion A(c) by the assumption T(acc(a, b)c) and the definition of BA.

In order to prove Pl(⊕(a,b))(t(a, b, c)), it suffices to derive the following:

∀y. T(⊕(a, b)(0, y))→ T(⊕(a, b)(1, (y, c)))→ T(l(⊕(a, b))(t(a, b, y))). (4)

In fact, this formula implies T(l(⊕(a, b))(t(a, b, c))) and Pl(⊕(a,b))(t(a, b, c)), because ⊕(a, b) is a class within l(⊕(a, b)).

However, the formula (4) follows from the assumption T(acc(a, b)c). �

As for the upper bound, we can interpret KFLU into FID([POS,QF]) in a similar manner as for KFUPI. So, we

only observe that the schema (KFLU) is satisfied inMKF.
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Proposition 6.5. MKF |= KFLU.

Proof. By Proposition 4.11, we concentrate on the schema (LU):

[C( f ) ∧ ∀x. A LU( f , B(•), x)→ B(x)]→ ∀x. Pl f (x)→ B(x).

So, we take any class f and assume thatMKF |= ∀x. A LU( f , B(•), x)→ B(x). Now, we prove by induction on α that

if x ∈ Zα or ¬̇x ∈ Zα, then B(x).

For example, consider the case where x is of the form lgy. Then, since B is A LU-closed, it follows that B(lgy). The

other cases are shown by the subinduction on the construction of Zα (cf. Proposition 4.11). �

In conclusion, we obtain the proof-theoretic strength of KFLU :

Theorem 6.6. KFLU and T0 are proof-theoretically equivalent.

Similarly to KFLU, we can also consider least universes for PT. As for the Aczel-Feferman schema, we can

naturally characterise least universes in terms of truth only; thus, we define an operator A PTLU as follows: For each

term f , LT-formula B and a free variable x, the formula A PTLU( f , B(•), x) is the disjunction of the following:

1. ∃y, z. x = (y=̇z) ∧ y = z

2. ∃y, z. x = (¬̇(y=̇z)) ∧ y , z

3. ∃y. x = (Ṅy) ∧ N(y)

4. ∃y. x = (¬̇(Ṅy)) ∧ ¬N(y)

5. ∃y. x = ¬̇(¬̇y) ∧ B(y)

6. ∃y, z. x = (y∧̇z) ∧ B(y) ∧ B(z)

7. ∃y, z. x = (¬̇(y∧̇z)) ∧ {[B(¬̇y) ∧ B(¬̇z)] ∨ [B(y) ∧ B(¬̇z)] ∨ [B(¬̇y) ∧ B(z)]}

8. ∃y, z. x = (y→̇z) ∧ [T(l f y) ∨ T(l f (¬̇y))] ∧ [T(l f (y))→ B(z)]

9. ∃y, z. x = (¬̇(y→̇z)) ∧ B(y) ∧ B(¬̇z)

10. ∃g. x = (∀̇g) ∧ ∀y.B(gy)

11. ∃g. x = (¬̇(∀̇g)) ∧ [∀y.B(gy)∨ B(¬̇(gy))]∧ ∃y.B(¬̇(gy))

12. ∃y. [x = f y ∨ x = ¬̇( f y)] ∧ T(x)

13. ∃g, y. [x = lgy ∨ x = ¬̇(lgy)] ∧ T(l f x)

The least universe schema (LUPT) is given by:

[C( f ) ∧ ∀x. A PTLU( f , B(•), x)→ B(x)]→ ∀x. T(l f x)→ B(x), (LUPT)

for all LFS -formulas B(x).

Thus, the schema (LUPT) informally says that T(l f x) is the least truth set satisfying each clause of A PTLU.

Definition 6.7. The LFS -theory PTLU is PTU with the schemata (UG) and (LUPT).

In exactly the same way as for KFLU, we can determine the proof-theoretic strength of PTLU:

Theorem 6.8. PTLU and T0 are proof-theoretically equivalent.

7. Frege structure by the supervaluation schema

In this section, we consider the supervaluational Frege structure. Kripke initially sketched a semantic theory of

truth based on the supervaluation schema [28, p. 711]. Based on Kripke’s semantic definition, Cantini [5] defined

and studied a formal theory VF (van Fraassen) over Peano arithmetic. In particular, Cantini [5] proved that VF is

proof-theoretically equivalent to the theory ID1 of arithmetical monotone inductive definition. In [7, 23], the system

VF as a theory of Frege structure is formulated and found to be proof-theoretically equivalent to the one over Peano

arithmetic. For future research, Kahle [23, p. 124] suggested extending VF by adding universes, similar to KFU and

PTU. Given that KFU is roughly a transfinite iteration of KF, it is natural to expect VF with universes to have the

strength of a transfinite iteration of VF. Thus, Kahle conjectured that such a theory would have at least the strength of

IDα for some ordinal α (cf. [23, 25]). The purpose of this section is to implement the idea of universes for VF and to

verify Kahle’s conjecture. In particular, we will show that VF with universes is proof-theoretically equivalent to T0.
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7.1. System VF and universes

In this section, we add a constant symbol Ṫ to LFS for technical reasons (see Remark 7.2). Following [23, 24],

we inductively define a corresponding term Ȧ for each formula A.

•

˙︷︸︸︷
s = t := (s=̇t),

˙︷︸︸︷
N(s) := Ṅs,

˙︷︸︸︷
T(s) := Ṫs;

•

˙︷︸︸︷
¬A := ¬̇Ȧ,

˙︷︸︸︷
A ∧ B := Ȧ∧̇Ḃ,

˙︷ ︸︸ ︷
A→ B := Ȧ→̇Ḃ;

•

˙︷︸︸︷
∀x. A := ∀̇(λx.Ȧ).

Then, we define the LFS -theory VF, the formulation of which is essentially based on [5, 7, 23].

Definition 7.1. The LFS -theory VF consists of TON and the following axioms:

(T-Out) T(Ȧ)→ A;

(T-Elem) P→ T(Ṗ), for any L-literal formula P;

(T-Imp) T(
˙︷ ︸︸ ︷

A→ B)→ (T(Ȧ)→ T(Ḃ));

(T-Univ) (∀x. T(Ȧ))→ T(
˙︷︸︸︷
∀x. A);6

(T-Log) T(Ċ) for any logical theorem C;

(T-Cons) ¬[T(x) ∧ T(¬̇x)];

(T-Self) [T(x)↔ T(Ṫx)] ∧ [T(¬̇x)↔ T(¬̇(Ṫx))].

Here, A and B are any LFS -formulas.

Remark 7.2. In Kahle’s formulation of VF (called SON in [23]), the constant Ṫ is defined to be an identity function

λx.x, so Ṫs is β-equivalent to s itself. Consequently, the axiom (T-Self) becomes trivial [23, pp. 111-112]. While

this definition is not problematic in KF (Definition 3.1) and PT (Definition 5.1), it causes a contradiction in VF. In

fact, for every LFS -sentence A, we have T(Ȧ∨̇(¬̇Ȧ)) by (T-Log), which is, according to Kahle’s definition, equivalent

to T((ṪȦ)∨̇(Ṫ(¬̇Ȧ))). Therefore, (T-Out) implies T(Ȧ) ∨ T(¬̇Ȧ). However, it is well known that VF with the schema

T(Ȧ) ∨ T(¬̇Ȧ) is inconsistent (see, e.g., [12]). That is the reason we explicitly introduced the constant Ṫ and instead

required the axiom (T-Self).

As is often said, VF has a non-compositional nature, and thus, it is not suitable for the inductive characterisation of

proposition or truth, unlike KF and PT.7 Alternatively, we show in the next subsection that simply adding the axiom

(Lim) (Definition 3.3) to the universe-relative version of VF gives the same strength as T0. So, analogously to KFU

and PTU, we propose the system VFU.

Recall that C( f ) :≡ ∀x. T( f x) ∨ T(¬̇( f x)).

Definition 7.3. The LFS -theory VFU consists of TON and the following axioms:

VF-axioms in U.

(U-Out) U(u)→ [T(u(Ȧ))→ A];

(U-Elem) U(u)→ [P→ T(u(Ṗ))], for any L-literal formula P;

6One might prefer the single axiom (∀x.T( f x)) → T(∀̇ f ) similarly to (K∀) in Definition 3.1. The reason the author choses the schematic form

is just to simplify the upper-bound proof in Section 7.4. Nevertheless, the author believes that this single axiom does not affect the proof-theoretic

strength of both VF and VFU (Definition 7.3).
7Note that Stern’s supervaluation-style truth [32] is an attempt to overcome this difficulty of VF.
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(U-Imp) U(u)→ [T(u(
˙︷ ︸︸ ︷

A→ B))→ {T(uȦ)→ T(uḂ)}];

(U-Univ) U(u)→ [{∀x. T(u(Ȧ))} → T(u(
˙︷︸︸︷
∀x. A))];

(U-Log) U(u)→ T(u(Ċ)) for any logical theorem C;

(U-Cons) U(u)→ ∀x. ¬[T(ux) ∧ T(u(¬̇x))];

(U-Self) U(u)→ [T(ux)↔ T(u(Ṫx))] ∧ [T(u(¬̇x))↔ T(u(¬̇(Ṫx)))];

Here, A and B are any LFS -formulas.

Structural properties of U.

(U-Class) U(u)→ C(u);

(U-True) U(u)→ ∀x. T(ux)→ T(x);

(Lim) C( f )→ U(l f ) ∧ f ⊏ l f .

Similarly to Fact 3.4, we can prove the following:

Lemma 7.4. VF is a subtheory of VFU.

7.2. Lower bound of VFU

In this subsection, we determine the lower bound of VFU. The proof proceeds in a similar way as for KFUPI and

PTUPI. Thus, we define a translation ′ : LEM → LFS . The interpretation ofL is exactly the same as in Theorem 4.10.

Each generator of T0 is interpreted as a term of LFS . In particular, the interpretation of the inductive generation i is

essentially a generalisation of Cantini’s original lower-bound proof of VF [5, 7].

The following two lemmata are essentially by way of [7, Lemma 59.2].

Lemma 7.5. An LFS -formula A is T-positive if each truth predicate T in A occurs only positively. Then, for every

T-positive LFS -formula A,

VFU ⊢ T(Ȧ)↔ A.

Lemma 7.6. In VFU, the following are derivable:

1. T(Ȧ) ∧ T(Ḃ)↔ T(
˙︷︸︸︷

A ∧ B);

2. T(Ȧ) ∨ T(Ḃ)→ T(
˙︷︸︸︷

A ∨ B);

3. (T(Ȧ) ∨ T(
˙︷︸︸︷
¬A ))→ [{T(Ȧ)→ T(Ḃ)} ↔ T(

˙︷ ︸︸ ︷
A→ B)];

4. [∀x. T(Ȧ)]↔ T(
˙︷︸︸︷
∀xA );

5. [∃x. T(Ȧ)]→ T(
˙︷︸︸︷
∃xA );

6. [T(a) ∨ T(¬̇a)]→ [¬T(Ṫa)↔ T(¬̇(Ṫa))].

Using these lemmata, VFU can interpret each generator except i. Here, as an example, we only deal with join j,

but the other generators can be similarly treated.

Lemma 7.7. Let a term j be such that j(x, f ) = λz.
˙︷                                      ︸︸                                      ︷

∃v,w. z = (v,w) ∧ T(xv) ∧ T(fvw). Then, VFU ⊢ (join)′, that is,

VFU ⊢ C(x) ∧ [∀y. T(xy)→ C( f y)]→ C(j(x, f )) ∧ Σ
′

(x, f , j(x, f )),

where, Σ
′

(x, f , j(x, f )) is the following:

∀z. T(j(x, f )z)↔ ∃v,w. z = (v,w) ∧ T(xv) ∧ T( f vw).

Therefore, the term j interprets the join axiom in VFU, where recall that R(x) and x ∈ y are interpreted as C(x) and

T(yx), respectively.
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Proof. Suppose that C(x) and ∀y(T(xy)→ C( f y)). As the second conjunct is obvious from Lemma 7.5, we show that

C(j(x, f )). Take any z and assume that ¬T(j(x, f )z), then T(¬̇(j(x, f )z)) is derived with the help of Lemma 7.6:

¬T(
˙︷                                      ︸︸                                      ︷

∃v,w. z = (v,w) ∧ T(xv) ∧ T(fvw))

=⇒ ¬∃v,w. T(
˙︷                             ︸︸                             ︷

z = (v,w) ∧ T(xv) ∧ T(fvw))

⇐⇒ ¬∃v,w. T(z = (v,w)) ∧ T(xv) ∧ T(fvw)

⇐⇒ ∀v,w. ¬T(z = (v,w)) ∨ ¬T(xv) ∨ ¬T(fvw)

⇐⇒ ∀v,w. T(¬̇(z=̇(v,w))) ∨ T(¬̇(xv)) ∨ T(¬̇(fvw))

=⇒ ∀v,w. T(¬̇(Ṫ(z=̇(v,w)))) ∨ T(¬̇(Ṫ(xv))) ∨ T(¬̇(Ṫ(fvw)))

=⇒ ∀v,w. T(
˙︷                                      ︸︸                                      ︷

¬(T(z = (v,w)) ∧ T(xv) ∧ T(fvw)))

⇐⇒ T(¬̇(j(x, f )z)).

�

To complete the interpretation of T0, we have to give the interpretation of inductive generation i. We define i as

the following term acc :

acc(a, b) := λz.
˙︷     ︸︸     ︷

T I[a, b, z], where

WF[a, b, f ] := ∀x. T(ax)→ [∀y. T(ay)→ T(b(y, x))→ T(la,b( f y))]→ T(la,b( f x));

T I[a, b, z] := T(az) ∧ ∀ f . WF[a, b, f ]→ T(la,b( f z)).

The term la,b is defined below. Informally speaking, acc(a, b) is the intersection of every set f that includes the

<b-accessible part of a.

Lemma 7.8. For each class u and v, we can take a universe lu,v that reflects on both u and v. That is,

VFU ⊢ ∀u, v. C(u) ∧ C(v)→ [U(lu,v) ∧ u ⊏ lu,v ∧ v ⊏ lu,v].

Proof. Take any classes u and v. We define a term ⊕ to be such that u ⊕ v = λx.
˙︷                                           ︸︸                                           ︷

N((x)0)→ T(dN(u(x)1)(v(x)1)((x)0)0)

and let lu,v := l(u ⊕ v). First, to show that lu,v is a class, we prove that u ⊕ v is a class. Thus, taking any object x, we

prove that (u ⊕ v)x is a proposition. If ¬N((x)0), we have T(
˙︷                                           ︸︸                                           ︷

N((x)0)→ T(dN(u(x)1)(v(x)1)((x)0)0)), hence P((u ⊕ v)x).

Thus, we can assume N((x)0). If (x)0 = 0, then we have dN(u(x)1)(v(x)1)((x)0)0 = u(x)1. As u is a class, (u ⊕ v)x is a

proposition, as required. Similarly, if (x)0 , 0, then dN(u(x)1)(v(x)1)((x)0)0 = v(x)1, and thus (u⊕ v)x is a proposition.

Thus, in any case, (u⊕ v)x is a proposition. Therefore, u⊕ v is a class, and thus (Lim) yields that lu,v is a class. Second,

we show that u ⊏ lu,v. For an arbitrary object x, assume T(ux). Then, since (u ⊕ v)(0, x) =
˙︷           ︸︸           ︷

N(0)→ T(ux), it follows

that T((u⊕v)(0, x)); thus, we obtain T(lu,v((u⊕v)(0, x))),which, by (U-Log), (U-Imp), and (U-Self), implies T(lu,v(ux)).

Similarly, T(¬̇(ux)) implies T(lu,v(¬̇(ux))). Thus, the conclusion u ⊏ lu,v is obtained. In the same way, we also have

v ⊏ lu,v. �

Lemma 7.9. 1. VFU ⊢ C(a) ∧ C(b)→ C(acc(a, b));

2. VFU ⊢ C(a) ∧ C(b)→ Closed′(a, b, acc(a, b));

3. VFU ⊢ C(a) ∧ C(b) ∧ Closed′(a, b, A(•))→ ∀x. T(acc(a, b)x)→ A(x), for each LFS -formula A.

Proof. We assume that C(a) and C(b).

1. Take any z; then we have to prove P(acc(a, b)z). Therefore, supposing¬T(acc(a, b)z),we show T(¬̇(acc(a, b)z)).

For that purpose, we prove that WF[a, b, f ] is a proposition for any f . First, by repeated use of Lemma 7.6, we

observe that
˙︷                                         ︸︸                                         ︷

∀y. T(ay)→ T(b(y, x))→ T(la,b(fy)) is a proposition:
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¬T(
˙︷                                         ︸︸                                         ︷

∀y. T(ay)→ T(b(y, x))→ T(la,b(fy)))

⇐⇒ ¬∀y. T(
˙︷                                    ︸︸                                    ︷

T(ay)→ T(b(y, x))→ T(la,b(fy)))

⇐⇒ ¬∀y. T(
˙︷︸︸︷

T(ay))→ T(
˙︷                       ︸︸                       ︷

T(b(y, x))→ T(la,b(fy)))

⇐⇒ ¬∀y. T(
˙︷︸︸︷

T(ay))→ T(
˙︷     ︸︸     ︷

T(b(y, x)))→ T(
˙︷     ︸︸     ︷

T(la,b(fy)))

⇐⇒ ∃y. T(
˙︷︸︸︷

T(ay)) ∧ T(
˙︷     ︸︸     ︷

T(b(y, x))) ∧ ¬T(
˙︷     ︸︸     ︷

T(la,b(fy)))

⇐⇒ ∃y. T(
˙︷︸︸︷

T(ay)) ∧ T(
˙︷     ︸︸     ︷

T(b(y, x))) ∧ T(
˙︷       ︸︸       ︷

¬T(la,b(fy)))

⇐⇒ ∃y. T(
˙︷                                         ︸︸                                         ︷

¬(T(ay)→ T(b(y, x))→ T(la,b(fy))))

=⇒ T(
˙︷                                            ︸︸                                            ︷

¬∀y. T(ay)→ T(b(y, x))→ T(la,b(fy))).

Therefore, it follows that WF[a, b, f ] is a proposition:

¬T(
˙︷        ︸︸        ︷

WF[a, b, f ])

⇐⇒ ¬∀x. T(
˙︷                                                                           ︸︸                                                                           ︷

T(ax)→ [∀y. T(ay)→ T(b(y, x))→ T(la,b(fy))]→ T(la,b(fx)))

⇐⇒ ¬∀x. T(
˙︷︸︸︷

T(ax))→ T(
˙︷                                                              ︸︸                                                              ︷

[∀y. T(ay)→ T(b(y, x))→ T(la,b(fy))]→ T(la,b(fx)))

⇐⇒ ∃x. T(
˙︷︸︸︷

T(ax)) ∧ ¬T(
˙︷                                                              ︸︸                                                              ︷

[∀y. T(ay)→ T(b(y, x))→ T(la,b(fy))]→ T(la,b(fx)))

⇐⇒ ∃x. T(
˙︷︸︸︷

T(ax)) ∧ T(
˙︷                                                               ︸︸                                                               ︷

[∀y. T(ay)→ T(b(y, x))→ T(la,b(fy))] ∧ ¬T(la,b(fx)))

⇐⇒ ∃x. T(
˙︷                                                                          ︸︸                                                                          ︷

T(ax) ∧ [∀y. T(ay)→ T(b(y, x))→ T(la,b(fy))] ∧ ¬T(la,b(fx)))

=⇒ T(
˙︷          ︸︸          ︷

¬WF[a, b, f ]).

Using this, we can similarly get T(¬̇(acc(a, b)z)) from ¬T(acc(a, b)z).

2. Assume that T(ax) and ∀y[T(ay)→ (T(b(y, x))→ T(acc(a, b)y))]; then we want to derive T(acc(a, b)x):

T(
˙︷                                ︸︸                                ︷

∀ f . WF[a, b, f ]→ T(la,b(fx)))

⇐⇒ ∀ f . T(
˙︷                          ︸︸                          ︷

WF[a, b, f ]→ T(la,b(fx)))

⇐⇒ ∀ f . T(
˙︷        ︸︸        ︷

WF[a, b, f ])→ T(
˙︷     ︸︸     ︷

T(la,b(fx))).

To show the last formula, we take any f and suppose T(
˙︷        ︸︸        ︷

WF[a, b, f ]). Then, we need to derive T(
˙︷     ︸︸     ︷

T(la,b(fx))).

By the assumption, for any y such that T(ay) and T(b(y, x)) we have T(acc(a, b)y). Thus, the supposition

T(
˙︷        ︸︸        ︷

WF[a, b, f ]) implies that T(
˙︷     ︸︸     ︷

T(la,b(fy))). As y is arbitrary, this implies that T(
˙︷                                         ︸︸                                         ︷

∀y. T(ay)→ T(b(y, x))→ T(la,b(fy))).

Combining this with the assumption T(ax), the desired conclusion T(
˙︷     ︸︸     ︷

T(la,b(fx))) follows from T(
˙︷        ︸︸        ︷

WF[a, b, f ]).

3. Take any x and assume that Closed′(a, b, A(•)) and T(acc(a, b)x); we show A(x). Let A′(x) := Closed′(a, b, A(•))→

A(x), then we easily have Closed′(a, b, A′(•)) by logic. Thus, in VFU, we also obtain T(la,b(
˙︷                   ︸︸                   ︷

Closed′(a, b,A′(•)))).
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Next, we can derive Closed′(a, b,T(la,b(A′(•)))) in the following way:

T(la,b(
˙︷                   ︸︸                   ︷

Closed′(a, b,A′(•))))

=⇒ ∀x. T(la,b(
˙︷︸︸︷

T(ax)))→ T(la,b(
˙︷                                   ︸︸                                   ︷

∀y. T(ay)→ T(b(y, x))→ A′(y)))→ T(la,b(
˙︷︸︸︷

A′(x)))

⇐⇒ ∀x. T(ax)→ T(la,b(
˙︷                                   ︸︸                                   ︷

∀y. T(ay)→ T(b(y, x))→ A′(y)))→ T(la,b(
˙︷︸︸︷

A′(x)))

⇐⇒ ∀x. T(ax)→ [∀y. T(la,b(
˙︷                              ︸︸                              ︷

T(ay)→ T(b(y, x))→ A′(y)))]→ T(la,b(
˙︷︸︸︷

A′(x)))

⇐⇒ ∀x. T(ax)→ [∀y. T(ay)→ T(b(y, x))→ T(la,b(
˙︷︸︸︷

A′(y) ))]→ T(la,b(
˙︷︸︸︷

A′(x))).

Letting f := λx.
˙︷︸︸︷

A′(x) , the assumption T(acc(a, b)x) implies in VFU the formula Closed′(a, b,T(la,b(A′(•))))→

T(la,b(
˙︷︸︸︷

A′(x))). Therefore, we obtain T(la,b(
˙︷︸︸︷

A′(x))), which yields A′(x) by (U-Out). Finally, combining this with

the assumption Closed′(a, b, A(•)), the conclusion A(x) follows. �

Theorem 7.10. For eachLFS -sentence A, if T0 ⊢ A, then VFU ⊢ A′. In particular, every L-theorem of T0 is derivable

in VFU.

7.3. Truth-as-provability interpretation of VFU

In this subsection, we give a model of VFU by generalising Cantini’s truth-as-provability interpretation for VF

[5, 7], which is formalisable in a suitable set theory, and thus the upper-bound of VFU is obtained (see subsection 7.4).

The idea of our truth-as-provability interpretation is that the truth predicate T(x) is intepreted as the derivability of x

in the indexed infinitary sequent calculus, as is displayed on the table below. Then, each axiom of VFU is shown to

be true under this interpretation. Here, a sequent Γ is a finite set of closed terms, each of which is β-equivalent to Ȧ

for some sentence A. To present the system in the form of Tait calculus, we consider only negation normal sentences.

Therefore, the negation symbol ¬ may come only in front of atomic sentences, and then the global negation ¬A

becomes a defined expression with the help of De Morgan’s law. Note that the conditional A → B is defined by

¬A ∨ B. For simplicity, we do not distinguish terms which have the same reduct, thus we can suppose that every

term is of the form Ȧ for some negation normal sentence A. For readability, we often simply write A instead of Ȧ.

Moreover, since we also consider terms of the form lab, it is useful to treat them as if they were sentences. Thus, we

introduce a new binary predicate symbol Lx(y) and we let
˙︷︸︸︷

La(b) := lab. Similarly, let
˙︷ ︸︸ ︷

¬La(b) := ¬̇(lab).

Next, we explain the calculus in more detail. In the calculus, the predicate
α,β,γ

Γ means that Γ is derived in the

system with the U-rank α, the T-rank, and the derivation length γ. We introduce several notations:

•

α
Γ means

α,β,γ
Γ for some α, β, γ;

•

<α
Γ means

α0

Γ for some α0 < α;

•

α,β
Γ means

α,β,γ
Γ for some γ;

•

α,β,<γ
Γ means

α,β,γ0

Γ for some γ0 < γ;

•

α,<β,<γ
Γ means

α,β0,γ0

Γ for some β0 < β and γ0 < γ;

•

≤α,≤β,≤γ
Γ means

α0 ,β0,γ0

Γ for some α0 ≤ α, β0 ≤ β and γ0 ≤ γ;

• Γ means
α
Γ for some α;

• if ¬ comes to the left of one of the above expressions, it negates the whole expression. For example, ¬ Γ

means that it is not the case that Γ.
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Under these conventions, each rule is explained as follows. The rule (Lit) says that an L-literal P that is true

in the closed term model CTT is derivable. The rules (Log), (∧), (∨)i, (∃), (∀) are given similarly to the standard

sequent calculus. In particular, (∀) has infinitely many premises for each closed term a. The rules (T) and (¬T)

respectively introduce T and ¬T, with an increase in the T-rank. Note that the context of the premise of (T) and (¬T)

must be empty; otherwise, the system would be inconsistent according to the liar paradox. The rule (Weak) assures

the monotonicity of the derivability with respect to the U-rank. Similarly to the operator Φ inMKF, the rules (U) and

(¬U) have the side condition †, which consists of the following conditions. First, α needs to be a successor ordinal

(cf. the operator Φ inMKF). Thanks to this condition, we can assure that
<α

is closed under (Lit), (Log), (∧), (∨)i,

(∃) and (∀). In particular, if
<α

Γ, A(b) for all b, then
<α

Γ,∀x. A(x) holds. Second, a must satisfy the following:

<α
ac or

<α
¬̇(ac) holds for all closed terms c.

Thus, it roughly says that a is a class, provably in
<α

. We express this property as
<α

a : Class. The third condition

is that neither La(b) nor ¬La(b) are derived in
<α

:

¬
<α

La(b), and ¬
<α
¬La(b).

Thus, it roughly says that La(b) is not a proposition in
<α

. We express this as ¬
<α

La(b) : Prop.

Table 2: Sequent system
α,β,γ

CTT |= P
α,β,γ

Γ, P
(Lit)

α,β,γ
Γ,T(a),¬T(a)

(Log)

α,β,<γ
Γ, A0 ∧ A1, A0

α,β,<γ
Γ, A0 ∧ A1, A1

α,β,γ
Γ, A0 ∧ A1

(∧)

α,β,<γ
Γ, A0 ∨ A1, Ai (i ≤ 1)

α,β,γ
Γ, A0 ∨ A1

(∨)i

α,β,<γ
Γ,∃x. A(x), A(a)

α,β,γ
Γ,∃x. A(x)

(∃)

α,β,<γ
Γ,∀x. A(x), A(a), for all a

α,β,γ
Γ,∀x. A(x)

(∀)

α,<β,<γ
A

α,β,γ
Γ,T(Ȧ)

(T)

α,<β,<γ
¬A

α,β,γ
Γ,¬T(Ȧ)

(¬T)

<α
Γ

α,β,γ
Γ

(Weak)

<α
b

α,β,γ
Γ,La(b)

(U)†
¬

<α
b

α,β,γ
Γ,¬La(b)

(¬U)†

By transfinite induction, we easily obtain the following:

Lemma 7.11. (Consistency) The empty sequent is not derivable: ¬ ∅.

(Weakening) If
≤α,≤β,≤γ

Γ, then
α,β,γ

Γ, ∆.
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We now show the cut-admissibility of the calculus. For a formula A, the logical complexity co(A) is defined as

usual: if P is any literal of L ∪ {T(x),Lx(y)}, then co(P) := 0; co(A ∧ B) := co(A ∨ B) := max(co(A), co(B)) + 1;

co(∀x.A(x)) := co(∃x.A(x)) := co(A(x)) + 1.

Lemma 7.12 (Cut-admissibility). If
α,β,γ

Γ, A and
δ,ε,ζ

∆,¬A, then
max(α,δ)

Γ, ∆.

Proof. We show the claim by septuple induction on α, δ, β, ε, co(A), γ, and ζ. The case where either Γ, A or ∆,¬A

is obtained by (Weak) is clear by the induction hypothesis. Thus, we can rule out such a case. If A or ¬A is not

principal in the last rule, then the conclusion follows by the induction hypothesis. For example, assume that ∆,¬A is

derived by (∀) from the premises
δ,ε,ζa

∆a,¬A with ζa < ζ for all closed terms a, then the induction hypothesis yields
max(α,δ)

Γ, ∆a. Then, (∀) derives
max(α,δ)

Γ, ∆, as required.

Finally, we consider the case where both A and ¬A are principal. The inductive case co(A) > 0 is proved by a

standard cut-elimination argument (cf. [7, Theorem 62.1]). Thus, we confine ourselves to the base cases A ≡ T(Ḃ)

and A ≡ La(Ḃ).

A ≡ T(Ḃ) Firstly, if Γ, A is an instance of (Log), then ¬T(Ḃ) is contained in Γ, hence we have ¬T(Ḃ), ∆ ⊆ Γ, ∆.

Therefore, Lemma 7.11 implies the conclusion. The case where ∆,¬A is (Log) is similar. Secondly, we assume

that Γ, A and ∆,¬A are respectively obtained by (T) and (¬T):

α,β′,γ′

B

α,β,γ
Γ,T(Ḃ)

(T)

δ,ε′,ζ′

¬B

δ,ε,ζ
∆,¬T(Ḃ)

(¬T)
,

where β′ < β, γ′ < γ, ε′ < ε and ζ′ < ζ. Since β′ < β, the induction hypothesis for the premises yields that
max(α,δ)

∅, which contradicts Lemma 7.11. Thus, this case cannot occur.

A ≡ La(b) As a crucial case, we suppose that Γ,La(b) and ∆,¬La(b) are obtained by (U) and (¬U), respectively:

<α
b

α,β,γ
Γ,La(b)

(U)†
¬

<δ
b

δ,ε,ζ
∆,¬La(b)

(¬U)†

.

Here, we have the following side conditions:

¬
<α

La(b) : Prop (5)

¬
<δ

La(b) : Prop (6)

By (5) and (6), we clearly have α = δ. Therefore, the premise
<α

b is identical with
<δ

b, which contradicts

the other premise ¬
<δ

b. Thus, this case cannot occur. �

Using the cut-admissibility, we can give a model of VFU. The LFS -modelMVFU is an expansion of CTT , in

which the vocabularies of L and the additional constant symbols of LFS are interpreted in the same way as forMKF

in Section 4.3. Then, T(x) is interpreted as {x′}, where {x′} is the singleton of the negation normal form x′ of x. For

simplicity, we write x instead of {x′}. Similarly, U(x) is interpreted as the statement that for some closed term a,

x is of the form la and a : Class holds.

The next lemma verifies the VF-axioms in U of Definition 7.3.

Lemma 7.13. Let a and b be any closed terms and suppose a : Class. Then, the following hold inMVFU:

(U-Elem) If CTT |= P, then La(Ṗ), for each L-literal sentence P.

(U-Imp) If La(
˙︷ ︸︸ ︷

A→ B) and La(Ȧ), then La(Ḃ).
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(U-Univ) If La(
˙︷︸︸︷

A(c) ) for every closed term c, then La(
˙︷   ︸︸   ︷

∀x. A(x)).

(U-Log) La(Ȧ) for each logical theorem A.

(U-Cons) It is not the case that both La(b) and La(¬̇b).

(U-Self) La(b) if and only if La(
˙︷︸︸︷

T(b) ). Similarly, La(¬̇b) if and only if La(
˙︷︸︸︷

¬T(b)).

Proof. (U-Elem) AssumingMVFU |= P, we show that La(Ṗ). From the supposition, we can take the least successor

ordinal α such that
<α

a : Class. Then, we obviously have ¬
<α

La(Ṗ) : Prop. In addition, we have
0

P by

(Lit); thus, by (U), we can deduce
α

La(Ṗ), as required.

(U-Imp) Assuming La(
˙︷ ︸︸ ︷

A→ B) and La(Ȧ), we have to prove La(Ḃ). Similarly to the above, we take the least

successor ordinal α such that
<α

a : Class. Then, we clearly have ¬
<α

La(Ȧ) : Prop and
α

La(Ȧ) : Prop.

Here, if
α
¬La(Ȧ), then the assumption La(Ȧ) implies ∅ by Lemma 7.12, which contradicts Lemma 7.11.

Thus,
α

La(Ȧ), which yields
<α

A. Similarly, we also have
<α

A → B. Therefore, again by Lemma 7.12, it

follows that
<α

B, and thus we obtain
α

La(Ḃ) by (U).

(U-Univ) Assuming La(
˙︷︸︸︷

A(c) ) for any closed term c, we show La(
˙︷   ︸︸   ︷

∀x. A(x)). Similarly to the above, we take

the least successor ordinal α such that
<α

a : Class. Then, for all c, we clearly have
α

La(
˙︷︸︸︷

A(c) ), and thus
<α

A(c). Since α is a successor ordinal, we also have
α−1

A(c) for all c, which implies
α−1
∀x. A(x) by the

rule (∀). Thus, it follows that La(
˙︷   ︸︸   ︷

∀x. A(x)).

The other cases are similarly proved. �

Similarly to Lemma 7.13, the structural properties of VFU are satisfied inMVFU :

Lemma 7.14. Let a and b be any closed terms and suppose a : Class. Then, the following hold inMVFU:

(U-Class) La(b) or ¬La(b).

(U-True) If La(Ȧ), then A.

(Lim) If ab, then La(ab). If ¬̇(ab), then La(¬̇(ab)).

Finally, we verify the axiom (U-Out) :

Lemma 7.15. Let a be any closed term and suppose a : Class. Then, the following is satisfied inMVFU :

(U-Out) La(Ȧ) impliesMVFU |= A for any LFS -sentence A.

Proof. Since we observed that (U-True) is satisfied inMVFU, it suffices to show that A impliesMVFU |= A. Then,

in exactly the same way as for [7, Theorem 63.4], we can prove, by transfinite induction, that if Γ for a sequent Γ

which consists only of LFS -sentences, then at least one sentence of Γ is true inMVFU. �

In conclusion, every theorem of VFU is satisfied inMVFU.

Theorem 7.16. MVFU |= VFU.

Remark 7.17. Similar to Remark 4.12, we can also verify the axioms (U-Tran), (U-Dir), (U-Nor) and (U-Lin) in

MVFU.
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7.4. Upper bound of VFU

To determine the upper bound of VFU, we want to formalise the modelMVFU of the previous subsection. However,

the theory FID([POS,QF]) of Section 4.4 is not expressive enough to formalise the cut-admissibility argument of

Lemma 7.12. Thus, we will constructMVFU within the Kripke-Platek set theory KPi, which is proof-theoretically

equivalent to FID([POS,QF]), and hence it follows that VFU ≤ T0.

For the formulation of KPi, we follow [19]. For the language L′ of first-order Peano arithmetic, let L∗ := L′ ∪ {∈

,N, S,Ad}, where ∈ is the membership relation symbol; N is the set constant for the natural numbers; S is the unary

predicate symbol, expressing that a given object is a set; and the unary predicate symbol Ad says that an object is an

admissible set. Moreover, we assume thatL∗ contains restricted quantifiers ∀x ∈ y and ∃x ∈ y as primitive symbols. In

L∗, the equality symbol= is defined as the following formula: (a = b) := [a ∈ N∧b ∈ N∧a =N b]∨[S(a)∧S(b)∧(∀x ∈

a. x ∈ b)∧ (∀x ∈ b. x ∈ a)], where =N is a primitive recursive equality on natural numbers, and thus is contained inL′.

An L∗-formula A is ∆0 if A contains no unrestricted quantifiers. Let Tran(x) be a defined ∆0-predicate that expresses

that x is a transitive set. For the L∗-formula A, let Aa be the result of replacing each unrestricted quantifier ∃x.() and

∀x.() in A by ∃x ∈ a.() and ∀x ∈ a.(), respectively.

Definition 7.18 (cf. [19]). The L∗-theory KPi consists of the following axioms:

N-Induction and foundation. For all L∗-formulas A,

• A(0) ∧ [∀x ∈ N. A(x)→ A(x + 1)]→ ∀x ∈ N. A(x);

• [∀x. (∀y ∈ x. A(y))→ A(x)]→ ∀x. A(x).

Ontological axioms. For all terms a, b and ~c of L∗, all function symbols h and relation symbols R of L′ and all

axioms A(~x) of Set-theoretic axioms whose free variables belong to ~x,

• a ∈ N↔ ¬S(a);

• ~c ∈ N→ h(~c) ∈ N;

• R(~c)→ ~c ∈ N;

• a ∈ b→ S(b);

• Ad(a)→ [N ∈ a ∧ Tran(a)];

• Ad(a)→ ∀~x ∈ a. Aa(~x).

Number-theoretic axioms. For all axioms A(~x) of Peano arithmetic whose free variables belong to ~x,

• ∀~x ∈ N. AN(~x).

Set-theoretic axioms. For all terms a and b and all ∆0-formulas A(x) and B(x, y) of L∗,

Pair. ∃x. a ∈ x ∧ b ∈ x;

Transitive Hull. ∃x. a ⊂ x ∧ Tran(x);

∆0-Separation. ∃y. S(y) ∧ y = {x ∈ a : A(x)};

∆0-Collection. [∀x ∈ a.∃y.B(x, y)]→ ∃z. ∀x ∈ a. ∃y ∈ z. B(x, y);

Limit axiom. ∀x. ∃y. x ∈ y ∧Ad(y).

Now, we describe how MVFU is formalised in KPi. Since KPi contains Peano arithmetic, the interpretation of

L and the constant symbols of LFS can be given by using fixed Gödel numbering. Thus, the remaining task is to

formalise the sequent calculus in the previous subsection for the interpretation of T and U. For that purpose, in

which T-ranks and the derivation lengths are omitted is firstly formalised via the operator Φ(X, pΓq) defined below,

where Γ is (the code of) a sequent in the sense of the previous subsection. Since expressions of LFS ∪ {Lx(y)} are

coded as natural numbers, Φ can be given as a formula of L∗:

The ∆0-formulaΦ0(X, Γ) is defined to be the disjunction of the following:
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• P ∈ Γ, for an L-literal P true in CTT ,

• A ∧ B ∈ Γ, for some A, B such that Γ, A ∈ X and Γ, B ∈ X;

• A ∨ B ∈ Γ, for some A, B such that either Γ, A ∈ X or Γ, B ∈ X;

• ∀x. A(x) ∈ Γ, for some ∀x. A(x) such that Γ, A(a) ∈ X for all closed terms a;

• ∃x. A(x) ∈ Γ, for some ∃x. A(x) such that Γ, A(a) ∈ X for some closed term a;

Similarly, the ∆0-formulaΦ1(X, Γ) is defined to be the disjunction of the following:

• T(Ȧ) ∈ Γ, for some A ∈ X;

• ¬T(Ȧ) ∈ Γ, for some ¬A ∈ X;

Finally, the ∆0-formula Φ2(X, Γ) is defined to be the disjunction of the following:

• La(b) ∈ Γ, for some a, b such that b ∈ X and (⋆) holds;

• ¬La(b) ∈ Γ, for some a, b such that b < X and (⋆) holds,

where the condition (⋆) consists of the following:

1. ∀c. ac ∈ X or ¬̇(ac) ∈ X;

2. La(b) < X and ¬La(b) < X.

Thus, the operator Φ(X, Γ, α) roughly means that X contains the premise of one of the rules of . Next, we want

to characterise the set of derivable sequents, i.e., the set {Γ : Γ}. Let Fun( f ) be a ∆-predicate meaning that f is a

function; let a unary ∆-predicate On(x) express that x is an ordinal number; we use α, β, γ, α0, β0, γ0, . . . as variables

ranging over On; a Σ-operation Dom( f ) denotes the domain of f . Then, we define a ∆0-predicate H (s, f ), which

roughly means that for each α, β, γ ∈ s, the value of f at (α, β, γ) is the set {Γ :
α,β,γ

Γ}.

H (s, f ) := Ad(s) ∧ Fun( f ) ∧ ∀α, β, γ ∈ s. f (α, β, γ) = S ,

where the set S is the union of the following:

1. f (< α, ∈ s, ∈ s) ∪ f (α,≤ β,≤ γ),

2. {Γ : Φ0( f (α, β, < γ), Γ) ∨Φ1( f (α, < β, < γ), Γ)},

3. {Γ : α ∈ Suc ∧ Φ2( f (α − 1, ∈ s, ∈ s), Γ)}.

Here, we used the following notations:

• f (< α, ∈ s, ∈ s) :=
⋃
α0<α,β∈s,γ∈s f (α0, β, γ);

• f (α,≤ β,≤ γ) :=
⋃
β0≤β,γ0≤γ f (α, β0, γ0);

• f (α, β, < γ) and f (α, < β, < γ) are similarly defined;

• ClΦi
(X) :↔ ∀x. Φi(X, x)→ x ∈ X, for i ∈ {0, 1}.

The next lemma shows that H (s, f ) determines the set f (α, β, γ) for each α, β, γ ∈ s regardless of the particular

choice of s and f .

Lemma 7.19 (in KPi). Assume H (s, f ) and H (s′, g). Then the following hold for all α, β, γ ∈ s ∩ s′:

1. ClΦ0
( f (α, ∈ s, ∈ s)) and ClΦ1

( f (α, ∈ s, ∈ s)),

2. f (α, ∈ s, ∈ s) = g(α, ∈ s′, ∈ s′).

3. f (α, β, γ) = g(α, β, γ),
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Proof. For the item 1, we show ClΦ0
( f (α, ∈ s, ∈ s)). Thus, taking any sequent Γ and assuming Φ0( f (α, ∈ s, ∈ s), Γ),

we show Γ ∈ f (α, ∈ s, ∈ s). The proof is divided into cases according to the clauses of Φ0. As the crucial case,

suppose that a sentence ∀x. A(x) is contained in Γ and ∀a ∈ Term. Γ, A(a) ∈ f (α, ∈ s, ∈ s). Since s is admissible, by

Σ-reflection within s, we can take an ordinal δ ∈ s such that ∀a ∈ Term. Γ, A(a) ∈ f (α, < δ, < δ). Thus, by applyingΦ0

we obtain Γ ∈ f (α, < δ, δ), and hence Γ ∈ f (α, ∈ s, ∈ s). The other cases are similar. Moreover, ClΦ1
( f (α, ∈ s, ∈ s)) is

similarly proved.

As to item 2: f (α, ∈ s, ∈ s) = g(α, ∈ s′, ∈ s′), we show f (α, β, γ) ⊆ g(α, ∈ s′, ∈ s′) by induction on α, β and γ.

Therefore, assuming Γ ∈ f (α, β, γ), we have to show Γ ∈ g(α, ∈ s′, ∈ s′). By H (s, f ), the proof is divided by cases

according to the construction of f (α, β, γ). If Γ ∈ f (< α, ∈ s, ∈ s) or Γ ∈ f (α,≤ β,≤ γ), then the claim is obvious

by the side-induction hypothesis. If Φ0( f (α, β, < γ), Γ), then since Φ0 is positive, we have Φ0(g(α, ∈ s′, ∈ s′), Γ)

by the side-induction hypothesis. As g(α, ∈ s′, ∈ s′) is Φ0-closed by the item 1, it follows that Γ ∈ g(α, ∈ s′, ∈ s′),

as required. The case Φ1( f (α, β, < γ), Γ) is similar. The last case is where α ∈ Suc and Φ2( f (α − 1, ∈ s, ∈ s), Γ).

Then, the main-induction hypothesis yields Φ2(g(α − 1, ∈ s′, ∈ s′), Γ), thus Γ ∈ g(α, ∈ s′, ∈ s′). In summary, we have

f (α, ∈ s, ∈ s) ⊆ g(α, ∈ s′, ∈ s′). The converse direction is similar, and thus the proof of item 3 is complete.

Item 3: f (α, β, γ) = g(α, β, γ) is easily proved by induction on α, β and γ, with the help of item 2. �

We further introduce the following notations:

• Iα,β,γ(x) := ∃s, f . {α, β, γ} ⊆ s ∧H (s, f ) ∧ x ∈ f (α, β, γ),

• Iα,≤β,<γ(x) := ∃β0 ≤ β. ∃γ0 < γ. Iα,β0,γ0 (x),

• Iα(x) := ∃β, γ. Iα,β,γ,

• I<α(x), Iα,≤β,≤γ(x), Iα,β,<γ(x) and Iα,<β,<γ(x) are similarly defined.

We now show that the Σ-predicate Iα,β,γ(x) expresses the required class {Γ :
α,β,γ

Γ}.

Lemma 7.20. The following are derivable in KPi.

1. ∀α. ∃s, f . α ∈ s ∧H (s, f ).

2. Iα,β,γ(Γ) if and only if one of the following holds:

(a) I<α(Γ) ∨ Iα,≤β,≤γ(Γ),

(b) Φ0(Iα,β,<γ, Γ) ∨ Φ1(Iα,<β,<γ, Γ),

(c) α ∈ Suc ∧Φ2(Iα−1, Γ).

Proof. 1. By the limit axiom of KPi, let s be an admissible set that contains α. Then, from the definition of the

∆0-predicate H (s, f ), we can construct a required function f by ∆-recursion, available in KPi (cf. [30, p. 256]).

2. For the left-to-right direction, we assume Iα,β,γ(Γ); thus, we take sets s and f such that {α, β, γ} ⊆ s∧H (s, f )∧

Γ ∈ f (α, β, γ). For instance, we consider the case where Γ ∈ f (α, β, γ) is obtained from Φ2, then we have α ∈

suc and Φ2( f (α− 1, ∈ s, ∈ s), Γ). By Lemma 7.19, we can easily show that ∀x. x ∈ f (α− 1, ∈ s, ∈ s)↔ Iα−1(x).

Therefore, we get Φ2(Iα−1, Γ), as required. The other cases are similarly proved by using Lemma 7.19.

As for the converse direction, we, for example, assume α ∈ Suc ∧ Φ2(Iα−1, Γ). By item 1, we take sets s and

f such that max(α, β, γ) ∈ s and H (s, f ). Then, again by Lemma 7.19, we have ∀x. Iα−1(x) ↔ x ∈ f (α − 1, ∈

s, ∈ s). Therefore, we obtain Φ2( f (α − 1, ∈ s, ∈ s), Γ), and hence it follows that Γ ∈ f (α, β, γ). Thus, we obtain

Iα,β,γ(Γ). The other cases are similarly proved. �

Let I∞(x) :↔ ∃α. Iα(x). We now define an interpretation + of VFU into KPi. The vocabularies ofL are interpreted

in exactly the same way as in Lemma 4.15. Then, we let T+(x) :≡ I∞(x); let U+(x) :↔ ∃a. x = la ∧ ∀b. I∞(ab) ∨

I∞(¬̇(ab)).

Lemma 7.21. For each LFS -formula A, if VFU ⊢ A, then KPi ⊢ A+.

Proof. The proof is by directly running the proof of Theorem 7.16 within KPi.
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(U-Class) We want to show KPi ⊢ (U(u) → C(u))+. Thus, taking any term f such that u = l f and ∀a. I∞( f a) ∨

I∞(¬̇( f a)), we show ∀a. I∞(l f a)∨ I∞(¬̇(l f a)). Then, since I∞ is a Σ-predicate, we can, by Σ-reflection, take the

least successor ordinal α such that ∀a. I<α( f a)∨ I<α(¬̇( f a)). Therefore, Lemma 7.20 implies that ∀a. Iα(l f a)∨

Iα(¬̇(l f a)), and thus we obtain ∀a. I∞(l f a) ∨ I∞(¬̇(l f a)).

(U-True) Similar to the above.

(U-Out) Since KPi ⊢ (U-True)+, it suffices to verify (T-Out)+, that is, KPi ⊢ I∞(Ȧ) → A+ for each LFS -formula A.

For that purpose, we formalise Lemma 7.15 within KPi, similarly to [5, Lemma 5.8.2]. In particular, we can

show the following for each natural number k:

KPi ⊢ ∀Γ ∈ Seqk. I∞(Γ)→ ∃x ∈ Γ. Tk(x),

where Γ ∈ Seqk means every sentence in Γ has the logical complexity ≤ k; the predicate Tk(x) is a partial truth

predicate such that KPi ⊢ Tk(Ȧ)↔ A+ for each LFS -formula A with the logical complexity ≤ k. Then, we have

KPi ⊢ I∞(Ȧ)→ A+ for each LFS -formula A, as required.

The other cases are similarly proved by using Lemma 7.20. �

Combining Theorem 7.10 with Lemma 7.21, we obtain the proof-theoretic strength of VFU:

Theorem 7.22. VFU and T0 are proof-theoretically equivalent.

8. Conclusion

The results of this paper are summarised as follows.

Conclusion 8.1. All the following theories are proof-theoretically equivalent to T0:

• KFUPI and PTUPI,

• KFLU and PTLU,

• VFU.

The author suggests two directions for future studies. First, given that most of the truth theories have been studied over

Peano arithmetic, it would be desirable to find systems over Peano arithmetic that corrrespond to our theories. Second,

we can consider extending our systems further by stronger universe-generating axioms. One example by Cantini [7]

is the Mahlo principle, which is an analogue of the recursively Mahlo axiom in Kripke–Platek set theory. Therefore,

the question is how strong the systems of Frege structure will be by the addition of such a principle. Furthermore,

Jäger and Strahm [22] formulated an even stronger principle in explicit mathematics; thus, it may be possible to give

its counterpart in the framework of Frege structure. Of course, philosophical discussions would also be required on

how well these are motivated as truth-theoretic principles.
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[19] Gerhard Jäger. First order theories for nonmonotone inductive definitions: recursively inaccessible and Mahlo. The Journal of Symbolic

Logic, 66(3):1073–1089, 2001.
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